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Background: Abnormal regulation of food intake in overweight/obese type 
2 diabetes mellitus (T2DM) patients is an important cause of energy intake 
imbalance, and studies have demonstrated that the “gut-brain axis” is involved in 
a wide range of metabolic regulation through neural and endocrine processes, 
which has become a key breakthrough in revealing the abnormalities of food 
intake behaviors in T2DM patients.

Objective: Exploring the mechanism of action of abnormal regulation of 
ingestive desire in overweight/obese T2DM patients by integrating multimodal 
MRI techniques with microbiological analysis based on the gut-brain axis.

Methods: Thirty-one patients with overweight/obese type 2 diabetes mellitus 
(Group A), 17 patients with simple obesity with abnormal glucose metabolism 
(Group B), and 14 patients with simple obesity with normal glucose metabolism 
(Group C) were recruited, and clinical data, MRI, and stool specimens were 
collected to analyze the correlation between the imaging indicators and the 
intestinal flora, and clinical data.

Results: Compared with Group C, the abundance of Prevotella and 
Bifidobacterium in Group A and Group B was significantly reduced, while the 
abundance of Bacteroides, Fusobacterium, and Phascolarctobacterium was 
significantly increased. Meanwhile, in Group A and Group B, and Bifidobacterium 
were negatively correlated with HbA1c, thirst score, and FC values of the left 
supraoccipital gyrus and bilateral thalamus in the population with abnormal 
glucose metabolism; Bacteroides were negatively correlated with ALFF values 
of the right inferior frontal gyrus capitellum, and positively correlated with FC 
values of the left supraoccipital gyrus and bilateral thalamus, and so on.

Conclusion: Abnormal desire to ingest is the result of functional changes in 
brain regions, dysregulation of flora metabolism and neuroimmune interactions, 
providing a theoretical basis for clinical diagnosis and treatment targeting the 
gut-brain axis.
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1 Introduction

In recent years, with the rapid development and advancement of 
neuroimaging technology, which provides brand new perspectives for 
in-depth understanding of the neural mechanisms of ingestive 
behaviors, multimodal magnetic resonance imaging (MRI), including 
structural magnetic resonance imaging (sMRI), resting-state 
functional magnetic resonance imaging (rs-fMRI), and diffusion 
tensor imaging (DTI), has provided a powerful tool to study the 
neural mechanisms of the gut-brain axis. SMRI can reveal changes in 
brain structure, such as changes in gray matter volume and cortical 
surface area; DTI can assess the microstructural features of white 
matter fibers; and rs-fMRI can detect abnormalities in functional 
brain connectivity. The combined application of these techniques can 
help to comprehensively analyze the brain structural and functional 
changes in overweight/obese T2DM patients and the relationship with 
the desire to ingest. Previous studies have revealed that the regulation 
of the desire to eat involves complex brain network interactions, 
including key brain regions in the hypothalamus (energy homeostasis 
regulation), striatum (reward processing), and insula (endosensory 
processing). In healthy individuals, food cues activate the reward 
system and trigger feeding motivation, whereas obese individuals 
often show high responsiveness of reward circuits and inefficiency of 
inhibitory networks, resulting in a “tendency to overeat” (Brüning and 
Fenselau, 2023). However, it is unclear whether the mechanisms 
regulating food intake in overweight/obese T2DM patients differ from 
those in obese individuals. Diabetes-specific metabolic disturbances 
(e.g., chronic hyperglycemia, insulin resistance) may affect the 
function of the central nervous system through the blood–brain 
barrier, further altering the activity patterns of feeding-related brain 
regions. For example, insulin not only regulates blood glucose in the 
periphery, but also acts on hypothalamic neurons to suppress appetite, 
whereas decreased brain insulin sensitivity in patients with T2DM 
may diminish this regulatory role and exacerbate uncontrolled 
ingestion (Abel et al., 2024).

Gut microbiota, as the “second genome,” is deeply involved in the 
pathological processes of disorders of glucolipid metabolism through 
metabolites, immune regulation and neural signaling pathways 
(Sender et al., 2016). It has been found that the gut flora metabolite 
pantothenate inhibits glucose preference through activation of the 
GLP-1/FGF21 signaling axis, revealing the central role of gut-liver-
brain in metabolic diseases (Zhang et al., 2025). Gut microbes also 
influence appetite regulation centers in the brain by producing 
metabolites (e.g., short-chain fatty acids, bile acids) and modulating 
the secretion of gut hormones (e.g., gastric hunger hormone, GLP-1) 
(Buhmann et al., 2014). Meanwhile, the vagus nerve, an important 
conduction pathway of the gut-brain axis, has been found to regulate 
intestinal absorptive functions (e.g., fat metabolism) in direct 
association with CNS activity, further supporting the multidimensional 
influence of the brain and gut in the regulation of ingestion (Lyu 
et al., 2024).

The gut microbiota plays a central role in the gut-brain axis, and 
in recent years, microbiological studies have revealed complex 
interactions between gut microbes and host metabolism, immunity, 
and neural function. For example, specific probiotic interventions can 
improve the network of neuronal-glial cell interactions in the brain by 
modulating intestinal inflammation, metabolite secretion, or vagal 
signaling, which in turn affects ingestive behavior (Buhmann et al., 

2014). In addition, the composition of the gut microbiota is closely 
related to the metabolic profile of obese and T2DM patients, revealing 
that microbiological studies may provide new biomarkers and targets 
for intervention in the diagnosis and treatment of the disease.

However, existing studies have mostly focused on single 
mechanisms (e.g., microbiome or neuroimaging) and lacked the joint 
analysis of multimodal neural characterization of the desire to eat and 
gut microbiome in overweight/obese T2DM patients. In addition, 
although techniques such as fMRI have been initially applied to the 
study of neurological function in diabetic encephalopathy, their 
precise characterization of ingestion-related brain regions (e.g., reward 
system, hypothalamus, and insular cortex) is still deficient. Therefore, 
in this study, by integrating multimodal MRI techniques (e.g., 
rs-fMRI, DTI, etc.) to characterize the brain structure and function of 
overweight/obese T2DM patients, and combining with 
microbiological analyses to deeply explore the role of the gut-brain 
axis in the regulation of ingestive desire, which can help to further 
understand the pathogenesis of obesity and T2DM, and may also 
provide the development of a novel treatment strategy based on the 
gut-brain axis. It may also provide a theoretical basis for 
the development of novel therapeutic strategies based on the 
gut-brain axis.

2 Materials and methods

2.1 Participants

This study was a cross-sectional design with three study groups: 
overweight/obese T2DM patients group (Group A), simple obesity 
with abnormal glucose metabolism patients group (Group B), and 
simple obesity with normal glucose metabolism group (Group C), 
and the three groups of subjects were matched in terms of age, 
gender, and education level. Thirty-eight patients with overweight/
obese type 2 diabetes mellitus, 22 patients with simple obesity with 
abnormal glucose metabolism, and 22 patients with simple obesity 
with normal glucose metabolism who attended the outpatient clinic 
of the Department of Endocrinology of Zengcheng Branch of the 
Southern Medical University during the period of September 2023 
to September 2024 were recruited, and 19 patients with excessive 
head movement, artifacts and incomplete data in the images, and 1 
patient with unsatisfactory quality test of the fecal sample were 
excluded. Finally, 31 patients with overweight/obese type 2 diabetes 
mellitus (Group A), 17 patients with simple obesity with abnormal 
glucose metabolism (Group B), and 14 patients with simple obesity 
with normal glucose metabolism (Group C) were included in this 
study. All participants participated in this study after having 
sufficient judgment, understanding informed consent and signing 
a written informed consent form, and all studies were conducted in 
accordance with relevant guidelines and regulations.

Inclusion criteria for the overweight/obese T2DM group (Group 
A): (1) age 18–65 years; (2) patients with type 2 diabetes mellitus 
diagnosed by endocrinologists according to the WHO Diagnostic and 
Classification Criteria for Diabetes Mellitus (1999), which are as follows: 
a. diabetic symptoms (polydipsia, polyuria, and abnormal weight loss), 
and random (at any time after a meal) plasma glucose ≥11.1 mmol/L 
(200 mg/dL); b. or fasting (fasting for at least 8 h) plasma glucose ≥ 
7.0 mmol/L (126 mg/dL); c. or 2h OGTT plasma glucose ≥ 
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11.1 mmol/L (200 mg/dL); (3) receiving conventional hypoglycemic 
medications during the illness; (3) right-handed; and (4) signing an 
informed consent form. Inclusion criteria for the simple obesity with 
abnormal glucose metabolism group (Group B): (1) age 18–65 years 
old; (2) 6.1 mmol/L ≤ FPG (fasting glucose) < 7.0 mmol/L, and/or 
7.8 mmol/L ≤ 2 h OGTT ≤ 11.1 mmol/L; (3) subjects were 
dextrorotatory; and (4) signing of informed consent. Inclusion criteria 
for the group with normal glucose metabolism in simple obesity (Group 
C): (1) aged 18–65 years; (2) fasting blood glucose <6.1 mmol/L and 2 h 
OGTT <7.8 mmol/L; (3) not meeting the WHO diagnostic criteria for 
diabetes mellitus; (4) no history of taking any hypoglycemia-related 
medication, no history of psychiatric disorders, and no history of drug 
or alcohol abuse; (5) signing an informed consent form. Exclusion 
criteria for the three groups: (1) with contraindications to MRI 
scanning; (2) patients with secondary obesity such as hypothyroidism, 
Cushing’s syndrome, etc.; long-term use of medications affecting body 
weight; (3) combination of serious organic diseases such as heart, brain, 
liver, kidney, etc.; (4) combination of heavy mental disorders such as 
schizophrenia. (5) Taking antidepressants or any drugs that affect the 
functional activity of the brain.

2.2 Clinical data

Demographic information: diagnosis was determined by cross-
consultation between two or more senior endocrinologists (associate 
physicians and above). We  collected basic information about all 
participants, including name, age, sex, educational background, 
current medical history, family history, disease duration, and key data 
such as waist circumference, hip circumference, and BMI. A self-
administered general data and clinical characteristics collection form 
was used.

Biochemical data: Fasting blood glucose, glycosylated hemoglobin, 
liver function, renal function, and four items of blood lipids were 
collected from the medical record system of Zengcheng Branch of 
Nanfang Hospital for all subjects, and all blood tests were done in the 
laboratory of the Department of Laboratory Medicine of Zengcheng 
Branch of Nanfang Hospital.

100 mm Appetite Visual Analog Scale (VAS) (Flint et al., 2000; 
Gibbons et al., 2019; Gonzalez-Izundegui et al., 2021; Raben et al., 
1995). A visual analog rating scale was designed to include the 
assessment of five dimensions: appetite, hunger perception, satiety, 
satisfaction, and thirst. Each question item was equipped with a 
10-cm-long line segment underneath, and subjects were required to 
mark a vertical line on the segment to reflect the degree of their actual 
feelings in the current moment.

Dutch Eating Behavior Questionnaire (DEBQ) (Cebolla et al., 
2014; Kantonen et al., 2021; Malesza and Kaczmarek, 2021; Van Strien 
et al., 1986; van Strien et al., 2009; van Strien et al., 2012) assesses the 
type of eating behavior of the patient, classified as emotional eating, 
external eating and restrictive eating, and is used to measure different 
behavioral characteristics. The mean score of the restrictive eating 
dimension was named “restrictive score,” while the mean scores of the 
emotional eating dimension and external eating dimension were 
collectively called “feeding score.”

Control of Eating Questionnaire (COEQ) (Dalton et al., 2015; Hill 
et al., 1991). The COEQ consists of 21 items divided into 6 sections, 
which subjects are asked to complete based on how they felt during 

the past 7 days. A 100 mm visual analog rating scale (VAS) was used 
to assess the 20 items. The above questionnaires were completed by 
the same clinician.

2.3 MRI data acquisition

MRI scans of all subjects in this study were done in the imaging 
department of Southern Hospital Zengcheng Branch. MRI 
examinations were performed on all subjects, prior to which the MRI 
equipment was calibrated for data stability. During the scanning 
process, the subjects were placed supine on the examination bed, and 
the head position was stabilized by using head restraint straps and 
foam pads to minimize the interference of head movements on the 
MRI signal acquisition. Prior to the start of the examination, subjects 
were instructed to keep their eyes closed and relaxed throughout the 
examination, to avoid falling asleep, to maintain consciousness, and 
to minimize unnecessary mental activity. The scanning equipment 
used was a GE 3.0 T MRI scanner (SIGNA Architect, GE Medical 
System, the United States) with a 48-channel standard head coil with 
the following parameters.

The structural information of 3D-T1-weighted images 
(3D-T1WI) was acquired using a brain volume scanning 
sequence, which was realized by a 3D magnetization-prepared 
rapid gradient echo sequence (MP-RAGE) with the following 
parameters: Flip Angle (FA) = 15°, Inversion Time 
(TI) = 1,000 ms, Slice Thickness (SL) = 1 mm, Space Between 
Slice = 1 mm, Repetition Time (TR) = 2,338.3 ms, Echo Time 
(TE) = 3.112 ms, Number of Slices = 392, FOV = 256 mm 
× 256 mm, Matrix = 5.112 ms, FOV = 256 mm × 256 mm. 
256 mm, matrix = 512 × 512, bandwidth (Bandwidth) = 122 Hz/
Px, and voxel size of 0.5 mm × 0.5 mm × 0.5 mm.

The BOLD imaging technique used the method of Spin Echo-
Echo Plane Imaging (SE-EPI) in a spin-echo sequence with TR/
TE = 2000/30 ms, FA = 90°, layer thickness = 3 mm, layer 
spacing = 4 mm, space between slice = 1 mm, FOV = 220 × 220 mm, 
matrix = 64 × 64, 32-layer axial image covering the whole brain range, 
180 volumes of data were acquired continuously by means of 
axial scanning.

DTI sequence: TR/TE = 10,000/70 ms, FA = 90°, 
FOV = 256 × 256 mm, matrix = 256 × 256, 1 acquisition of the signal, 
layer thickness = 2 mm, number of layers = 70, no interval acquisition, 
and incorporating parallel acquisition techniques to reduce image 
deformation, a diffusion-sensitive gradient (b = 1,000s/mm2) was 
applied in 64 non-collinear directions for Data Acquisition.

2.4 MRI data analysis

For the preprocessing of 3D-T1-weighted imaging 
(3D-T1WI) structural data, we used the Freesurfer image analysis 
software platform,1 which is able to achieve cortical and 
subcortical nuclei precise segmentation of cortex and subcortical 
nuclei and extraction of relevant quantitative parameters. The 

1 https://surfer.nmr.mgh.harvard.edu/fswiki/DownloadAndInstall

https://doi.org/10.3389/fnins.2025.1612722
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://surfer.nmr.mgh.harvard.edu/fswiki/DownloadAndInstall


Gao et al. 10.3389/fnins.2025.1612722

Frontiers in Neuroscience 04 frontiersin.org

preprocessing process started with the conversion of all raw high-
resolution 3D-T1WI data from dcm format to nii format using 
the dcm2nii tool.2 Subsequently, these “nii” format data were 
imported into a Linux system for further processing via 
Freesurfer software. In this process, the data were converted to 
mgh format and accompanied by the generation of 8 key folders 
including “label,” “mri,” “stats,” etc. The default script of 
Freesurfer was used to convert the data from “dcm” to “nii” 
format. Using Freesurfer’s default script “recon-all,” we performed 
cortical segmentation and specific computation of 
brain parameters.

Preprocessing of BOLD-fMRI data was achieved through the 
DPARSF component of the DPABI toolbox3 and included conversion 
from the data format, removal of the first 10 unstable time points, 
temporal layer correction, cephalomotion correction, cranial 
stripping, spatial normalization based on the DARTEL algorithm, 
linear drift removal, regression covariate variables (including 
Friston24 head movement parameters, white matter signal, and 
cerebrospinal fluid signal). In addition, subjects with excessive head 
movements were excluded (subjects with head movements greater 
than 3 mm or 3° in any frame), and at a later stage of the preprocessing 
process, filtering was taken to limit the frequency range of the analysis, 
followed by smoothing (Gaussian kernel = 4 × 4 × 4 mm3) to reduce 
noise and improve spatial continuity of the data. The pre-processed 
BOLD-fMRI data were imported into DPARSF of the DPABI software 
toolbox using age and gender as covariates, and the resting-state 
functional MRI metrics ALFF and ReHo were calculated for each 
subject. According to the previous literature, the thalamus, frontal 
lobe, and orbital frontal cortex and the clusters of resting-state 
functional metrics that were altered in the present study were selected 
as the seed points (Cooper et al., 2017; Reppucci and Petrovich, 2016; 
Xu et al., 2020; Zhang, 2020), and the data were analyzed via the 
Marsbar toolbox4 to produce the ROIs of the regions of interest, and 
then the FC maps between the ROIs and the whole brain voxels were 
calculated by the DPARSF software of the DPABI toolbox. The 
correlation coefficient r was obtained by calculating the average time 
series of each region of interest (ROI) and correlating it with the time 
series of other voxels in the whole brain of the subjects, and in order 
to improve the normality analysis of the data, the correlation 
coefficients were transformed from Fisher’s to z to obtain the z-score 
matrix, and the z-score values were used in the next step of 
statistical analysis.

Diffusion data and white matter fiber bundle imaging were 
processed according to a standard procedure using DSI studio 
software.5 Regions with significant BOLD-fMRI differences were 
selected as regions of interest to explore their structural 
connectivity. All ROIs were expanded by a voxel into the white 
matter so that they were in contact with the fibers, and metrics 
such as mean fractional anisotropy (FA), mean diffusion 
coefficient value (MD), and fiber length were extracted from all 
subject fibers by deterministic fiber tracking of fiber bundles 
from each pair of symmetric ROIs.

2 https://www.nitrc.org/projects/dcm2nii/

3 https://rfmri.org/DPABI

4 https://marsbar-toolbox.github.io/

5 http://dsi-studio.labsolver.org

2.5 Intestinal flora data processing

Fecal samples were collected from all subjects on the day of 
symptom assessment, and subjects were instructed to take care to lay 
down the padded paper first when sampling and not to introduce 
other stray bacterial infections in the environment, to use a special 
3 mL fecal specimen collection and preservation tube to take the 
mid-portion of feces (~500 mg), and to minimize the fecal samples’ 
exposure to the air, and to submerge the collected samples in the 
resolving preservation solution, and to gently invert the preservation 
tube for 10 times, and to sufficiently The samples were mixed well, 
labeled with sample information, and sent to Guangzhou Kidio 
Technology Service Co., Ltd. and stored at −80°C before analysis for 
further high-throughput 16S ribosomal DNA gene sequencing.

2.6 Statistical analysis

2.6.1 Clinical data
Demographic and clinical data were analyzed using SPSS27.0 

software, comparison of gender and type of eating behavior among the 
three groups was done using chi-square test, p < 0.05 indicated 
significant difference, demographic information, biochemical 
indicators and scale scores were analyzed using one-way ANOVA, 
ANOVA results were varied, post hoc test two-by-two comparisons 
were done using Bonferroni, p < 0.05 indicated a statistical difference.

2.6.2 MRI data
For gray matter morphology data, we  implemented one-way 

ANOVA between the three groups, and if the ANOVA results showed 
significant differences, two-by-two comparisons were performed 
using Bonferroni post-hoc test, with p < 0.05 indicating statistical 
differences. fMRI data were analyzed with DPABI, and comparisons 
between the three groups were performed using one-way ANOVA, 
with age and gender as covariates, and ANOVA Differences in results 
were compared two by two using Bonferroni post hoc test, with 
p < 0.05 indicating statistical differences, and Gaussian Random Field 
(GRF) multiple comparisons were corrected to correct for single voxel 
p < 0.001, and regions with cluster size p < 0.05 were considered to 
be  statistically different brain regions, with two-tailed correction. 
Deterministic fiber tracking was used to extract white matter DTI 
eigenvalues, and the data were analyzed by one-way ANOVA, with 
differences in ANOVA results, and two-by-two comparisons using 
Bonferroni post-hoc test, with p < 0.05 indicating a 
statistical difference.

2.6.3 Intestinal flora data
The raw sequencing data were quality filtered using FASTP to 

obtain clean reads, which were subsequently spliced using FLASH 
(minimum overlap length 12 bp, maximum mismatch rate ≤2%). After 
secondary filtering to remove low-quality sequences, denoising 
analysis was performed using the DADA2 plug-in for QIIME2: a 
sample-specific error model was constructed by machine learning to 
correct sequencing errors and generate amplicon sequence variants 
(ASVs), while chimeras were removed using the UCHIME algorithm. 
Species annotation was accomplished by comparing the SILVA 
database with a plain Bayesian approach (confidence threshold 0.8–1) 
for RDP classifiers. Statistical analyses were performed using the Vegan 
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package for the Kruskal-Wallis H-test and Tukey’s HSD test, combined 
with LEfSe to screen for biomarkers. Circos was utilized to map species 
abundance rings. The whole process integrated de-redundancy, error 
correction, chimera filtering and standardized statistical methods to 
ensure data reliability and analytical reproducibility.

Finally, Spearman’s correlation analysis was used to correlate the 
associations between gray matter morphology data, fMRI indices, DTI 
eigenvalues, intestinal flora and clinical symptoms.

3 Results

3.1 Comparison of clinical data

This study included 31 patients with overweight/obese T2DM 
mellitus (Group A), 17 patients with simple obesity with abnormal 
glucose metabolism (Group B), and 14 patients with normal glucose 
metabolism in simple obesity (Group C), totaling 62 subjects.

The statistics of the clinical data of the three groups of subjects are 
shown in Table 1. In terms of demographic data, the proportion of 
males in Group A was significantly higher than that in Groups B and 
C, and the age was higher than that in Group B. The BMI of Group A 
was lower than that of Group C. The waist-to-hip ratio of Group A was 
higher than that of Groups B and C. In terms of biochemical indexes, 
the FPG, HbA1c, 2 h-PG, and HOMA-IR of Group A were higher 
than those of Groups B and C, while the HOMA-β was lower than 
those of Groups B and C. Moreover, the appetite score of Group A was 
higher than that of Group C. All of the above were statistically different 
(p < 0.05), while there was no significant difference in the type of 
eating behavior among the three groups.

3.2 Comparison of magnetic resonance 
imaging data

3.2.1 Morphological indicators of gray matter
Brain regions that differed in all three groups in terms of gray 

matter morphometric indices are shown in Figure 1. Analysis of gray 

matter morphometric indices of structural images revealed that the 
cortical areas of the left paracentral lobule, the left superior frontal 
gyrus, the right lateral occipital lobe, the right paracentral lobule, and 
the right superior temporal gyrus were significantly greater in group 
A compared with groups B and C. The results were corrected for 
Bonferroni (p < 0.05).

3.2.2 Resting-state functional magnetic 
resonance metrics

Compared with Groups B and C, Group A had decreased 
ALFF in localized clumps in the cortex of the right lobule IX of 
cerebellar hemisphere, right crus I of cerebellar hemisphere, and 
right inferior frontal gyrus-opercular part. However, Group A 
had higher ALFF in localized masses in the right precentral gyrus 
cortex than Groups B and C. Group B had increased ALFF 
in localized masses in the right lobule IX of cerebellar hemisphere, 
right crus I of cerebellar hemisphere, right inferior frontal gyrus-
opercular part and right precentral gyrus, compared to Group 
C. See Figure 2 for details (p < 0.05, GRF corrected).

3.2.3 Functional brain connectivity
The ROI of the region of interest and the functional 

connectivity strength of the localized mass in the left middle 
occipital gyrus were significantly altered among the three groups, 
as follows: (1) compared with group B, the functional connectivity 
strength of the left middle occipital gyrus with bilateral thalamus, 
the nucleus pulposus, the nucleus accumbens, and the amygdala 
was enhanced in group A. (2) compared with group C, the 
functional connectivity strength of the left middle occipital gyrus 
with bilateral caudate nucleus was enhanced in group A. The 
above are all statistically different (p < 0.05, GRF corrected). See 
Figures 3, 4 for details.

3.2.4 Diffusion tensor imaging metrics
According to the results of significant differences in resting-

state functional indexes of the three groups, the bilateral middle 
occipital gyrus, thalamus, nucleus pulposus, nucleus accumbens, 
amygdala, and caudate nucleus were selected as the ROIs of regions 

TABLE 1 Statistical table of clinical data of the three groups.

Measures A (n = 31) B (n = 17) C (n = 14) F/ꭓ2 P

Sex Male Male 22 (71.0%) 9 (52.9%) 3 (21.4%) 9.591 0.008*#

Female 9 (29.0%) 8 (47.1%) 11 (78.6%)

Age 38.94 (8.52) 32.18 (7.72) 34.71 (7.52) 10.712 0.022*

BMI (kg/m2) 29.21 (3.34) 28.81 (7.88) 33.63 (5.78) 43.825 0.028#

WHR 0.97 (0.06) 0.89 (0.06) 0.91 (0.10) 43.730 0.001*#

FPG (mmol/L) 8.65 (3.17) 5.33 (0.89) 5.33 (0.50) 16.086 <0.001*#

HbA1c (%) 9.44 (2.88) 6.32 (1.32) 5.90 (0.33) 22.737 <0.001*#

2 h-PG (mmol/L) 12.65 (4.12) 8.99 (2.40) 8.14 (1.89) 12.794 <0.001*#

HOMA-IR 9.90 (5.34) 6.32 (3.29) 5.15 (1.86) 9.478 <0.001*#

HOMA-β 121.78 (75.18) 305.85 (157.74) 261.59 (140.31) 14.429 <0.001*#

Appetite 3.56(2.97) 3.62 (2.60) 1.40 (1.98) 3.577 0.034#

Overweight/obese T2DM patients group (Group A), simple obesity with abnormal glucose metabolism patients group (Group B), and simple obesity with normal glucose metabolism group 
(Group C). Only statistically significant indicators are listed; sex is shown as the number (percentage in the group), and the rest of the data are shown as mean (standard deviation); “*” 
indicates the comparison between A group and B group (p < 0.05); “#” indicates the comparison between A group and C group (p < 0.05).
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FIGURE 1

(A–E) show, respectively, the area comparison of the cortex of the left paracentral, left superior frontal gyrus, right lateral occipital lobe, right 
paracentral and right superior temporal gyrus in the three groups.

FIGURE 2

Cluster with differences in amplitude of low-frequency fluctuation (ALFF) among the three groups.
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FIGURE 3

(A) shows the brain regions with differences in FC between A group and B group, and (B) shows the brain regions with differences in FC between A 
group and C group (p < 0.05, GRF corrected); warm color indicates that the strength of functional connection is increased, and cold color indicates 
that the strength of functional connection is reduced.
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of interest, and the deterministic fiber tracking was performed in 
DSI studio software to obtain the FA value, MD value, AD value, 
and RD value of each ROI, and the three groups of DTI indexes 
were subjected to a one-factor ANOVA analysis using the LSD Post 
hoc test was used to compare two by two (p < 0.05), see Table 2 for 
details, the results were as follows: compared with groups B and C, 
the AD value of the shell nucleus of the right soybean nucleus in 
group A was decreased; compared with group C, the average length 
of the white matter fiber bundles, the GFA value, and the AD value 
of the pale globe of the right soybean nucleus in group A were 

decreased; compared with group C, the GFA value of the right 
soybean nucleus of the pale globe in group B was increased, and all 
of the above were statistically different (p < 0.05).

3.3 Comparison of intestinal flora

3.3.1 Alpha diversity analysis
The results of this study found that compared to groups B and C, 

the Chao1, ACE, Sob, and PD-tree indices in group A were decreased 

FIGURE 4

BrainNet software visualization of resting-state functional connectivity strength between ROIs in the region of interest and ROI nodes with differences 
in FC between the three groups; gray indicates ROI nodes with differences in FC, red indicates ROI nodes in the region of interest.

TABLE 2 Comparison of DTI indexes of white matter fiber tracts in three groups.

Measures A (n = 31) B (n = 17) C (n = 14) P

Mean length (mm) rPAL 41 (3) 45 (5) 43 (7) 0.016*

GFA rPAL 0.081 (0.004) 0.084 (0.003) 0.081 (0.005) 0.034*^

AD rPUT 1.11 (0.02) 1.12 (0.02) 1.12 (0.03) 0.028*#

(10−3 mm2/s) rPAL 1.13 (0.04) 1.15 (0.03) 1.14 (0.03) 0.040*

Overweight/obese T2DM patients group (Group A), simple obesity with abnormal glucose metabolism patients group (Group B), and simple obesity with normal glucose metabolism group 
(Group C). the data is displayed as the mean (standard deviation), “*” indicates the comparison between A group and B group (p < 0.05); “#” indicates the comparison between A group and C 
group (p < 0.05); “^” indicates the B group is p < 0.05 compared with the C group.
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and significantly different (p < 0.05), and the abundance of intestinal 
flora in overweight/obese T2DM (group A) population was 
significantly decreased compared to that of the purely obese 
population. See Figure 5 for details.

3.3.2 Beta diversity analysis
Based on ANOSIM analysis, the β diversity indices of the samples 

at Bray Curtis, Jaccard and Unweighted Unifrac were significantly 
different (p < 0.05) among the three groups, as shown in Figures 6, 7, 
indicating that in comparison with the purely obese population with 
abnormal glucose metabolism and the purely obese population with 
normal glucose metabolism, there was a significant difference 
(p < 0.05) in the microbial species of the overweight/obese T2DM 
population in terms of β diversity was significantly different (p < 0.05).

3.3.3 Analysis of differential species
LEfSE analysis of the fecal microbial community composition of 

the three groups was performed, and Figures  8, 9 shows the 
characteristic bacteria based on the genus level log LDA threshold of 
4. Sixteen species were enriched in group A, mainly enriched by 
Bacteroides, Lachnospira, Fusobacterium, etc.; four species were 
enriched in group B, including Firmicutes, Faecalibacterium, etc.; 11 
species were enriched in Group C, including Prevotella, 
Bacteroides, etc.

The results showed that the relative abundance of Prevotella and 
Bifidobacterium, which are the characteristic bacteria of group C, 
gradually increased among groups A, B and C. The relative abundance 
of the characteristic bacteria of group A, such as Bacteroides, 
Fusobacterium and Phascolarctobacterium, gradually decreased among 

FIGURE 5

Box diagram of α diversity index among three groups The number of “*” indicates the degree of difference between the two groups, and “ns” indicates 
that the difference between the two groups is not statistically significant (p > 0.05).
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groups A, B and C. All of the above were significantly different 
(p < 0.05), see Figure 10.

3.4 Correlation analysis

In groups A and B, the imaging characteristic indexes and clinical 
data with significant differences among the three groups, and the 
abundance of intestinal flora with significant differences were selected 
to do correlation analysis, and the results were shown in Figure 10.

Prevotella was positively correlated with HDL-C, negatively 
correlated with ALT, AST, and positively correlated with salty food 
preference and fruit preference scores; Bifidobacterium was negatively 
correlated with HbA1c, FC values of the left occipital gyrus-bilateral 
thalamus, the anterior abdominal nucleus and the posterior lateral 
aspect, and thirst scores, and positively correlated with ALT, restriction 
score, and feeding score; Bacteroides was negatively correlated with 
HDL-C, ALFF values in the right inferior frontal gyrus capitulum, and 
positively correlated with ALP, ALFF values in the right inferior 
frontal gyrus-opercular part, and positively correlated with ALP, ALFF 
values in the right precentral gyrus, FC values of the left occipital 
gyrus-bilateral thalamus, the anterior abdominal nucleus and the 

posterior lateral aspect; and Phascolarctobacterium was positively 
correlated with appetite and hunger scores and negatively correlated 
with fruit preference scores (see Figure 11).

4 Discussion

The microbiota-gut-brain axis (MGBA) is a complex neural-
humoral-immune network system that encompasses the central 
nervous system, the autonomic nervous system, the neuroendocrine 
pathway, and the hypothalamus-pituitary–adrenal axis, which realizes 
bidirectional information communication between the gut and the 
brain (Zyoud et  al., 2019). Studies have revealed that in the 
pathogenesis of patients with type 2 diabetes mellitus (T2DM), MGBA 
acts mainly through three core pathways: the neural pathway, the 
neuro-endocrine pathway, and the neuro-immune pathway (Westfall 
et al., 2017).

In this study, overweight/obese T2DM patients were found to 
have increased cortical surface area in brain regions such as bilateral 
central lobules and left superior frontal gyrus, suggesting that these 
brain regions associated with somatic movement regulation and 
cognitive execution may respond to the effects of long-term metabolic 

FIGURE 6

Difference analysis of β diversity index of intestinal flora among three groups (based on NMDS).
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disorders on neuroplasticity through compensatory structural 
expansion (Bernardes et al., 2018). Resting-state functional magnetic 
resonance further revealed abnormal ALFF values in the cerebellar 
hemispheres and the right precentral gyrus, suggesting that an 
imbalance in the functional activity of the cerebellar-cortical loop may 
be impairing fine regulation of feeding behavior (Xia et al., 2013). The 
right inferior frontal gyrus, as a key region of prefrontal cortex, is 
involved in impulse control and executive functions, in which 
dopamine and GABAergic systems are sensitive to insulin, and insulin 
resistance reduces GABA synthesis and decreases inhibitory neuronal 
activity, leading to elevated ALFF. The cerebellum is not only a motor 
coordination center, but also participates in metabolic regulation and 
reward processing. Previous studies have shown that chronic 
hyperglycemia leads to cerebellar microangiopathy and blood–brain 
barrier damage, which triggers neuroinflammation. Elevated ALFF 
may be a compensatory response of the cerebellum to try to maintain 
energetic homeostasis by enhancing local neural activity. Studies have 
confirmed that increased expression of inflammatory factors in the 
cerebellum of diabetic mice is associated with neuronal 
hyperexcitability (Shim et  al., 2018). Cerebellar neurons express 
insulin receptors, and insulin signaling is involved in regulating 
synaptic plasticity in Purkinje cells. Insulin resistance can lead to 
impaired glucose uptake in the cerebellum, and neurons require 
enhanced electrical activity to maintain function, as evidenced by 
elevated ALFF. Clinical studies have shown that enhanced cerebellar-
cortical connectivity in T2DM patients correlates with decreased 

executive function. The cerebellum interacts with the gastrointestinal 
through the vagus nerve and is involved in glucose regulation. 
Gastrointestinal dyskinesia in diabetic patients may activate the 
cerebellum through visceral afferent signaling, leading to abnormally 
elevated ALFF (Dai et al., 2024). Other studies have revealed that 
decreased ALFF in the posterior lobe of the cerebellum in patients 
with T2DM is negatively correlated with insulin resistance and 
glycated hemoglobin, suggesting that diminished cerebellar activity 
may reflect impaired metabolic regulation in hyperglycemic states 
(Balsters et al., 2013).

The combination of the two can be speculated that increased 
cortical area may partially counteract the impairment of executive 
function due to metabolic disturbances by enhancing cognitive 
control, but the abnormal ALFF suggests a decrease in the efficiency 
of local neuronal activity, which ultimately leads to a failure of 
behavioral control (Bernardes et al., 2018). Gut flora analysis showed 
reduced abundance of Mycobacterium anisopliae in overweight/
obese T2DM patients, which may weaken the inhibition of impulsive 
feeding by affecting prefrontal executive function (Dong et  al., 
2020). Notably, the left middle occipital gyrus and the thalamus, 
nucleus accumbens, amygdala, and other limbic systems showed 
enhanced FC in overweight/obese T2DM patients compared with 
those in the purely obese population, suggesting that over coupling 
between visual information processing and the reward system may 
drive the reinforcement of “food craving” behaviors (Eren-Yazicioglu 
et al., 2020; Wang et al., 2017), which is consistent with the findings 

FIGURE 7

ANOSIM boxplot based on comparison of three groups of β indicators.
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of previous studies that T2DM patients with reward may be more 
susceptible to food cravings than those in the purely obese 
population. This is consistent with previous studies that enhanced 
functional connectivity of the reward network in T2DM patients 
may reflect increased sensitivity to high-calorie foods (Cazettes 
et al., 2011).

In terms of brain white matter structure, the present study found 
that AD values in the right lenticular nucleus were significantly lower in 
overweight/obese T2DM patients, and correlations existed with the 
feeding score, fruit preference score, and 24-h food intake, which may 
affect the cortico-striatal-thalamic loop to modulate ingestive behaviors. 
Previous researchers have similarly explored this issue in an obese 
group, and they found that fractional anisotropy in hypothalamic and 
hippocampal regions (FA) values correlated with the Shannon index in 
the alpha diversity index. In addition, these studies revealed a correlation 

between FA values in the amygdala and thalamus and the relative 
abundance of actinomycetes (Fernandez-Real et al., 2015).

Based on the results of gut flora analysis, we  found that the 
increased abundance of Prevotella and Bifidobacterium may 
contribute to the conversion of tryptophan into kynurenine more 
often than 5-hydroxytryptophan (5-HT) by modulating the 
tryptophan metabolism pathway, and consequently leading to a 
decreased levels of 5-HT in the CNS, kynurenine can cross the 
blood–brain barrier to inhibit prefrontal cortex (PFC) function and 
impair inhibitory control behaviors (Oroojzadeh et al., 2022; Singh 
et al., 2022). Prevotella possesses the ability to dehydroxylate primary 
bile acids to generate secondary bile acids, such as deoxycholic acid, 
and other products, the latter of which exacerbate insulin resistance 
by inhibiting GLP-1 secretion via the farnesol X receptor (FXR) 
(Kong et al., 2019; Su et al., 2022). Elevation of Bifidobacterium may 

FIGURE 8

Histogram of LDA value distribution in LEfSe analysis of different species among three groups Red, green, and blue colors indicate species enriched in 
groups A, B, and C, respectively; the length of the bar graph represents the magnitude of the effect of the species on the between-group differences, 
and LDA > 2 indicates that the species partitioning between the two groups is statistically different.
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have a dual effect, on the one hand, inhibiting the NF-κB pathway 
and attenuating neuroinflammation through the secretion of 
metabolites such as indole-3-lactic acid, and on the other hand, data 

from animal experiments suggest that Bifidobacterium are able to 
promote the expression of tyrosine hydroxylase, which in turn 
elevates the synthesis of dopamine, which may enhance the rewarding 

FIGURE 9

Evolutionary branching diagram of different species among three groups From inside to outside are phylum, order, order, family, genus and species, 
red, green and blue color indicate different microbial taxa in group A, B and C respectively, yellow color indicates no significant difference between 
groups, and the size of the circle represents the degree of species classification.

FIGURE 10

Biomarker bubble chart of three groups at genus level Indval (indicator value): the ratio of specificity to occupancy, used to identify key species in the 
community; bubble size indicates the indicative size of the species in the grouping, and bubble color indicates the grouping; the vertical axis is the 
species that differ between the three groups.
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effect of ingestion by augmenting dopaminergic signaling in the 
nucleus accumbens (Ji et al., 2025).

Meanwhile, reduced abundance of Bacteroides, Fusobacterium, and 
Phascolarctobacterium may decrease the production of short-chain fatty 
acids (SCFAs), further impairing the inhibitory effects of GLP-1 and PYY 
on hypothalamic feeding centers (Wei et al., 2021). Fusobacterium have 
the ability to ferment dietary fiber to produce propionic acid and butyric 
acid, which activates free fatty acid receptor 3 (FFAR3), which in turn 
stimulates the secretion of GLP-1 from enteroendocrine cells, suppresses 
appetite and enhances insulin sensitivity, and its reduced abundance may 
lead to a decrease in the level of SCFAs, weakening the inhibitory effect 
on the hypothalamic arched nucleus (ARC) of the AgRP/NPY neurons, 
thereby enhancing the desire to ingest (Wei et al., 2021). In addition, the 
reduction of Phascolarctobacterium may affect succinate metabolism, 
leading to mitochondrial dysfunction and increased oxidative stress, 
echoing the functional alterations in the abnormal ALFF region in the 
resting-state functional magnetic resonance index.

Finally, overweight/obese T2DM patients are often accompanied 
by chronic low-grade inflammation, and dysbiosis of the intestinal 
flora can lead to an increase in lipopolysaccharide (LPS), which 
activates peripheral and central immune responses. LPS promotes the 
release of proinflammatory factors through the Toll-like Receptor 4 
(TLR4) signaling pathway, which induces hypothalamic inflammation 
and interferes with leptin signaling (Garg and Mohajeri, 2024). 

Enhanced FC values in the left middle occipital gyrus and amygdala 
isoforms in the present study may reflect the direct action of 
inflammatory factors on the limbic system to enhance emotional 
responses to food cues (Ji et al., 2025).

Based on the above mechanisms, therapeutic strategies can 
be  explored in several directions: (1) dietary intervention and 
prebiotics: supplementation with prebiotics such as oligofructose and 
resistant starch selectively promotes the value-added of Fusobacterium 
and Phascolarctobacterium to increase the production of SCFAs and 
restore the GLP-1/PYY signaling pathway; (2) neuromodulation 
techniques: transcranial magnetic stimulation (TMS) or deep brain 
stimulation (DBS) targets the inhibition of the nucleus accumbens or 
enhance prefrontal cortex activity to balance the reward-inhibitory 
brain network; (3) hypoglycemic drugs and flora synergism: 
metformin in combination with probiotics synergistically improves 
insulin sensitivity and reduces kynurenine production by regulating 
tryptophan metabolism; (4) Personalized flora transplantation: 
targeted flora transplantation protocols are being developed to restore 
intestinal barrier function and metabolic homeostasis in individuals 
who are deficient in Bacteroides and Fusobacterium.

The gut-brain axis integrates energy metabolism and feeding 
behavior through neural, endocrine, and microbial signaling and is an 
important regulatory hub in obesity and diabetes. Although the results 
of this study demonstrated the complexity of the brain-flora association, 

FIGURE 11

Heatmap of the correlation between imaging indices, intestinal flora and clinical data; positive correlation in red, negative correlation in blue; “*” 
indicates p < 0.05.
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there are still some limitations. This study is a cross-sectional design 
and has a small sample size, and the gut-flora-brain functional 
connectivity may change dynamically with the progression of the 
disease, so it is necessary to expand the sample size, and the longitudinal 
study combined with time-series analyses; second, the collection of 
dietary records and scales about the dietary records and scales was 
subjective and insufficiently standardized, which may affect the flora 
and ingestive behavior. In the future, it is necessary to combine macro-
genomics, metabolomics and epigenetics data to deeply analyze the 
spatial and temporal distribution and signaling pathways of the 
gut-brain axis, so as to promote interdisciplinary therapeutic strategies 
for metabolic-neuropsychiatric disorders.

5 Conclusion

In this study, multimodal MRI and intestinal microbiology analysis 
revealed that, compared with the purely obese population, overweight/
obese T2DM patients had significant alterations in brain structure, 
brain functional activity, and cerebral white matter in the prefrontal 
cortex, with enhancement of ALFF in the cerebellar hemispheres and 
right inferior frontal gyrus lid, enhancement of FC in the left middle 
occipital gyrus with the nucleus accumbens, amygdala, and lenticular 
nucleus, and significantly higher AD value of the DTI indicator in the 
lenticular nucleus decreased, and the relative abundance of 
Bifidobacterium and Bacteroides correlated with the indicators of 
altered brain function and appetite scores, which indicated that the 
abnormal desire to ingest in overweight/obese T2DM patients was a 
result of the joint action of functional remodeling of the brain area, 
dysregulation of the metabolism of the bacterial flora, and the 
interaction of the nerves and immunity. Through the integrated 
analysis of multimodal MRI and microbiomics, this study provides a 
theoretical basis for clinical diagnosis and treatment targeting the 
gut-brain axis, and the regulatory mechanisms of the gut-brain axis-
specific network need to be further explored in the future.

Data availability statement

The datasets presented in this article are not readily available 
because patient privacy. Requests to access the datasets should 
be directed to 1207803073@qq.com.

Ethics statement

The studies involving humans were approved by Nanfang Hospital 
of Southern Medical University. The studies were conducted in 

accordance with the local legislation and institutional requirements. 
The participants provided their written informed consent to 
participate in this study. Written informed consent was obtained from 
the individual(s) for the publication of any potentially identifiable 
images or data included in this article.

Author contributions

MG: Writing – review & editing, Visualization, Writing – original 
draft, Software, Formal analysis. LG: Formal analysis, Methodology, 
Writing – original draft, Software. YZ: Writing – review & editing, 
Methodology, Data curation. DL: Methodology, Data curation, Project 
administration, Writing  – review & editing. JW: Software, Project 
administration, Writing – review & editing, Resources. YG: Writing – 
review & editing, Resources, Visualization. ZL: Formal analysis, 
Writing – review & editing, Supervision. JL: Data curation, Supervision, 
Writing – review & editing. CC: Writing – review & editing, Project 
administration, Formal Analysis. GW: Writing – review & editing.

Funding

The author(s) declare that financial support was received for the 
research and/or publication of this article. This research was supported 
by the National Natural Science Foundation of China (82172012).

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Generative AI statement

The authors declare that no Gen AI was used in the creation of 
this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

References
Abel, E. D., Gloyn, A. L., Evans-Molina, C., Joseph, J. J., Misra, S., Pajvani, U. B., et al. 

(2024). Diabetes mellitus-Progress and opportunities in the evolving epidemic. Cell 187, 
3789–3820. doi: 10.1016/j.cell.2024.06.029

Balsters, J. H., Whelan, C. D., Robertson, I. H., and Ramnani, N. (2013). Cerebellum 
and cognition: evidence for the encoding of higher order rules. Cereb. Cortex 23, 
1433–1443. doi: 10.1093/cercor/bhs127

Bernardes, G., Ten Kulve, J. S., Barkhof, F., Diamant, M., Veltman, D. J., Ten 
Kulve, J. S., et al. (2018). Cortical and subcortical gray matter structural alterations 

in normoglycemic obese and type 2 diabetes patients: relationship with adiposity, 
glucose, and insulin. Metab. Brain Dis. 33, 1211–1222. doi: 
10.1007/s11011-018-0223-5

Brüning, J. C., and Fenselau, H. (2023). Integrative neurocircuits that control 
metabolism and food intake. Science 381:eabl7398. doi: 10.1126/science.abl7398

Buhmann, H., le Roux, C. W., and Bueter, M. (2014). The gut-brain axis in 
obesity. Best Pract. Res. Clin. Gastroenterol. 28, 559–571. doi: 
10.1016/j.bpg.2014.07.003

https://doi.org/10.3389/fnins.2025.1612722
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
mailto:1207803073@qq.com
https://doi.org/10.1016/j.cell.2024.06.029
https://doi.org/10.1093/cercor/bhs127
https://doi.org/10.1007/s11011-018-0223-5
https://doi.org/10.1126/science.abl7398
https://doi.org/10.1016/j.bpg.2014.07.003


Gao et al. 10.3389/fnins.2025.1612722

Frontiers in Neuroscience 16 frontiersin.org

Cazettes, F., Cohen, J. I., Yau, P. L., Talbot, H., and Convit, A. (2011). Obesity-mediated 
inflammation may damage the brain circuit that regulates food intake. Brain Res. 1373, 
101–109. doi: 10.1016/j.brainres.2010.12.008

Cebolla, A., Barrada, J. R., van Strien, T., Oliver, E., and Baños, R. (2014). Validation 
of the Dutch eating behavior questionnaire (DEBQ) in a sample of Spanish women. 
Appetite 73, 58–64. doi: 10.1016/j.appet.2013.10.014

Cooper, S., Robison, A. J., and Mazei-Robison, M. S. (2017). Reward circuitry in 
addiction. Neurotherapeutics 14, 687–697. doi: 10.1007/s13311-017-0525-z

Dai, P., Yu, Y., Sun, Q., Yang, Y., Hu, B., Xie, H., et al. (2024). Abnormal changes of 
brain function and structure in patients with T2DM-related cognitive impairment: a 
neuroimaging meta-analysis and an independent validation. Nutr. Diabetes 14:91. doi: 
10.1038/s41387-024-00348-5

Dalton, M., Finlayson, G., Hill, A., and Blundell, J. (2015). Preliminary validation and 
principal components analysis of the control of eating questionnaire (CoEQ) for the 
experience of food craving. Eur. J. Clin. Nutr. 69, 1313–1317. doi: 10.1038/ejcn.2015.57

Dong, T. S., Mayer, E. A., Osadchiy, V., Chang, C., Katzka, W., Lagishetty, V., et al. 
(2020). A distinct brain-gut-microbiome profile exists for females with obesity and food 
addiction. Obesity (Silver Spring) 28, 1477–1486. doi: 10.1002/oby.22870

Eren-Yazicioglu, C. Y., Yigit, A., Dogruoz, R. E., and Yapici-Eser, H. (2020). Can 
GLP-1 be a target for reward system related disorders? A qualitative synthesis and 
systematic review analysis of studies on palatable food, drugs of abuse, and alcohol. 
Front. Behav. Neurosci. 14:614884. doi: 10.3389/fnbeh.2020.614884

Fernandez-Real, J. M., Serino, M., Blasco, G., Puig, J., Daunis-i-Estadella, J., Ricart, W., 
et al. (2015). Gut microbiota interacts with brain microstructure and function. J. Clin. 
Endocrinol. Metab. 100, 4505–4513. doi: 10.1210/jc.2015-3076

Flint, A., Raben, A., Blundell, J. E., and Astrup, A. (2000). Reproducibility, power and 
validity of visual analogue scales in assessment of appetite sensations in single test meal 
studies. Int. J. Obes. Relat. Metab. Disord. 24, 38–48. doi: 10.1038/sj.ijo.0801083

Garg, K., and Mohajeri, M. H. (2024). Potential effects of the most prescribed drugs 
on the microbiota-gut-brain-axis: a review. Brain Res. Bull. 207:110883. doi: 
10.1016/j.brainresbull.2024.110883

Gibbons, C., Hopkins, M., Beaulieu, K., Oustric, P., and Blundell, J. E. (2019). Issues 
in measuring and interpreting human appetite (satiety/satiation) and its contribution to 
obesity. Curr. Obes. Rep. 8, 77–87. doi: 10.1007/s13679-019-00340-6

Gonzalez-Izundegui, D., Campos, A., Calderon, G., Ricardo-Silgado, M. L., 
Cifuentes, L., Decker, P. A., et al. (2021). Association of gastric emptying with 
postprandial appetite and satiety sensations in obesity. Obesity (Silver Spring) 29, 
1497–1507. doi: 10.1002/oby.23204

Hill, A. J., Weaver, C. F., and Blundell, J. E. (1991). Food craving, dietary restraint and 
mood. Appetite 17, 187–197. doi: 10.1016/0195-6663(91)90021-j

Ji, P., Wang, N., Yu, Y., Zhu, J., Zuo, Z., Zhang, B., et al. (2025). Single-cell delineation 
of the microbiota-gut-brain axis: probiotic intervention in Chd8 haploinsufficient mice. 
Cell Genom. 5:100768. doi: 10.1016/j.xgen.2025.100768

Kantonen, T., Karjalainen, T., Pekkarinen, L., Isojärvi, J., Kalliokoski, K., Kaasinen, V., 
et al. (2021). Cerebral μ-opioid and CB(1) receptor systems have distinct roles in human 
feeding behavior. Transl. Psychiatry 11:442. doi: 10.1038/s41398-021-01559-5

Kong, C., Gao, R., Yan, X., Huang, L., and Qin, H. (2019). Probiotics improve gut 
microbiota dysbiosis in obese mice fed a high-fat or high-sucrose diet. Nutrition 60, 
175–184. doi: 10.1016/j.nut.2018.10.002

Lyu, Q., Xue, W., Liu, R., Ma, Q., Kasaragod, V. B., Sun, S., et al. (2024). A brain-to-gut 
signal controls intestinal fat absorption. Nature 634, 936–943. doi: 
10.1038/s41586-024-07929-5

Malesza, M., and Kaczmarek, M. C. (2021). One year reliability of the Dutch eating 
behavior questionnaire: an extension into clinical population. J. Public Health 29:47. doi: 
10.1007/s10389-019-01147-4

Oroojzadeh, P., Bostanabad, S. Y., and Lotfi, H. (2022). Psychobiotics: the influence of 
gut microbiota on the gut-brain Axis in neurological disorders. J. Mol. Neurosci. 72, 
1952–1964. doi: 10.1007/s12031-022-02053-3

Raben, A., Tagliabue, A., and Astrup, A. (1995). The reproducibility of subjective 
appetite scores. Br. J. Nutr. 73, 517–530. doi: 10.1079/bjn19950056

Reppucci, C. J., and Petrovich, G. D. (2016). Organization of connections between the 
amygdala, medial prefrontal cortex, and lateral hypothalamus: a single and double 
retrograde tracing study in rats. Brain Struct. Funct. 221, 2937–2962. doi: 
10.1007/s00429-015-1081-0

Sender, R., Fuchs, S., and Milo, R. (2016). Revised estimates for the number of human 
and Bacteria cells in the body. PLoS Biol. 14:e1002533. doi: 10.1371/journal.pbio.1002533

Shim, H. G., Jang, S. S., Kim, S. H., Hwang, E. M., Min, J. O., Kim, H. Y., et al. 
(2018). TNF-α increases the intrinsic excitability of cerebellar Purkinje cells through 
elevating glutamate release in Bergmann glia. Sci. Rep. 8:11589. doi: 
10.1038/s41598-018-29786-9

Singh, S., Sharma, P., Pal, N., Kumawat, M., Shubham, S., Sarma, D. K., et al. (2022). 
Impact of environmental pollutants on gut microbiome and mental health via the gut-
brain Axis. Microorganism 10:457. doi: 10.3390/microorganisms10071457

Su, L., Hong, Z., Zhou, T., Jian, Y., Xu, M., Zhang, X., et al. (2022). Health 
improvements of type 2 diabetic patients through diet and diet plus fecal microbiota 
transplantation. Sci. Rep. 12:1152. doi: 10.1038/s41598-022-05127-9

Van Strien, T., Frijters, J. E., Bergers, G. P., and Defares, P. B. (1986). The Dutch 
eating behavior questionnaire (DEBQ) for assessment of restrained, emotional, and 
external eating behavior. Int. J. Eat. Disord. 5, 295–315. doi: 
10.1002/1098-108X(198602)5:2<295::AID-EAT2260050209>3.0.CO;2-T

van Strien, T., Herman, C. P., and Verheijden, M. W. (2009). Eating style, overeating, 
and overweight in a representative Dutch sample. Does external eating play a role? 
Appetite 52, 380–387. doi: 10.1016/j.appet.2008.11.010

van Strien, T., Peter Herman, C., and Anschutz, D. (2012). The predictive validity of 
the DEBQ-external eating scale for eating in response to food commercials while 
watching television. Int. J. Eat. Disord. 45, 257–262. doi: 10.1002/eat.20940

Wang, Z. L., Zou, L., Lu, Z. W., Xie, X. Q., Jia, Z. Z., Pan, C. J., et al. (2017). Abnormal 
spontaneous brain activity in type 2 diabetic retinopathy revealed by amplitude of low-
frequency fluctuations: a resting-state fMRI study. Clin. Radiol. 72, 340.e1–340.e7. doi: 
10.1016/j.crad.2016.11.012

Wei, Y., Liang, J., Su, Y., Wang, J., Amakye, W. K., Pan, J., et al. (2021). The associations 
of the gut microbiome composition and short-chain fatty acid concentrations with body 
fat distribution in children. Clin. Nutr. 40, 3379–3390. doi: 10.1016/j.clnu.2020.11.014

Westfall, S., Lomis, N., Kahouli, I., Dia, S. Y., Singh, S. P., and Prakash, S. (2017). 
Microbiome, probiotics and neurodegenerative diseases: deciphering the gut brain axis. 
Cell. Mol. Life Sci. 74, 3769–3787. doi: 10.1007/s00018-017-2550-9

Xia, W., Wang, S., Sun, Z., Bai, F., Zhou, Y., Yang, Y., et al. (2013). Altered baseline 
brain activity in type 2 diabetes: a resting-state fMRI study. Psychoneuroendocrinology 
38, 2493–2501. doi: 10.1016/j.psyneuen.2013.05.012

Xu, L., Nan, J., and Lan, Y. (2020). The nucleus Accumbens: a common target in the 
comorbidity of depression and addiction. Front. Neural. Circuits 14:37. doi: 
10.3389/fncir.2020.00037

Zhang, W. (2020). Neural circuits for reward. Adv. Exp. Med. Biol. 1284, 35–41. doi: 
10.1007/978-981-15-7086-5_4

Zhang, T., Wang, W., Li, J., Ye, X., Wang, Z., Cui, S., et al. (2025). Free fatty acid 
receptor 4 modulates dietary sugar preference via the gut microbiota. Nat. Microbiol. 10, 
348–361. doi: 10.1038/s41564-024-01902-8

Zyoud, S. H., Smale, S., Waring, W. S., Sweileh, W. M., and Al-Jabi, S. W. (2019). Global 
research trends in microbiome-gut-brain axis during 2009-2018: a bibliometric and 
visualized study. BMC Gastroenterol. 19:158. doi: 10.1186/s12876-019-1076-z

https://doi.org/10.3389/fnins.2025.1612722
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://doi.org/10.1016/j.brainres.2010.12.008
https://doi.org/10.1016/j.appet.2013.10.014
https://doi.org/10.1007/s13311-017-0525-z
https://doi.org/10.1038/s41387-024-00348-5
https://doi.org/10.1038/ejcn.2015.57
https://doi.org/10.1002/oby.22870
https://doi.org/10.3389/fnbeh.2020.614884
https://doi.org/10.1210/jc.2015-3076
https://doi.org/10.1038/sj.ijo.0801083
https://doi.org/10.1016/j.brainresbull.2024.110883
https://doi.org/10.1007/s13679-019-00340-6
https://doi.org/10.1002/oby.23204
https://doi.org/10.1016/0195-6663(91)90021-j
https://doi.org/10.1016/j.xgen.2025.100768
https://doi.org/10.1038/s41398-021-01559-5
https://doi.org/10.1016/j.nut.2018.10.002
https://doi.org/10.1038/s41586-024-07929-5
https://doi.org/10.1007/s10389-019-01147-4
https://doi.org/10.1007/s12031-022-02053-3
https://doi.org/10.1079/bjn19950056
https://doi.org/10.1007/s00429-015-1081-0
https://doi.org/10.1371/journal.pbio.1002533
https://doi.org/10.1038/s41598-018-29786-9
https://doi.org/10.3390/microorganisms10071457
https://doi.org/10.1038/s41598-022-05127-9
https://doi.org/10.1002/1098-108X(198602)5:2<295::AID-EAT2260050209>3.0.CO;2-T
https://doi.org/10.1016/j.appet.2008.11.010
https://doi.org/10.1002/eat.20940
https://doi.org/10.1016/j.crad.2016.11.012
https://doi.org/10.1016/j.clnu.2020.11.014
https://doi.org/10.1007/s00018-017-2550-9
https://doi.org/10.1016/j.psyneuen.2013.05.012
https://doi.org/10.3389/fncir.2020.00037
https://doi.org/10.1007/978-981-15-7086-5_4
https://doi.org/10.1038/s41564-024-01902-8
https://doi.org/10.1186/s12876-019-1076-z

	A magnetic resonance imaging and gut flora-based study of intake desire in overweight/obese type 2 diabetes mellitus patients
	1 Introduction
	2 Materials and methods
	2.1 Participants
	2.2 Clinical data
	2.3 MRI data acquisition
	2.4 MRI data analysis
	2.5 Intestinal flora data processing
	2.6 Statistical analysis
	2.6.1 Clinical data
	2.6.2 MRI data
	2.6.3 Intestinal flora data

	3 Results
	3.1 Comparison of clinical data
	3.2 Comparison of magnetic resonance imaging data
	3.2.1 Morphological indicators of gray matter
	3.2.2 Resting-state functional magnetic resonance metrics
	3.2.3 Functional brain connectivity
	3.2.4 Diffusion tensor imaging metrics
	3.3 Comparison of intestinal flora
	3.3.1 Alpha diversity analysis
	3.3.2 Beta diversity analysis
	3.3.3 Analysis of differential species
	3.4 Correlation analysis

	4 Discussion
	5 Conclusion

	References

