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Modulating excitation/inhibition
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The balance between excitatory and inhibitory (E/I) activity is a fundamental

property of neural circuits, ensuring precise information processing and

preventing pathological states such as hyperexcitability or network silencing.

Disruptions in this balance have been linked to several neurological

and psychiatric disorders, including epilepsy, autism, and schizophrenia.

Transcranial electrical stimulation (tES) can modulate the E/I balance

through mechanisms that affect synaptic plasticity, neurotransmitter systems,

and network synchronization. The main tES modalities—transcranial direct

current stimulation (tDCS), transcranial alternating current stimulation (tACS),

and transcranial random noise stimulation (tRNS)—operate through distinct

physiological principles, enabling the modulation of neuronal excitability and

oscillatory dynamics. Animal models offer controlled experimental conditions

to study the effects of tES on E/I regulation at the cellular, synaptic,

and network levels. Preclinical research has revealed polarity-dependent

plasticity with tDCS, frequency-specific entrainment with tACS, and GABAergic

modulation with tRNS. These findings are essential for validating computational

models and refining stimulation protocols. Future studies should integrate

multimodal technologies to enhance the translational relevance of tES and

develop personalized neuromodulation strategies targeting E/I imbalance in

brain disorders.
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Introduction

The balance between excitatory and inhibitory (E/I) activity in the brain is essential for
normal brain function and neural activity (Tatti et al., 2017). Cortical neurons integrate
glutamatergic and GABAergic inputs to maintain optimal membrane potentials and enable
adaptive responses (Landau et al., 2016). Disruptions in this balance contribute to disorders
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such as epilepsy, autism, and schizophrenia (Eichler and Meier,
2008; Yizhar et al., 2011; Nguyen et al., 2016). The E/I balance is
shaped by synaptic plasticity mechanisms proposed by Hebb (1949)
and later extended to include inhibitory circuits (Saraga et al.,
2008; D’amour and Froemke, 2015). Non-invasive stimulation
techniques like tDCS, tACS, and tRNS may help restore E/I balance
depending on brain region and context (Krause et al., 2013; Van
Bueren et al., 2023).

Transcranial electrical stimulation (tES) is a non-invasive
technique that applies weak electrical currents to the scalp,
modulating cortical excitability and inducing immediate and
lasting effects on brain function (Nitsche and Paulus, 2000;
Woods et al., 2016). The main tES modalities include transcranial
direct current stimulation (tDCS), which uses low-intensity direct
currents to modulate excitability depending on polarity, and
transcranial alternating current stimulation (tACS), which applies
oscillatory currents to influence brain rhythms (Paulus, 2011).
tDCS has been widely studied in motor learning, cognition,
depression, and stroke (Nitsche and Paulus, 2000; Nitsche et al.,
2008; Brunoni et al., 2012), while tACS shows promise in
conditions such as schizophrenia, epilepsy, and Alzheimer’s disease
(Herrmann et al., 2013; Antal and Paulus, 2013; Kasten et al., 2016).
A third variant, transcranial random noise stimulation (tRNS),
delivers broadband random currents that enhance neuroplasticity
and show promise in perception, memory, and clinical applications
(Fertonani et al., 2011; Snowball et al., 2013; Van Der Groen and
Wenderoth, 2016). The therapeutic potential of tES may lie in
its ability to modulate fundamental neural processes, such as the
balance between excitatory and inhibitory (E/I) activity in the brain
(Krause et al., 2013).

Given the limitations of studying E/I balance directly
in humans, animal models are essential for uncovering the
physiological and molecular effects of tES. They offer controlled
conditions to examine both immediate and long-term effects
(Sánchez-León et al., 2018) and allow systematic variation
of parameters such as intensity, frequency, and duration.
Furthermore, they permit invasive assessments of neuronal
activity, neurotransmission, and plasticity-related pathways
(Jackson et al., 2016).

This mini-review highlights the contribution of animal
models to uncovering how tES modulates the E/I balance,
offering controlled settings to dissect the underlying
physiological mechanisms.

Transcranial electrical stimulation in
animal models

Animal models enable researchers to adapt tES protocols
to non-human species, optimizing experimental conditions by
adjusting electrode placement, current intensity, and stimulation
duration to account for anatomical and physiological differences
between animals and humans. To achieve targeted stimulation,
researchers use smaller electrode sizes and precise skull placement,
while higher current densities help compensate for differences
in brain volume and conductivity (Márquez-Ruiz et al., 2014;
Jackson et al., 2016).

Animal models offer versatility for studying tES across multiple
levels with both in vitro and in vivo approaches. In vitro
models, especially brain slices, yield insights into cellular and
synaptic mechanisms, including membrane polarization, synaptic
plasticity, and neurotransmitter dynamics (Bikson et al., 2004,
2012; Radman et al., 2009; Kabakov et al., 2012). In vivo
models enable exploration of network and behavioral effects.
Experiments in anesthetized animals permit detailed circuit-level
analysis and connectivity changes (Ozen et al., 2010; Opitz et al.,
2016; Vöröslakos et al., 2018), while awake animals provide key
insights into neuromodulatory effects on behavior and cognition
(Márquez-Ruiz et al., 2012; Monai et al., 2016; Krause et al., 2017;
Sánchez-León et al., 2018, 2021a).

By integrating cutting-edge techniques such as high-density
electrophysiology (Krause et al., 2022; Farahani et al., 2024;
Sánchez-León et al., 2025), two-photon imaging (Monai et al.,
2016; Gellner et al., 2021), optogenetics (Fröhlich and McCormick,
2010; Mabil et al., 2020; Huang et al., 2021), and chemogenetics
(Su et al., 2024), animal models provide unparalleled opportunities
to investigate the effects of tES. These modern approaches,
when combined with classical electrophysiological techniques—
including intracellular and extracellular recordings—offer
unprecedented resolution for dissecting stimulation-induced
changes. This multimodal strategy enables the investigation of
tES-induced alterations at both the cellular and network levels,
advancing our understanding of its mechanisms and potential
therapeutic applications (Table 1).

Animal models bridge basic and clinical research, enabling
disease-specific insights (Sánchez-Garrido Campos et al., 2025).
In Alzheimer’s models, gamma-frequency optogenetic stimulation
of parvalbumin interneurons improved memory and synaptic
plasticity, likely by reducing amyloid-beta (Iaccarino et al., 2016;
Etter et al., 2019). Similarly, gamma-tACS applied for 20 min
restored impaired LTP in mice (Jeong et al., 2021). Although the
current density used in this animal study was not reported, human
studies applying gamma-tACS for longer durations (60 min)
have shown significant improvements in memory performance
in patients with mild cognitive impairment due to Alzheimer’s
disease (Benussi et al., 2021), supporting the direction of the
findings observed in animal models. In epilepsy, cathodal tDCS
(3.54 mA/cm2, 25 min) reduced seizures and restored E/I balance in
anesthetized rodents (Sun et al., 2020). In clinical settings, cathodal
tDCS applied for a similar duration (30 min) but with markedly
lower current density (0.057 mA/cm2) has been shown to reduce
seizure duration in patients with mesial temporal lobe epilepsy
and hippocampal sclerosis (Tekturk et al., 2016). In Parkinson’s
models, anodal tDCS (0.88 mA/cm2, 20 min) enhanced motor
function through dopaminergic activation (Tamura et al., 2024).
Comparable stimulation in patients—anodal tDCS over the motor
cortex for 20 min—has led to significant improvements in gait
speed, step length, and cadence, although at a substantially lower
current density (0.057 mA/cm2) (Schabrun et al., 2016). While
tRNS has shown promise in humans (Van Der Groen et al., 2022),
its mechanisms remain unclear due to scarce preclinical data (Antal
and Herrmann, 2016).

Building on the methodological framework established in
animal models, we next investigate how tES modulates the E/I
balance through synaptic-level mechanisms.
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TABLE 1 Summary of the impact of transcranial electrical stimulation techniques (tDCS, tACS, tRNS) on synaptic plasticity, molecular and cellular
mechanisms, and neural network dynamics based on animal model studies.

Synaptic plasticity Molecular and cellular
mechanisms

Neural networks dynamics

tDCS Polarity-dependent effects: anodal stimulation
facilitates LTP-like plasticity*, while cathodal
induces LTD-like plasticity* in animal models

[Bindman et al., 1964; Bikson et al., 2004;
Kronberg et al., 2017; Sánchez-León et al.,

2025].

Modulates calcium channels*, requires
NMDA receptor* activation, involves BDNF

and adenosine signaling*, preferentially affects
pyramidal neurons*, modulates astrocytes*,
microglia and cerebral blood flow* in animal
studies [Islam et al., 1995; Radman et al., 2009;

Fritsch et al., 2010; Wachter et al., 2011;
Márquez-Ruiz et al., 2012; Rueger et al., 2012;

Rohan et al., 2015; Monai et al., 2016;
Pikhovych et al., 2016; Podda et al., 2016;
Mishima et al., 2019; Gellner et al., 2021].

Modulates cortical connectivity*, oscillatory
activity*, and interhemispheric* interactions
in rodents [Reato et al., 2010; Sánchez-León

et al., 2021a; Koo et al., 2016; Cambiaghi et al.,
2020; Sun et al., 2020; Duan et al., 2022].

tACS Induces synaptic plasticity through
frequency-specific entrainment and

STDP-like mechanisms* demonstrated in
rodents and primates [Fujisawa et al., 2004;

Ozen et al., 2010; Kar et al., 2017; Krause et al.,
2019, 2022].

Engages neurotrophic factors (BDNF,
GDNF)*, modulates glutamatergic and

dopaminergic systems*, involves AMPA
receptors, NMDA receptors*, and acts in a

frequency- and cell type-dependent manner*,
modulates microglia and enhances cerebral
blood flow* in rodents [Fujisawa et al., 2004;
Huang et al., 2021; Jeong et al., 2021; Turner

et al., 2021; Lee et al., 2022; Wu et al., 2022; Lee
et al., 2024].

Entrainment* of neuronal populations and
modulation of network coherence

demonstrated in rodents*, influencing
large-scale neural dynamics* [Ozen et al.,

2010; Huang et al., 2021; Krause et al., 2022].

tRNS Enhances plasticity via stochastic resonance*,
reduces inhibitory neurotransmission*, and

promotes LTP-like effects* observed in
rodents [Onorato et al., 2016; Remedios et al.,

2019; Sánchez-León et al., 2021b].

Involves sodium channel activation* and
GABAergic modulation independently of

NMDA receptors*, as shown in in vitro and
in vivo animal models [Remedios et al., 2019;

Sánchez-León et al., 2021b].

Limited animal evidence suggests modulation
of neuronal firing patterns and network-level
activity*; mechanistic insights are primarily

derived from rodent studies [Remedios et al.,
2019; Sánchez-León et al., 2021b].

Key references from animal research supporting each described mechanism are provided. An asterisk indicates that the mechanism has also been observed in humans.

Impact of tES on E/I balance at the
synaptic level

tES can modulate synaptic plasticity mechanisms essential for
maintaining the E/I balance. This balance is regulated by glutamate
and GABA, acting through their respective receptors (Isaacson
and Scanziani, 2011), and is fine-tuned by neuromodulators
like acetylcholine, dopamine, and serotonin (Froemke, 2015).
Disruptions in E/I balance contribute to neurological and
psychiatric disorders (Landau et al., 2016). By influencing
glutamatergic and GABAergic synapses, tES can enhance or
suppress synaptic strength depending on stimulation parameters
and polarity (Nitsche et al., 2003; Fritsch et al., 2010). These effects
are mediated by long-term potentiation (LTP) and depression
(LTD), as conceptualized by Hebb (1949) and refined in models
of spike-timing-dependent plasticity (STDP) (Citri and Malenka,
2008; Dan and Poo, 2006). Through these mechanisms, tES may
help restore E/I balance in pathological conditions (Reato et al.,
2013; Kronberg et al., 2017).

tDCS induces polarity-dependent neuromodulatory effects,
first demonstrated by Bindman et al. (1964), who applied direct
current to the cortex of anesthetized rats. These effects were
described in humans decades later by Nitsche and Paulus (2000)
using non-invasive stimulation. Their findings showed anodal
tDCS enhances cortical excitability, promoting LTP-like plasticity,
while cathodal tDCS reduces excitability, inducing LTD-like effects.
Current evidence indicates tDCS effects depend not only on
polarity but also on neuronal orientation relative to the induced

electric field. Maximal effects occur when the somatodendritic
axis aligns with the electric field (Bikson et al., 2004; Kronberg
et al., 2017; Sánchez-León et al., 2025). tACS modulates synaptic
plasticity by entraining neuronal activity at specific frequencies,
reinforcing network oscillations. This effect has been observed in
rodent and primate models (Fujisawa et al., 2004; Ozen et al.,
2010; Krause et al., 2019, 2022). tACS-driven entrainment is
presumed to promote STDP-like plasticity, contributing to E/I
balance regulation, as suggested in both animal and human studies
(Bland and Sale, 2019). tRNS applies randomized high-frequency
currents and has been proposed to enhance synaptic plasticity
via stochastic resonance, as demonstrated in vitro (Onorato et al.,
2016). In addition, tRNS has been shown to reduce inhibitory
responses and promotes LTP-like effects in humans (Van Der
Groen and Wenderoth, 2016; Brancucci et al., 2023). Furthermore,
chronic tRNS decreases GABA levels in mice, suggesting plasticity-
related adaptations supporting long-term network reorganization
(Sánchez-León et al., 2021b). Factors influencing tRNS-induced
plasticity remain incompletely characterized, but human studies
suggest intensity (Moliadze et al., 2012), frequency range
(Fertonani et al., 2011; Campana et al., 2016; Moret et al., 2019),
and brain state during stimulation (Jooß et al., 2016) significantly
impact its effects.

By modulating synaptic plasticity, different tES protocols
dynamically shift E/I balance, promoting excitation or enhancing
inhibition. Since synaptic plasticity is governed by molecular
and cellular events, we next explore how tES impacts these
foundational mechanisms.
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Molecular and cellular implications
of tES on the E/I balance

The effects of tES on the E/I balance extend beyond
neuronal excitability, influencing molecular pathways and cellular
mechanisms that regulate synaptic plasticity. By modulating ion
channels, neurotransmitter systems, and neurotrophic factors, tES
induces adaptive molecular changes, which vary with stimulation
modality and target cell type. Figure 1 summarizes the immediate
and long-term effects of each tES modality on neuronal and glial
components.

The electrical current used in tES alters membrane polarization
by redistributing charges, which modulates ion channel activity
and intracellular signaling (Ye and Steiger, 2015). In tDCS,
anodal stimulation increases intracellular calcium—a key step
in plasticity—through calcium channels, while sodium channels
mediate immediate effects (Islam et al., 1995; Nitsche et al., 2003).
NMDA receptor activation is also essential, as shown in vitro,
in animal models, and in humans (Islam et al., 1995; Liebetanz,
2002; Nitsche et al., 2003; Rohan et al., 2015). Additionally, BDNF
and adenosine contribute to long-term synaptic changes in animal
studies (Fritsch et al., 2010; Márquez-Ruiz et al., 2012; Podda
et al., 2016). Although the roles of BDNF and adenosine in tDCS
have not been directly demonstrated in humans, the Val66Met
BDNF polymorphism—which reduces BDNF release—has been
associated with reduced plasticity after tDCS (Cheeran et al.,
2008). The molecular mechanisms of tACS remain less defined,
but studies indicate it modulates plasticity via neurotrophic and
neurotransmitter systems. Beta-tACS (20 Hz) improves motor
deficits in Parkinson’s models by increasing GDNF and activating
neuroprotective pathways (Lee et al., 2022). Gamma-tACS (40 Hz)
promotes synaptic potentiation by engaging AMPA receptors,
BDNF, and CREB (Jeong et al., 2021). In humans, BDNF-dependent
plasticity has been suggested to underlie some of the effects of tACS,
although further investigation is needed (Riddle et al., 2020). Given
that gamma oscillations rely on NMDA receptor activity, tACS
may enhance synchronization through glutamatergic signaling
(Fujisawa et al., 2004). Supporting this, the involvement of NMDA
receptors in tACS-induced plasticity has also been demonstrated
in humans (Wischnewski et al., 2019). Although less understood,
tRNS appears to involve repeated sodium channel activation
(Remedios et al., 2019) and reduced GABA release (Sánchez-León
et al., 2021b). Unlike tDCS and tACS, it seems to act independently
of NMDA receptors, relying on sodium channels and GABAergic
modulation, as seen in human studies (Chaieb et al., 2015).

tES effects vary by neuronal cell type. tDCS primarily targets
excitatory pyramidal neurons, likely due to their elongated
morphology, as shown in vitro (Radman et al., 2009) and
supported by computational models (Molaee-Ardekani et al.,
2013). tACS entrains pyramidal neurons at both low (8 Hz) and
high (> 100 Hz) frequencies, while interneurons show subtype-
specific frequency preferences: somatostatin-positive cells respond
to > 30 Hz, and parvalbumin-positive cells to ∼140 Hz, based
on in vivo (Huang et al., 2021) and in vitro (Lee et al., 2024)
studies. For tRNS, in vitro data suggest effects on pyramidal
neurons (Remedios et al., 2019), while in vivo studies in awake
animals point to possible involvement of GABAergic interneurons
(Sánchez-León et al., 2021b). Beyond neurons, tES also affects

glial cells, crucial for synaptic homeostasis and neuroinflammation.
tDCS increases astrocytic calcium via adrenergic signaling and
may influence microglia through astrocyte–microglia interactions
(Monai et al., 2016; Mishima et al., 2019). It also modulates
microglial activation and morphology, enhancing motility and
neuron–microglia signaling via the fractalkine pathway (Rueger
et al., 2012; Pikhovych et al., 2016; Gellner et al., 2021). tDCS
alters cerebral blood flow, increasing it after anodal and decreasing
it after cathodal stimulation in animals (Wachter et al., 2011)
and in humans (Shinde et al., 2021). Similarly, tACS enhances
cerebral perfusion in a frequency- and dose-dependent manner
through various mechanisms, including neurovascular coupling,
endothelial activation, astrocytic stimulation, and direct neuronal
effects (Turner et al., 2021). These effects have also been observed
in humans (Alekseichuk et al., 2016). Gamma-tACS reduces beta-
amyloid plaques and promotes an anti-inflammatory microglial
phenotype, suggesting therapeutic potential in neurodegeneration
(Wu et al., 2022). While direct microglial changes have not been
confirmed in humans, a reduction of p-tau seen after 40 Hz tACS in
Alzheimer’s patients suggests microglial enhancement (Dhaynaut
et al., 2022).

Modulation of the E/I balance by tES involves coordinated
changes at the molecular and cellular levels. The next section
explores how these local effects extend to large-scale network
interactions that ultimately drive brain function.

Modulation of the E/I balance at the
neural network level

Beyond its local effects, tES influences large-scale network
connectivity and oscillatory activity, contributing to the
modulation of the E/I balance at the neural network level.
These effects extend beyond the immediate stimulation site,
altering both local and distant brain regions and impacting
functional and effective connectivity (Ozen et al., 2010; Reato et al.,
2010; Koo et al., 2016; Cambiaghi et al., 2020; Krause et al., 2022).

Among tES modalities, tDCS has been widely studied for its
ability to modulate network connectivity and oscillatory activity,
thereby influencing global E/I balance. These effects were first
observed in humans (Antal et al., 2004) and later replicated in
animals (Reato et al., 2010). For instance, tDCS applied to the
primary somatosensory cortex in mice modulates gamma activity
during and after stimulation, indicating plasticity changes that
could influence broader network dynamics (Sánchez-León et al.,
2021a). Similarly, in Alzheimer’s disease models, prefrontal tDCS
alters both alpha and gamma oscillations, suggesting its potential
to restore pathological E/I imbalances and impact interconnected
brain regions (Duan et al., 2022).

The network-wide effects of tDCS are linked to its layer-
specific influence on cortical circuits and its capacity to modulate
interhemispheric and cortico-subcortical pathways. tDCS effects
are layer-dependent, with cathodal stimulation inducing LTD-like
effects in superficial layers and LTP-like effects in deeper ones, as
shown in animal models (Sun et al., 2020). Furthermore, tDCS
influences distant regions through interhemispheric and cortico-
subcortical connectivity. For example, anodal tDCS applied to
the left motor cortex enhances contralateral excitability in rats,
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FIGURE 1

Physiological mechanisms underlying the immediate and long-term effects of tDCS, tACS, and tRNS. tDCS: Immediate effects result from changes
in membrane potential due to redistribution of intracellular charges by the applied current. Anodal stimulation depolarizes the somatic membrane
near the axon initial segment, increasing excitability by making this region more positive. In contrast, cathodal stimulation hyperpolarizes the same
region, decreasing excitability. Long-term effects depend on current polarity: anodal tDCS (red background) promotes LTP-like plasticity via NMDA
receptors, BDNF, and adenosine. It also enhances cerebral blood flow and astrocytic calcium levels, facilitating synaptic plasticity and microglial
motility. Cathodal tDCS (blue background) favors LTD-like plasticity through GABA and adenosine receptors, reduces blood flow, and promotes a
more reactive microglial state. tACS: Immediate effects are characterized by neuronal entrainment to the applied oscillatory current, depending on
frequency and phase. This is illustrated by synchronous neuronal firing (purple) and a non-entrained neuron (gray-purple). Long-term effects involve
synaptic plasticity through spike-timing dependent plasticity (STDP), where the relative timing of pre- and post-synaptic spikes determines whether
LTP- or LTD-like changes occur. tACS also increases cerebral blood flow, potentially through activation of astrocytic, neuronal, or endothelial
mechanisms, and shifts microglial phenotype toward an anti-inflammatory profile. tRNS: Immediate effects arise via stochastic resonance, whereby
noise enhances the detection or transmission of weak signals. In the subpanel, the top trace shows an oscillatory membrane potential (purple)
remaining below the threshold, with no action potentials generated. In contrast, the bottom trace demonstrates how the addition of random noise
(green) can cause the combined signal to occasionally reach threshold, triggering action potentials. Long-term effects of tRNS may involve repeated
sodium channel activation, leading to sustained depolarization and LTP-like plasticity at excitatory synapses. Additionally, LTD-like effects at
inhibitory synapses may occur through modulation of GABAA receptors and decreased GABA release (Some images were created and obtained from
the BioRender website: https://www.biorender.com/).

indicating plasticity-driven changes in network interactions (Koo
et al., 2016). Anodal prefrontal tDCS also modulates serotonergic
activity in the dorsal raphe nucleus, affecting neuromodulatory
systems in remote regions (Cambiaghi et al., 2020). This ability
to influence distal regions has also been confirmed in humans,
where anodal prefrontal tDCS modulated activity in subcortical
and contralateral cortical areas (Weber et al., 2014). Like tDCS,
tACS exerts widespread effects beyond the stimulation site. In
anesthetized rats, tACS entrains neuronal firing across extensive
cortical networks, demonstrating its capacity to synchronize
oscillatory activity at large scale (Ozen et al., 2010). Intrinsic

network dynamics can amplify tACS effects, enhancing its impact
on E/I balance and long-range connectivity, as supported by
animal (Huang et al., 2021; Krause et al., 2022) and humans
studies (Chen et al., 2021; Diedrich et al., 2025). Although
tRNS is relatively new, human studies suggest it modulates
neural oscillations. For example, tRNS over the auditory cortex
increased theta power in frontal and parietal regions, suggesting
potential network-wide modulation (Van Doren et al., 2014).
However, the mechanisms remain unclear, and further animal
studies are needed to clarify its impact on network-level E/I
balance.
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By modulating large-scale connectivity and oscillatory
dynamics, tES reshapes the brain’s E/I balance, offering therapeutic
potential for disorders characterized by E/I dysregulation (Krause
et al., 2013). Despite significant progress in understanding the
network-level effects of tES, important challenges remain that limit
the extrapolation of preclinical findings to human applications.

Limitations and future perspectives

Studying the E/I balance using animal models presents inherent
limitations due to anatomical and physiological differences
between animal and human brains. A major challenge is
the simpler geometry of animal cortices compared to the
convoluted human cortex, which affects both electrical field
distribution and large-scale network dynamics. For example,
rodents’ smaller brains and lack of cortical gyri limit direct
extrapolation to humans. Moreover, scaling issues in tES protocols
often require higher current densities in animals, influenced
by differences in neuronal density, axonal architecture, and
cortical organization (Ozen et al., 2010; Vöröslakos et al., 2018;
Asan et al., 2020). Stimulation durations also vary substantially,
as preclinical studies typically employ shorter sessions than
clinical protocols, complicating the assessment of long-term effects
(Johnson et al., 2020; Huang et al., 2021).

Efforts are underway to bridge these gaps. Studies in non-
human primates provide more translatable data on behavior,
electric field distribution, and neural dynamics (Opitz et al., 2016;
Krause et al., 2017). In rodents, lowering current densities (Bolzoni
et al., 2013; Farahani et al., 2024) and incorporating human-
relevant behavioral tasks (Márquez-Ruiz et al., 2012, 2016; Kar
et al., 2017) have improved translational validity. Furthermore,
animal models remain indispensable for mechanistic research at
the synaptic and network levels—insights not easily attainable
in humans (Jackson et al., 2016; Sánchez-León et al., 2018).
Importantly, these experimental findings provide the biological
foundation for developing computational models that simulate
how tES modulates neuronal activity. By incorporating data on
cellular and network-level mechanisms from animal studies, such
models can help extrapolate stimulation effects to the human brain
and guide protocol optimization with improved anatomical and
physiological accuracy.

Future research should prioritize methodological refinement.
Using computational modeling to estimate electric fields more
accurately, adjusting stimulation parameters accordingly, and
aligning experimental designs with disease-specific biomarkers
will be key to increasing the translational value of animal
studies. Integrating advanced neurotechnologies into these models
can further accelerate progress toward clinically meaningful
applications of tES.

Conclusion

In summary, tES is a promising neuromodulatory approach
with significant potential for both basic neuroscience and clinical
translation. By modulating the E/I balance, it influences synaptic
plasticity, circuit function, and network synchronization, offering

a powerful tool to probe and treat neurological and psychiatric
conditions. Insights from animal models have elucidated key
mechanisms underlying tES effects, including polarity-dependent
modulation by tDCS, frequency-specific entrainment by tACS, and
the emerging utility of tRNS.

These findings underscore the value of preclinical research for
identifying how tES interacts with glutamatergic and GABAergic
systems, supports oscillatory coherence, and shapes brain
dynamics. Moving forward, combining tES with complementary
approaches—such as pharmacological, genetic, or behavioral
interventions—may enhance specificity and therapeutic
efficacy. Continued integration of mechanistic insights will be
essential to realize personalized neuromodulation strategies
and improve clinical outcomes in disorders characterized by
disrupted E/I balance.
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