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Introduction: Functional brain networks measured by resting-state functional

magnetic resonance imaging (rs-fMRI) have become a promising tool for

understanding the neural mechanisms underlying schizophrenia (SZ). However,

the high dimensionality of these networks and small sample sizes pose significant

challenges for e�ective classification and model generalization.

Methods: We propose a robust multi-task feature selection method combined

with counterfactual explanations to improve the accuracy and interpretability

of SZ identification. rs-fMRI data are preprocessed to construct a functional

connectivity matrix, and features are extracted by sorting the upper triangular

elements. A multi-task feature selection framework based on the Gray Wolf

Optimizer (GWO) is developed to identify abnormal functional connectivity (FC)

features in SZ patients. A counterfactual explanation model is applied to reduce

perturbations in abnormal FC features, returning the model prediction to normal

and enhancing clinical interpretability.

Results: Our method was tested on five real-world SZ datasets. The results

demonstrate that the proposed method significantly outperforms existing

methods in terms of classification accuracy while o�ering new insights into the

analysis of SZ through improved feature selection and explanation.

Discussion: The integration of multi-task feature selection and counterfactual

explanation improves both the accuracy and interpretability of SZ identification.

This approach provides valuable clinical insights by revealing the key functional

connectivity features associated with SZ, which could assist in the development

of more e�ective diagnostic tools.

KEYWORDS

schizophrenia, functional connectivity, rs-fMRI, feature selection, counterfactual

explanation

1 Introduction

Schizophrenia (SZ) is a chronic, often disabling mental disorder that affects one

percent of the world’s population (Insel, 2010; McCutcheon et al., 2020). Patients’

clinical symptoms manifest in perception, thinking, and emotion, such as hallucinations,

delusions, incoordinated excitement, and anxiety (Song et al., 2023; Rantala et al., 2022).

Although the pathogenesis of SZ is still unclear, it is increasingly recognized that analyzing

the brain network of SZ can help improve differential diagnosis and understand the

pathological mechanism (Zhang et al., 2021). Recent studies have shown that functional
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brain networks measured by resting-state functional magnetic

resonance imaging (rs-fMRI) have become a promising tool to

reveal the underlying neural mechanisms of SZ (Zhu et al.,

2024; Chyzhyk et al., 2015). SZ causes widespread changes in

functional brain networks, including changes in global brain

topology, abnormal connectivity in local regions, and the formation

of specific abnormal subgraphs (Huang et al., 2025).

However, although functional brain networks provide rich

pathological information, these data often have high-dimensional

characteristics, making analysis and modeling face great challenges

(Mhiri and Rekik, 2020). Therefore, feature selection (FS)

becomes an indispensable step, which can remove irrelevant or

redundant features and retain only the most diagnostically valuable

information (Naheed et al., 2020). In addition, functional brain

network data usually face the problem of small samples. Due to

the high cost of data acquisition, the long experimental cycle,

and the difficulty in recruiting subjects, the number of samples

is often much lower than the feature dimension, making model

training susceptible to overfitting, thereby reducing generalization

ability (Turner et al., 2018; Ding et al., 2024). In this context,

robust and effective FS is vital. In fact, FS plays a key role in

identifying meaningful biomarkers, such as functional connectivity

between brain regions, which can characterize abnormalities in

brain function associated with brain diseases such as SZ, thus

providing insight into understanding the neural basis of brain

diseases, as well as diagnosis and prediction (Xing et al., 2022).

For functional brain network data, the traditional FS method

often exhibits poor robustness across datasets, primarily due to

the high dimensionality of the feature space and the scarcity of

training samples, and it is difficult to identify connection features

with consistency and biological interpretability (Wang et al., 2015;

Lv et al., 2015; Hu et al., 2021). At present, most existing FSmethods

have combined advanced technologies such as machine learning

or deep learning to improve performance, such as using graph

neural networks to model FC structures, or improving feature

selection efficiency through embedded FS strategies, but these

methods still have obvious limitations. On the one hand, many

models still lack consistent evaluation across data sets, making

it difficult to identify robust disease-related connection features

(Chan et al., 2024); on the other hand, most existing methods are

black-box in form and lack interpretability, especially in clinical

applications. It is difficult to provide actionable explanations or

intervention recommendations (Verma et al., 2023). In addition,

although some studies have introduced multimodal or high-order

connection features in SZ diagnosis, it is still difficult to achieve a

good balance between model generalization and explanatory power

(Sunil et al., 2024).

To address the above challenges and fill this gap, we proposed

a novel and robust multi-task feature selection method for

SZ diagnosis, and explained the changes in brain functional

connectivity (FC) caused by the disease through a counterfactual

explanation model. The schematic diagram of our proposed

method is shown in Figure 1. Specifically, we first preprocessed

the rs-fMRI data, constructed the FC matrix, and then extracted

the upper triangular elements as feature vectors and sorted them.

Subsequently, we developed a robust multi-task feature selection

framework based on the Gray Wolf Optimizer (GWO), and

selected the abnormal FC features of SZ patients by adopting

feature stratification and weight-based task generation. Finally, we

used the counterfactual explanation model to generate a set of

counterfactual examples for SZ patients, that is, by fine-tuning the

abnormal FC features of SZ patients to make their state close to

normal, thus providing theoretical guidance for the analysis and

diagnosis of SZ. We verified the effectiveness of our method on five

real SZ datasets, and the results showed that our method not only

improved the interpretability of the model, but also provided a new

perspective for the analysis of SZ. The main contributions of this

paper are as follows:

• We propose a Robust Multi-Task Feature Selection with

Counterfactual Explanation for Schizophrenia Identification

to assist SZ analysis and diagnosis.

• We construct a multi-task feature selection framework based

on GWO and combine it with the counterfactual explanation

model to fine-tune the abnormal FC features of SZ patients

to make their status closer to that of healthy individuals,

thereby improving the accuracy of SZ classification and the

interpretability of the model.

• We evaluate the performance of the proposed method using

five real SZ datasets. The results show that the proposed

method outperforms existing methods.

2 Related work

2.1 Gray wolf optimizer

Gray Wolf Optimizer (GWO) (Mirjalili et al., 2014) is an

intelligent optimization algorithm that simulates the hunting

behavior of gray wolf groups. In the context of multitasking,

GWO provides efficient global search capabilities and information-

sharing mechanisms between individuals, which can improve

optimization performance in a multi-task environment.

Gray wolf packs are generally divided into four levels: (i) α

is the leader of the wolf pack, representing the current optimal

solution, (ii) β is the second-level wolf, assisting α in decision-

making, representing the second-best solution, (iii) δ is the third-

level wolf, assisting β , representing the third-best solution, and

(iv) θ is an ordinary wolf that obeys other high-level wolves and

represents the remaining candidate solutions. When searching for

prey, gray wolves will gradually approach the prey and surround it:

D = |C · Xp − X| (1)

X(t + 1) = Xp − A · D (2)

where Xp is the location of the prey or the current optimal solution,

X is the location of the individual wolf, t is the number of iterations,

and A and C are coefficient vectors, which are calculated as follows:

A = 2d · r1 − d, C = 2r2 (3)

where d is the convergence factor that decreases linearly with the

number of iterations, from 2 to 0, and r1 and r2 are random

numbers between [0, 1]. GWO uses three optimal solutions (α, β ,

δ) to jointly guide the search:

X(t + 1) = 1

3

∑

i=α,β ,δ

(Xi − Ai · Di) (4)
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FIGURE 1

Illustration of our proposed schizophrenia analysis method, including (a) data pre-processing, (b) Robust Multi-Task Feature Selection, (c) Diversity

counterfactual explanation.

where Di = |Ci · Xi − X|, i ∈ {α,β , δ}. When |A| becomes smaller

(approaches 0), the search range is reduced, and the wolf pack

gradually converges to the optimal solution. When |A| > 1, the

wolf pack stays away from the prey and performs a global search to

avoid falling into the local optimum.

2.2 Counterfactual explanation

Counterfactual explanations are a method for making machine

learning models more transparent by showing how to change

attributes to obtain different results (Spreitzer et al., 2022). Cheng

et al. (2020) introduced counterfactuals with a classic example: A

person submitted a loan request but was rejected by the bank. If his

credit score had been 700 instead of 600, his loan application would

have been approved.

Counterfactual explanations are currently widely used in

different fields, including medical diagnosis, decision reasoning,

and artificial intelligence. Richens et al. (2020) have improved

the application of machine learning in the field of medical

diagnosis, especially in identifying rare diseases, by establishing

a counterfactual causal diagnosis model. Prado-Romero et al.

(2023) use counterfactual explanations to provide a way to

understand model decisions by providing specific changes in

input features to explain the model’s decision-making process. In

addition, counterfactual explanations also have many applications

in brain networks. For example, in the study of Abrate and

Bonchi (2021), they proposed an explanation method for a

black-box graph classifier for brain network classification. By

analyzing counterfactual graphs, brain region connection patterns

associated with specific brain region diseases can be identified.

Matsui et al. (2022) proposed a new generative deep neural

network (DNN) called Counterfactual Activation Generator

to provide counterfactual explanations for DNN-based brain

activation classifiers.

Counterfactual explanation has emerged as an important

branch in the field of machine learning interpretability; however, it

has not yet been applied to FC analysis. In this work, we introduce

a counterfactual perspective: if the abnormal FC between brain

regions in SZ patients is adjusted toward the normal range, their
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predicted state may shift closer to that of healthy individuals. Such

counterfactual reasoning is particularly valuable in the medical

domain, as it can assist clinicians in evaluating the potential

impact of different treatment strategies, especially in the context of

brain diseases.

3 Materials and methods

3.1 Schizophrenia dataset

In this study, five public datasets are used, including the Center

for Biomedical Research (COBRE) dataset (120 subjects), the

Huaxi dataset (311 subjects), the Nottingham dataset (68 subjects),

the Taiwan dataset (131 subjects) and the Xiangya dataset (143

subjects). All subjects met the following conditions: (i) no other

Diagnostic and Statistical Manual of Mental Disorders (DSMIV)

disease exists, (ii) no history of drug abuse, (iii) no clinically

significant head trauma. The specific information of the subjects

is presented in Table 1.

3.2 Data pre-processing

The rs-fMRI data of the five datasets are collected by different

types of scanners, including COBRE and Xiangya by 3-T Siemens

Tim-Trio scanner with an eight or 12-channel head coil, Huaxi by

3-T General Electric MRI scanner, and Nottingham by 3-T Philips

Achieva MRI scanner. The rs-fMRI data are preprocessed using the

program standard procedures of SPM 8 and the Data Processing

Assistant for Resting-State fMRI (DPARSF). The following steps

are performed: (i) removing the first 10 volumes, (ii) slice timing

correction, (iii) head motion correction, (iv) regress out the

nuisance covariates, (v) normalized to standardized space, (vi)

voxel-wise bandpass filtering, (vii) normalization of anatomical

images to MNI template space, and (viii) smoothing with a 4

mm Full Width at Half Maximum (FWHM) Gaussian kernel.

After processing, we defined the nodes of the brain network

according to the Automatic Anatomical Labeling (AAL) template,

and calculated the pairwise similarities between the noded1s of the

time series as the connecting edges of the brain network.

Next, let AF
i ∈ R

N×N be the connectivity matrix of the

functional brain network, N be the number of regions of the brain

network, i = 1, 2, ..., p, and p be the number of subjects. We take the

upper triangular elements of the matrix as features and represent

them as vectors Si = (s1i , ..., s
j
i, ..., s

q
i ) ∈ R

1×q, q = N(N−1)
2 , s

j
i

represents the j-th feature of the i-th subject, and Yi ∈ R is the

label of the i-th subject. It is worth noting that in this paper, we

divided the brain network into 90 regions of interest (ROI), that is,

N = 90, so each subject contains a vector of dimension 1 × 4,005,

which reflects the functional connectivity strength pattern between

the 90 brain regions of the subject.

3.3 Robust multi-task feature selection

3.3.1 Multi-task generation
To identify the most critical FC features for brain disease

diagnosis, we use the infinite feature selection (IFS) (Roffo et al.,

2020) method to calculate the importance of each feature and

rank the features accordingly. Specifically, the weight of each

feature is calculated based on the linear weighting of the following

three aspects (i.e., Fisher criterion hj, mutual information mj, and

standard deviation σj). The first is the Fisher criterion:

hj =
|µj,1 − µj,2|2

σ 2
j,1 + σ 2

j,2

(5)

where µj,g and σj,g represent the mean and standard deviation of

the j-th feature in the g-th class, respectively. In our experiments,

both are binary classifications, so g ∈ {0, 1}.
The second is the normalized mutual information mj between

feature sj and class label Y :

mj =
∑

y∈Y

∑

z∈sj
u(z, y)log(

u(z, y)

u(z)u(y)
) (6)

where Y is the set of class labels and u(·) represents the joint

distribution probability.

TABLE 1 Characteristics of subjects in the five datasets in this study.

Datasets Class Gender (M/F) P-value of gender Age (years) P-value of age

COBRE NC 46/21 0.1927 34.82+11.28 0.3987

SZ 42/11 36.75+13.68

Huaxi NC 79/71 0.6748 27.80+12.50 1.000

SZ 80/81 27.80+12.50

Nottingham NC 26/10 0.2277 33.38+8.98 0.9855

SZ 27/5 33.34+9.05

Taiwan NC 25/37 0.2329 29.87+8.62 0.2847

SZ 35/34 31.59+9.60

Xiangya NC 35/25 0.9333 27.17+6.64 0.1025

SZ 49/34 23.37+7.83

NC, normal control; SZ, schizophrenia.
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The third is the standard deviation σj, which reflects the

dispersion of feature sj in the sample.

The final weight of each feature si is calculated as follows:

si = α1 · hj + α2 ·mj + α3 · σj. (7)

where α1+α2+α3 = 1, this weighting approach allows us to flexibly

adjust the contribution of each indicator in the selection of features,

thus selecting the most informative features for the diagnosis of

schizophrenia (SZ).

Based on the preliminary evaluation of FC feature importance

based on the above three factors, we further constructed a feature

weight curve and optimized the FS process by introducing a

knee point detection algorithm, following the knee point detection

method proposed by Chen et al. (2021). This approach provides

an automated criterion for determining the optimal feature subset

size. Specifically, after obtaining the weight of each feature, we first

construct a straight line connecting the starting point and the end

point of the weight curve, and then calculate the vertical distance

from each point on the curve to the straight line. The knee point

(xknee, yknee) is the point that maximizes the distance:

(xknee, yknee) = argmaxj(
|yj − (axj + b)|

√
a2 + 1

) (8)

where a and b are the slope and intercept of the straight line

determined by the starting point and the end point, (xj, yj) is the

coordinate of the j-th feature point on the curve, j = 2, 3, ..., q − 1.

The identified knee points divide the feature weight curve into

multiple intervals, and the features in each interval are given

different priorities according to their weights.

Based on the location of the knee points, as shown in Figure 1b,

we divide the features into three categories:

(i) Core features: located before the first knee point. These

features are usually highly correlated with the predicted target

variable and have low redundancy, and contribute the most to

the model’s predictive ability.

(ii) Important features: located between the two knee points.

Although these features are not as important as the core

features, may still contain useful information for specific

scenarios. When combined with other features, they can

enhance overall model performance, especially in complex

cases where feature interactions are significant.

(iii) Remaining features: located after the second knee point.

These features contribute less to the prediction task, contain

redundant information, or have low correlation with the

target variable.

After the above steps, we further use this category information

to guide the task generation process. To ensure that the feature

extraction process not only reflects its relative importance but also

maintains appropriate diversity, we adopt a probabilistic extraction

method based on feature weights. Specifically, we determine

the initial selection probability of each feature based on the

feature weight.

Pj =
ωj

∑q
j=1 ωj

(9)

where ωj is the weight of the j-th feature. The larger ωj is, the

higher its initial extraction probability is, and thus it is given

priority in FS. To ensure that all features have a certain chance of

being selected and to avoid the extraction probability of low-weight

features becoming too small, we adjust the initial probability:

P′j =
Pj

max(Pj)
(10)

The above formula ensures that the maximum extraction

probability of a feature is 1, and the extraction probabilities of

all other features are adjusted proportionally, avoiding excessive

neglect of low-weight features while still maintaining the priority

of high-weight features during extraction.

During the task generation process, a random number λ

between 0 and 1 is first randomly generated, which is used to

determine which features will be selected for the current task.

For each feature sj, if λ ≤ P′j, the feature will be selected

for the current task. As shown in Figure 1b, after n rounds

of independent extraction, n different task sets are generated,

each of which contains a set of selected feature subsets. This

mechanism ensures that high-weight features are selected first

and fully retain the potential contribution of low-weight features,

thereby effectively improving the diversity and flexibility of the task

generation process.

3.3.2 Multi-task optimization with GWO
In multi-task optimization, we propose to combine the

knowledge transfer mechanism with the GWO-based multi-task

optimization method to enhance information sharing between

different tasks, thereby improving the efficiency and effect of overall

optimization. Specifically, we directly integrate the knowledge

transfer mechanism in the initialization phase of GWO tomake full

use of the optimization experience of existing tasks.

To achieve effective knowledge transfer, in the multi-task

optimization process, we first need to quantify the importance

of each feature in the previous task. In other words, we need to

calculate the cumulative number of times QKT that feature sj is

selected in all previous tasks:

QKT(s
j) =

∑n

t=1
Qt
KT(s

j) (11)

where n represents the total number of tasks, Qt
KT(s

j) represents

whether the feature is selected in the t-th task (if selected, it is 1,

otherwise it is 0). Then, calculate the probability P(sj) of feature sj

being selected in the initial population of the new task:

P(sj) = QKT(s
j)

∑q
j=1 QKT(sj)

(12)

The above formula converts the historical performance of the

feature into a probability value, which will be directly applied to

initialize the wolf pack:

Gwo =
{

1, λ ≤ P(sj)

0, λ > P(sj)
(13)

where the random number λ ∈ [0, 1], the feature sj is

selected only when it is less than or equal to P(sj). For ease
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FIGURE 2

Flowchart of proposed multi-task optimization with GWO.

of understanding, we show the specific process of the proposed

multi-task optimization method in Figure 2. First, the global

environment is set. Subsequently, the algorithm enters a loop

and processes n tasks in turn. For each task, the wolf pack

is initialized independently, using the global knowledge of the

previously processed tasks to provide information for the initial

state of the search for the new task. The position of the wolf is

iteratively updated to optimize the FS problem. After optimization,

the best solution is used to update the global knowledge base. This

cycle is repeated for each task, ensuring the continuous flow of

information and the improvement of the solution. Finally, n feature

subsets (x1, x2, ..., xn) are obtained from the n tasks.

In addition, to minimize the number of selected features while

maintaining a high classification accuracy, we designed a fitness

function in multi-task optimization and introduced a penalty term

to constrain the number of features:

Fitness = ρ × ACC − (1− ρ)×
qsf

q
(14)
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where ρ is a weight coefficient, which ranges between [0, 1] and is

used to balance the classification accuracy ACC and the number of

selected features qsf .

After the above operations, we represent the selected feature

matrix as S′ ∈ R
p×k, where k ≪ q. Based on the selected feature

matrix S′, we can train a suitable machine learning model [i.e.,

f (·)] to predict schizophrenia. In our experiment, since the support

vector machine (SVM) is strongly adaptable to small sample data

sets, we used SVM as the classification model.

3.3.3 Diversity counterfactual explanation
To enhance the interpretability of our method, we further

introduce a counterfactual explanationmodel (Mothilal et al., 2020)

to generate sample-level explanations. The input of this model

includes a trained SVM model [i.e., f (·)] and the feature vector

ci ∈ R
1×k of the i-th subject. Our goal is to generate a set of

counterfactual examples {x1i , x2i , ..., xLi } for subject i such that its

decision outcome xli ∈ R
1×k is different from the prediction of the

original feature vector ci.

The counterfactual explanation model consists of three parts:

loss function loss(·), distance function dist(·), and diversity metric

diversity(·). Specifically, the first part pushes counterfactual xli
toward different predictions, the second part makes counterfactual

examples closer to the original input, and the third part is

used to increase the diversity of counterfactual explanations. In

the first part, we use a hinge loss function that helps generate

counterfactuals with less variation by reducing the preference for

extreme values. The hinge loss is expressed as follows:

losshinge = max(0, 1− z · logit(f (x)) (15)

where z is 1 when Ŷ = 1 and−1 when Ŷ = 0, and logit(f (x)) is the

unscaled output of the SVM model. It is worth noting that in our

experiments, 1 corresponds to normal subjects and 0 corresponds

to patients, so in the verification of converting patients into normal

subjects, Ŷ is usually set to 1. For the choice of distance function

in the second part, we follow Wachter et al. (2017) proposal and

divide the distance of each feature by the median absolute deviation

(MAD) of the feature values in the training set:

dist(x, c) = 1

L

L
∑

α=1

|xα − cα|
MADα

(16)

where MADα is the median absolute deviation of the α-th feature,

L is the total number of counterfactual examples to generate, x

represents the counterfactual example and c represents the original

feature vector. For the third part, we use a determinant-based point

procedure to measure the diversity of counterfactual examples,

computed by the determinant value of its kernel matrix K:

diversity = det(K) (17)

where Ku,v = 1
1+dist(xu ,xv)

, xv and xu represent two counterfactual

examples. In the experiments, to avoid uncertain determinants,

we add small random perturbations on the diagonal elements to

calculate the determinant.

Finally, we can obtain counterfactual examples by optimizing

the following loss:

X(ci) = γ1
L

L
∑

l=1

dist(xli, ci)

−γ2diversity(x
1
i , x

2
i , ..., x

L
i )

+argmin
x1i ,x

2
i ,...,x

L
i

1
L

L
∑

l=1

losshinge(f (x
l
i), Ŷ)

(18)

where X(ci) is the final counterfactual explanation model, γ1 and

γ2 are hyperparameters for balancing the three parts of the loss

function. The above formula reveals the minimum change required

for the input data to achieve the idealized result. By adjusting the

FC values between abnormal brain regions of SZ patients, their state

may be closer to normal. Thismethod not only provides an intuitive

explanation scheme, but also provides SZ patients and doctors with

the guidance needed to treat the disease.

4 Experiments and results

4.1 Experimental setting

In this work, we use a support vector machine (SVM) classifier

to perform the classification task on five SZ datasets. During the

experiments, we evaluate the performance of different methods

based on diagnostic accuracy (ACC = TP+TN
TP+TN+FP+FN ), sensitivity

(SEN = TP
TP+FN ) and specificity (SPE = TN

TN+FP ). FP, TP, FN, and

TN represent false-positive, true-positive, false-negative, and true-

negative classification results. To ensure fairness, all compared FS

methods use SVM classifiers. The parameters of our method are set

as α1 = α2 = 0.4, α3 = 0.2, tmax = 100, ρ = 0.9, n = 8, L = 10,

γ1 = 0.5 and γ2 = 1. It is worth noting that we use a five-fold

cross-validation strategy in all experiments.

4.2 Statistical analysis of FC features

In this set of experiments, we perform statistical analysis on the

functional connectivity (FC) remaining after feature selection by

our method to demonstrate the effectiveness of our method. For

intuitiveness, we first show the FC features retained after feature

selection by our method in Figure 3. As can be seen from Figure 3,

there are 16 shared FCs in the five datasets, and these shared

FCs are selected as features in different datasets, indicating that

they are crucial in identifying SZ. In addition, these shared FCs

are mainly distributed in key brain regions such as the prefrontal

cortex (PFC), cingulate gyrus (CC), and hippocampus (HIP), which

is consistent with the findings of existing studies on SZ in brain

network abnormalities (Orellana and Slachevsky, 2013; Wei et al.,

2021; Frankle et al., 2022; Haznedar et al., 2004).

We select the five most statistically significant FC values

between SZ and NC based on the statistical significance of each

dataset, and the results are shown in Figure 4. From Figure 4,

we find that the FC values between SZ and NC show different

distribution patterns in the five datasets. Specifically, in some

datasets, the FC values of SZ patients are significantly higher than

those of NC, while in other datasets, the FC values of SZ patients are
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FIGURE 3

Functional connectivity (FC) retained after feature selection by our method in the five datasets. The red lines indicate the common functional

connectivity among the five datasets.

significantly lower than those of NC. This suggests that there may

be some heterogeneity in the functional connectivity patterns of SZ

patients in different datasets. However, although the distribution of

FC values in different datasets is different, some specific FCs show

significant differences inmultiple datasets, indicating that these FCs

may play a key role in the neural mechanism of SZ.

Overall, the above results show that our method effectively

extracts stable and biologically meaningful FC features, which helps

to improve the accuracy and interpretability of SZ classification.

4.3 Comparison methods

We compare our proposed method with seven methods,

including (i) RAW: classification without feature selection, as

a baseline to illustrate the effect of applying feature selection

techniques. (ii) LASSO: Lasso regression model based on L1

regularization (Cui et al., 2021). (iii) MFCSO: Multitasking Feature

Selection via Competitive Swarm Optimizer (Li L. et al., 2023).

(iv) MOEA\D: Multi-Objective Evolutionary Algorithm based on

Decomposition (Wang et al., 2021). (v) SPEA: Strength Pareto

Evolutionary Algorithm (Jiang and Yang, 2017). (vi) PSO-MET:

Evolutionary Multitasking-Based Feature Selection via Particle

Swarm Optimization (PSO) (Chen et al., 2020). (vii) MTPSO:

Multitasking feature selection via PSO (Chen et al., 2021).

For all the above methods, the hyperparameters were set

according to the values recommended in their respective original

papers. Additionally, the number of iterations for all methods

was set to 100, ensuring a consistent and fair comparison across

all approaches.
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FIGURE 4

Statistical analysis is performed on the functional connections (FC) retained by feature selection using our method, and the five most statistically

significant FC values between SZ and NC in the five datasets are shown here. Among them, ∗ indicates 0.01 < p < 0.05, ∗∗ indicates 0.001 < p < 0.01,
∗∗∗ indicates 0.0001 < p < 0.001, and ∗∗∗∗ indicates p < 0.0001.

MFCSO uses three filter methods for multi task feature

selection, with each task optimized as an independent task without

direct correlation between them. Therefore, the feature selection

process may lack consistency. When dealing with specific datasets,

especially on the schizophrenia (SZ) dataset, MFCSO may not be

able to ensure consistency of selected features across different tasks,

which may result in unstable performance on different datasets.

Due to the lack of inter task correlation, feature selection results

may be affected by randomness, making it difficult to effectively

capture stable features related to schizophrenia.

Multi-objective evolutionary algorithms, such as MOEA\D
and SPEA, are designed to address multiple objectives in feature

selection. These algorithms provide a better balance between

accuracy and feature diversity by considering multiple criteria

in the optimization process. However, they are computationally

intensive and can be prone to converging to local optima, especially

in high-dimensional spaces. Furthermore, they often struggle with

the trade-off between model complexity and accuracy, which

can result in overfitting in small-sample scenarios, limiting their

generalization ability.

PSO-MET and MTPSO are both particle swarm optimization-

based methods that aim to improve feature selection by leveraging

the concept of multitasking. While these methods are effective

at identifying relevant features in some cases, they tend to

be overly sensitive to initial conditions and parameter settings,

leading to performance fluctuations. The lack of consistency

across tasks and datasets reduces their reliability, particularly

in real-world clinical settings where the data may be noisy

or heterogeneous.

In comparison, our proposed method integrates robust multi-

task feature selection with counterfactual explanation, offering

several advantages over the methods discussed above. By using

the Gray Wolf Optimizer (GWO) for feature selection, we

ensure that our method not only handles high-dimensional

data efficiently but also maintains stability across different

datasets. The multi-task learning framework in our method

allows for the sharing of knowledge across tasks, which improves

generalization and reduces the risk of overfitting, particularly in

small-sample situations.

4.4 Parameter analysis

In this section, we investigate the impact of varying the

number of tasks on the performance of our multi-task optimization

framework, as shown in the Figure 5. We observe that increasing

the number of tasks generally leads to improvements in

classification accuracy, especially for datasets such as Taiwan and

Xiangya. These datasets achieve their highest classification accuracy

at around six–nine tasks, where the accuracy reaches 0.87 and

0.89, respectively. This indicates that knowledge sharing between

tasks is particularly effective in enhancing model performance

when the task number is moderate. However, beyond a certain

point, specifically around 10–12 tasks, the performance begins

to plateau, with only marginal improvements in classification

accuracy. The graph clearly shows that the datasets, such as

Xiangya and Nottingham, while still improving with increasing

task numbers, experience diminishing returns as the number of

tasks exceeds 10. This suggests that while task number does play

a role in boosting performance, there is an optimal task count that

provides the best trade-off between performance enhancement and

computational cost.

A deeper analysis reveals that the knowledge sharing between

tasks is highly beneficial for improving classification performance.

As the number of tasks increases, the model can leverage a broader

range of features, which enhances its ability to generalize. However,

once the number of tasks exceeds a threshold, redundancy

starts to creep into the shared knowledge. This results in the

transmission of features that do not contribute significantly to

the performance improvement, thereby leading to a less efficient

model. The redundancy of features becomes particularly evident

when the number of tasks increases beyond 10, where the
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FIGURE 5

Impact of varying task numbers on model performance.

TABLE 2 Classification performance comparison with existing methods.

Datasets Metric RAW LASSO MFCSO MOEA\D SPEA PSO-MET MTPSO Our method

COBRE ACC (%) 63.41 75.00 68.10 73.40 69.44 78.38 81.19 85.19

SEN (%) 58.33 66.67 60.00 76.47 78.57 68.75 83.93 80.00

SPE (%) 73.68 79.17 76.19 69.77 63.64 85.71 79.45 91.67

Huaxi ACC (%) 61.29 69.89 72.31 76.60 77.66 75.53 76.74 80.00

SEN (%) 55.56 70.83 64.57 80.39 80.85 69.39 78.55 82.86

SPE (%) 71.43 68.89 74.81 72.09 74.47 82.22 74.60 76.67

Nottingham ACC (%) 65.00 66.12 72.22 72.34 75.53 80.95 82.71 86.67

SEN (%) 66.67 68.97 66.67 74.51 76.60 80.00 82.13 85.71

SPE (%) 63.64 62.50 77.78 69.77 74.47 81.82 83.08 87.50

Taiwan ACC (%) 70.21 79.49 77.32 77.50 80.00 85.00 81.55 89.29

SEN (%) 74.47 77.27 73.68 73.68 88.24 80.95 78.26 87.50

SPE (%) 65.96 82.35 80.95 80.95 73.91 89.47 84.52 91.67

Xiangya ACC (%) 66.90 69.23 79.41 76.74 70.77 72.31 82.79 88.24

SEN (%) 51.35 58.82 72.22 72.00 74.29 68.57 83.58 80.00

SPE (%) 67.39 69.73 87.50 83.33 66.67 76.67 81.79 94.74

Bold values represent the optimal values.

performance gains start to level off, and the computational

overhead grows significantly.

Thus, while task quantity is crucial for leveraging task

interdependencies and improving model accuracy, an excessive

number of tasks may lead to inefficiency due to the sharing of

redundant or less informative features. Therefore, it is essential

to strike a balance between the number of tasks and the

computational cost to ensure the model remains both effective

and efficient.

4.5 Classification performance

In this set of experiments, we compare our proposed method

with sevenmethods and show the results in Table 2. It is not difficult

to see that our method shows excellent stability and consistency

on the five datasets. Specifically, in the five datasets, the ACC of

our method reaches 85.19% (COBRE), 80.00% (Huaxi), 86.67%

(Nottingham), 89.29% (Taiwan), and 88.24% (Xiangya), while the

ACC of most methods does not exceed 85%. Secondly, our method
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performs outstandingly in both SEN and SPE, with SPE reaching

94.74% on the Xiangya dataset and SEN reaching 82.86% on the

Huaxi dataset, indicating that our method has strong stability in

the ability to distinguish between positive and negative samples.

PSO-MET andMTPSO performwell in terms of SEN. For example,

in the COBRE dataset, the SEN of MTPSO is 83.93%, which is

higher than other methods, indicating that it has a strong ability

to identify positive samples. In addition, we find that the methods

based on multi-task optimization and evolutionary algorithms (i.e.,

PSO-MET and MTPSO) perform better overall. For example, in

the Xiangya dataset, the ACC of MTPSO reaches 82.79%, which

is significantly higher than other methods. This can be attributed

to the fact that multi-task methods utilize shared knowledge across

tasks, thereby improving the overall learning process. In general,

the methods based on multi-task optimization and evolutionary

algorithms have higher accuracy in SZ identification, while our

method shows even better performance.

In addition, for the statistical significance of model

performance, we select the three best-performing comparison

methods (SPEA, PSO-MET, and MTPSO) in the experiment, and

perform paired t-tests on the ACC indicators of each method

on multiple datasets. The results are shown in Table 3. As can

be seen from Table 3, our proposed method shows statistically

significant differences with the three comparison methods on

all datasets (p < 0.05). Specifically, the comparison with the

SPEA method shows extremely significant differences on the

COBRE, Nottingham, and Xiangya datasets (p < 0.005), and

the comparison with PSO-MET has p values less than 0.025 on

all datasets, indicating that the differences are highly statistically

significant. At the same time, compared with the MTPSO method,

although the p values in some datasets (such as Huaxi and COBRE)

are relatively high, they do not exceed the significance level

(p < 0.05), which still shows the stable advantages of our method

on various datasets. These results further verify the universality

and effectiveness of our method on multiple datasets from a

statistical perspective.

4.6 Counterfactual explanations

In this set of experiments, we demonstrate how to generate

a set of intuitive and diverse counterfactual (CF) examples

for patients through the counterfactual explanation model. We

provide counterfactual explanations by fine-tuning the abnormal

FC value changes of patients, that is, adjusting the FC values

TABLE 3 The t-test p-value results of our method and the three best

performing comparison methods (SPEA, PSO-MET and MTPSO) on ACC.

Datasets SPEA/our PSO-MET/our MTPSO/our

COBRE 0.0015 0.0220 0.0490

Huaxi 0.0439 0.0133 0.0269

Nottingham 0.0037 0.0019 0.0249

Taiwan 0.0143 0.0195 0.0174

Xiangya 0.0016 0.0029 0.0428

between specific regions to make the patient’s state closer to

that of normal people. We generate two different counterfactual

examples for SZ patients and present them in the form of brain

maps and heat maps, as shown in Figure 6. It is not difficult

to see that we can make the patient’s state close to normal by

only slightly adjusting the FC values between the corresponding

regions. Specifically, in the Huaxi dataset, CF1 increases the FC

values between ORBinf.R–HIP.L, SMA.R–SFGmed.R, SFGmed.L–

ORBsupmed.L, and SMA.R–PHG.L from –0.2994, 0.0043, 0.2313,

and 0.6822 to 0.1712, 0.8632, 0.2981, and 1.2072, and decreases

the FC values betweenMFG.L–ROL.R and SFGdor.R–MFG.R from

0.1875 and 0.4143 to –0.6375 and –0.4230. In the Xiangya dataset,

CF1 decreases the FC values between MFG.L–ROL.R, SFGdor.R–

SOG.R, SFGdor.R–ACG.L, ORBsup.R–IFGtriang.R, and CUN.L–

LING.R from 0.2149, 0.0883, –0.0146, –0.3282, and –0.0603 to

–0.5490, 0.0619, –0.4669, –0.4412, and –0.8791, and increases

the FC values between ORBsup.R–PCG.L and INS.R–PCG.L

from –0.1435 and 0.4575 to 0.6884 and 1.2428, respectively.

We find that the changes in functional connectivity (FC) after

counterfactual interpretation remain stable within 1, without large-

scale fluctuations, which further illustrates the robustness of our

method. In addition, the role of FC changes in SZ patients has been

observed in a large number of studies, such as Lynall et al. (2010),

Fornito and Bullmore (2015), and Li et al. (2017).

5 Discussion

In this paper, we propose a multi-task feature selection

method for SZ diagnosis, and combine it with the counterfactual

explanation model to fine-tune the abnormal FC features of SZ

patients to make their state closer to that of healthy individuals,

thereby improving the accuracy of SZ classification and the

interpretability of the model. To demonstrate the effectiveness of

our method, we conduct empirical studies on five SZ datasets.

Our results show that across the five datasets, 16 FC features

are selected simultaneously. These shared FC features are mainly

distributed in key brain regions such as the prefrontal cortex (PFC),

cingulate gyrus (CC) and hippocampus (HIP), which are widely

considered to be closely related to the pathological mechanism of

SZ in previous studies. For example, the study by Minzenberg et al.

(2009) shows that PFC dysfunction is closely related to executive

function deficits in SZ patients. Whitfield-Gabrieli et al. (2009) find

that SZ patients have significant abnormalities in FC in the default

mode network (including CC), which is associated with cognitive

dysfunction. Gangadin et al. (2021) and Li X.-W. et al. (2023) find

that SZ patients have significant abnormalities in FC between HIP

and other brain regions in the resting state. These results not only

verify that the abnormal FC features screened out by our method

under multiple datasets are consistent and stable, but also further

confirm its potential value in the diagnosis and interpretation of SZ

from a neurobiological perspective.

Although previous studies reveal a variety of brain FC

abnormalities associated with SZ, there is still a lack of an

interpretable diagnostic tool in the diagnosis of SZ. Our

study proposes an innovative method that integrates multi-

task feature selection and counterfactual explanation. To

generate accurate counterfactual examples, we construct a
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FIGURE 6

Counterfactual (CF) examples generated for randomly selected SZ patients in the test set in the five datasets. The yellow lines in the left brain map

indicate the remaining functional connectivity (FC) after feature selection by our method, and the blue nodes indicate the corresponding brain

regions. The brain maps in CF1 and CF2 show two counterfactual examples generated for the abnormal FC of the patients. The red lines indicate an

increase in the FC value between the corresponding regions, and the blue lines indicate a decrease in the FC value. The heat map on the right shows

the original FC value between the corresponding brain regions of the patients and the FC value after the counterfactual explanation.

counterfactual explanation model through three parts: loss

function loss(·), distance function dist(·), and diversity index

diversity(·). Specifically, loss(·) pushes counterfactual examples

toward different predictions, dist(·) brings the counterfactual

example closer to the original input, and diversity(·) increases

the diversity of counterfactual explanations. We capture the

brain regions where patients show abnormal FC features and

slightly adjust the FC values between abnormal brain regions

to make them closer to the normal state. This analysis method

not only improves the interpretability of the classification

model, but also provides an intuitive individual-level explanatory

perspective for understanding brain FC abnormalities in SZ
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patients, which helps to identify potential intervention targets and

promotes the application of precision medicine in the diagnosis of

SZ.

However, the current study still has several limitations.

First, we only use the AAL model to define brain regions.

In the future, we use different templates to evaluate the

effectiveness of our proposed method. Second, we have not yet

established cooperation with clinical medical institutions and

lack counterfactual change explanations reviewed by clinicians.

We plan to introduce clinical validation to further demonstrate

the practicality and effectiveness of the method. Finally, this

study focuses on the SZ dataset and further verifies the

generalization ability and application potential of the method

on other brain disease datasets such as Alzheimer’s disease and

autism.

6 Conclusion

In this paper, we propose a robust feature selection method

based on multi-task optimization for SZ identification, and explain

the changes in brain functional connectivity caused by the disease

through a counterfactual explanation model. Compared with

traditional methods, our proposed method not only improves the

recognition performance, but also provides an intuitive explanation

for the prediction of SZ, and verifies the effectiveness of the method

on five SZ datasets.
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