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Refined analysis of the
Speech-to-Speech
Synchronization task reveals
subharmonic synchronization

Simon Bross, Andrea Hofmann , Kathleen Schneider and

Isabell Wartenburger *

Department of Linguistics, Cognitive Sciences, University of Potsdam, Potsdam, Germany

The Speech-to-Speech Synchronization task is a well-established behavioral

approach to assess individual di�erences in auditory-motor synchronization. In

this task, participants listen to a series of syllables that progressively increase in

frequency, while simultaneously whispering the syllable /ta/ to synchronize with

the rhythm of the incoming syllables. In our study, we replicated the bimodal

distribution of high- and low-synchronizers in a sample of native German

speakers. We present a refined analysis pipeline based on existing analysis

scripts, address minor task-related issues and observations, and incorporate

new analysis features such as the removal of silent gaps. Crucially, our

analysis revealed that (sub-)harmonic interactions can emerge during various

stages of synchronization and its assessment, obscured by the synchronization

measurement. Subharmonic synchronizers were found to produce the /ta/-

syllables to only every second or third incoming syllable which can result in

deceptively high Phase Locking Values, thus challenging the conceptualization

of low- and high-synchronizers. Our data analysis is available at OSF.
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1 Introduction

Human speech processing relies on the intricate interplay between speech production

and reception. Recent research has shown that neural oscillations involved in that interplay,

particularly in the theta frequency range where the rhythmic organization of syllables

occurs, are crucial for enabling the auditory cortex to track the speech envelope. These

oscillations also facilitate auditory-motor synchronization, the coupling between the

auditory and speech motor cortices (Assaneo et al., 2019). On this temporal mesoscale,

the speech motor cortex interacts with auditory processes, where the syllable functions as a

fundamental unit for encoding the coordinated articulatorymovements necessary to create

vocal tract constrictions (Poeppel and Assaneo, 2020).

Poeppel and Assaneo (2020) modeled the speech motor cortex as an oscillator with

an inherently preferred rhythm, capable of generating rhythmic activity that entrains to

external auditory input when the input frequency falls within a range centered around

its preferred rhythm (∼4.5Hz). Neural entrainment of the auditory cortex is expected to

facilitate speech segmentation, allowing the brain to parse continuous speech signals into

meaningful units necessary for subsequent higher-order linguistic processes (Casas et al.,

2021). This neural framework is not only compatible with harmonic synchronization (i.e.,
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between frequencies in a 1:1 relationship) but also supports

subharmonic synchronization, where neural activity entrains to

input at subharmonic frequencies (1:m relationship, with m

being an integer; Glass and Mackey, 1979). In sensorimotor

synchronization tasks, subharmonic synchronization can be

expected to emerge as a result of individual variability in adopting

an alternative stable mode of (facilitated) synchronization.

The Speech-to-Speech Synchronization task (referred to as

“task;” Assaneo et al., 2019; Lizcano-Cortés et al., 2022; Luo and

Lu, 2023) is a frequently performed behavioral test to quantify the

auditory-motor synchronization ability using an external auditory

stimulus with either a steady (Implicit Fixed version) or an

accelerating speech rhythm. In the Explicit Accelerated version

that we employed, participants are presented with an external

auditory stimulus containing an accelerating train of synthesized

syllables increasing in frequency from 4.3 to 4.7 Hz. Participants

are instructed to whisper the syllable /ta/ in line with the external

syllable rate and usually perform two runs, preceded by a 10-second

training phase. The task has been widely employed in different

languages [e.g., English: (Assaneo et al., 2019; Orpella et al., 2022;

Lubinus et al., 2023), German: (Assaneo et al., 2021; Rimmele

et al., 2022; Oderbolz et al., 2024), Norwegian: (Sjuls et al., 2023),

Mandarin: (Zhu et al., 2024), French: (Berthault et al., 2024), and

Mexican Spanish: (Mares et al., 2023; Gómez Varela et al., 2024)].

These studies typically follow the published analysis approach

(Lizcano-Cortés et al., 2022) that primarily focuses on computing

the Phase Locking Value (PLV), measuring the synchronization

between the external auditory stimulus and the speech output of

participants, which reflects their auditory-motor coupling ability.

Based on the PLV, studies reported bimodal distributions of high-

and low-synchronizers. Despite the task being rather unnatural

(whispering in line with a train of synthesized syllables without

hearing their own audio-feedback), individuals who show high

behavioral synchronization also demonstrate enhanced neural

entrainment as evidenced by auditory cortical oscillations to the

stimulus, and exhibit improved capabilities in word learning

(Assaneo et al., 2019; Orpella et al., 2022). Therefore, the task and its

investigated underlyingmechanismsmight have practical relevance

for clinical and developmental populations (Assaneo et al., 2022;

Ladányi et al., 2020; Eigsti and Pouw, 2024).

In our work, we aim to offer both theoretical and practical

insights into the task, along with presenting additional avenues for

analysis. Our refined analysis pipeline is based on the published

analysis approach and further includes the implementation of

(semi-)automated assessments and fine-tunings of the exclusion

criteria, an acceleration-based segmented PLV, and a task-tailored

method for estimating participants’ syllable and articulation rates.

2 Method

2.1 Signal processing foundation

2.1.1 Signal filtering
In (speech) signal processing, filters are leveraged to transform

an input signal into an output signal by selectively attenuating

or amplifying specific frequency components, thereby shaping the

spectral characteristics. However, the inherent complexity of signals

and the limitations of filters hinder a perfect filtering outcome,

“so efforts to remove signal components either mean some of

the undesired signal components remain, or that in removing the

unwanted part of the signal other signal components are affected,

or both” (Challis, 2021, p. 45).

A bandpass filter is designed to allow a certain frequency band

pass—the passband—while it attenuates all other frequencies. For

the task, this filter is applied to isolate the expected range of syllable

rate frequencies from the participant and the speech envelope of

the stimulus (4.3–4.7 Hz; the existing analysis framework used a

3.3–5.7 Hz passband for±1 Hz tolerance). Such filtering introduces

caveats as it preserves harmonic frequencies in the speech envelope

at which no syllable production occurred.

For instance, if a participant produces the /ta/ syllables to

only every second syllable of the external auditory stimulus

(e.g., at 2.25 instead of 4.5 Hz), it results in amplitude and

phase modulations at 4.5 Hz in their speech envelope, which

is the second harmonic of the participant’s syllable production

rate. Consequently, when applying a bandpass filter (3.3–5.7 Hz)

to the speech envelope, the 2.25 Hz frequency is attenuated

while the modulations at its second harmonic (4.5 Hz) that fall

into the passband are preserved, leading to the impression that

syllable production occurred at the second harmonic (see Figure 1).

Disregarding these (sub-)harmonic interactions can result in

misleading interpretations. We refer to participants showing this

behavior as “subharmonic synchronizers”.

2.1.2 The speech envelope
Speech is composed of thousands of frequencies whose energy

levels fluctuate rapidly over time. The speech envelope (or

amplitude envelope) of this complex signal refers to the slower

amplitude fluctuations that mainly encode (supra-)segmental and

prosodic features relevant for speech perception and rhythmic

synchronization (Rosen, 1992; Goswami and Leong, 2013; Poeppel

and Assaneo, 2020). Participants’ speech envelopes are obtained by

applying the Hilbert transform on their recordings, converting the

speech signal into an analytic signal. The envelope is then extracted

by computing themagnitude (absolute value) of this analytic signal,

followed by the removal of the Direct Current offset, resampling,

and bandpass filtering.

2.1.3 Phase (Angles)
The local phase of a signal at a specific moment “describes

the energy at that point, relative to the points before and after it.

Unlike amplitude or loudness, which are absolute values, phase is

an entirely relative property” (Leong, 2013, p. 72). Measured in

angular units, the phase angle represents the fraction of a wave

cycle completed at each sample of a signal (Alexander and Sadiku,

2008; Photinos, 2021). If unwrapped, the phase angle also displays

how many cycles have been completed since the value does not

reset after 2π but instead accumulates. In the bandpass-filtered

speech envelope of the stimulus, one cycle (2π) corresponds to a

single syllable, where cycle minima correlate with syllable onsets

and maxima with syllable nuclei (Zhang et al., 2023).

The phase angle values and their timings are determined by the

modulations at the syllable rate frequency. This information is used
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FIGURE 1

E�ect of the bandpass filter on the modulation spectrum of the speech envelope of a subharmonic synchronizer (P2 run 1 in

Supplementary Tables S1, S2) whispering at half the external syllable rate (i.e., consistently producing at the second subharmonic of the external

syllable rate). The modulation spectrum was extracted from the speech envelope using the Fast Fourier Transform. The graph shows the modulation

spectrum in the 0–7 Hz range before (blue) and after (red) applying a 5th order Butterworth bandpass filter (passband: 3.3–5.7 Hz) with a normalized

amplitude between 0 and 1.

to assess the phase synchronization between the speech envelopes

of the external auditory stimulus and the participant, for which the

difference between their phase angle vectors is computed. In theory,

if, for instance, at t both envelopes are at the same cycle count and

exhibit a minimum, there is no phase difference between them.

2.1.4 The Phase Locking Value
The PLV, introduced by Lachaux et al. (1999) as a measure

of synchronization between neural signals, is used to quantify

the synchronization between the speech envelopes of the auditory

stimulus and the participant productions.

It is computed as follows:

PLV =
1

T

∣

∣

∣

∣

∣

T
∑

t=1

ei(θ1(t)−θ2(t))

∣

∣

∣

∣

∣

where t is the time index from 1 to T (total number of samples),

θ1(t) and θ2(t) the phase angle vectors of two signals (here: filtered

speech envelopes), and ei(θ1(t)−θ2(t)) the phase difference between

them, mapped onto the unit circle in the complex plane. The PLV

ranges from 0 to 1; a value of 1 indicates perfect phase locking (the

phase difference between two signals remains perfectly consistent

across T) and a PLV of 0 indicates no phase locking.

In essence, the PLV represents the phase difference consistency

over time (cf. Supplementary Figure S6), meaning that despite a

temporal shift between two signals with the same frequency, they

still exhibit a high PLV if the phase difference between them

remains stable (i.e., are phase-locked). This allows participants to

produce their syllables with a certain positive or negative response

lag: If participants produce the syllables steadily and with the same

frequency compared to the external auditory stimulus, the phase

relationship between them remains constant. For instance, if both

external auditory stimulus and participant would produce at exactly

4.3 Hz and the participant demonstrates a perfectly consistent

response lag of x ms for each syllable, the PLV will nonetheless

amount to 1. The PLV plunges once this response lag varies over

time or if there is a mismatch between the produced and external

syllable rate frequency resulting in phase difference fluctuations.

However, there is an edge case for subharmonic synchronizers.

As outlined in Section 2.1.1, the filter attenuates the 2.25 Hz

frequency but preserves its second harmonic at 4.5 Hz. In the

filtered speech envelope of the participant, two oscillations thus

correspond to just one produced syllable. This is misleading

because the PLV is computed between 4.5 (second harmonic) and

4.5 Hz instead of between 2.25 (produced syllable rate frequency)

and 4.5 Hz, leading to high PLVs because both frequencies now

seemingly coincide (cf. Supplementary Figure S1).

2.2 Participants

Sixty adults participated [48 females, 12 males; age range: 18–

49 years, mean age: 24.78 years, standard deviation (SD): 6.07].

Inclusion criteria were: German native speakers, no history of

speech or language disorders, hearing impairments, neurological,

or psychological conditions. All participants completed two runs of

the Explicit Accelerated version of the task with a stimulus length

of 80 s, preceded by a 10 s test phase. The stimulus was taken from

Assaneo (2022).
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2.3 (Refined) exclusion criteria

The following gathers the exclusion criteria for the task that

were established in Assaneo et al. (2019), the protocol (Lizcano-

Cortés et al., 2022), and the Python script by Mares (2022).

We refined specific criteria because they were originally designed

for data collected via the internet, whereas our participants

were recorded in a soundproof booth in a highly controlled

laboratory setting.

1. PLV thresholds: Participants exhibiting PLVs above 0.9 or below

0.1 in any of the two task runs should be excluded because

these valuesmay indicate potential artifacts or lack of participant

engagement. We adhere to this criterion.

2. Consistency between runs: A linear regression model (Mares,

2022) predicts the expected PLV outcome of the second run

based on the first. Participants should be excluded if the PLV

of the second run deviates significantly from the predicted value

(beyond 1.96 standard deviations). Our approach aims to retain

participants whose PLVs from both runs fall into the same

category (i.e., either high- or low-synchronizer in both runs),

excluding only those who do not meet this criterion (cf. Section

2.4.6). Another viable strategy involves analyzing only the

data from the second run, since we observed that participants

frequently encounter initial difficulties in the first runwhere they

acclimate to the task, hence treating the first run as a test run (cf.

Figure 2).

3. Environmental noise: Participants should be excluded

if environmental noise obscures the reconstruction of

the speech envelope required for PLV computation.

Recordings must be listened to once in order to identify

environmental noise.

4. Silent gaps: Participants should be excluded if they show silent

gaps between syllables exceeding three seconds. Our approach

automatically detects and removes them instead (cf. Section

2.4.1). It may be beneficial to further remove gaps ≤ 3 s, as

removing only gaps ≥ 3 s overlooks multiple shorter gaps

that together exceed this threshold and are mainly due to

physiological requirements (breathing). Silent gaps caused by

breathing can be prevented by demonstrating participants how

to produce syllables while inhaling.

5. Speech mode: Participants who speak loudly instead of

whispering for longer than 3 or 4 s should be removed. While

we did not observe this behavior in our data, our script provides

a functionality to manually remove voiced segments (or other

segments, e.g., non-detected silent gaps) from the participant

data. The identification of non-whispered segments could also

be automated using F0 detection.

6. Articulation rate: Participants should be excluded if they exhibit

a “spoken rate”≤ 2 Hz (i.e., the participant produces two /ta/s or

fewer per second, including silent gaps). Our analysis provides

an estimation for the articulation rate instead (excluding

silent gaps; cf. Section 2.4.5). Nevertheless, we refrained from

applying this criterion because any potential disengagement

could be monitored in our controlled setting, ensuring that

articulation rates ≤ 2 Hz are most likely indicative of low

synchronization capabilities.

7. Leaking stimulus: If the external auditory stimulus leaks into

the participant recording, remaining audible even after applying

a bandstop filter, the participant should be excluded.

2.4 Refined data analysis pipeline

2.4.1 Detection and removal of silent gaps
We defined silent gaps as time spans longer than 3 s

during which no syllable onset /t/ is detected. Out-of-the-

box implementations for automatic syllable or pause detection

proved unreliable as they depend on F0 detection—absent in

whispered speech—or on amplitude-based features unsuitable

for the generally low but highly variable intensity in whispered

speech. Instead, we used the spectral flux onset strength envelope

(capturing dynamic changes in energy across frequencies) from

the librosa Python package (McFee et al., 2025) to identify the

recurring transient /t/ onsets in the participant recordings. Silent

gaps are carefully removed (cf. Section 2.4.3).

2.4.2 Stimulus leakage removal
Despite careful instructions and controlled settings, the

stimulus can leak into the participant recording and distort results.

We observed that external stimulus leakages introduce an F0 of 200

Hz into the recordings, indicating a potential for automatic leakage

detection. Since the spectral content of the produced /ta/ syllables

typically exceeds 3 kHz and the stimulus is ideally bandpass filtered

between [0, 3 kHz], leakages can be removed using a bandstop

filter with a [0, 3 kHz] stopband (Lizcano-Cortés et al., 2022).

We used a Chebyshev 2 filter of 6th order and 40 dB attenuation

in the stopband for this task. Post-filtered recordings must be

carefully checked since participant productions might be filtered

out if produced below 3 kHz (we provide a sanity-script to visually

validate the reconstruction of the post-filtered recording/speech

envelope, cf. Supplementary Figure S2).

2.4.3 Corrected moving window PLV
We encountered a small error in the PLV computation of

Mares’ (2022) Python analysis script (Script name: funcs.py,

function: PLVevol). The time and plv variables in the script are

initialized based on a wrong number of expected windows, leading

to an excess window that is not assigned a value (initialized with

and remains at 0) but is considered when taking the mean across

all moving windows. We noticed this because we computed the

PLV between the stimulus and itself for testing purposes, which

yielded a value of 0.975 instead of 1. Furthermore, the parameters

for the window and overlap duration could not be set to values

other than the defaults—changing them throws an IndexError.

We corrected both issues.

Our data analysis uses the same window parameters as set

in Mares’ script (window size of 5 s with a 3 s overlap). Silent

gaps equal to or longer than three seconds are removed prior to

computation. It is pivotal to remove the respective samples from
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both the stimulus and participant only once the unwrapped phase

angle vectors are extracted.

While the moving overlapping window approach captures

short-term fluctuations in synchronization, it presents

certain drawbacks. Firstly, it is not able to capture long-term

synchronization and how well participants respond to the

syllable rate changes in the external auditory stimulus. Secondly,

overlapping windows results in double computations of segments

that are not averaged out, possibly in- or deflating the PLV. To

mitigate these drawbacks, an acceleration-based segmented PLV is

presented.

2.4.4 Acceleration-based segmented PLV
We observed that the 80 s version of the accelerating stimulus—

also the available 60 s version—does not accelerate every 10

seconds, as described in Lizcano-Cortés et al. (2022), but after

around 13–14 seconds, see below. According to the MBROLA

script with which the stimulus was created, the stimulus is

composed of the following five segments:

1. Segment (0–∼13.95 s): 4.3Hz (120 phonemes a ca. 116.28ms)

2. Segm. (∼13.95–∼27.59 s): 4.4Hz (120 phonemes a ca. 113.64ms)

3. Segm. (∼27.59–∼40.92 s): 4.5Hz (120 phonemes a ca. 111.11ms)

4. Segm. (∼40.92–∼53.97 s): 4.6Hz (120 phonemes a ca. 108.70ms)

5. Segm. (∼53.97–∼80.14 s): 4.7Hz (246 phonemes a ca. 106.38ms)

We used these segmentations (i.e., 5 segments, cf. Figure 2) to

compute the acceleration-based segmented PLV, with silent gaps

≥3 s removed from the segments, and segments in which less

than 50% of the original data remains after removal are assigned a

NaN. The PLVs for the segments are computed without overlapping

windows to assess the participants’ adaption and synchronization

consistency to the external syllable rates.

While this segment-based approach directly correlates the PLV

with external syllable rates, it maymiss finer temporal details within

segments due to the lack of overlapping windows. It can therefore

be advisable to use both the moving window and segmented PLV in

a complementary approach.

2.4.5 Syllable and articulation rate estimation
The syllable rate is often estimated using the peak frequency

of the speech envelope modulation spectrum. However, findings

question its reliability: “[...] [T]he peak frequency of the

narrowbandmodulation spectrum is not strongly influenced by the

rate of syllables, but instead may originate from the biophysical

properties of the human articulator” (Zhang et al., 2023, p. 8).

They further found that “local features in the speech envelope,

instead of the modulation spectrum, are a more reliable acoustic

correlate of syllable” and that the peak frequency is only reliable

“[...] when the analysis is pooled overminutes of speech recordings”

(Zhang et al., 2023, p. 1). Our data confirmed that this approach

often produced inaccurate syllable rate estimates per segment for

the participant data, hence we desisted from using it. For other

approaches, consult, for instance, Jadoul et al. (2016), Coupé et al.

(2019), and MacIntyre et al. (2022).

Since the synchronization measurement of this task is not

based on the syllable rate in terms of syllables per second but

on the modulations in the frequency domain determined by

the speech rhythm, we took advantage of the expected inherent

rhythmicity and repurposed the PLV as a similarity metric between

the participant’s speech envelope and synthesized signals that

represent hypothetical syllable rate frequencies. As a preliminary

step, we filtered the participant’s speech envelopes between 1–5 Hz

to capture produced syllable rate frequencies within that range and

synthesized signals from 1–5 Hz in 0.05 Hz increments. Using the

PLV, we compared each segment (n = 5) of the participant speech

envelope (silent gaps ≥1.5 s removed to approximate phonation

time) with the synthesized signals and determined the best match,

that is, the frequency that showed the highest PLV, indicating the

most prominent rhythmic alignment.

Based on the preliminary results, estimations were refined by

filtering the speech envelope in narrower bands (either between

1–3.3 Hz or 2.7–5 Hz) to improve accuracy. The resulting five

values for the estimated syllable rates thus represent the dominant

rhythmic frequency associated with syllable production and the

overall articulation rate was calculated by weighting these values

by the corresponding phonation time, thus estimating the number

of syllables produced per second during active vocalization. While

this approach can slightly overestimate the results for synchronizers

with highly variable inter-onset-intervals, it remains a valid

metric because it captures dominant phase-aligned periodicities

by using smaller overlapping windows rather than requiring strict

isochrony.

2.4.6 Participant classification
To classify a participant run as either high or low, we extracted

the parameters from the original analysis’ Gaussian Mixture Model

(Lizcano-Cortés et al., 2022; Mares, 2022) for determining the

PLV classification thresholds, enhancing data comparability across

studies.

Runs are classified as follows:

Unreliable: PLV < 0.1 or PLV > 0.9

High: 0.4113 < PLV ≤ 0.9

Low: 0.1 ≤ PLV < 0.4014

Border case: 0.4014 ≤ PLV ≤ 0.4113

Border cases emerge from the intersection of high- and low-

sychronizers in themodel, making classification ambiguous. Border

cases should be checked manually as described in Section 3.1 and,

if possible, reclassified.

3 Results

3.1 Participant exclusion and classification

Four participants were excluded based on our refined PLV

inconsistency criterion (cf. Section 2.3), all other (refined) exclusion

criteria were not applied. If we would have applied the unmodified

exclusion criteria together with the erroneous PLV computation,

19 out of the 60 participants would have been excluded (6 due to
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FIGURE 2

Mean PLVs and standard error of the mean (SEM) per segment (5 segments, cf. Section 2.4.4) for high- and low-synchronizers in run 1 and 2.

Averaged across runs, high-synchronizers show peak synchronization at 4.4 Hz (segment 2), while low-synchronizers do so at 4.3 Hz (segment 1).

an articulation rate ≤2 Hz, 8 due to silent gaps ≥ 3 s, 7 due to

incongruent PLVs across runs; 2 were affected by 2 criteria at once).

In summary, 56 participants (44 females) from the sample

remained after applying the modified exclusion criteria (mean age:

24.5 years, SD: 5.95).

The PLVs are bimodally distributed with 12 low- and 44 high-

synchronizers (see Supplementary Figure S3). One participant was

classified as a border case in run 1 (PLV: 0.409) and as a low-

synchronizer in run 2 (PLV: 0.222). Since leaning toward the

threshold for low-synchronizers in the first run, we manually

re-classified them as a low-synchronizer. As stated, we only

include participants that are assigned the same class in both

runs. For comparison, Supplementary Figure S4 shows the bimodal

distribution for the whole sample (N = 60).

3.2 Moving window and segmented PLV

Mean moving window PLVs (silent gaps removed) across run 1

and 2 range from 0.164 to 0.857 (mean: 0.585, SD: 0.194). Despite

the 10 s training phase prior to the first run, the segmented PLV

corroborates participants’ starting difficulties in the initial segment

of the first run, especially in the high-synchronizers (cf. Figure 2; for

a comparable Figure showing only the subharmonic synchronizers

see Supplementary Figure S5).

Descriptively, high-synchronizers seem to better maintain

synchronization across all frequencies—even for the longer 4.7

Hz segment—while low-synchronizers show decreasing PLVs

for faster rates (cf. also Supplementary Figure S6). Comparing

the mean moving window PLV (high-synchronizers: 0.678,

low-synchronizers: 0.259) and the mean of the weighted average

segmented PLV (n = 5 segments, weights based on remaining signal

length per segment after silent gap removal; high-synchronizers:

0.638, low-synchronizers: 0.161) across both runs, the moving

window approach yields statistically significantly higher values in

both high- and low-synchronizers (highs: t = 18.018, p < 0.01;

lows: t = 12.87, p < 0.01), likely due to its smoothing effect and

not being strictly correlated with the segments of the external

syllable rates.

3.3 Syllable and articulation rates

Articulation rates for high-synchronizers ranged from 2.24 to

4.56 Hz (mean = 4.29 Hz) in the first run and from 2.25 to 4.6 Hz

(mean = 4.42 Hz) in the second run. For low-synchronizers, the

articulation rates varied from 1.34 to 4.29Hzwith amean of 2.58Hz

in the first run, and from 1.24 to 4.24 Hz with a mean of 2.72 Hz in

the second run. Low-synchronizers’ articulation rates thus deviate

more significantly from the articulation rate of the external auditory

stimulus (∼4.5Hz), resulting in their low PLVs. Unexpectedly,

high-synchronizers exhibit a wide range of articulation rates due

to presence of subharmonic synchronizers (i.e., synchronizing to

only every second syllable, yielding articulation rates around 2.25

Hz). However, with the exception of one participant (articulation

rate: 4.6 Hz), they never exceed the articulation rate of the external

auditory stimulus. This suggests that the external rates serve as

an upper synchronization bound. The syllable rate estimation per

segment allowed us to identify 11 subharmonic synchronizers with

variable behavior across runs (cf. Supplementary Tables S1, S2).
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Subharmonic synchronizers are also more descriptively discussed

in Supplementary Section 3.

4 Discussion

This article provides practical and theoretical considerations

and refinements for the analysis of the Speech-to-Speech

Synchronization task performed under well-controlled laboratory

conditions. Our analysis comprises the correction of the moving

window PLV computation, the presentation of a segmented PLV,

and functionalities to cope with stimulus leakages. Furthermore,

we incorporate the automatic detection and removal of silent

gaps, the possibility to semi-automatically remove non-whispered

or other undesired segments from the participant signal, and

adaptions to the exclusion criteria which previously would

have led to considerable participant exclusion in our sample.

Most importantly, the refinements allowed us to carve out

previously concealed synchronization patterns beyond the binary

classification into high- and low-synchronizers, and to retain 56

participants (out of 60) instead of 41 when following the original

analysis. This is most relevant for clinical or developmental samples

which are typically smaller in size—and therefore rely strongly on

participant inclusion—but also more likely to exhibit difficulties

adhering to the experiment instructions.

The exclusive reliance on the PLV in the original analysis

can be misleading, as it may obscure individual synchronization

dynamics and particularly (sub-)harmonic interactions occurring

at various levels, such as the filter, syllable production, or neural

level. In neuronal systems, (sub-)harmonic synchronization

enables oscillators to process information and to communicate

between different brain regions (Ermentrout, 1981; Pikovsky

et al., 2001; Canolty and Knight, 2010). Subharmonic syllable

synchronization can be either explained by subharmonic

entrainment of the auditory cortex to the external auditory

stimulus or by subharmonic entrainment of the speech motor

cortex to the input from the auditory cortex. Although some

participants transitioned from 1:2 synchronization in the first

run to 1:1 synchronization in the second run, it remains unclear,

without further examination, whether subharmonic synchronizers

exhibit what could be termed impaired auditory entrainment.

Assuming the hypothesis that the speech motor cortex acts

as an oscillator (Assaneo and Poeppel, 2018), one could expect

it to demonstrate subharmonic synchronization as well. Cross-

frequency coupling in subharmonic synchronization can be

described and assessed by the n:m PLV (Vasudeva et al., 2022,

cf. Supplementary Table S2). In the task context, this is evident

in participants synchronizing to only every m-th syllable because

the speech motor cortex might n:m phase-lock to the input from

the auditory cortex. The existence of subharmonic synchronizers

therefore provides support for modeling the speech motor cortex

as an oscillator.

Leveraging the PLV in this task also questions the simplistic

dichotomous classification into low- and high-synchronizers

because not only can the mere reliance on this metric hide

individual synchronization dynamics, but also both harmonic (1:1)

and subharmonic (1:m) syllable synchronization can unnoticeably

lead to high PLVs. Is “high synchronization” defined by the ability

to consistently produce each syllable in sync (1:1), or rather

by the general capacity of the speech motor cortex to entrain

to the input from the auditory cortex, including at harmonic

(1:1) and subharmonic (1:m) ratios? To further test subharmonic

synchronization and the hypothesis that the speech motor cortex

acts as an oscillator, future research could perform the task

with the instruction to 1:m synchronize to the external auditory

stimulus, assessing synchronization with the n:m PLV. Since the

subharmonic rates correspond roughly to suprasegmental features

in speech, their revelation in this study supports the view that

the sole focus on syllables and the theta frequency range in

auditory-motor synchronization (tasks) might be too narrow,

neglecting both higher-order linguistic structures and hierarchical

temporal processing.
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