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Introduction: This study utilized electroencephalography (EEG) to compare

brain functional and e�ective connectivity patterns in children with reading

di�culties (RD) and math di�culties (MD) during specific tasks. The aim was to

identify neurophysiological distinctions between these two learning disorders,

which often exhibit high comorbidity.

Methods: Data from a publicly available dataset of 28 children (11 RD, 17 MD)

aged 713 years were analyzed. Functional connectivity was quantified using the

weighted Phase Lag Index (wPLI), and e�ective connectivity was assessed with

the Directed Transfer Function (DTF).

Results: Functional connectivity analysis revealed significant group di�erences.

The RD group showed significantly higher beta band synchronization in the right

temporal lobe compared to the MD group. Conversely, the MD group exhibited

significantly greater connectivity in the frontal lobe’s delta band and the parietal

lobe’s theta band. However, no statistically significant di�erences were observed

between the groups regarding e�ective connectivity.

Discussion: These findings highlight specific task-related brain functional

connectivity di�erences between reading and math learning di�culties,

suggesting potential compensatory mechanisms in RD and cognitive control

challenges in MD. The lack of significant e�ective connectivity findings may

be attributed to the small sample size, which is a key limitation of the study.

This research emphasizes the need for larger samples, refined task designs, and

multimodal neuroimaging in future studies.
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1 Introduction

Learning Disorders (LDs) represent a significant challenge in education and critically

impact social equity and population quality. Defined by one or more impairments or

developmental delays in specific academic domains such as reading or mathematics

(Prior, 2022), these disorders affect a substantial portion of the global child population.

Epidemiological data indicate that ∼7% of children worldwide are affected by Reading

Difficulties (RD), while the prevalence of Math Difficulties (MD) ranges from 5% to 8%

(Geary, 2004; Yang et al., 2022). This implies that one in 20 children faces significant

challenges in reading or mathematical abilities. Beyond academic underperformance, these

disorders are closely associated with mental health issues, including anxiety and low

self-esteem (Georgiou and Parrila, 2023; Majid, 2024).
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Notably, RD andMD exhibit a high comorbidity rate, averaging

around 40%, with an average prevalence of 37% for one disorder

when the other is present (Wilson et al., 2015). Due to variations

in diagnostic criteria and task definitions across different regions,

the overall comorbidity rate ranges from 11% to 70% (Moll

et al., 2021). This consistently high comorbidity suggests that

these two cognitive abilities may, at least partially, rely on shared

neural networks (Plomin and Kovas, 2005). Neuroimaging studies

further support this view, demonstrating that while RD and

MD involve functionally specific brain regions, they also share

overlapping areas (Ashkenazi et al., 2013). For instance, functional

magnetic resonance imaging (fMRI) studies have revealed that

the left hemisphere language network and bilateral parietal lobes

(particularly the intraparietal sulcus, IPS) are activated during

both reading and math tasks (Wang et al., 2020). The angular

gyrus, acting as a hub for multimodal information integration,

may coordinate semantic extraction and quantity-symbol mapping

through distinct neural oscillation patterns (Dehaene et al., 2003).

Furthermore, a longitudinal study revealed that improvements

in reading ability significantly predict progress in mathematical

performance among children with learning disabilities, further

confirming the close behavioral association between RD and MD

(Erbeli et al., 2021).

The rapid advancements in neuroscience have recently

prompted researchers to delve deeper into the underlying brain

mechanisms of these disorders, aiming to uncover their intrinsic

patterns through the study of neural activity (Martínez-Briones

et al., 2025). Among these, neural oscillations, as dynamic patterns

of brain activity, offer a new perspective for understanding the

neurobiological basis of reading and math disorders (Cao et al.,

2022; Handayani et al., 2018). Neural oscillations are categorized

into different frequency bands, with each band associated with

specific cognitive functions and brain states (see Table 1).

The delta band (0.5–4Hz) is typically associated with deep

sleep and relaxation. However, during cognitive tasks, increased

delta band activity in frontal regions may be related to inhibiting

interference and promoting internal focus, potentially by regulating

networks that should be inactive during task execution (Harmony,

2013; Knyazev, 2012). In children with learning disabilities,

excessive slow waves (such as delta and theta waves) may indicate

inefficient cognitive processing (Fonseca et al., 2006; Martínez-

Briones et al., 2025). The theta band (4–8Hz) is closely linked to

attention, memory formation, and emotional processing. Research

has found that theta band power is negatively correlated with

intelligence in children (Martínez-Briones et al., 2025). Theta

band oscillations also play a crucial role in cognitive functions,

including working memory (Tian et al., 2025). The alpha band

(8–13Hz) typically appears during awake relaxation, particularly

prominent in parietal and occipital regions. Increased alpha band

activity reflects healthy relaxed alertness and disengagement from

external stimuli (Martínez-Briones et al., 2025; Sharma and Singh,

2015). In cognitive tasks, alpha band suppression (event-related

desynchronization, ERD) is associated with increased attention

levels and arousal (Martínez-Briones et al., 2025). During reading

tasks, increased alpha band activity in posterior brain regions

(e.g., temporal and occipital lobes) is considered a key mechanism

for inhibiting irrelevant visual input and optimizing semantic

integration (Liljefors et al., 2024; Viswanathan et al., 2023). The beta

band (13–30Hz) is associated with attention, motor control, and

higher-level cognitive processing. In mathematical tasks, beta band

oscillations play an important role in the frontoparietal network,

helping maintain symbolic representation in working memory and

supporting computational reasoning (Zioga et al., 2023). Low beta

rhythms in the parietal cortex are considered a “buffer zone” for

working memory, capable of receiving and integrating executive

commands from the prefrontal cortex (Gelastopoulos et al., 2019).

In children with developmental coordination disorder, abnormal

beta oscillatory dynamics are associated with poor procedural

learning (Lum et al., 2025).

Cognitive functions of the human brain are not merely

products of localized brain activity; they fundamentally rely on

the integration of information among distributed brain regions

(Bastos and Schoffelen, 2016). Therefore, in-depth investigation of

functional and effective connectivity is crucial for understanding

the neural architecture of RD and MD. While previous studies

have identified changes in local brain activity or overall spectral

power in children with RD and MD (Ashkenazi et al., 2013;

Moll et al., 2016), task-driven, frequency-specific comparative

studies from a dynamic brain network perspective, particularly

regarding synchrony and directional characteristics of connections,

remain limited.

This study aims to systematically compare the frequency-

specific features of brain functional and effective connectivity

in children with RD during reading tasks vs. children with

MD during math tasks, using EEG combined with wPLI and

DTF. We hypothesize that, within their respective tasks, the

brain network connectivity patterns of children with RD and

MD, including synchrony and directed information flow, will

exhibit distinguishable characteristics that reflect their specific

cognitive challenges. Specifically, we expect that in reading tasks,

children with RD may show abnormal functional connectivity

in brain regions related to language processing, such as alpha

or beta band activity in the right temporal lobe, which might

reflect compensatory mechanisms. Conversely, in math tasks,

children with MD may exhibit abnormal functional connectivity

in frontoparietal networks associated with numerical processing

and working memory, such as delta band activity in the frontal

lobe or theta band activity in the parietal lobe. These oscillatory

“directional codes” may reveal commonalities and distinctions

between the two learning disorders, providing neurophysiological

evidence for understanding their underlying mechanisms and

establishing a neuromarker framework for early identification

and intervention.

2 Materials and methods

2.1 Dataset

The dataset used in this study is publicly available through

the Mendeley Data repository under the project titled “EEG data

and psychometric results from children with learning difficulties”

(Corona-Gonzalez et al., 2024). Initiated by the Tecnológico de

Monterrey, the project collected psychometric and task-based

electroencephalography (EEG) data from 104 children aged 7 to

13 who demonstrated low academic performance, with the aim
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TABLE 1 EEG frequency ranges (Hz): cognitive roles and links to learning.

Frequency band (Hz) Associated cognitive functions/states Relevance to learning di�culties

Delta (δ) 0.5–4 Deep sleep, relaxation, interference inhibition, internal

focus, attention, functional cortical differentiation.

Excessive delta and theta waves in children with learning

difficulties may indicate inefficient cognitive processing.

Enhanced delta phase synchrony in math experts.

Theta (θ) 4–8 Attention, memory formation, emotional processing. Theta band power is negatively correlated with intelligence in

children. Plays a role in cognitive functions like working memory.

Alpha (α) 8–13 Awake relaxation, disengagement from external

stimuli, inhibition of irrelevant visual input, semantic

integration, attention, arousal.

Increased alpha band activity during reading tasks may inhibit

irrelevant visual input. Children with learning difficulties may

have deficits in sensory gating.

Beta (β) 13–30 Attention, motor control, cognitive processing,

maintenance of symbolic representation in working

memory, computational reasoning, executive control.

Beta band plays an important role in the frontoparietal network

during math tasks. Children with Math Difficulties (MD) may

have abnormal frontoparietal connectivity.

of assessing their reading and mathematical abilities. Initially,

the project evaluated a range of cognitive and behavioral metrics

including reading fluency, spelling, mathematical computation,

attention, and intelligence quotient (IQ), in order to determine each

child’s primary learning difficulty. Based on these assessments, the

participants were classified into two groups: children with Reading

Difficulties (RD, n = 54) and children with Math Difficulties (MD,

n = 50). EEG data from both groups were collected using a 32-

channel system while participants engaged in reading or math-

related tasks. For the present study, a subset of data from 28

children with learning difficulties was selected for further analysis

(RD group: n = 11; MD group: n = 17). The participant selection

process is illustrated in Figure 1.

2.2 Data pre-processing

Offline EEG data analysis was conducted using MATLAB

R2023b and EEGLAB 2025.0.0. EEG signals were downsampled

to 200Hz and pre-processed using a bandpass filter (1–45Hz).

The continuous EEG was segmented into 2-s epochs. Independent

Component Analysis (ICA) was applied to remove artifacts related

to eye movements and muscle activity, and segments exceeding

±200 µV were excluded as abnormal. Data were then re-

referenced to the average of all electrodes, and defective channels

were interpolated using spherical spline interpolation. The pre-

processed data were subsequently used for both functional and

effective connectivity analyses.

2.3 Functional connectivity

In EEG analysis, functional connectivity refers to the statistical

dependencies between spatially distinct brain regions over time

(Bastos and Schoffelen, 2016). Unlike effective connectivity, it

does not imply causality, but rather identifies “which areas are

synchronously or correlatively active.”

This study employed the Weighted Phase Lag Index (wPLI) to

quantify the degree of phase synchronization between EEG time

series from different brain regions (Vinck et al., 2011). The standard

Phase Lag Index (PLI), introduced by Stam et al. (2007), measures

asymmetry in phase difference distributions, ignoring zero-phase

lag connections to minimize volume conduction artifacts. wPLI

extends this by assigning greater weight to phase differences

with higher magnitude, enhancing sensitivity to genuine phase

synchronization. Compared to othermeasures such as coherence or

PLI, wPLI is more robust to noise and better at reducing spurious

connectivity caused by volume conduction (Hardmeier et al., 2014;

Stam et al., 2007). The calculation involves the following steps:

For two signals x and y, their instantaneous phases φx (t) and

φy (t) are calculated via the Hilbert transform:

φx (t) = arg
(

x (t) + j ·H{x (t)}
)

(1)

φy (t) = arg
(

y (t) + j ·H{y (t)}
)

(2)

Calculate the phase difference:

φ (t) = φy(t) − φx(t) (3)

Extract the imaginary part of the phase difference:

Im
(

eiϕ(t)
)

= sin (φ (t)) (4)

The wPLI is computed as:

wPLI =

∣

∣

∣

∑T
t=1 Im(Sxy(t))

∣

∣

∣

∑T
t=1|Im(Sxy(t))|

(5)

Where t denotes the total number of time points. The wPLI

ranges from 0 to 1, where values near 0 indicate no consistent

phase lead or lag, and values approaching 1 indicate high phase

consistency across trials.

2.4 E�ective connectivity

In contrast to functional connectivity, effective connectivity

seeks to uncover causal interactions or the directional flow of

information between brain regions (Cao et al., 2022). It addresses

the question of “who influences whom.”

This study utilized the Directed Transfer Function (DTF) to

examine directional neural interactions. Introduced by Kaminski
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FIGURE 1

Subject screening process.

and Blinowska (2017), DTF is grounded in the Granger Causality

Analysis framework and estimates directional influence by fitting a

Multivariate Autoregressive (MVAR) model to multichannel EEG

time series (Astolfi et al., 2006; Kaminski and Blinowska, 2017). The

procedure involves:

Fitting an MVAR model:

xi (n) = −
M
∑

j=1

p
∑

k=1

aij
(

k
)

xj
(

n− k
)

+ ui (n) (6)

where xi (n) is the EEG signal from channel i at time n, M is

the number of channels, p is the model order, aij
(

k
)

are model

coefficients, and ui (n) is Gaussian white noise.

Computing the transfer function in the frequency domain:

H
(

f
)

ij
= − 1

1+
p
∑

k=1

aii(k)e−i2πfk1t

p
∑

m=1
aij (m) e−i2π fm1t

(7)

where 1t is the sampling interval.

Computing DTF from channel j to i at frequency f :

DTFij
(

f
)

=

∣

∣

∣
H(f )ij

∣

∣

∣

√

∑M
k=1|H(f )ik|

2
(8)

This normalization ensures that the squared DTFs from all input

channels to a given output channel sum to 1 at each frequency.

DTF thus provides a frequency-specific estimate of how one

EEG channel influences another, supporting studies of task-related

information flow and functional brain network construction (Ding

et al., 2000; Kaminski and Blinowska, 1991).

To preserve directionality, which can be obscured by averaging

across regions, we calculated DTF only within individual

hemispheres. EEG signals from all channels in the left and right

frontal [LF [FP1, F3, F7], RF [FP2, F4, F8]], temporal [LT [T7,

TP9], RT [T8, TP10]], parietal [LP [CP1, CP5, P3, P7], RP

[CP2, CP6, P4, P8]], and occipital [LO [O1], RO [O2]] regions

were averaged separately. Given that the MVAR model assumes

signal stationarity, we treated the EEG data as quasi-stationary by

segmenting it accordingly.

2.5 Statistical analysis

All statistical analyses were conducted using MATLAB

(R2023b). Independent-samples t-tests were performed to examine

group differences in wPLI and DTF values between the RD and

MD groups. To control for potential confounding variables, we

included IQ, attention, gender, and test scores as covariates in our

statistical model.

3 Results

This study conducted a comparative analysis of EEG

connectivity patterns in 28 children with learning disabilities

during reading and mathematical tasks. Our primary objective

was to identify potential differences in functional connectivity,

quantified by the weighted Phase Lag Index (wPLI), and

directed information flow, assessed via the Directed Transfer

Function (DTF), between children with Reading Difficulties (RD)

performing reading tasks and children with Math Difficulties (MD)

engaged in mathematical tasks.

3.1 Functional connectivity analysis

The functional connectivity analysis using wPLI revealed three

statistically significant differences (p<0.05) between the RD and

MD groups. Specifically, in the frontal lobe’s delta band, the MD

group demonstrated significantly higher wPLI values (M ± SD =
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0.342 ± 0.042) compared to the RD group (M ± SD = 0.319 ±

0.036; t = −2.130, p = 0.038). Conversely, the RD group exhibited

significantly greater wPLI values (M ± SD = 0.208 ± 0.117) than

the MD group (M ± SD = 0.148 ± 0.056) in the right temporal

lobe’s beta band (t= 2.305, p= 0.025). Furthermore, the MD group

displayed significantly higher wPLI values (M ± SD = 0.261 ±

0.024) in the parietal lobe’s theta band compared to the RD group

(M ± SD = 0.247 ± 0.021; t = −2.253, p = 0.029). The detailed

t-test results for wPLI across various brain regions are presented in

Table 2.

3.2 E�ective connectivity analysis

In contrast to the functional connectivity findings, the analysis

of directed information flow using DTF did not reveal any

statistically significant differences between the RD and MD groups

across any of the explored cross-regional connections or frequency

bands (p > 0.05). All obtained p-values consistently exceeded

0.05, indicating that, within the current study design and given

the sample size, no statistically significant distinctions in directed

connectivity were observed between the groups. A heatmap

illustrating the t-test results for each frequency band can be found

in Figure 2.

4 Discussion

This study aimed to compare electroencephalography (EEG)

functional and effective connectivity patterns in children with

Reading Disability (RD) during reading tasks vs. children

with Math Disability (MD) during mathematical tasks. Our

findings revealed three significant group differences in functional

connectivity but no statistically significant distinctions at the

effective connectivity level. These results offer new perspectives

on the neurophysiological underpinnings of both learning

disorders and prompt deeper consideration of task-specific brain

network dynamics.

4.1 Neurocognitive interpretation of
functional connectivity di�erences

The significant differences observed in functional connectivity

provide neurophysiological clues regarding the cognitive

processing characteristics of RD and MD children in their

respective tasks, aligning with the hypotheses presented in the

introduction concerning abnormalities in specific brain regions

and frequency bands.

The MD group exhibited significantly higher connectivity in

the frontal lobe’s delta band compared to the RD group. Delta band

activity in cognitive tasks, particularly its increase in frontal regions,

is generally considered to reflect the inhibition of interference,

internal focus, and the regulation of inactive networks (Harmony,

2013; Knyazev, 2012). The higher frontal delta band connectivity in

MD children during math tasks might indicate a greater need for

cognitive control to suppress irrelevant information when solving

mathematical problems, or it could reflect a specific mode of frontal

lobe involvement in response to high cognitive load. This finding

aligns with the commonly observed deficits in working memory

and executive functions among MD children (Moll et al., 2016;

Peng and Fuchs, 2016), suggesting that their frontal networksmight

be overactivated or inefficient in maintaining task focus or coping

with computational challenges. For example, Poikonen et al. (2024)

found that math experts exhibited enhanced frontoparietal delta

phase synchrony when processing complex mathematical tasks

(Poikonen et al., 2024). This contrasts with the trend of increased

frontal delta band connectivity in MD children observed in our

study, potentially implying a qualitative difference in the delta

band synchrony patterns of MD children compared to typically

developing children or experts; it may not be a sign of efficient

processing, but rather an indication of increased cognitive effort.

The RD group showed significantly higher connectivity in the

right temporal lobe’s beta band compared to the MD group. The

beta band is generally associated with attention, motor control, and

higher-level cognitive processing, playing a particularly important

role in maintaining symbolic representations in working memory

and supporting computational reasoning (Gelastopoulos et al.,

2019; Zioga et al., 2023). The right temporal lobe is often considered

an auxiliary region to the left hemisphere language network in

language processing, potentially involved in semantic integration

or non-linguistic information processing (Fraga González et al.,

2018; Shaywitz and Shaywitz, 2008). The enhanced right temporal

beta band connectivity in RD children during reading tasks

may reflect a compensatory strategy. When the left hemisphere’s

language processing networks (e.g., temporoparietal regions) are

functionally impaired, the right hemisphere might be more

activated to assist with reading tasks, such as processing visual-

spatial information or non-lexical semantic cues (Fraga González

et al., 2018; Yang et al., 2025). This right-hemisphere involvement

could represent an adaptive reorganization of the brain to maintain

task performance in the face of reading difficulties. This finding

is partially consistent with Yang’s (2025) research on functional

connectivity patterns in children with reading disabilities, which

also suggested that increased frontal-central connectivity might

reflect compensatory mechanisms.

The MD group exhibited significantly higher connectivity in

the parietal lobe’s theta band compared to the RD group. The

theta band is closely associated with attention, memory formation,

and emotional processing, with its power negatively correlated

with children’s intelligence (Martínez-Briones et al., 2025; Tian

et al., 2025). The parietal lobe plays a central role in numerical

processing and spatial cognition, with the intraparietal sulcus

(IPS) being a key region for quantity processing (Dehaene et al.,

2003; Rotzer et al., 2009). The enhanced parietal theta band

connectivity in MD children during math tasks may reflect an

over-reliance on or inefficiency of the parietal regions during

numerical processing. This could be related to the difficulties

MD children face in numerical representation, arithmetic fact

retrieval, and spatial working memory (Kucian and von Aster,

2015; Peng and Fuchs, 2016). Higher theta band activity might

indicate that these children need to invest more cognitive resources

to sustain attention and working memory during math tasks,

or it could reflect functional impairments within their parietal

networks when processing mathematical information. Martínez-

Briones et al. (2025) also found that children with learning
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TABLE 2 wPLI t-test results for each brain region.

Region Band M±SD t-value p-value

RD MD

Frontal Delta 0.319± 0.036 0.342± 0.042 −2.130∗ 0.038

Theta 0.254± 0.035 0.256± 0.035 −0.271 0.787

Alpha 0.227± 0.029 0.220± 0.039 0.656 0.515

Beta 0.142± 0.026 0.156± 0.036 −1.678 0.100

Left temporal Delta 0.349± 0.111 0.313± 0.082 1.285 0.205

Theta 0.253± 0.101 0.246± 0.070 0.284 0.777

Alpha 0.230± 0.080 0.229± 0.065 0.044 0.965

Beta 0.199± 0.102 0.161± 0.074 1.519 0.135

Right temporal Delta 0.341± 0.092 0.345± 0.120 −0.146 0.884

Theta 0.257± 0.079 0.238± 0.063 0.965 0.339

Alpha 0.218± 0.070 0.185± 0.071 1.670 0.101

Beta 0.208± 0.117 0.148± 0.056 2.305∗ 0.025

Parietal Delta 0.341± 0.051 0.328± 0.048 0.961 0.341

Theta 0.247± 0.021 0.261± 0.024 −2.253∗ 0.029

Alpha 0.232± 0.024 0.240± 0.022 −1.194 0.238

Beta 0.178± 0.065 0.157± 0.034 1.454 0.152

Occipital Delta 0.346± 0.087 0.337± 0.131 0.268 0.790

Theta 0.259± 0.092 0.267± 0.090 −0.292 0.772

Alpha 0.236± 0.047 0.238± 0.074 −0.109 0.914

Beta 0.186± 0.100 0.152± 0.067 1.430 0.159

∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

disabilities exhibit excessive delta and theta band power, which may

be a sign of inefficient cognitive processing, consistent with the

increased parietal theta band connectivity observed inMD children

in our study.

4.2 Considerations for non-significant
di�erences in e�ective connectivity

In contrast to the significant findings in functional connectivity,

this study did not detect statistically significant differences in

effective connectivity between the RD and MD groups. This

outcome could be attributed to a combination of factors. The

measurement of effective connectivity, particularly DTF based on

MVAR models, is more sensitive to data quality, sample size,

and the fulfillment of model assumptions (Mehdizadehfar et al.,

2023; Seth et al., 2015). The relatively small sample size in this

study (11 in the RD group, 17 in the MD group) might have

led to insufficient statistical power, making it difficult to capture

genuinely existing, yet potentially more subtle, differences in

directed information flow. Mehdizadehfar et al. (2023) emphasized

that connectivity estimates from small sample sizes may be less

robust and exhibit greater variability, providing a methodological

explanation for the non-significant results observed in this study.

Furthermore, the RD group performed a reading task while the

MD group performed a mathematical task. This difference in

task type might have masked learning disability-specific effective

connectivity patterns. Different tasks activate distinct cognitive

processes and neural networks, complicating a direct comparison of

effective connectivity between the two groups under different tasks.

Even if potential differences in directed information flow exist, they

might have been confounded by task effects. Therefore, the absence

of significant effective connectivity differences does not necessarily

mean that the information flow directions are identical in both

disorders, but rather suggests the need formore refined task designs

and larger sample sizes to uncover these potential differences.

4.3 Clinical implications and future
directions

This study provides novel insights into the neural mechanisms

of RD and MD children through EEG connectivity analysis.

The observed functional connectivity differences in the frontal

delta band, right temporal beta band, and parietal theta band

may serve as potential neurobiological markers for distinguishing

between these two learning disorders. These findings offer a

theoretical basis for developing more targeted neuro-modulation

intervention strategies. For instance, addressing the abnormal

frontal delta band and parietal theta band connectivity in MD
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FIGURE 2

Statistical comparisons of interhemispheric e�ective connectivity between the RD and MD groups (color bars represent t-values).

children, future neurofeedback training or repetitive transcranial

magnetic stimulation (rTMS) could attempt to modulate the

activity in these frequency bands to improve their cognitive

control, attention, and numerical processing abilities (Demirtas-

Tatlidede et al., 2013; Enriquez-Geppert et al., 2017; Gruzelier,

2014; Zoefel et al., 2011). For the enhanced right temporal beta

band connectivity in RD children, interventions might need

to explore how to optimize this compensatory mechanism or

strengthen left-hemisphere language processing functions through

other means. Existing research has explored the application of

neuro-modulation techniques in learning disorders; for example,

neurofeedback training has been used to improve cognitive

function in children with attention-deficit/hyperactivity disorder

(ADHD), a condition often comorbid with learning disorders

(Enriquez-Geppert et al., 2017). However, given the non-

significant findings in this study regarding effective connectivity,

these specific intervention targets require further validation in

future research.

This study has several limitations. Firstly, the relatively

small sample size limits the generalizability of the results and

the statistical power, particularly in the effective connectivity

analysis where no significant differences were found. Although

this study controlled for IQ, attention, gender, and test scores

as covariates in the statistical analysis, these general cognitive

abilities often exhibit deficits in children with learning disorders

(Moll et al., 2016; Peng and Fuchs, 2016), and their potential

impact on brain network connectivity warrants deeper exploration.

Future research should recruit larger samples and conduct a

priori power analyses to ensure sufficient statistical power. It

could also consider more complex statistical models to further

decouple the effects specific to the disorder from those of general

cognitive deficits.
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Secondly, the RD and MD groups performed different

tasks in this study, which complicates the direct comparison

of learning disability-specific neural mechanisms. Different

tasks activate distinct cognitive processes and neural networks;

thus, observed connectivity pattern differences might reflect

both task effects and disorder-specific effects. Future research

should employ more rigorous experimental designs, such

as having both groups of children complete both reading

and mathematical tasks, or using resting-state EEG data for

inter-group comparisons, to better separate task effects from

disorder-specific effects.

Thirdly, while EEG possesses excellent temporal resolution,

its spatial localization capability is limited, making it challenging

to precisely identify the functional contributions of specific

brain regions (e.g., specific sub-regions of the angular gyrus or

intraparietal sulcus). For instance, the finding of “right temporal

beta band synchrony” in this study still faces limitations in precise

anatomical localization due to EEG’s spatial resolution. Future

research could consider integrating multimodal neuroimaging

techniques, such as combining EEG with functional near-infrared

spectroscopy (fNIRS) or fMRI, to compensate for EEG’s limitations

in spatial resolution and achieve spatiotemporally fused brain

network analysis (Sun et al., 2013). Furthermore, the cross-

sectional design of this study limits the verification of dynamic

changes in neural plasticity. The study neither investigated the

reorganization of connectivity patterns after training interventions

nor established a dose-response relationship between neural

changes and behavioral improvements (Keller and Just, 2016).

Future research should adopt longitudinal designs to track brain

network changes in children during development and evaluate

the impact of interventions on the reorganization of these

connectivity patterns, thereby establishing causal chains between

neural changes and behavioral improvements (Keller and Just,

2016).

5 Conclusions

This study utilized task-related electroencephalography (EEG)

to compare brain network functional and effective connectivity

patterns across different frequency bands in children with Reading

Difficulties (RD) during reading tasks and Math Difficulties

(MD) during mathematical tasks. Our results indicate that,

in terms of functional connectivity, the RD group exhibited

significantly higher synchronization in the right temporal

lobe’s beta band than the MD group, while the MD group

showed significantly greater connectivity in the frontal lobe’s

delta band and the parietal lobe’s theta band. These findings

suggest that RD children may engage in compensatory right-

hemisphere involvement during reading, whereas MD children

might face specific cognitive control and resource allocation

challenges in frontal and parietal regions during mathematical

tasks. However, no statistically significant differences were

found between the two groups in effective connectivity. These

findings provide preliminary evidence for understanding the

neurophysiological basis of RD and MD and emphasize the critical

role of task design and sample size in brain network research.

Future studies should further explore the neural mechanisms

of learning disabilities with larger sample sizes, more refined

task designs, and multimodal imaging integration to lay a solid

foundation for developing more targeted neuro-modulation

intervention strategies.
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