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Signal-to-event encoding
parameter selection for multiple
event classification with spiking
neural networks
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Event-driven systems can operate either on discrete-time event streams or on
analog signals transformed into the event domain by a predefined encoding
scheme. This paper studies the problem of optimal event-based signal encoding
if data are to be processed by a machine learning model, such as the spiking
neural network (SNN). We introduce a method of encoding parameter selection
that evaluates a k-Nearest Neighbor (k-NN) classifier operating on a measure of
the event stream distance in multiple trials of a Bayesian optimization process.
The e�ciency of the proposed method is assessed by relating the classification
performancewith the number of events produced by a signal-to-event encoding
scheme. The proposed method is validated for vehicle monitoring sensor
data with three event-based encoding schemes: level-crossing encoding,
send-on-delta, and leaky integrate-and-fire encoder. The best-performing sets
of encoding parameters give an average accuracy of up to 0.912 for the k-NN
classification, while producing 97.8% fewer number of samples than for the
classical periodic discrete-time signal representation. Additionally, we train the
SNN classifiers on data encoded according to the selected sets of parameters,
achieving an average classification accuracy of up to 0.946, improving upon the
k-NN baseline. This shows that the proposed model-agnostic signal-to-event
encoding parameter selection is promising for training sophisticated machine
learning models.

KEYWORDS

event-based signal encoding, van Rossum distance, Bayesian optimization, multiple

event classification, spiking neural networks, k-NN classifier

1 Introduction

Event sequence data is a natural representation for modeling of discrete-event

systems, in which the state changes occur at discrete points in time due to specific

events (Cassandras and Lafortune, 2008). The discrete-event systems (DESs) are

commonly used to model and analyze processes that evolve in steps such as the arrival

of a data packet, completion of a task, or a request for service. The examples of DESs are

manufacturing and computer operating systems (banking, social media, etc.), as well as

telecommunication or healthcare systems.

The event representation can also be applied to continuous dynamics present in event-

based control and signal processing (Heemels et al., 2012; Tsividis, 2003; Miśkowicz,

2015), especially if implemented within the Industrial Internet of Things (IIoT) (Aranda-

Escolástico et al., 2024). Event-based representations of continuous-time processes focus
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on capturing key moments in the system evolution, when

significant changes—considered “events”—occur. The event rate

for a given continuous input is usually much lower than when that

input is represented at regular time intervals (Miśkowicz, 2003).

This helps to reduce data transmission and energy consumption in

applications such as environmental monitoring, industrial process

automation, smart grids and power systems (Aranda-Escolástico

et al., 2024). Event-based techniques enable resource-aware design

and are especially effective in resource-constrained applications.

The classical event-based representations of continuous-time

signals are level-crossing models where events are produced when

a signal crosses a specific threshold or a set of levels (Mark and

Todd, 1981), or send-on-delta reporting when events are triggered

by signal changes by a prespecified increment (Miśkowicz,

2006). The send-on-delta encoding is used in event-triggered

control (Miśkowicz, 2015) and state estimation (Ge et al.,

2020), as well as in biologically-inspired event sensors that

mimic the function of eyes, ears, nose, or touch (Tayarani-

Najaran and Schmuker, 2021; Cheng et al., 2019). On the

other hand, the level-crossing representations are applied in

event-based signal processing (Miśkowicz, 2015) including signal

reconstruction (Rzepka et al., 2018), bandwidth estimation (Rzepka

et al., 2017), ECG signal analysis (Ravanshad et al., 2013), design of

analog-to-digital converters (Ravanshad et al., 2013; Wang et al.,

2018), and digital filters (Huber and Liu, 2019).

Some event-based representations are biologically inspired.

One example is the integrate-and-fire encoder (Stein, 1965; Thao

et al., 2023), that simplifies real neuron dynamics by mimicking

two essential behaviors: integration as a sum of incoming electrical

inputs over time, and firing as a generation of spike (event) when

the input reaches a certain threshold. The integrate-and-fire model

is frequently used in computational neuroscience and machine

learning to simulate the behavior of biological neurons in spiking

neural networks (SNNs) (Nunes et al., 2022). This enables networks

to process information based on the timing of events (spikes) rather

than continuous values, offering advantages for temporal data

analysis, especially for time-series data or sensory processing tasks.

This paper explores the problem of optimal event-based signal

encoding for further processing of event streams by classification

models. The proposed approach involves fitting a k-NN classifier

to an event stream using the van Rossum distance measure through

multiple trials in a Bayesian optimization process. Based on the

results of Bayesian optimization, we determine a fixed set of signal-

to-event encoding parameters suitable for further processing by

more advanced classification techniques.

To validate the proposed methodology, we use sensor data

from an Intelligent Transportation System (ITS) for vehicle

monitoring (Marszałek et al., 2023). Our method makes no

assumptions about the underlying signal, ensuring its adaptability

to other data domains. To demonstrate how the encoding

parameters selected by the k-NN classifier can support multiple

event classifications, we train a time-to-first-spike spiking neural

network (SNN) (Mostafa, 2018) on event-data streams. The

efficiency of the proposed method is evaluated by analyzing the

relationship between classification performance and the number of

events generated by the event-based encoding scheme. This allows

us to assess the impact of signal- to-event encoding on classification

accuracy for this dataset.

This paper is structured as follows. Section 2 provides a brief

overview of event-based signal encoding schemes, spiking neural

network training methods, and introduces the technical context of

the vehicle classification problem used to evaluate the proposed

methodology. Section 3.1 presents the paper’s main contribution:

a model-agnostic method for selecting signal-to-event encoding

parameters. Section 3.2 focuses on the time-to-first-spike SNN

model trained on event data encoded according to the proposed

signal-to-event encoding schemes. Section 4 details an extensive

simulation study assessing the methodology in the context of the

vehicle classification problem. Finally, Section 5 summarizes the

findings and provides recommendations for future research.

2 Background and related work

2.1 Event-based signal encoding

The objective of event-based encoding is to create a framework

for efficient representation of a continuous-time signal by capturing

its values only at important instants (events), rather than registering

it at regular time intervals as in classical methods of signal

discretization. The event rate depends on the nature of the input

signal, growing for example when the input changes substantially,

and becoming smaller during periods of low activity. This allows

for minimizing the number of events required to accurately

represent the signal, reducing unnecessary computations and data

transmissions (Miśkowicz, 2003).

The efficient event-based signal representation preserves signal

characteristics by retaining its original key features, such as

dynamics and frequency content, while avoiding artifacts or

noise contribution that can cause generation of the events too

frequently. With a flexible definition of events, event-based

encoding of continuous-time signals can meet diverse system

design objectives and application needs. Most definitions refer to

the event as to a change of the state of an object occurring at an

instant (Miśkowicz, 2015).

A class of event-based encoding that may be referred literally

to the concept of the event as a significant change of the particular

signal parameter are threshold-based criteria, known in the context

of communication as the send-on-delta encoding (Miśkowicz,

2006). In the send-on-delta scheme, an input signal is encoded as

an event when it deviates by a certain threshold (1) (Figure 1a). If

x(t) is a continuous-time signal to be encoded, the send-on-delta

encoding times tn ≥ 0 for n = 1, 2, . . . with the threshold 1 are

determined such that the following condition holds:

tn = min
{

t > tn−1 :
∣

∣x(t)− x(tn−1)
∣

∣ = 1
}

. (1)

The size of the threshold 1 defines a trade-off between

encoding resolution and the event rate. The threshold can be

fixed or modified during system operation depending on the safety

and/or performance requirements of the system (Tang et al., 2025),

or as a response to variation of a signal slope (Trakimas and

Sonkusale, 2011; Wang et al., 2018).

A different integration-based encoding scheme is the integrate-

and-fire (IF) encoder that mimics the behavior of biological

neurons by describing how a potential of a neuron membrane

changes in response to input stimuli (Moser et al., 2025). The
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FIGURE 1

Examples of event-based encoding criteria. Black marker symbols denote di�erent event types produced by the encoding. (a) Send-on-delta. (b)
Leaky integrate-and-fire. (c) Level-crossing encoding.

IF encoder accumulates an input over time until the total input

reaches a threshold Vthr, which causes emission of a spike and a

reset of the accumulator to zero:

tn = min

{

t > tn−1 :
1

τint

∫ t

tn−1

x(t)dt = Vthr

}

, (2)

where τint is the integration constant.

In a more biologically realistic neuron model, called leaky

integrate-and-fire (LIF) encoder, the content of the accumulator

decays exponentially with the time constant τleak (Figure 1b) (Thao

et al., 2023):

tn = min

{

t > tn−1 :
1

τint

∫ t

tn−1

exp

(

−
t

τleak

)

x(t)dt = Vthr

}

.

(3)

Another generic class of event-based encoding relevant to

many applications in event-based signal processing is not related

to detection of an explicit change of the input but focused on

matching a certain reference. In the reference-crossing encoding,

the input is registered when it crosses a prespecified function. The

examples are the sine-wave crossing (Selva, 2012) or level-crossing

encoding (Mark and Todd, 1981).

In the level-crossing encoding, the reference function can be

defined as a single level (Abrahams, 1986), or multiple reference

levels (L1, . . . , Lm) disposed in the amplitude domain (Mark and

Todd, 1981) (Figure 1c).

The level-crossing encoding with the set of levels L1, . . . , Lm is

defined as follows:

tn = min

{

t > tn−1 :

{

x(t) = Lk or x(t) = Lk+1 if x′(tn−1) > 0

x(t) = Lk or x(t) = Lk−1 if x′(tn−1) < 0

}

, (4)

where Lk and Lk+1 are reference levels, Lk+1 > Lk, 1 < k < m.

This condition specifies that the next level crossing after the

actual crossing of Lk will occur for the same level (Lk) or the higher

level (Lk+1) in case of the up-crossing (x′(tn−1) > 0) of Lk at tn−1,

or for the same level (Lk) or the lower level (Lk−1) in case of the

down-crossing (x′(tn−1) < 0) of Lk at tn−1.

The level-crossing encodings provide not only time instants

when the relevant reference levels are crossed but also imply that

the signal remains between consecutive levels during the time

between the level crossings (Figure 1c). This means that for t ∈

(tn−1, tn):

Lk < x(t) < Lk+1 if x′(tn−1) > 0 ,

Lk−1 < x(t) < Lk if x′(tn−1) < 0 .
(5)

The extra knowledge defined by the above inequalities, called

the implicit information, implies that no event occurs between

consecutive encoding instants (Rzepka et al., 2018). The implicit

information is relevant not only to the level-crossing encodings but

also to any event-based encoding scheme.

The reference levels in the level-crossing encoding are usually

uniformly distributed in the amplitude domain although adaptive

(Senay et al., 2010) or optimal distributions of levels (Kozat et al.,

2013) have been also proposed.

The mean rate of level-crossing and send-on-delta encodings

depends on the average slope of the signal (Miśkowicz, 2006), while

the rate of spikes in IF encodings is defined by the average values of

the input signal. If the hysteresis is adopted to triggering (multiple)

level crossings (i.e., the repeated crossings of the same level are

not encoded), then such level-crossing criterion coincides with the

threshold-based encoding (send-on-delta scheme).

The general model of threshold-based encoding that provides a

unified framework for send-on-delta, leaky integrate-and-fire, and

other threshold-based schemes (e.g., leaky send-on-delta) has been

introduced in Moser (2017).

The threshold-based event encoding is a fundamental paradigm

in event-based control (Heemels et al., 2012; Miśkowicz, 2015) and

state estimation (Ge et al., 2020) designed for efficient utilization

of computation and communication resources, especially when

implemented with wireless connectivity in IIoT (Aranda-

Escolástico et al., 2024; Miśkowicz, 2006). The send-on-delta

encoding is applied to event sensors that mimic the function

of eyes (silicon retina), ears (silicon cochlea), nose (e-nose), or

touch (e-skin) and emit events when a signal representing relevant

modality (vision, sound, olfaction, touch) changes by a prespecified

threshold (Tayarani-Najaran and Schmuker, 2021; Cheng et al.,

2019). On the other hand, the level-crossing encoding is an

effective signal representation in energy-efficient signal processing

applications (e.g., ECG analysis with wearable devices) (Ravanshad

et al., 2013).

Integrate-and-fire encoders as simplified models of neuronal

activity are foundational in computational neuroscience and

extensively used in the development of SNNs (Thao et al.,
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2023; Moser et al., 2025). The SNNs are particularly well-

suited for processing temporal data due to their inherent

ability to handle time-dependent information (e.g., speech

recognition, real-time sensory processing, and dynamic

vision) (Nunes et al., 2022). One of the active research areas

focuses on improving the efficiency of encoding techniques to

enhance the performance and applicability of SNNs in various

domains (Auge et al., 2021).

A recent work (Zanoli et al., 2025) has shown that optimization-

based level-crossing encoding parameter selection methodologies

achieve better signal reconstruction in ECG signal monitoring.

In this paper, we analyze signal-to-event encoding schemes by

examining how signal representation affects the performance of

a machine learning model that processes event data using an

event distance measure within the Bayesian optimization process.

The analysis of event-based encoding schemes is conducted

using sensor data for vehicle classification in an intelligent

transportation system.

2.2 Spiking neural networks (SNN)

Event stream data can be processed by specialized machine

learning models such as the spiking neural networks (SNN).

These models process data using impulses that propagate

asynchronously through the network (Pfeiffer and Pfeil, 2018).

This approach allows SNNs to mimic biological networks more

closely than traditional neural networks. While the development

of the training rules for SNNs is an active area of research,

several major training paradigms have been identified: plasticity-

aware training (Falez et al., 2019; Mozafari et al., 2019);

network conversion, which maps each component of the source

network to its spiking equivalent (Rueckauer et al., 2017;

Midya et al., 2019; Stöckl and Maass, 2021); and training with

backpropagation (Lee et al., 2016; Wu et al., 2018; Rasmussen,

2019). The latter approach leverages existing algorithms and

best practices developed for deep learning with nonspiking

neural networks.

Backpropagation-based training of SNNs must address the

challenge that the spike-generating function is non-differentiable.

The methods to overcome this problem are of two types, depending

on how much information from the forward pass is needed to

compute the surrogate gradient signal. In event-driven learning

the error is propagated only through spikes (Zhang and Li, 2020;

Wunderlich and Pehle, 2021; Zhu et al., 2022). In contrast, in

a learning scheme similar to that used in the Recurrent Neural

Networks (RNNs) the error information is propagated also through

time steps which did not elicit a spike (Wu et al., 2018; Neftci

et al., 2019; Xing et al., 2020; Bauer et al., 2023). Training models

with these methods usually requires simulating the state of the

entire network over a finite time window with a fixed time

step. However, it is possible to design learning rules that do not

require such extensive simulation. One example is the time-to-

first-spike SNN (Mostafa, 2018; Kheradpisheh and Masquelier,

2020; Zhou et al., 2021). This model is trained using locally

exact gradients of the spike-generating function, making both

the forward- and backward-pass through the network event-

centric. Recently, the time-to-first-spike SNN model has been

extended to the scenario where each postsynaptic neuron can

generate multiple events in response to observed spike trains

(Pabian et al., 2024).

2.3 Inductive loop vehicle magnetic
profiles (VMP)

The goal of Intelligent Transportation Systems (ITS) is to

enhance the efficient use of existing transportation infrastructure by

leveraging accurate traffic data acquisition technologies to monitor

and manage traffic flow. Despite recent advancements in sensor

technology, inductive loop (IL) sensors remain the most widely

used in modern traffic control systems (Klein et al., 2006). This

technology features low installation costs, a long lifespan due to

its simple design, robustness to weather conditions such as rain,

fog or snow, and a flexible architecture that can be adapted to

various applications. Systems based on IL sensors are capable of

vehicle classification (Gajda et al., 2001; Oh et al., 2002; Ki and

Baik, 2006; Jeng and Ritchie, 2008; Meta and Cinsdikici, 2010),

vehicle re-identification and tracking (Kwon, 2005; Ndoye et al.,

2011; Guilbert et al., 2013, 2014), speed estimation (Sun and Ritchie,

1999; Coifman et al., 2003; Lu et al., 2012), as well as wheel and axle

detection (Gajda et al., 2012; Marszałek et al., 2011, 2015, 2018).

At minimum, an IL detector consists of two components: a

wire loop with one or more turns mounted on or embedded

in the roadway pavement, and a controller cabinet that houses

an electronics unit (Klein et al., 2006). When a ferromagnetic

or conducting metallic mass passes over the IL connected to

a conditioning circuit, the currents induced in the object alter

the magnetic field distribution affecting the loop inductance

and resistance (Mocholí-Salcedo et al., 2017). These dynamic

interactions between the loop and the vehicle can be monitored

and analyzed as impedance changes, generating a waveform

signal known as the vehicle magnetic profile (VMP), where

R-VMP represents its resistive component and X-VMP its

reactive component.

Recently, a quad loop, four-channel VMPmeasurement system

was proposed by Marszałek and Duda (2020). It consists of two

standard loops (IL1, IL3) and two slim loops (IL2, IL4) arranged

in series. The standard loops are well-suited for general-purpose

tasks, while the slim loops are preferable for axle identification

and wheel rim detection (Gajda et al., 2012; Marszałek and

Sroka, 2016). Using two loops of each type instead of a single

one introduces redundancy enhancing the system robustness

against signal interference and simplifying the estimation of traffic

parameters, such as vehicle speed (Mocholí Belenguer et al., 2019).

Additionally, three different excitation frequencies are applied to

each channel. The simultaneous multi-frequency measurement

increases the system resilience to noise, reducing the risk of

poor signal quality affecting downstream processing tasks. Figure 2

presents exemplary VMP profiles acquired by this measurement

system. We use the quad loop sensor VMP signals originally

discretized at 1 kHz in our event-driven signal analysis. A detailed
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FIGURE 2

Exemplary VMP profiles acquired by the quad loop VMP measurement system, divided into separate IL sensors, VMP components and loop excitation
frequencies. Note that signals originating from the IL sensors of the same type (IL1-IL3; IL2-IL4) are slightly shifted in time. Furthermore, the loop
excitation frequency impacts the signal magnitude, but does not significantly change its characteristic features.

description of the VMP data used in this study is provided in

Section 4.

3 Materials and methods

In this section we describe the proposed generic framework

for encoding parameter selection, which is the main contribution

of this paper. Furthermore, in order to show that the parameters

selected by the proposed method can be reused when training more

complex models, we also introduce the SNN model used in the

experimental validation study.

3.1 Model-agnostic signal-to-event
encoding parameter selection

The main goal of this paper is to identify a set of signal-to-

event encoding parameters that preserve information relevant to a

multiple event classification task.We operate under the assumption

that, for a simple classification model such as the k-NN classifier,

the choice of spike encoding parameters has a measurable impact

on classification performance and, intuitively, on the pairwise

similarity of the generated event data. Consequently, event data

that can be accurately classified by the k-NN model are expected

to perform well as input to other event-based classifiers, assuming

a positive correlation in their outcomes. This makes our method

model-agnostic as it does not rely on any assumptions regarding

the specific classifier to be used.

Figure 3 illustrates the proposed methodology for selecting

signal-to-event encoding parameters. The approach involves

performing V-fold cross-validation using a k-NN classifier that

leverages an event-based distance metric to classify signals from

the validation subsets. Within each data fold, encoding parameters

are sampled via a Bayesian optimization process, guided by the

classification accuracy observed in prior iterations. The resulting

scores are aggregated into ranked lists (one per data fold) along

with their corresponding encoding parameters. The final set of

encoding parameters is then selected based on these rankings.

Detailed descriptions of the proposed methodology are provided

in Sections 3.1.1-3.1.3. It is important to note that if the distance

metric used by the k-NN classifier is itself parameterized, its

impact on the classification accuracy must be marginalized,

e.g., by sampling multiple distance parameter values for each

fixed set of signal encoding parameters during the Bayesian

optimization process.

3.1.1 Van Rossum distance
A crucial component of the strategy for selection of signal-

to-event encoding parameters based on the k-NN classifier is the

choice of an appropriate distance metric to assess the similarity

between event sequences. The choice of the distance measure

heavily depends on the properties of the original signal. For

relatively short signals (such as the VMP), typically spanning

only a few seconds, the distance measures commonly used in

computational neuroscience are well-suited for processing this type

of data (Kass et al., 2014).

Due to its prominence in neuroscience, we opt to use the multi-

neuron van Rossum distance (van Rossum, 2001; Houghton and

Sen, 2008) to assess the similarity of the event sequences produced

by spike-encoding functions1. It is a purely deterministic distance

measure and does not take into account the stochastic nature of

event data. Furthermore, it assumes that there is no functional

dependence between events from different channels.

Let U =
{

u
1, u2, . . . , uP

}

and V =
{

v
1, v2, . . . , vP

}

be two

populations of P independent neurons. Furthermore, let

f
(

t, up
)

=
∑

m

h
(

t − u
p
m

)

, p = 1, 2, . . . , P (6)

be a spike train with the event sequence
{

u
p
m

}

in the p-th spike

train of the population U . This spike train is smoothed by a causal

1 The van Rossum distance was originally defined for neural spike

responses, therefore its formulation refers to various (populations of)

neurons. We adopt this terminology for consistency with previous works

in the field, noting that di�erent “neurons” relate to “event types”, whereas

“populations of neurons” intuitively correspond to “sets of event types.”
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FIGURE 3

Flowchart of the proposed model-agnostic signal-to-event encoding parameter selection. The k-NN classifier accuracy obtained at various
optimization steps is aggregated into ranked lists, along with the corresponding encoding parameters used to encode signals into their event-based
representation. The outer loop iterates over di�erent data splits (V-fold cross-validation), while the inner loop performs sampling of encoding
parameters for each split using Bayesian optimization. The dotted line representing classifier accuracy indicates that this value serves as the objective
function, guiding the parameter sampling in the subsequent iteration of the Bayesian optimization process.

exponential kernel

h(t; τ ) =

{

0 t < 0

e−t/τ t ≥ 0
. (7)

The spike train f
(

t, vp
)

with the event sequence
{

v
p
n

}

is

defined analogously. Note that the event sequences
{

u
p
m

}

,
{

v
p
n

}

need not have the same number of events. Then, the multi-neuron

van Rossum distance (Houghton and Kreuz, 2012) between U and

V is

d (U ,V; τ , c) =

√

√

√

√

√

P
∑

p=1



Rp + c
∑

q 6=p

Rpq



 , (8)

with

Rp =
∑

i,j

(

e
−

∣

∣

∣
u
p
i −u

p
j

∣

∣

∣
/τ
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(9)

being the labeled line term representing the single-neuron

van Rossum distance (i.e., a distance between neurons that directly

correspond to one another), and

Rpq =
∑

i,j

(
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∣
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)

(10)

is the summed population term representing the cross-neuron

distance. Assuming that the sequences in populations U , V are

sorted, the computational complexity of Equation 8 is O
(

P2µ2
)

,

where µ is the longest event sequence across populations U ,V ;

and can be reduced to O
(

P2µ
)

using the so-called markage

trick (Houghton and Kreuz, 2012). Note that Equations 9, 10 can be

computed even when one event sequence is empty while the other

is not, as well as when both sequences are empty.

The multi-neuron van Rossum distance defined in Equation 8

is parameterized by c and τ , which model various phenomena

observed in neuroscience. The mixing parameter 0 ≤ c ≤ 1 weighs

the importance of treating each neuron separately (c = 0) vs.

viewing the entire population as a single-unit (c = 1). The decay

constant τ influences the range of interspike dependencies. For

τ →∞ each individual spike contributes to the distance computed

at each subsequent spike. Conversely, for τ → 0 spikes impact

only their direct neighborhood with τ = 0 causing the measure

to count the number of coinciding events in the spike trains.

These properties show the versatility of this distance function.

Unfortunately, this also means that the choice of c, τ impacts the

perceived (dis)similarity of spike trains produced by different spike

encoding functions.

3.1.2 Encoding parameter selection with
Bayesian optimization

To identify the optimal set of parameters for the encoding

functions, we employ Bayesian optimization using the Tree-

structured Parzen Estimator (TPE) approach, implemented via

the Hyperopt software package (Bergstra et al., 2013). Bayesian

optimization is a strategy for locating the extrema of an objective

function that is expensive to evaluate. It constructs a surrogate

model of the objective function based on prior evaluations

at sampled points within the parameter space. This model is

iteratively refined with each new observation, and subsequent

sampling is guided by an acquisition function derived from

the surrogate model. The key distinction between Bayesian

optimization and a purely random search lies in the sampling

strategy: while random search samples the parameter space

uniformly, Bayesian optimization leverages prior knowledge by

preferentially sampling regions that are more likely to yield

improvements, based on past observations.
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For a predetermined training and validation data split, the

procedure for selecting signal-to-event encoding parameters using

Bayesian optimization can be summarized as follows:

1. Apply min-max normalization to scale each signal individually

to the range 0–1. This normalization simplifies the process of

selecting encoding parameters by making the resulting event

stream independent of the original signal’s amplitude range.

2. Define the search space for the parameters of the objective

function to be optimized. The dimensionality of the

optimization search space depends on the selected spike

encoding scheme and the choice of the distance measure. In

case of the van Rossum distance the search space must include

the parameters τ and c, which we constrain to the search

space log (τ ) ∼ U (−1, 1) and c ∼ U (0, 1), where U
(

a, b
)

denotes the uniform random variable on the interval
[

a, b
]

. It

is important to choose the parameter bounds for the encoding

functions such that they are able to produce informative event

streams—too few events in the sequence might not carry

enough information, whereas too many events might encode

contributions from artifacts or noise components in the signal

that should be ignored.

3. Define the objective function used in the Bayesian optimization

process. This function is the classification accuracy of the k-NN

algorithm. For each individual record in the validation dataset,

the classifier assigns a class label by identifying k = 7 most

similar signals from the training dataset based on the multi-

neuron van Rossum distance and applying majority voting. The

number of the nearest neighbors k is fixed to avoid introducing

an additional parameter into the optimization search space.

4. Run the Bayesian optimization process over 150 iterations. Each

iteration involves sampling a new set of parameters (from the

search space defined in step 2), extracting event sequences from

the input signal, evaluating the objective function, and updating

the surrogate model of the objective function conditioned on

these parameters. Note that parameter sets which result in empty

event sequences are considered invalid and are excluded from

subsequent analysis.

Finally, to assess the robustness of the optimization procedure

with respect to the data distribution, we apply the stratified 10-

fold cross-validation, resulting in a total of 10 × 150 distinct

optimization steps for each spike encoding scheme.

Note that we limit the scope of our optimization process to a

single objective: maximizing the k-NN classification accuracy. One

might consider using a different random search type algorithm

to optimize a multi-objective function that also considers the

event density to selectively promote solutions that achieve high

classification performance while producing fewer events. We leave

this topic for further research.

3.1.3 Weighted median parameter selection
strategy

The results of the Bayesian optimization process conducted

over V different data splits yield several independent ranked lists

Q =
{

q1, q2, . . . , qV
}

. In each ranking q, higher position is assigned

to parameter sets that achieve better k-NN classifier scores (ties

are permitted). Our objective is to determine a single parameter

set (per encoding type) from these rankings that can be reliably

used by other multiple event classification algorithms operating

on the same data. One possible approach would be to select

the parameter set with the highest overall performance across all

data splits. However, the absolute score depends not only on the

selected parameters—which may not have been selected in other

splits during the Bayesian optimization2—but also on the specific

stratified data sample. Moreover, it is preferable to identify the

parameter set that performs consistently well across all data splits.

Therefore, a selection strategy based solely on top-performing

scores in individual rankings is inadvisable.

To address these concerns, we propose the weighted median

selection strategy—a parameter selection method that accounts

for the local (i.e., within-ranking) rank of each result across all

data splits. The approach is outlined in Algorithm 1. Each set of

parameters sampled during the Bayesian optimization process is

assigned a rank reciprocal score r based on its position in the

corresponding ranking q. The ranking lists is then aggregated, and

the rank-reciprocal scores are normalized to produce a weight

vector wα , which assigns a weight to each sampled parameter set.

This weight vector is used to compute a weighted median of the

rank reciprocal scores, defining the final set of encoding parameters

returned by the proposed method. If multiple parameter sets share

the same rank-reciprocal score equal to the weighted median, the

final selection is the median of all such sets. Overall, this strategy

fulfills the objective of selecting a parameter set that performs

consistently well across different data splits. It achieves this by

mitigating the influence of outliers in individual rankings and by

emphasizing configurations associated with higher k-NN classifier

accuracy through the use of rank-reciprocal weighting.

3.1.4 Computational complexity and
problem-specific adaptations

It is important to note that the proposed methodology might

require problem-specific adjustments as one cannot guarantee

that the optimization hyperparameters related to the number of

iterations, the number of data splits in the V-fold cross-validation,

or the number of nearest neighbors in the k-NN algorithm

suits all possible research problems. Fortunately, adjusting these

settings does not meaningfully change the proposed methodology.

Furthermore, the entire approach is modular enough that it is

possible to make bigger changes to some parts of the algorithm

without impacting the general framework summarized in Figure 3.

We have already mentioned that there might be some benefit to

using a different distance measure than the van Rossum distance,

one that is better suited to the data under analysis; or to using a

different algorithm for the Bayesian optimization procedure.

The computational complexity of the proposed method

depends on three main components: the distance measure

computation (as established in Section 3.1.2 the van Rossum

2 In Bayesian optimization, the sampling process depends on the sequence

of scores obtained in previous iterations. Since each data split contains a

di�erent subset of examples, it is not possible to guarantee that the same

parameter sets will be sampled across splits even if the sampling is pseudo-

random, i.e., initialized with a fixed random seed, unless the sequence of

scores in successive iterations is identical.
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Require: Q {set of all ranking lists {q1,q2, . . .,qV}

for V data splits}

1: p∗ ← [ ] {initialize a selected parameter vector}

2: Pα ← [ ] {initialize a buffer for parameters}

3: rα ← [ ] {initialize a buffer for rank

reciprocal scores}

4: for i = 1, . . .,V do

5: (P, s)← qi {unpack the ranking into parameters

P and scores s}

6: r← 1/rank (s) {compute rank reciprocal for each

score}

7: {update the buffers}

8: Pα ← [Pα,P]

9: rα ← [rα, r]

10: end for

11: wα = rα/
∑

rα {normalize the rank reciprocal

values to obtain weights}

12: r∗ ← weighted median (rα,wα) {compute the

weighted median rank reciprocal}

13: (I,C)← shape
(

Pα

)

{get the number of rows

and columns}

14: J←
{

i : r[i]α ≡ r∗
}

{find the rows that corresponds

to r∗}

15: for c = 1, . . .,C do

16: {compute the median parameter value over rows

in J and update the buffer}

17: p∗ ←
[

p∗,median
(

P
[J,c]
α

)]

18: end for

19: return p∗

Algorithm 1. Weighted median selection strategy for the parameter sets

found by the Bayesian optimization procedure.

distance has the complexity O
(

P2µ
)

, where P is the number of

channels of the signal andµ is the number of events in longest event

sequence), the iteration over data points in k-NN classification

(with a brute force algorithm complexity ofO
(

NtNvk
)

, whereNt is

the number of training samples and Nv is the number of validation

samples in the given data split), and the choice of the signal-to-spike

encoding function. This means that for some large-scale problems

(e.g., when the dataset has many examples or the signal varies

enough that the produced event sequences have numerous events)

the proposed methodology might be too expensive to compute and

an alternative approach should be devised. Note that the signal

must be encoded as an event stream regardless of the chosen

optimization method, hence its contribution to the computational

complexity analysis should be excluded from comparison.

3.2 Time-to-first-spike SNN classifier

To assess how the set of encoding parameters selected by our

methodology can be reused to train a more sophisticated event

classification model, we train a spiking neural network. Specifically,

we use the multiple-input, multiple-output (MIMO) time-to-first-

spike SNN introduced by Pabian et al. (2024). This model extends

the work by Mostafa (2018) by relaxing the implicit assumption of

an infinitely-long refractory period τref.

We introduce a neuron response delay factor τdelay in the first

hidden layer of the MIMO SNN. This parameter defines the earliest

time at which a given neuron is capable of responding to input

events. Functionally, this is equivalent to initializing the neuron

in a refractory state lasting τdelay. We hypothesize that assigning

a different τdelay value to each neuron in the layer enables them

to observe slightly different event sequences, thereby mitigating

the issue of early events disproportionally influencing the training

process. Let us consider the following scenario: assume that all

neurons start in a resting state, i.e., τdelay = 0 for all neurons.

Additionally, assume that one neuron becomes specialized through

training to detect a pattern occurring relatively late in the input

event sequence. In this case, this neuron must either adopt

smaller synaptic weights to avoid firing prematurely, or maintain

comparable weights to other neurons, while producing spikes

that are not informative (i.e., spikes triggered by early, irrelevant

events). Such behavior arises when a neuron reacts to parts of the

input sequence that are not aligned with its intended function.

Figure 4 presents an example raster plot of a network trained

with nonzero τdelay values assigned to neurons in the first

layer, increasing linearly across the layer. We do not apply

τdelay to neurons in deeper layers as the SNN-generated event

sequences contain significantly fewer events than the network

input, simplifying neuron specialization in those layers.

The MIMO SNN models are trained by minimizing the

following risk function

Ltotal(z, y) =
1

N

N
∑

n=1

Ln(z, y)+ γRspiking + λRL2 , (11)

where

Ln(z, y) = −

P
∑

p=1

y
[n]
p ln





exp
(

−z
[n]
p

)

∑P
p=1 exp

(

−z
[n]
p

)



 , (12)

is the modified cross-entropy loss for a single example indexed by

n with:

• P - the number of output channels,

• yp - a binary indicator (0 or 1) of the desired output channel p

spiking first,

• zp - the transformed spike time of the p-th output channel

z(t) = exp (t).

The parameter γ is the synaptic regularization parameter for

the spike-firing penalty

Rspiking =

H
∑

h=1

Mh
∑

m=1

Rmh , (13)

where Rmh = max
(

0, 1−
∑

k∈Bmh
wkh

)

with Bmh = {k : tkh <∞}

being the set of valid inputs for the m-th output of the h-th

postsynaptic neuron. Lastly, the parameter λ controls the strength

of the L2 regularization term of the network weights

RL2 =
∑

i,j

w2
ij . (14)
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FIGURE 4

Spike raster plot of a MIMO SNN model trained with a nonzero neuron response delay factor τdelay in the first hidden layer. The dashed line denotes
the τdelay value assigned to each neuron in the layer. It is evident that neurons with shorter response delays elicit their first spikes earlier than those
with longer τdelay values.

For completeness Rmh = 0 if {k : tkh <∞} = ∅ . Models

are trained with the RMSprop optimizer (Tieleman and Hinton,

2012) with a learning rate of 0.001 over 2,500 iterations with a batch

size of 50 examples. We set λ = 10−5 in all experiments. Similarly

to Pabian et al. (2024), the regularization parameter γ is initially set

to a large value of 105 in order to guide the model toward a solution

that is capable of propagating event throughout the entire network.

Then, after η iterations, the value of γ is decreased to 103 in order

to increase the relative importance of solving the classification task.

We use Hyperopt (Bergstra et al., 2013) to optimize the

hyperparameters that control how the information is processed

by the network. Specifically, the following Bayesian optimization

search space was defined:

• the refractory period: log (τref) ∼ U (−0.6, 0),

• the longest neuron response delay τdelay for a linearly-spaced

grid: τmax delay ∼ N
(

tavg, 1
)

subject to τmax delay ≥ 0, where

N
(

µ, σ 2
)

denotes a Gaussian random variable with mean µ

and variance σ 2, and tavg is the average event time of input

sequences in the current training dataset,

• the number of iterations to train with a larger spike-firing

penalty: η ∼ U {300, 800}.

This parameter selection process is executed over

30 optimization iterations on a single data split from the

V-fold cross-validation. Subsequently, the five best-performing

parameter sets are selected and used to train MIMO SNN models

on the remaining data splits. In case of tied performance scores,

the top-5 Hyperopt models are chosen according to the following

heuristic rule: prioritize lower τmax delay, higher τref, and lower η, in

that order of importance. This selection strategy favors models that

generate fewer events and exhibit faster response time.

4 Results

4.1 Experimental setup

For this study, we used the same VMP dataset as Marszałek

et al. (2023). The dataset consists of 3,328 records categorized

into six classes as follows: motorcycle (24.32%), bicycle (20.42%),

electric scooter (19.52%), car (15.02%), delivery van (14.11%), and

truck (6.61%). Each record contains simultaneous multi-frequency

measurements of the real and imaginary components of the VMP

signal as described in Section 2.3. For our analysis, we select a subset

of channels, retaining only four of them for further processing

(the R-VMP signals recorded at the lowest excitation frequency).

This choice streamlines our analysis while also encouraging future

research that explores the full scope of the available data.

In our analysis of the vehicle classification dataset we consider

three encoding types introduced in Section 2.1: level-crossing,

send-on-delta and leaky integrate-and-fire (LIF). For the proposed

encoding parameter selection with Bayesian optimization we

constrain the search space to the following set of probability

distributions for each encoding type:

• number of uniformly-distributed amplitude levels of the level-

crossing encoding: L ∼ U {4, 5, . . . , 16},

• send-on-delta encoding threshold: 1 ∼ U (0.02, 0.2),

• LIF encoding parameters: τint ∼ U (0.05, 0.4); τleak ∼

U (0.2, 0.6); Vthr ∼ U (0.2, 0.4).

These constraints were chosen based on preliminary

experiments, which showed that certain parameter values

resulted in suboptimal event stream densities (e.g., the send-on-

delta encoding with 1 > 0.2 produced event streams that were

too sparse).

Before the signal-to-event encoding, we upsample the digital

VMP signals from 1 kHz to 10 kHz in order to more accurately

assign the event occurrence time instants. Furthermore, as shown

in Figure 2, the individual signals exhibit either all-positive or

all-negative amplitudes with only minor variations near the zero

baseline. Hence, we take the absolute value of each signal and

apply min-max normalization to scale them to the 0–1 range. This

normalization eliminates the need to account for variability in

amplitude ranges across different VMP sensors. As a side effect

of this signal normalization process, the LIF-negative event type

cannot occur in the encoded sequences. Additionally, the spike

sequences are time-shifted so that the first event within each

sequence (across all event types) occurs at a relative time t = 0. This
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FIGURE 5

An example of a VMP signal and its di�erent event domain representations. Curves and raster plot points are color-coded to signify the
correspondence between the input VMP channel and the output event sequences. The vertical axis for the three encoding raster plots represents
di�erent event types: 48 for level-crossing (4 channels × 12 amplitude levels), 8 for send-on-delta, and 4 for the LIF encoding. The number of
thresholds in the level-crossing encoding was chosen arbitrarily for illustrative purposes.

adjustment serves two purposes. Firstly, the sensors are positioned

in a series, making it essential to preserve the relative time shifts

between channels as the vehicle moves over the measurement

system. Secondly, any sensor data recorded before the vehicle enters

the measurement space should be discarded, enforcing a consistent

effective signal start time t = 0.

Figure 5 shows an example of event sequences obtained for a

VMP time series. Each signal-to-event encoding scheme produces

a different number of distinct event types for each VMP sensor:

level-crossing encoding produces one event type per amplitude

threshold; send-on-delta encoding generates two event types (one

for “rising” and one for “falling” signal amplitude); LIF encoding

produces one event type due to the amplitude normalization step

described earlier.

4.2 Encoding parameter selection for the
VMP dataset

The results of the Hyperopt optimization runs are summarized

in Figure 6, and show a wide range of the obtained classifier

accuracy spanning approximately from 0.775 to 0.950. This

variation highlights the significant impact of encoding parameter

selection on the k-NN classifier performance. It is evident that some

data splits are more challenging to classify than others, although

none of the classifiers deviates significantly from their respective

overall-average performance. Furthermore, the results indicate that

suboptimal LIF encoding parameters can lead to significantly worse

performance than compared to the level-crossing and send-on-

delta encoding schemes. In particular, the van Rossum distance

parameters were also optimized, influencing the final classification

scores. However, determining whether one encoding scheme is

definitely superior to the others is not possible based solely on these

raw results, due to the factors discussed earlier in Section 3.1.3.

Additional insights into the encoding schemes were gained

by analyzing the classification scores of models trained with
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FIGURE 6

Classification accuracy of k-NN models trained during the stratified
10-fold cross-validated Bayesian optimization procedure. The
dashed lines denote the average score over all data splits.

Hyperopt in relation to the average number of events produced

per VMP sensor3. The total number of events in the spike train

was normalized by the number of VMP sensors to account for the

fact that signals observed by the sensors tend to generate roughly

the same number of events after encoding. As a result, the total

number of events generated in the system scales linearly with the

number of channels, regardless of the selected coding scheme.

Additionally, this normalization allows for an assessment of the

computational burden associated with adding an additional VMP

sensor to the system. The results presented in Figure 7 indicate

that the number of events alone is not the sole determinant

of classification performance. Specifically, send-on-delta models

3 Recall that the term “VMP sensor” can refer to either the physical IL

sensor or the excitation frequency of the loop. Throughout our analyses we

used four “VMP sensors” representing the R-VMP signals registered by the

quad-loop system at a single excitation frequency per loop.
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FIGURE 7

Kernel-smoothed density estimators of the k-NN classifier accuracy
scores vs. the average number of events produced by a given
encoding scheme per the VMP sensor. Heat maps representing the
estimated density were min-max normalized separately.

maintained similar performance regardless of the number of events

produced by the encoding scheme. In contrast, different LIF

parameter sets, even when generating event sequences of similar

length, led to significantly varied k-NN classifier performance.

The selected parameter sets, determined using this strategy,

are presented in Table 1, which also includes the stratified 10-

fold cross-validated k-NN classifier performance for data splits

preprocessed with the chosen encoding schemes. According to

these results, level-crossing encoding performs slightly better than

the alternatives for the VMP vehicle type classification task. Each

signal prior to event encoding contains an average of 1,590 samples.

This means that the most data-intensive encoding scheme—

send-on-delta—produces a representation that uses approximately

97.8% fewer samples than the original signal.

Next, we analyzed the average number of events produced by

the selected encoding schemes for each VMP sensor separately.

Together with the classification results, this analysis provides

insights into the encoding efficiency. Figure 8 summarizes our

findings. To visualize these distributions, we use letter-value

plots (Hofmann et al., 2017)—an extension of the classical boxplot

that more accurately represents distribution tails for large datasets.

The results reveal a clear distinction between the empirical

distributions of event sequences produced by the two standard

inductive loops (IL1 and IL3) and the two slim loops (IL2 and IL4),

regardless of the signal-to-event encoding scheme. Additionally,

the level-crossing and send-on-delta encoding schemes produce

similar overall number of events, with send-on-delta sequences

containing slightly more events on average. In contrast, the

LIF encoding generates significantly fewer events with the median

number of events being approximately three times lower for

IL1–IL3 sensors and about six times lower for IL2–IL4 sensors.

Moreover, the LIF encoding is capable of adapting to the original

signal variability, as evidenced by the broad range of event counts

across all data samples. Given that all three classifiers in Table 1

achieve comparable classification accuracy, the LIF encoding

appears to be more efficient in terms of the amount of information

encoded per event.

Finally, relating the set of selected encoding parameters

summarized in Table 1 with the original optimization search space

reveals that the proposed method did not trivially select the

parameter sets that would maximize the number of events in the

event stream sequences. In fact, only the threshold voltage of

the LIF encoding was on the sampling space boundary [selected

Vthr = 0.2 for Vthr ∼ U (0.2, 0.4)] with all other parameters

being selected away from the boundary. This result suggests that

the proposed method is not biased in favor of high event density

encodings. However, themethod itself does not have any safeguards

and relies on carefully choosing the parameter bounds to avoid

trivial solutions.

Selecting a parameter value forVthr that lies on the search space

boundary raises a question of whether the parameter space for

the LIF encoding has been fully explored. In order to investigate

this topic and challenge our initial choice of the search space,

we repeated the LIF encoding parameter selection in a post-hoc

experiment. In this analysis the LIF threshold voltage parameter

sampling space was specified as Vthr ∼ U (0.05, 0.4). Furthermore,

due to an increase in the search space scope, we increased the

number of iterations for the Bayesian optimization from 150 to

250. The new set of LIF encoding parameters selected by our

method, as well as the average number of generated events and the

classifier performance metrics, is presented in Table 1. Not only is

the new choice of Vthr away from the sampling space boundary,

but also the k-NN classifier performance for this encoding is on par

with the one achieved by the send-on-delta scheme. Additionally,

compared to the original result, this new set of LIF encoding

parameters more than doubles the number of generated events (on

average). Overall, this shows that the proposed method will achieve

suboptimal results when the choice of the parameter sampling

space for the Bayesian optimization is too constrained. As this result

was obtained in a post-hoc experiment, we did not use this updated

set of parameters of the LIF encoding in subsequent analysis.

4.3 Vehicle classification with the MIMO
SNN

The set of parameters identified in the previous analysis was

used to encode VMP signals into the spiking domain before

training the MIMO SNN models for the vehicle type identification

task. We applied the same stratified 10-fold data split for cross-

validation. The network parameter settings and the hyperparameter
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TABLE 1 Signal-to-event encoding parameters chosen according to the weighted median selection strategy.

Encoding type Chosen parameters Number of events
per VMP sensor

Stratified 10-fold cross-validated
k-NN performance

Accuracy F1-score

level-crossing L = 12 29.484± 8.996 0.912± 0.011 0.907± 0.016

send-on-delta 1 = 0.06 36.536± 9.040 0.910± 0.014 0.909± 0.019

LIF τint = 0.1 8.317± 5.673 0.905± 0.011 0.900± 0.015

τleak = 0.5

Vthr = 0.2

LIF (post-hoc analysis) τint = 0.1 20.655± 13.768 0.910± 0.010 0.906± 0.015

τleak = 0.35

Vthr = 0.1

The multi-neuron van Rossum distance parameters used to evaluate the k-NN classifier are omitted. The last row shows the results of a post-hoc experiment that repeated the LIF parameter

selection analysis with a wider sampling space for the Vthr parameter and a higher number of the Bayesian optimization iterations. The original result for the LIF encoding parameters was used

in subsequent analysis of the SNN classifier training.
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FIGURE 8

Letter-value plots of the total number of events produced by
signal-to-event encoding schemes selected according to the
weighted median strategy for each input VMP sensor.

optimization grid were described in Section 3.2. In all experiments

we used the same C-64-128-128-6 architecture, where the number

of input neurons C depends entirely on the encoding scheme. The

specific values of C for the encoded VMP data are as follows: C =

48 for level-crossing encoding, C = 8 for send-on-delta encoding,

and C = 4 for LIF encoding. This results in a small network with a

total of 25, 344+ 64C parameters. However, it is important to note

that the effective capacity of the MIMO SNN model is higher than

what the raw parameter count suggests, due to the repeated firing of

the IF neurons, which are influenced by the refractory period τref.

In total, we optimized the weights of 225 models across the three

spike encoding schemes.

Figure 9a summarizes the classification accuracy of models

trained during the Bayesian optimization procedure on a single

data split from the stratified 10-fold cross-validation. On average,

the LIF encoding performed worse than the alternatives. Recall

that all three encoding schemes when parameterized using the

weighted median selection strategy achieved similar k-NN classifier

accuracy of approximately 0.908 (Table 1). This indicates that the

Bayesian optimization procedure failed to find a LIF model that

outperformed its own baseline. In contrast, the level-crossing and

send-on-delta models performed better than their respective k-NN

classifiers, with both achieving similar median accuracy. However,

the presence of outliers in the lower accuracy range suggests that

poor hyperparameter selection during training can significantly

degrade the final model performance. Nonetheless, these results

confirm that running the optimization procedure over multiple

iterations can lead to a high-performing model, provided that the

signal-to-event encoding is chosen correctly.

Figure 9b presents the classification accuracy for models

trained with the top-5 best-performing parameter sets selected

by Hyperopt, separately for each encoding type and each cross-

validation data split. This analysis evaluated the robustness of

classifiers trained with these hyperparameters when applied to

different input data. Several differences emerge between models

operating on differently encoded data. Once again, LIF models

exhibited significantly lower absolute performance compared to

the other encoding schemes. Additionally, both level-crossing and

LIF models evaluated on data splits #2–10 demonstrated worse

classification accuracy than the reference split #1, which was used

to determine the top-5 hyperparameter sets. In contrast, send-on-

delta model evaluated on data splits #3, #7, #8, and #10 achieved

performance levels comparable to scenario #1. This suggests

that the hyperparameters selected for send-on-delta encoding

are more robust across different training datasets. However,

this encoding scheme also exhibited an extreme performance

outlier in data split #9, deviating from all other trained models.

Overall, these findings indicate that send-on-delta encoding is

less sensitive to variations in training data, whereas level-crossing

and the LIF encoding require more precise tuning to achieve

optimal performance.

Lastly, Table 2 presents the top-5 parameter sets for the

three encoding types along with the stratified 10-fold cross-

validated performance metrics for models trained with these

hyperparameters. Notably, the top-5 parameter sets selected for

the send-of-delta and LIF models are significantly more similar
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(a) Summary of the SNN model performance for models trained with Hyperopt (30 optimization iterations on a single data split of the stratified
10-fold cross-validation). (b) Classification accuracy of the SNN models trained with top-5 parameter sets found by the Bayesian optimization
process on data split #1. The dashed lines denote the average score over all data splits.

TABLE 2 Summary of the top-5 parameter sets found by the Bayesian optimization process used to train the SNN models for the respective spike

encoding type.

Encoding type Number of events
per VMP sensor

Top-5 parameter sets Stratified 10-fold cross-validated
SNN performance

τmax delay τref η Accuracy F1-score

Level-crossing 29.484± 8.996 0.9 1.0000 700 0.926± 0.019 0.929± 0.018

1.2 0.2512 400 0.917± 0.024 0.920± 0.027

0.9 0.6310 600 0.915± 0.035 0.917± 0.033

0.9 0.2512 700 0.919± 0.024 0.922± 0.024

0.7 0.7943 500 0.913± 0.028 0.919± 0.028

Send-on-delta 36.536± 9.040 0.3 0.3981 600 0.937± 0.030 0.928± 0.031

0.4 0.5012 600 0.926± 0.036 0.913± 0.044

0.4 0.5012 700 0.946± 0.018 0.937± 0.021

0.4 0.5012 800 0.937± 0.026 0.926± 0.027

0.0 0.3162 500 0.909± 0.073 0.907± 0.068

LIF 8.317± 5.673 0.0 0.5012 300 0.861± 0.024 0.859± 0.027

0.2 0.5012 600 0.868± 0.031 0.856± 0.040

0.0 0.3981 700 0.854± 0.032 0.852± 0.038

0.0 0.5012 400 0.859± 0.024 0.858± 0.024

0.0 0.5012 700 0.855± 0.031 0.851± 0.038

Bold values indicate the best classifier accuracy and F1-score across all experimental settings.

to each other than those chosen for the level-crossing encoding.

This may suggest that, for this specific task, 30 steps of the

Bayesian optimization process are sufficient to converge to a good-

enough (local minimum) solution for these two model types,

but not enough for the level-crossing scheme. Interestingly, the

selected values of τmax delay were smaller for the send-on-delta and

LIF models when compared to level-crossing scheme. This suggests

that a nonzero τmax delay is more beneficial when the number of

neurons in the input layer is large (as in level-crossing encoder)

rather than when they generate a large number of events (as

in send-on-delta encoder). Finally, recall that the prior on the

number of training iterations with a larger spike-firing penalty η
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was U {300, 800}. Almost all of the selected values of η ended up

at the higher end of this range. This indicates that training the

model for longer with a relatively smaller weight assigned to the

task-specific loss leads to better final model performance.

When compared to the performance of the baseline k-NN

classifiers (Table 1), training the SNN results in lower error rates

for the vehicle type classification task, provided that the signal-to-

event encoding scheme is properly selected. While processing an

example through the SNN is undoubtedly more computationally

demanding than computing themulti-neuron van Rossum distance

between a pair of examples, a k-NN-based system prediction time

scales poorly with the size of the reference database, making it less

efficient as the number of training examples increases.

Considering these factors, the send-on-delta model emerged

as the most effective event-based encoding scheme for the VMP-

based vehicle classification. This model achieved the highest

stratified 10-fold cross-validation performance, demonstrated

greater robustness across different data splits, and allowed the

Bayesian optimization procedure to converge to a locally optimal

solution within the given number of optimization steps. In

particular, this cannot be solely attributed to the large average

number of events generated by the encoding, as it is comparable to

that for the level-crossing event sequences (as shown in Figure 8).

5 Discussions and conclusions

We proposed a novel methodology for selecting signal-to-event

encoding parameters that preserves critical signal information for

multiple event classification tasks. This approach is model-agnostic

and independent of the complexity of the classification model

that will eventually process the data. By decoupling encoding

parameter selection from the hyperparameter tuning phase of

model development one can simplify the overall prototyping

process. Additionally, this method enables a clearer assessment

of how different input encoding parameters influence final

model performance, ensuring a more consistent and meaningful

comparison across models.

This study evaluated three event-based signal encoding

schemes in a vehicle classification task: level-crossing, send-on-

delta and leaky integrate-and-fire (LIF) models. The aim of the

analysis was to assess the impact of encoding schemes on machine

learning performance. Our findings reveal that the accuracy of the

k-NN classifier varies significantly, ranging from approximately

0.775 to 0.950. This wide performance gap underscores the critical

importance of selecting appropriate encoding parameters. To

address this issue, we introduced a weighted median selection

strategy, which constructs performance ranking lists for each

data split and determines the median performance across

different hyperparameter settings. This approach enabled us

to establish a single optimal parameter set for each encoding

scheme, yielding average classification accuracies ranging from

0.905 (for the LIF encoding) to 0.912 (for send-on-delta).

These results provide a robust baseline for SNN models, given

the comparable cross-validated performance of the three k-

NN classifiers. Moreover, the selected encoding parameter sets

significantly reduce data redundancy compared to the original

digitized signal. The most data-intensive encoding—send-on-

delta—still produces approximately 97.8% fewer samples than

the original signal representation, demonstrating the efficiency

of event-based encoding. All three encoding schemes achieved

comparable levels of classification accuracy while producing

encodings of different event density. This highlights the importance

of testing multiple alternative encoding schemes in order to figure

out the one that best satisfies the system design constraints.

For the SNN trained on data encoded by the event-based

schemes, the send-on-delta models emerged as the best-performing

group of networks. They achieved not only the highest overall

cross-validated accuracy (0.946 on average), but also demonstrated

greater robustness across different data splits. Additionally, the

Bayesian optimization procedure successfully converged to a locally

optimal solution within the limited number of optimization steps.

However, this was achieved while generating the highest average

number of events among the tested signal-to-event encoding

schemes, slightly more events than the second-best approach,

level-crossing encoding. In contrast, the SNNs trained on time-

series data encoded using the LIF scheme performed significantly

worse than the tested alternatives. We hypothesize that three

key factors contributed to this outcome: the small number of

distinct event types produced by the encoding (only one per

input sensor), the relatively low number of events observed by

the network (approximately three to six times fewer than in the

alternative schemes), and the complexity of optimizing multiple

encoding parameters (compared to a single parameter for send-

on-delta and level-crossing schemes). Further investigation is

needed to determine whether these factors universally impair the

SNN classifier performance, regardless of the encoding type. Note

that in a post-hoc experiment for the LIF parameter selection a

slightly different set of parameters was selected, one that more

than doubles the number of generated events (on average). While

using this parameter set to train an SNN could have addressed the

problem of low event stream density, it would not have helped

with the small number of distinct event types produced by the

LIF encoding. Nevertheless, the SNN training experiment should

be considered as supplementary to the main goal of the paper

(choosing an event-based signal encoding parameters) and is not

intended to be a commentary on which encoding scheme—if any—

is the best. Overall, our findings suggest the presence of a trade-off

between classification performance and energy efficiency, measured

by the number of generated events. These considerations must

be carefully balanced when designing an end-to-end event-centric

machine learning solution.

In this paper, we employed a simple multichannel spike train

model as defined in Equation 6. This model assumes that there is

no functional dependence between events from different channels.

However, in certain scenarios, this assumption might not hold,

as events from multiple channels can interact. To account for

such dependencies, an alternative spike train model can be defined

as follows:

fp (t,U) =
∑

m

h
(

t − u
p
m

)

+ α

P
∑

s=1
s6=p

∑

k

h
(

t − usk
)

,

p = 1, 2, . . . , P , (15)

where the parameter α > 0 controls the strength of the

multichannel interactions. If α = 0, the model reduces to

the one defined in Equation 6. Extending our learning strategy
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to this dependent multichannel spike train model presents an

interesting option for further research. Additionally, this study

could be extended to incorporate other event-based encoding

schemes and to train more complex classifiers using the proposed

methodology. Finally, our optimization objective considered only

the classification accuracy and we made post hoc insights into

the encoding event density efficiency for parameter sets selected

according to such objective. It would be interesting to see a multi-

objective optimization approach that also considers this event-

based efficiency to allow better control over the trade-off between

classification performance and the number of generated samples.
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