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Introduction: Although white matter hyperintensities (WMH) are radiologically

classified as deep WMH (DWMH) and periventricular WMH (PVWMH) based

on spatial distribution, the distinct metabolic perturbations driving their

pathogenesis remain incompletely characterized.

Methods: This study integrated untargeted metabolomics with MRI phenotyping

to delineate metabolic perturbations of WMH in arteriosclerotic cerebral small

vessel disease (aCSVD) patients (n = 30) versus controls (n = 29). Plasma

metabolic profiles were analyzed using UPLC-MS. Weighted gene correlation

network analysis (WGCNA) evaluated associations between metabolite clusters

and clinical traits, including DWMH volume, PVWMH volume and total WMH

(TWMH) volume.

Results: We identified 15, 16, and 16 key metabolites meeting both differential

expression and WGCNA hub criteria for DWMH, PVWMH, and TWMH,

respectively. Pathway Enrichment identified α-linolenic acid and linoleic acid

metabolism as common pathway perturbed across both WMH categories.

Key metabolites of the pathway, including docosahexaenoic acid (DHA) and

stearidonic acid (SDA), demonstrated robust inverse associations with WMH

volumes in confounder-adjusted linear regression models. Notably, both WMH

categories share common metabolites, particularly polyunsaturated fatty acids

(PUFA), while PVWMH-specific metabolites were primarily carnitine derivatives,

and DWMH-specific metabolites were prostaglandin E2 and etodolac.

Conclusion: These findings offer new insights into the metabolic mechanisms

underlying DWMH and PVWMH in aCSVD. However, the cross-sectional nature

of the study does not allow for causal conclusions. Future longitudinal
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studies are needed to validate the temporal relationships between metabolic

perturbations and WMH progression.

KEYWORDS

deep white matter hyperintensities, periventricular white matter hyperintensities,
arteriosclerotic cerebral small vessel disease, untargeted metabolomics, weighted gene
correlation network analysis

1 Introduction

Cerebral small vessel disease (CSVD) encompasses a
spectrum of clinical, imaging, and pathological syndromes
caused by structural and functional alterations in the brain’s
small arteries, arterioles, capillaries, and venules (Wardlaw
et al., 2019). Among the subtypes of CSVD, arteriosclerotic
CSVD (aCSVD) is one of the most prevalent and clinically
significant (Pantoni, 2010). A hallmark imaging feature of
aCSVD is white matter hyperintensities (WMH), which appear
as bilateral and symmetrical hyperintense areas on T2-weighted
and fluid-attenuated inversion recovery (FLAIR) MRI sequences.
Epidemiological studies indicate that approximately 50% of
individuals exhibit WMH by the age of 50 (Wen et al., 2009), with
prevalence increasing dramatically to 95% by the age of 90 (de
Leeuw et al., 2001). WMH are recognized as a significant marker of
poor brain health, strongly associated with elevated risks of stroke,
cognitive decline, dementia, gait disturbances, and mortality
(Debette et al., 2019; Hu et al., 2021; Herrmann et al., 2008).

The pathophysiological mechanisms underlying WMH remain
incompletely understood; however, emerging evidence supports
a multifactorial etiology. Key mechanisms include chronic
hypoperfusion, inflammatory responses, endothelial dysfunction,
and blood-brain barrier (BBB) disruption, as demonstrated in
recent studies (Fernando et al., 2006; Lin et al., 2017; Hannawi,
2023). These processes likely interact synergistically, leading to
white matter damage and the progression of WMH (Ottavi
et al., 2023). WMH are further categorized into deep white
matter hyperintensities (DWMH) and periventricular white matter
hyperintensities (PVWMH) based on their anatomical locations,
each exhibiting distinct functional and histopathological correlates.
DWMH are primarily associated with mood disorders and are
linked to vascular ischemic injury, characterized by demyelination
and myelin rarefaction. In contrast, PVWMH are more frequently
associated with cognitive impairment and may arise from non-
ischemic mechanisms, such as extracellular fluid accumulation,
ependymal disruption, or chronic hemodynamic insufficiency
(Huang et al., 2024). These regional differences underscore the
involvement of distinct pathological processes in DWMH and
PVWMH, which differentially impact brain function and structure.
Further research is needed to elucidate the precise molecular
pathways and therapeutic targets involved in WMH pathogenesis.

Recent advances in metabolomics have identified a range of
circulating metabolites associated with WMH, revealing significant
sex-specific differences in these associations (Sliz et al., 2022). For
instance, metabolomic profiling has demonstrated that levels of
glycerophospholipids and sphingolipids are inversely correlated

with WMH volume and cognitive impairment, whereas levels of
creatine and sphingosine show positive correlations with WMH
burden and cognitive decline (Harshfield et al., 2022). These
findings suggest that these metabolites may play a critical role in
the pathological processes underlying WMH and their associated
cognitive dysfunction, potentially through mechanisms involving
energy metabolism dysregulation, oxidative stress, and vascular
endothelial dysfunction. Such insights highlight the potential of
metabolomics in identifying novel biomarkers and therapeutic
targets for WMH.

This study leverages untargeted metabolomics to (1) identify
critical metabolic signatures distinguishing aCSVD patients
with severe WMH from controls, (2) delineate category-specific
(DWMH vs. PVWMH) metabolic dysregulations, and (3)
evaluate candidate biomarkers for neurovascular protection. By
integrating MRI phenotyping with systems-level metabolomics,
we aim to unravel mechanistic insights and therapeutic targets
for WMH in aCSVD.

2 Materials and methods

This was a cross-sectional study. The study protocol was
approved by the Ethics Committee of Maoming People’s Hospital
(PJ2020MI-K185-01), and all participants provided written
informed consent in accordance with the Helsinki Declaration.

2.1 Participants

From October 2022 to December 2024, we recruited 30 patients
with severe WMH (Fazekas scores 3) in aCSVD and 30 age-
and gender-matched healthy controls from the Department of
Neurology at Maoming People’s Hospital.

Inclusion Criteria of WMH in aCSVD: (1) age ≥ 60 years; (2)
MRI findings consistent with STRIVE (STandards for ReportIng
Vascular changes on nEuroimaging)-defined neuroimaging
criteria for cerebral small vessel disease (Duering et al., 2013); (3)
presence of ≥1 atherosclerotic risk factor(s): hypertension,
diabetes mellitus, hyperlipidemia, current smoking (≥10
cigarettes/day), obesity (BMI > 28 kg/m2), hyperhomocysteinemia,
or documented Atherosclerotic Cardiovascular Disease (ASCVD);
(4) MRI evidence of strictly deep cerebral microbleeds (basal
ganglia, thalamus, brainstem, or cerebellar dentate nuclei),
excluding lobar or cerebellar cortical microbleeds; (5) severe
white matter hyperintensities (WMH) on FLAIR imaging,
classified as Fazekas grades 3. Exclusion Criteria: (1) Alternative
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cerebral small vessel disease etiologies: Cerebral amyloid
angiopathy (sporadic or hereditary); Monogenic small vessel
diseases; Inflammatory/immune-mediated vasculopathies; (2)
Hemodynamically significant intracranial atherosclerotic stenosis
(>50% luminal narrowing in major cerebral arteries); (3) Ischemic
stroke attributable to large artery atherosclerosis or cardioembolic
sources; (4) Secondary neurological pathologies (infectious,
metabolic, toxic, neoplastic, or post-traumatic etiologies); (5)
Acute/chronic intracerebral hemorrhage (parenchymal hematoma
volume > 10 mL); (6) Major systemic comorbidities: Active
pulmonary infection; Decompensated heart failure (NYHA
class≥ II); Severe renal impairment (eGFR < 30 mL/min/1.73 m2);
Hepatocellular dysfunction (ALT/AST > 3 × ULN or total
bilirubin > 3× ULN).

2.2 MRI parameters and analysis pipeline

All participants underwent neuroimaging on a 3.0-T
Discovery MR750 scanner (General Electric, Milwaukee,
USA) equipped with an 8-channel HRBRAIN head coil. The
standardized protocol included: Axial T1 FLAIR-weighted
imaging (TR/TE = 1,750/24 ms, echo train length ETLETL = 10,
bandwidth BWBW = 41.67 kHz, matrix = 320 × 224,
FOV = 240 × 240 mm2, slice thickness/gap = 5/1 mm, NEX = 1);
Axial T2 PROPELLER (FrFSE) (TR/TE = 5,727/93 ms, ETL = 32,
BW = 83.3 kHz, matrix = 512 × 512, FOV = 240 × 240 mm2,
slice thickness/gap = 5/1 mm, NEX = 1.5); T2 FLAIR
(TR/TE/TI = 8,400/145/2,100 ms, BW = 83.3 kHz, flip
angle = 145◦, matrix = 320 × 224, FOV = 240 × 240 mm2,
slice thickness/gap = 5/1 mm, NEX = 1); 3D Time-of-Flight MR
Angiography (TOF-MRA) (TR/TE = 25/3.4 ms, flip angle = 20◦,
BW = 41.67 kHz, matrix = 384 × 320, FOV = 200 × 200 mm2,
isotropic voxel size = 0.8 mm3, NEX = 1); Axial T2-weighted
SWAN∗ (TR/TE = 77.3/45 ms, BW = 62.5 kHz, flip angle = 15◦,
matrix = 384× 320, slice thickness = 2 mm, NEX = 1).

The MRI analysis pipeline was designed to quantify WMH.
The processing steps were as follows: (1) Image Registration:
The FLAIR and T1-weighted images were co-registered using the
LST (Lesion Segmentation Tool, version 3.0.0) toolbox1 within
SPM12 (Statistical Parametric Mapping, version 12) implemented
in MATLAB (version 9.9). This step ensured spatial alignment
between the two imaging modalities, which is essential for accurate
segmentation and subsequent analysis. (2) Total WMH Volume
Segmentation: Following registration, the total WMH volume was
automatically segmented from the co-registered FLAIR images
by the lesion prediction algorithm (Schmidt, 2017). (3) Lateral
Ventricle and PVWMH Segmentation:The lateral ventricles and
PVWMH were segmented using the anatomical tools from the FSL
(FMRIB Software Library, version 6.0) (Kempton et al., 2011). The
lateral ventricle masks were generated. PVWMH were defined as
lesions less than 10 mm distance from the ventricles, otherwise it is
DWMH (Ludovica et al., 2017). (4) DWMH Volume Calculation:
The volume of DWMH was calculated by subtracting the PVWMH
volume from the total WMH volume. (5) Quality Control: Visual
quality checks were performed on both the original and processed

1 www.statistical-modeling.de/lst.html

MRI images to ensure accuracy. Any cases with oversegmentation,
artifacts, or incorrect segmentations were excluded from further
analysis. Figure 1 offers a diagrammatic representation of the image
processing pipeline.

2.3 Serum sample collection and sample
preparation

Overnight fasting venous blood specimens were collected from
all subjects. The samples were placed in serum separation tubes and
centrifuged at 1500 rpm for 10 min at 4◦C. The resulting serum
supernatant was aseptically aliquoted into pre-labeled cryogenic
vials and stored at −80◦C in ultra-low temperature freezers until
subsequent biochemical analysis.

Serum samples were thawed at 4◦C until completely liquefied.
For metabolite extraction, 100 µL aliquots of each sample,
including quality control (QC) samples prepared by pooling
equal volumes from all specimens, were transferred to 1.5 mL
Eppendorf tubes. Then, 700 µL of ice-cold extraction solvent
(methanol:acetonitrile:water = 4:2:1,v/v/v) was added. The mixture
was vortexed vigorously for 1 min and incubated at−20◦C for 2 h to
precipitate proteins. After centrifugation at 25000 rpm for 15 min
at 4◦C, 600 µL of the supernatant was transferred to fresh tubes.
The supernatant was lyophilized using a vacuum concentrator and
reconstituted in 180 µL of methanol:water (1:1, v/v). After vortex
mixing for 10 min and centrifugation under the same conditions
(25000 rpm, 4◦C, 15 min), the final supernatant was transferred to
LC-MS vials for analysis. QC samples were generated by combining
20 µL aliquots from each prepared sample to monitor system
stability and reproducibility throughout the analytical sequence.

2.4 Metabolomics measurement

Chromatographic separation was performed using a Vanquish
UPLC system (Thermo Scientific) coupled to an Orbitrap
Exploris 480 mass spectrometer operated in dual polarity mode.
Mass spectra were acquired in full scan mode (m/z 70–1050)
with 120000 resolution (MS1) and 30,500 resolution (MS2),
employing stepped collision energy (20/40/60 eV) for data-
dependent MS/MS acquisition. Ion source parameters were
optimized as follows: sheath gas 40 arb, auxiliary gas 10 arb,
spray voltage ± 3.80/3.20 kV (positive/negative mode), capillary
temperature 320◦C, and auxiliary heater 350◦C. Raw data were
processed through Compound Discoverer 3.3 (Thermo Scientific)
using multi-database matching (BMDB (Beijing Genomics
institution metabolome database), mzCloud2, ChemSpider3 with
strict mass tolerance thresholds (<5 ppm precursor, <10 ppm
fragment) and retention time alignment (<0.2 min deviation).

The offline mass spectrometry data were imported into
Compound Discoverer 3.3 (Thermo Fisher Scientific, USA) and
analyzed in conjunction with the BMDB database, mzCloud
database, and ChemSpider online database. This process

2 https://www.mzcloud.org/

3 https://www.chemspider.com/
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FIGURE 1

Representation of the image processing pipeline.

yielded a data matrix containing metabolite peak area and
identification results.

2.5 Data process and metabolomics
analysis

The results from Compound Discoverer were input into MetaX
for data preprocessing and further analysis. The preprocessing
steps included: (1) Normalizing the data using Probabilistic
Quotient Normalization (PQN) to obtain relative peak areas.
(2) Correcting batch effects using Quality control-based robust
LOESS signal correction. (3) Removing metabolites with a
Coefficient of Variation exceeding 30% in their relative peak area
within QC samples.

To detect group differences, unsupervised principal component
analysis (PCA) and supervised orthogonal partial least-squares-
discriminant analysis (OPLS-DA) were employed. All the models
evaluated were tested for overfitting with methods of permutation
tests (n = 200). Variable influence on projection (VIP) values
of metabolites were obtained. Student’s t-test was used to
assess the significance of metabolite expression differences in
each comparison group, yielding p-values. These p-values were
corrected using the Benjamini-Hochberg algorithm to obtain false
discovery rate (FDR) adjusted p-value. Metabolites with VIP > 1.0,
fold change (FC, WMH/controls) > 1.2 or <0.83, and FDR
adjusted p-value < 0.05 were considered as differential metabolites.
Metabolites were annotated using the Kyoto Encyclopedia of
Genes and Genomes (KEGG)4 and Human Metabolome Database

4 https://www.kegg.jp

(HMDB)5, providing information such as KEGG ID, HMDB ID,
category, and involvement in KEGG metabolic pathways.

2.6 Weighted gene correlation network
analysis

Weighted gene correlation network analysis (WGCNA), a
systems biology method, has been applied in many high-
dimensional data sets, including metabolomics (Jiang et al.,
2025). In the current study, WGCNA was implemented to
investigate metabolome-wide associations with WMH categories
(DWMH, PVWMH and total WMH). This methodology involves
four key analytical phases (Langfelder and Horvath, 2008): (1)
Construction of a signed metabolite co-expression network using
soft-thresholding power to preserve biological meaningfulness
while minimizing spurious connections; (2) Hierarchical clustering
of metabolites through topological overlap matrix (TOM)-based
dissimilarity measures to identify cohesive metabolite modules; (3)
Module-trait association analysis to identify biologically relevant
modules showing significant correlations (p < 0.05) with WMH
categories; and (4) Identification of intramodular hub metabolites
through dual topological criteria.

Hub metabolites were operationally defined as those
demonstrating both high intramodular connectivity (module
membership [MM] > |0.8|) and significant phenotypic association
(gene significance [GS] > |0.2|). These stringent thresholds ensure
selection of metabolites that not only occupy central positions
in the interaction network but also exhibit strong biological

5 https://hmdb.ca/metabolites
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relevance to WMH pathophysiology. The MM metric quantifies
intramodular connectivity through Pearson correlation between
metabolite expression profiles and module eigengenes, while GS
represents the absolute correlation between individual metabolite
levels and clinical traits of interest.

2.7 Statistical analysis

Statistical analyses were conducted using metaX software
(Wen et al., 2017) and MATLAB R2023b. Linear regression
models were constructed to assess relationships between key
metabolites and WMH categories, incorporating adjustment for
age, sex, hypertension, diabetes, hyperlipoidemia and BMI. The
normality assumption was evaluated based on the residuals and
confirmed visually and calculated using the Shapiro-Wilk test. If
the normality assumption was not fulfilled the WMH volumes
were log transformed, after which normality assumption was
met. Statistical significance was defined as P < 0.05 for clinical
variables and Benjamini-Hochberg false discovery rate (FDR)-
adjusted P < 0.05 for metabolomics data, ensuring robust control
for multiple comparisons.

3 Results

3.1 Baseline characteristics of study
population

The study comprised 30 patients with severe WMH and 29 age-
and gender-matched healthy controls, with one control excluded
due to hemolytic serum interference (Table 1). Demographic
profiles, including age, sex distribution, and vascular risk factors
(hypertension, diabetes, hyperlipidemia, BMI), were comparable
between groups. Volumetric analysis revealed significantly larger
WMH volumes in the WMH group compared to controls across all
categories.

3.2 Quality control of UPLC-MS analytical
performance

Total ion chromatograms (TIC) demonstrated high
reproducibility in retention time (RT) alignment and peak
area consistency across quality control (QC) samples in both
positive (Supplementary Figure 1A) and negative (Supplementary
Figure 1B) ionization modes. The coefficient of variation (CV) for
QC metabolites was <15%, confirming robust system stability and
data reliability.

3.3 Plasma metabolomics multivariate
statistical analysis

In total, 1978 metabolites were identified based on LC-
MS/MS spectra. An unsupervised PCA analysis demonstrated clear
clustering of the WMH patients and controls (Figure 2A). However,

TABLE 1 Demographics of the participants and distribution of WMH
volume.

Number of
subjects

WMH
(n = 30)

HC (n = 29) p

Age (y) 69.2± 6.4 67.5± 5.6 0.276

Male, n (%) 19 (63.3) 18 (62.1) 0.920

Hypertension, n
(%)

28 (93.3) 0 (0) <0.001

Diabetes
mellitus, n (%)

6 (20.0) 0 (0) 0.024

Hyperlipidemia,
n (%)

12 (40.0) 15 (51.72%) 0.366

Body mass index
(kg/m2)

22.69 (21.43,
23.85)

23.14 (20.25,
24.55)

0.872

DWMH volume
(ml)

5.41 (4.14, 9.44) 0.12 (0.01, 0.32) <0.001

PVWMH
volume (ml)

19.77 (15.84,
31.11)

1.16 (0.49, 2.97) <0.001

TWMH volume
(ml)

27.58 (20.11,
40.92)

1.41 (0.52, 3.74) <0.001

DWMH, deep white matter hyperintensities; PVWMH, periventricular white matter
hyperintensities; TWMH, total white matter hyperintensities.

a supervised OPLS-DA model offered superior discrimination
of metabolic profiles between the WMH patients and controls
(Figure 2B). Furthermore, seven rounds of cross - validation and
200 rounds of RPT confirmed the robustness of the OPLS-DA
models, with the R2Y and Q2 values of 0.983 and 0.769, respectively
(Figure 2C).

3.4 Differential metabolite screening

A multistep analytical framework was implemented to
identify differentially expressed metabolites. First, univariate
analysis combining OPLS-DA and Student’s t-test identified 359
preliminary differential metabolites (FDR-adjusted p < 0.05,
VIP > 1). Volcano plot visualization (Figure 3A) refined this set
using dual thresholds: (1) statistical significance (FDR < 0.05),
and (2) biological relevance (|log2 fold change| > 0.26, equivalent
to ±20% expression variation). This stratified 353 candidate
metabolites, comprising 185 upregulated and 168 downregulated
metabolites in WMH patients versus controls (Supplementary
Table 1). Expression-derived metrics (EDM), calculated as Z-score
normalized abundance values, were subjected to unsupervised
hierarchical clustering (complete linkage method, Euclidean
distance) to reveal co-regulation patterns (Figure 3B).

3.5 WGCNA

WGCNA was performed using a soft-thresholding power of
10, selected as the minimum value achieving scale-free topology
(scale-free fit index ≥ 0.80; Figures 4A, B). Hierarchical clustering
with dynamic tree cutting identified 32 co-expression modules
(Figure 4C), where the gray module represented unclassified
metabolites. Module-trait association analysis revealed distinct
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FIGURE 2

Multivariate analysis for metabolites. (A) Principal component analysis (PCA) score plots; (B) orthogonal projections to latent
structures—discriminant analysis (OPLS-DA) score plots; (C) permutation test of OPLS-DA.

FIGURE 3

Volcano plots (A) and heatmaps (B) illustrating the different metabolites.

correlation patterns across WMH categories (Figure 4D). DWMH
showed significant negative correlations with salmon (r = −0.38,
P = 0.0031), black (r = −0.34, P = 0.0076), purple (r = −0.47,
P = 1.73 × 10−4) and green (r = −0.35, P = 0.0070) modules,
while exhibiting positive correlations with lightcyan (r = 0.35,
P = 0.0060) and greenyellow (r = 0.60, P = 4.05 × 10−7)
modules. Similarly, PVWMH demonstrated negative correlations
with salmon (r = −0.39, P = 0.0021), darkred (r = −0.36,
P = 0.0053), purple (r = −0.64, P = 5.23 × 10−8), orange
(r =−0.37, P = 0.0044) and green (r =−0.39, P = 0.0025) modules,
along with positive correlations for darkolivegreen (r = 0.44,
P = 5.60 × 10−4) and greenyellow (r = 0.52, P = 2.57 × 10−5)
modules. TWMH exhibited comparable patterns, with strong
negative correlations to salmon (r = −0.41, P = 0.0013), black
(r = −0.34, P = 0.0080), purple (r = −0.61, P = 2.50 × 10−7)
and green (r = −0.39, P = 0.0020) modules, and positive
correlations with darkolivegreen (r = 0.38, P = 0.0031) and
greenyellow (r = 0.59, P = 1.58 × 10−6) modules. These

significantly associated modules were prioritized for downstream
analysis, with intramodular hub metabolites identified using
dual thresholds (module membership [MM] ≥ 0.80 and |gene
significance [GS]| ≥ 0.20). The MM-GS relationships for these
metabolites were visualized in scatter plots (Supplementary
Figure 2), confirming their central roles in network topology and
phenotypic associations.

Through rigorous network topology screening, we identified
86, 77, and 94 hub metabolites significantly associated with
DWMH, PVWMH and TWMH volumes, respectively. Notably,
only 29, 32, and 32 of these metabolites were annotated in
the HMDB (Supplementary Table 2), while the purple and
lightcyan modules contained no identifiable metabolites—a
finding suggestive of novel biochemical pathways in these
network clusters. Strikingly, the green modules across all WMH
categories exhibited pronounced enrichment of polyunsaturated
fatty acids (PUFA), including ω-3 (stearidonic acid (SDA)
[18:4n-3]) and ω-6 derivatives (5E,8E,11E-hexadecatrienoic
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FIGURE 4

Weighted correlation network analysis and the selection of hub metabolites. (A) Scale-free fitting index analysis and mean connectivity of soft
threshold power from 1 to 30. (B) Checking the scale free topology (power = 10). (C) Clustering dendrograms. (D) Correlation heatmap between
module eigengenes and clinical traits. *P < 0.05; **P < 0.01; ***P < 0.001.

acid [16:3n-1], linoleic acid (LA) [18:2n-6], γ-linolenic acid
[18:3n-6], dihomo-α-linolenic acid [20:3n-6], and adrenic acid
[22:4n-6]). These modules also contained ω-7 monounsaturated
(palmitoleic acid [16:1n-7]) and saturated fatty acids (myristic
acid [14:0]), oxylipins (8(S)-hydroxy-eicosatetraenoic acid
[8(S)-HETE]), hydroxylated lipids (3-hydroxy myristic acid
[3-OH-MA], 9-hydroxyoctadecanoic acid [9-HOA]), and the
steroid androsterone.

Category-specific metabolic signatures revealed
divergent pathobiological mechanisms: PVWMH-associated
metabolites clustered in orange/darkolivegreen/darkred
modules were dominated by carnitine derivatives
(hexanoylcarnitine [C6], trans-2-dodecenoylcarnitine [C12:1],
myristoleoylcarnitine [C14:1], 9-hexadecenoylcarnitine
[C16:1], palmitoylcarnitine [C16]) alongside mevalonic
acid, ursolic acid, and finasteride. In contrast, DWMH-
specific metabolites within the black module comprised
prostaglandin E2 (PGE2), etodolac, loperamide, flurandrenolide,
minoxidil, and alfentanil.

3.6 Key metabolites identification and
pathway enrichment

Through integrative analysis of differential expression (|log2
fold change| > 0.26, FDR < 0.05, VIP > 1) and network
centrality ([MM] ≥ 0.80 and |[GS]| ≥ 0.20), we identified 15,
16, and 16 key metabolites for DWMH, PVWMH, and TWMH
respectively, including nine conserved across all categories: ω-
3/6 polyunsaturated fatty acids (SDA, 5E,8E,11E-hexadecatrienoic
acid, γ-linolenic acid), myristic acid, hydroxylated lipids [(R)-3-
hydroxy myristic acid, 8(S)-HETE], and secondary metabolites
(purine, 3-hydroxy-3-methylglutaric acid, catechin) (Figure 5
and Supplementary Tables 1, 2). Pathway enrichment analysis
revealed α-linolenic acid and linoleic acid metabolism as the
core perturbed pathways, with coordinated downregulation of five
critical intermediates—LA, γ-linolenic acid, SDA, adrenic acid,
and docosahexaenoic acid (DHA) (22:6n-3) (Figures 6A–D and
Supplementary Table 3).
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FIGURE 5

The Venn diagram of differential and hub metabolites.

FIGURE 6

Enrichment analyses of differential and key metabolites. (A) Enrichment analyses of differential metabolites. (B) Enrichment analyses of key
metabolites for DWMH. (C) Enrichment analyses of key metabolites for PVWMH. (D) Enrichment analyses of key metabolites for TWMH.

3.7 Linear regression models for WMH
volume

Linear regression models adjusted for age, sex, hypertension,
diabetes, hyperlipidemia, and BMI were employed to evaluate
associations between five key metabolites and WMH volume

(Table 2). DHA exhibited significant inverse associations with
all WMH categories: DWMH: β = −0.575, 95% CI [−0.937,
−0.214], R2 = 0.30, P = 0.003), PVWMH: β = −0.302, 95% CI
[−0.550, −0.054], R2 = 0.03, P = 0.019), and TWMH: β = −0.363,
95% CI [−0.614, −0.112], R2 = 0.15, P = 0.007), indicating its
broad protective role against lesion progression. SDA was inversely
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TABLE 2 Linear regression models for WMH volume.

Metabolites Log DWMH Log PVWMH Log TWMH

β (95% CI) R2 P β (95% CI) R2 P β (95% CI) R2 P

Stearidonic acid −0.565 (−0.895,
−0.235)

0.33 0.0017 −0.203 (−0.451,
0.045)

−0.10 0.10 −0.268 (−0.520,
−0.016)

0.01 0.038

Adrenic acid −0.085 (−0.479,
0.308)

−0.04 0.65 −0.020 (−0.272,
0.232)

−0.24 0.86 −0.049 (−0.315,
0.216)

−0.19 0.70

γ-Linolenic acid −0.370 (−0.743,
0.003)

0.12 0.051 −0.163 (−0.413,
0.087)

−0.15 0.18 −0.209 (−0.468,
0.050)

−0.06 0.10

Linoleic acid −0.451 (−0.890,
−0.012)

0.13 0.044 −0.156 (−0.456,
0.143)

−0.18 0.29 −0.231 (−0.540,
0.077)

−0.08 0.13

Docosahexaenoic acid −0.575 (−0.937,
−0.214)

0.30 0.0032 −0.302 (−0.550,
−0.054)

0.03 0.019 −0.363 (−0.614,
−0.112)

0.15 0.0066

DWMH, deep white matter hyperintensities; PVWMH, periventricular white matter hyperintensities; TWMH, total white matter hyperintensities.

associated with DWMH (β = −0.565, 95% CI [−0.895, −0.235],
R2 = 0.33, P = 0.002) and TWMH volumes (β = −0.268, 95% CI
[−0.520,−0.016], R2 = 0.01, P = 0.038), while LA showed a negative
association specifically with DWMH (β =−0.451, 95% CI [−0.890,
−0.012], R2 = 0.13, P = 0.044).

4 Discussion

This study integrates untargeted metabolomics with MRI
phenotyping to elucidate critical metabolic perturbations
underlying WMH in aCSVD. Through a multi-tiered analytical
framework—combining differential metabolite screening,
WGCNA, and confounder-adjusted linear regression models—we
identified α-linolenic acid and linoleic acid metabolism as core
dysregulated pathways across all WMH categories. These pathways,
central to PUFA homeostasis, exhibited profound alterations that
may mechanistically drive WMH pathogenesis. Notably, systemic
depletion of neuroprotective PUFA, including DHA and SDA,
demonstrated robust inverse associations with WMH volumes in
linear regression models, independent of age, sex, and vascular risk
factors. These findings implicate PUFA dysregulation as a pivotal
driver of neurovascular injury while unveiling metabolic signatures
with therapeutic potential. By bridging metabolomic perturbations
to imaging phenotypes, this work advances mechanistic insights
into WMH and establishes a foundation for targeted biomarker
discovery and lipid-centric therapeutic strategies.

The interplay between PUFA and WMH centers on oxidative
stress, neuroinflammation, and vascular dysfunction. Oxidative
stress is driven by soluble epoxide hydrolase (sEH)-mediated
conversion of anti-inflammatory ω-6 PUFA epoxides (EpOME)
into pro-oxidative metabolites (e.g., 12,13-DiHOME), with elevated
sEH activity exacerbating vascular damage and correlating with
WMH severity (Yu et al., 2019; Yu et al., 2023; Shinto et al., 2020).
Clinical data link increased 12,13-DiHOME/EpOME ratios and
lipid peroxidation markers (e.g., LPH) to microvascular injury in
CSVD (Yu et al., 2023; Swardfager et al., 2017), while sEH inhibition
mitigates oxidative stress and improves endothelial function (Yu
et al., 2019; Shinto et al., 2020). Neuroinflammation involves ω-
3 PUFA suppressing NF-κB-dependent cytokines (IL-6, TNF-α),
countering ω-6-derived pro-inflammatory mediators. sEH further
amplifies inflammation by degrading anti-inflammatory EETs, with

its activity positively associated with IL-1β in WMH patients (Yu
et al., 2019; Shinto et al., 2020; McNamara and Almeida, 2019).
Animal studies demonstrate reduced WMH pathology in sEH
knockout mice and therapeutic benefits of ω-3 supplementation
(Yu et al., 2019; Bowman et al., 2019; Rouch et al., 2022). Vascular
dysfunction arises from oxidative impairment of nitric oxide
(NO)-mediated vasodilation, inversely correlating with WMH
severity (Shibata et al., 2004), while DHA enhances blood-brain
barrier integrity via occludin upregulation, contrasting with ω-3
deficiency-induced leakage and demyelination (Tan et al., 2012;
McNamara and Almeida, 2019). Future research should prioritize
lipidomic profiling of sEH metabolites, gene-edited models, and
co-culture systems to refine targeted interventions.

DHA, a long-chain ω-3 PUFA, emerged as a biomarker
with neuroprotective associations across all WMH categories.
PUFA, particularly ω-3 and ω-6 subtypes, are diet-derived
lipids structurally integrated into brain cell membranes and
myelin, critically regulating synaptic signaling, neuroinflammation
modulation, and cerebral glucose metabolism (Tian et al., 2025).
Observational studies consistently associate higher plasma ω-3
PUFA levels with reduced WMH burden and preserved cognitive
performance, particularly in executive function (Loong et al., 2023;
Yu et al., 2019). A large-scale cohort study further linked elevated
PUFA intake to decreased dementia risk and WMH progression
(He et al., 2023). However, interventional trials yield conflicting
results: Shinto et al. (2024) observed benefits limited to APOEε4
carriers. These discrepancies underscore the need for precision
trials incorporating genetic stratification (e.g., APOE genotype) and
optimized dosing regimens to clarify therapeutic efficacy.

Our study revealed a significant inverse correlation between
SDA and DWMH/TWMH volumes. As a metabolic intermediate
of α-linolenic acid, SDA enhances eicosapentaenoic acid (EPA)
incorporation into membrane phospholipids, exerting anti-
inflammatory and antioxidant effects (Harris, 2012; Prasad et al.,
2021). While direct evidence linking stearidonic acid to WMH
remains sparse, its role in mitigating neuroinflammation and
oxidative stress aligns with its observed protective associations.
Future studies should delineate SDA’s mechanistic contributions to
CSVD pathology and evaluate its therapeutic potential.

In parallel, LA, an essential ω-6 PUFA, exhibited a marginal
negative association with DWMH. Despite its physiological
necessity, excessive LA intake may promote neuroinflammation

Frontiers in Neuroscience 09 frontiersin.org

https://doi.org/10.3389/fnins.2025.1607242
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-19-1607242 May 16, 2025 Time: 17:33 # 10

Ye et al. 10.3389/fnins.2025.1607242

through oxidized metabolites (e.g.,OXLAMs) (Taha, 2020).
Paradoxically, short-term studies suggest LA transiently suppresses
microglial inflammation (Tu et al., 2019), while its derivatives
(e.g., dihydroxyoctadecenoic acids) disrupt endothelial function
in CSVD (Yu et al., 2023). Clinically, LA-enriched lipids correlate
with reduced ischemic stroke risk but elevated intracerebral
hemorrhage incidence (Zhang et al., 2020; Zhang et al., 2024).
These divergent effects highlight the importance of maintaining
an optimal ω-3/ω-6 balance, warranting further investigation into
LA’s metabolic interplay with ω-3 PUFA.

The therapeutic potential of PUFA supplementation for WMH
requires rigorous clinical evaluation. Clinical trial outcomes
indicate that efficacy can vary based on dosage, duration, and
patient stratification. For example, Shinto et al. (2024) found
that while 1.65 g/d of ω-3 PUFA for 3 years didn’t significantly
reduce WMH progression in all participants, it did reduce neuronal
integrity breakdown in APOE∗E4 carriers. When evaluating PUFA
supplementation’s risk-benefit profile, potential pro-oxidant effects
at high doses and drug interactions should be considered. High
doses ω-6 PUFA can worsen white matter damage via lipid
peroxidation products (Shinto et al., 2020; Swardfager et al., 2017),
and ω-3/ω-6 metabolic derivatives (e.g., oxylipins) have pro-
inflammatory and anti-inflammatory properties (Yu et al., 2023).
Moreover, PUFA may increase bleeding risk from anticoagulants
(Okumura et al., 2024; Bowman et al., 2019) and interfere with
antihypertensive drug efficacy by altering sEH enzyme activity
(Yu et al., 2023; Shinto et al., 2020). Regulatory considerations
for PUFA dietary supplements are crucial, as commercially
available supplements exhibit wide variability in EPA/DHA ratios.
Independent batch testing [as performed in Shinto et al. (2024)]
should be mandated to ensure potency and purity.

These insights converge with established mechanisms driving
WMH, integrating neuroinflammation, endothelial dysfunction,
chronic hypoperfusion, and BBB disruption into a cohesive
pathological framework. First, neuroinflammation-characterized
by microglial activation and cytokine release—is mitigated by ω-3
PUFA through dual pathways: (1) GPR120-mediated suppression
of NF-κB nuclear translocation, blocking pro-inflammatory
signaling (Chang et al., 2021; Nakajima et al., 2023), and (2) PPAR
pathway activation by DHA and its metabolite neuroprotectin
D1 (NPD1), reducing oxidative stress and neuronal damage
(Bosviel et al., 2017). Concurrently, endothelial dysfunction, a
hallmark of CSVD, is counteracted by DHA through enhanced
NO bioavailability via AMPK activation, attenuated expression of
adhesion molecules (ICAM-1/VCAM-1), and reduced endothelial
lipotoxicity from triglyceride-rich lipoproteins (Yamada et al.,
2008; Wu et al., 2012; Arabi et al., 2024). Chronic hypoperfusion,
particularly in vulnerable watershed zones, is ameliorated by
long-chain ω-3 PUFA (e.g., EPA and DHA), which improve
cerebral perfusion via endothelial-dependent vasodilation while
suppressing oxidative stress and platelet aggregation (Kuszewski
et al., 2017; Schwarz et al., 2018). Finally, BBB integrity—critical
for neurovascular homeostasis—is reinforced by DHA through
upregulation of tight junction proteins (e.g., ZO-1) and reduced
neuroinflammation (Xie et al., 2020; Wen et al., 2024). These
interconnected mechanisms collectively highlight the central role
of PUFA dysregulation in WMH pathogenesis, bridging molecular
pathways to imaging phenotypes.

Crucially, our metabolomic profiling identified distinct
category-specific metabolic signatures: PVWMH was
characterized by carnitine derivatives (e.g., palmitoylcarnitine
and hexanoylcarnitine), while DWMH exhibited unique
associations with prostaglandin E2 (PGE2) and etodolac. The
divergent metabolic signatures associated with DWMH and
PWMH highlight their distinct pathogenesis. Carnitine derivatives
may indirectly influence non-ischemic cerebrospinal fluid
(CSF) accumulation and ependymal function by modulating
mitochondrial energy metabolism, reducing oxidative damage, and
suppressing inflammatory responses. Abnormal carnitine profiles
in hydrocephalus patients suggest that metabolic imbalance
may be one of the contributing factors to fluid accumulation
(Temiz et al., 2025). Furthermore, the energy-dependent nature
of ependymal cells and their susceptibility to lipotoxicity render
them vulnerable to disruptions in carnitine metabolism (Manzo
et al., 2018). In contrast, DWMH is linked to COX-2-derived
PGE2, which induces microvascular endothelial dysfunction via
EP receptor activation, while etodolac—by inhibiting COX-2—
ameliorates microcirculatory impairment (Zhang et al., 2025;
Liu et al., 2020). Therefore, we hypothesize that the shared
pathological mechanism between DWMH and PVWMH lies in
PUFA metabolic dysregulation, while DWMH-specific pathology
is driven by ischemic damage and microvascular pathology,
and PVWMH-specific pathology involves non-ischemic fluid
accumulation and ependymal disruption.

The associations between WMH and perturbed
α-linolenic/linoleic acid metabolism can be explained by
two interconnected mechanistic frameworks: gut-brain axis
dysregulation and mitochondrial dysfunction. These pathways
form the basis of our hypothesis that systemic metabolic
disturbances drive neurovascular injury and WMH progression
through inflammatory, oxidative, and bioenergetic mechanisms.
Previous research has shown that the composition and function
of the gut microbiota are closely related to the metabolism of
Omega-3 and Omega-6 fatty acids (Zinkow et al., 2024). The intake
and metabolism of α-linolenic acid and linoleic acid can influence
the composition of the gut microbiota, which in turn can regulate
the host’s metabolism and immune function. Dysbiosis of the gut
microbiota may affect brain inflammation and vascular function
via the gut-brain axis, thereby contributing to the pathogenesis
of WMH. Furthermore, PVWMH-specific carnitine derivatives
reflect impaired mitochondrial fatty acid β-oxidation (Manzo
et al., 2018). This dysfunction can lead to abnormal cellular
energy metabolism and trigger inflammatory responses, which are
detrimental to oligodendrocytes and other energy-demanding cells
in the white matter, ultimately causing WMH. Additionally,
the reactive oxygen species generated by mitochondrial
dysfunction can exacerbate cellular damage, worsening WMH
(Mahapatra et al., 2023).

5 Limitations and future directions

Our study has several limitations. First, the cross-sectional
nature of the study prevents us from establishing a causal
relationship between metabolic changes and WMH progression.
Reverse causation, such as dietary modifications caused by WMH,
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cannot be ruled out. Future research should include longitudinal
cohorts with repeated MRI and metabolomic assessments to clarify
the temporal relationships between these factors. Second, the
relatively small sample size might compromise the statistical power
for subgroup analyses. Notably, the purple and lightcyan modules
contained 17 unannotated hub metabolites. These unknown
metabolites could be new biochemical entities or intermediate
products in pathways related to WMH development. Targeted
metabolomic methods focusing on lipid peroxidation products and
epoxide derivatives could help identify these metabolites, especially
considering the observed enrichment of PUFA-related pathways.
Third, while we adjusted for major vascular risk factors, there
may be unmeasured confounders that could affect systemic PUFA
concentrations and WMH progression. For example, dietary PUFA
intake, ω-3/ω-6 ratios, and physical activity levels could all play
a role. Fish consumption patterns might directly influence DHA
levels, regardless of disease status. Future studies should include
detailed dietary assessments and track PUFA levels over time to
better understand these relationships.

6 Conclusion

By integrating untargeted metabolomics with MRI
phenotyping, this study delineates distinct and shared metabolic
landscapes underlying DWMH and PVWMH in aCSVD. To
confirm causality, it is vital to conduct prospective validation
in independent cohorts with repeated MRI and metabolomic
analyses. Additionally, incorporating dietary information and
targeted lipidomics will be crucial for verifying the role of PUFA
homeostasis in WMH pathobiology.
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