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Computational modeling of visual 
salience alteration and its 
application to eye-movement 
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Computational saliency map models have facilitated quantitative investigations into 
how bottom-up visual salience influences attention. Two primary approaches to 
modeling salience computation exist: one focuses on functional approximation, 
while the other explores neurobiological implementation. The former provides 
sufficient performance for applying saliency map models to eye-movement data 
analysis, whereas the latter offers hypotheses on how neuronal abnormalities 
affect visual salience. In this study, we  propose a novel saliency map model 
that integrates both approaches. It handles diverse image-derived features, as 
seen in functional approximation models, while implementing center-surround 
competition—the core process of salience computation—via an artificial neural 
network, akin to neurobiological models. We evaluated our model using an open 
eye-movement dataset and confirmed that its predictive performance is comparable 
to the conventional saliency map model used in eye-movement analysis. Beyond 
eye-movement prediction, our model enables neural-level simulations of how 
neurobiological disturbances influence salience computation. Simulations showed 
that parameter changes for excitatory-inhibitory balance, baseline neural activity, and 
synaptic connection density affected the contrast between salient and non-salient 
objects—in other words—the weighting of salience. Finally, we demonstrated the 
model’s potential for quantifying changes in salience weighting as reflected in eye 
movements, highlighting its ability to bridge both predictive and neurobiological 
perspectives. These results present a novel strategy for investigating mechanisms 
underlying abnormal visual salience.
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1 Introduction

The brain receives vast amounts of information from sensory organs, including stimuli 
important for survival and those that can be  ignored without consequence. To enable 
appropriate responses, attention must be selectively directed at each moment. Studies on the 
visual system suggest that salience, based on low-level visual features, guides bottom-up 
attention and influences eye movements (Veale et al., 2017). For example, if there is a red object 
among many blue objects, the red one stands out and attracts attention. Typical features that 
elicit such “pop-out” effects in static images include luminance, color, and orientation (Turatto 
and Galfano, 2000; Wolfe et  al., 1992). Because natural scenes contain varying levels of 
luminance, diverse colors, and multiple orientations, salience in these contexts is determined 
by the combination of these features. To elucidate the complex process of salience computing, 
both theoretical and experimental approaches have been employed.
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The saliency map has contributed to the quantitative investigation 
of visual salience. It is a two-dimensional map showing how 
perceptually conspicuous each region is in the corresponding visual 
stimulus. Koch and Ullman originally proposed the saliency map as 
a concept (Koch and Ullman, 1985), and its computational 
implementation was first reported by Itti et  al. (1998). In their 
saliency map model, visual features such as orientation, color, and 
luminance are extracted from a visual stimulus and separately 
processed in various feature maps. Within each map, center-surround 
competition weakens the activity corresponding to abundant features 
in the visual stimulus and strengthens the activity associated with 
unique features. Feature maps are then integrated and finally output 
as a saliency map.

The saliency map model has been applied to eye-movement 
analysis and has enabled the exploration of the neural basis of visual 
salience (Veale et al., 2017). Although eye movements are influenced 
not only by bottom-up perception but also by top-down cognition, 
such as the semantic understanding of scenes and goal-related 
information, it was shown that fixations tend to cluster in highly 
salient regions indicated by the saliency map (Foulsham and 
Underwood, 2008; Itti, 2005). Therefore, the effect of bottom-up visual 
salience on eye movements can be evaluated using the saliency map. 
Eye-movement analysis of monkeys with brain lesions indicated that 
visual salience involves not only the primary visual cortex but also 
other brain areas (Yoshida et al., 2012). Electrophysiological recordings 
from the brains of monkeys during free viewing have shown a 
correlation between the saliency map and the activity of the midbrain 
structure known as the superior colliculus (White et al., 2017).

Researchers have also explored how neurons implement the center-
surround competition, which is supposed to be the central process of 
visual salience computation. One account is that the competition is 
achieved through lateral interaction whereby closely located neurons 
enhance each other’s activity and distant neurons inhibit each other’s 
activity. It is based on a simple theoretical model of local competition in 
the visual system (Von Der Malsburg, 1973). Such lateral interaction has 
been supported by in  vitro electrophysiological recordings of the 
superior colliculus in mouse brain slices (Phongphanphanee et al., 2014).

Recent studies have focused on abnormalities in visual salience 
associated with mental disorders. Patients with schizophrenia exhibit 
differences in eye movements compared to healthy controls, quantified 
as shorter scanpath length and impaired inhibition of return (Okada 
et al., 2021; Sprenger et al., 2013). Differences in visual salience have 
been observed by applying the saliency map model to analyze eye 
movements in patients (Yoshida et al., 2024). Another large-scale study 
found a relationship between affected visual salience and multiple 
mental disorders (Miura et  al., 2025). As biological research has 
suggested various neurobiological abnormalities related to mental 
disorders, such as excitatory-inhibitory imbalance (Yizhar et al., 2011), 
disrupted signal-to-noise ratio (Jacob et  al., 2013) and synaptic 
disconnectivity (Ellison-Wright and Bullmore, 2009; Garey et al., 1998), 
these abnormalities may affect visual salience and thereby cause 
symptoms. The neural basis of visual salience may also provide insights 
into the mechanisms underlying abnormal visual salience (Miyata, 
2019). Because lateral interactions involving local excitatory connections 
and distant inhibitory connections are suggested to play a role in 
salience computing, its alteration may underlie abnormal visual salience.

A saliency map model that accounts for these abnormalities can 
facilitate biological investigations into the mechanisms of abnormal 

visual salience. However, the conventional saliency map model (Itti 
et  al., 1998) used in eye-movement analyses has limitations in 
addressing this issue. This is mainly because the neural implementation 
of saliency computation is not sufficiently addressed in this model; in 
other words, center-surround competition is not implemented 
through artificial neural networks. A computational model that 
integrates neurobiological characteristics of center-surround 
competition should be used to tackle this problem.

Saliency map models based on artificial neural networks have been 
proposed in previous research (de Brecht and Saiki, 2006; Soltani and 
Koch, 2010). While they can capture biophysical aspects of neurons in 
visual salience computing, their simulations were performed only on 
very simple visual stimuli, such as rectangular bars on a black 
background. These models did not show sufficient ability to predict eye 
movements, which is necessary for application to eye-movement 
analysis. Recent machine learning techniques have enabled models 
based on convolutional neural networks to accurately predict human 
eye movements (Kroner et al., 2020). However, owing to end-to-end 
learning in these models, all processes influencing eye movements, 
including top-down cognition, may be reflected in the same artificial 
neural network. Therefore, these models face challenges in testing 
hypotheses that focus on local circuits of the brain responsible for 
specific information processing (i.e., center-surround competition).

In this study, we  propose a new computational saliency map 
model based on de Brecht and Saiki (2006), which implements center-
surround competition using artificial neural networks with excitatory 
center-inhibitory surround lateral connections. Their model has the 
advantage of incorporating neurobiological characteristics, but it can 
only process simple visual stimuli. Therefore, we extend their model 
to enable salience computation for complex visual stimuli such as 
natural images. The feature extraction algorithm was updated to detect 
complex features in natural images, and we searched for proper values 
of lateral connection weights to ensure that the output saliency map 
had sufficient performance in eye-movement prediction. To evaluate 
its performance in eye-movement prediction, we used an open dataset 
for eye movements (Borji and Itti, 2015). We  compared the 
performance of different saliency map models in predicting eye 
movements for complex visual stimuli and confirmed that our model 
achieves comparable performance to the model by Itti et al. (1998), 
which has been applied to eye-movement analyses.

Using our proposed model, we introduced parameter changes to 
simulate neurobiological disturbances implicated in mental disorders 
and tested how the output saliency map was affected. Parameter changes 
related to excitatory-inhibitory imbalance in lateral interactions, 
disrupted signal-to-noise ratio, and reduced synaptic connections 
altered saliency computing such that the difference in salience between 
salient and non-salient objects changed. Finally, we tested our model as 
a tool for quantifying individual differences in the weighting of salience 
by parameter estimation from artificially generated fixation points.

2 Materials and methods

2.1 Visual stimulus and fixation data

We prepared a simple visual stimulus by creating an image with 
bars (Figure 1A) and used complex visual stimuli obtained from an 
open dataset by Borji and Itti (2015). This dataset includes various 
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images used in eye-movement experiments, where subjects looked at 
each image for 5 s with no restrictions. There are 20 categories of 
images, including those representing natural images (e.g., Action, 
Indoor) as well as those with less meaningful content (e.g., Noisy, Low 
resolution); examples are shown in Figure 1B. For feature extraction, 
we used downsized images with resolutions of 384 × 216, 192 × 108, 
or 96 × 54 instead of the original 1920 × 1,080-pixel image. In 
addition, the RGB values of these images were normalized to a range 
of 0 and 1.

This dataset  also includes fixation data collected during the 
experiments. We used the fixation data from 18 observers per image 
to evaluate our models’ ability to predict eye movements.

2.2 Model description

Figure  1C shows the schematic representation of our 
computational model. It consists of a feature extraction process and a 
saliency computing process, the latter of which is implemented using 
an artificial neural network. The extracted features provide input to 
the neural network, which performs center-surround competition and 
feature integration before outputting the saliency map. The basic 
structure follows the saliency map model proposed by de Brecht and 
Saiki (2006). While their model handles only features for two 
orientations and two colors, we expanded it to include features for 
four orientations (0, 45, 90, and 135 degrees), four colors (red, green, 
blue, and yellow), and luminance. In addition, we aligned the feature 
extraction algorithms for orientation and color similar with those 
used in the saliency map model by Itti et al. (1998), where orientation 

features are extracted by applying Gabor filters to images at multiple 
resolutions, and color features are extracted based on the opponency 
between red and green as well as blue and yellow.

The feature extraction algorithms reflect biological observations. 
Gabor filters resemble the response properties of orientation-selective 
neurons in the primary visual cortex (V1) (De Valois et al., 1982; Jain 
and Farrokhnia, 1991). The red-green and blue-yellow opponent-color 
responses are based on studies of the early visual system, 
demonstrating how cone inputs (L-, M-, and S-cones) are combined 
to allow fine-tuned chromatic discrimination (Engel et al., 1997).

The neural network consists of nine feature maps, each 
corresponding to a specific type of extracted feature. Each map 
processes signals for its respective feature separately. Within each map, 
neural activity competition is regulated through lateral interactions, 
characterized by local excitatory connections and distant inhibitory 
connections. The activity within the feature map layers is transmitted 
to the next layer, the conspicuity map layer, where signals are 
integrated into three conspicuity maps—orientation, color, and 
luminance. These maps undergo further competitive processing 
before their activity is ultimately combined into the saliency map.

As in the original Brecht’s model, neural activity was modeled 
using mean-field equations for neural populations with dynamic 
synapses (Tsodyks et  al., 1998), rather than simulating individual 
neurons. This approach preserves neurobiological characteristics 
while reducing computational costs. As a result, we constructed the 
neural network with relatively low dimensionality, despite the fact that 
computing salience for natural images in the brain would require an 
enormous number of neurons. Many parameter values were retained 
from the original Brecht’s model, as they fall within physiologically 

FIGURE 1

Architecture of computational modeling on visual salience. (A) An image used as a simple visual stimulus. (B) A few examples of images obtained from 
the CAT2000 dataset (Borji and Itti, 2015) and used as complex visual stimuli. Images included in “Action” (left), “Indoor” (middle), and “LowResolution” 
(right) categories. (C) Schematic diagram of our proposed computational saliency map model. Center-surround competition implemented by an 
artificial neural network (top) whose input was calculated through a feature extraction process (bottom). The neural network consists of multiple maps 
(quadrangles) implemented as two-dimensional arrays of neural populations. The neural populations within each map interact with each other via 
lateral connections (blue arrows) and receive signals from those in the lower layers via feedforward connections (black arrows). (D) Example 
distribution of lateral connection weights characterized by local excitatory and distant inhibitory connections. The weights are calculated by a 
difference-of-Gaussians function (Equation 17), where parameters wI  and Lσ  are set as 140wI =  and 3.2.Lσ =
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realistic ranges. However, we  adjusted the number of neural 
populations per map and connection weights, as these factors depend 
on the resolution at which the visual stimuli are processed.

The details of the model are described below, and it was 
implemented in MATLAB (version R2019b) with Image 
Processing Toolbox.

2.2.1 Feature extraction
The luminance feature was calculated as the intensity of the image 

with a 96 × 54 resolution, as follows:

	 ( ) ( ) ( ) ( )( )= + +, , , , / 3,lum red green blueF x y V x y V x y V x y 	 (1)

where ( ),x y  represents the location of the image, and ( ),redV x y , 
( ),greenV x y , and ( ),blueV x y  are the RGB values normalized to a range 

of 0 and 1.
Color feature extraction reflects the red-green and blue-yellow 

opponent-color responses in the visual system (Engel et al., 1997). The 
four features of red, green, blue, and yellow were extracted from the 
image with a 96 × 54 resolution, as follows:
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(2)

where α  denotes the color index, ( ),yellowV x y  is defined as:

	 ( ) ( ) ( )( )=, min , , , ,yellow red greenV x y V x y V x y 	 (3)

and ( )g x  is a linear gain function given by:

	
( )

>= 


0
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x x

g x
	

(4)

Orientation features were extracted by applying Gabor filters that 
approximate the response of orientation-selective neurons in the 
primary visual cortex (Jain and Farrokhnia, 1991). We used the Gabor 
filter function given by:

	

( ) ( ) ( )θ θ
θ θ

θ

θ
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ω
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G x y i x
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(5)

where θ  represents the orientation of the Gabor filters set as 
{ }θ ° ° ° °∈ 0 ,45 ,90 ,135 , and γ , σ , and ω0 are filter parameters denoting 

the spatial aspect ratio, the standard deviation of the Gaussian kernel, 
and the frequency of the sinusoidal factor, respectively. We set the 
parameter values γ = 0.5 , σ = 2 , and ω =0 2, following the 
implementation of the Itti-Koch model in the Graph-Based Visual 

Saliency (GBVS) toolbox for Matlab software (Harel et al., 2006). An 
image with a 96 × 54 resolution was convolved with Gabor filters, 
as follows:

	
( ) ( ) ( )θ θ= − −∑∑ int, , ,

u v
O x y G x u y v V u v

	
(6)

where ( )int ,V x y  is the image intensity given by:

	 ( ) ( ) ( ) ( )( )= + +int , , , , / 3red green blueV x y V x y V x y V x y 	 (7)

Owing to the complex Gabor function defined in Equation 5, 
( )θ ,O x y  has a complex value, and the orientation feature is calculated 

based on its absolute value. In addition, we applied Gabor filters to 
images at three different resolutions and averaged the resulting filter 
responses, as applying Gabor filters only to 96 × 54 images may 
capture only coarse-grained features. Therefore, the orientation feature 
is given by:

	
( )

( ) ( ) ( )( )θ θ θ
θ

′ ′′+ +
=

, , ,
, ,

3ori

O x y O x y O x y
F x y

	
(8)

where ( )θ
′ ,O x y  and ( )θ

′′ ,O x y  represent the values obtained by 
convolving the images with 192 × 108 and 384 × 216 resolutions, 
respectively, with the Gabor filters, and downsizing them to 96 × 54 
resolutions. Fine-grained features can be extracted from 192 × 108 
and 384 × 216 images and incorporated into the 96 × 54 orientation 
feature image. When Gabor filters are applied to 384 × 216 or 
192 × 108 images, the extracted features span multiple pixels, 
enabling them to be preserved after downsampling to a resolution of 
96 × 54.

2.2.2 Neural network
The artificial neural network comprises a feature map layer, 

conspicuity map layer, and saliency map layer. The feature map layer 
has nine feature maps corresponding to nine features extracted from 
the image (luminance, four colors [red, green, blue, and yellow], and 
four orientations [0, 45, 90, and 135 degrees]). The conspicuity map 
layer has three conspicuity maps corresponding to luminance, color, 
and orientation features. The saliency map layer has a saliency map as 
the output. Each map was implemented as a 96 × 54 array of neural 
populations. Based on Equations 1–8 the input ,m iI  for neural 
population i in feature map m is given by:

	

( )
( )
( )( )

 =
= − =
 − =

,

, 1
1, , 2,3,4,5

45 6 , , 6,7,8,9

lum lum i i

m i col col i i

ori ori i i

C F x y m
I C F m x y m

C F m x y m 	

(9)

where ( ),i ix y  denotes the coordinates of the neural population i, 
and ( )= 30lumC , ( )=15colC , and ( )= 20oriC  are constants that cause 
neural activity within a reasonable range.

Each neural population receives signals from populations in the 
same map via lateral connections and signals from populations in the 
lower layer via feedforward connections. The activity ( ),m iA t  for 
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neural population i in map m at time t  was updated depending on 
these signals:

	
( ) ( ) ( )( )τ = − + + +,

, 0.5 , , , , ,m i Post
m i L F

dA
A t b g S m i t S m i t

dT 	
(10)

where ( ), ,LS m i t  represents signals via lateral connections; 
( ), ,Post

FS m i t , feedforward connections; τ , time constant set to 0.03 s 
(30 ms); and ( )g x , linear gain function defined in Equation 4. Herein, 
we introduced b as the baseline activity, allowing the neural population 
to be active even in the absence of signals from other populations. 
We set = 0b  for most simulations and > 0b  for other simulations, 
assuming an abnormality in the neuronal signal-to-noise ratio. 
Because we consider t  as time in milliseconds and ,m idA

dT
 as the change 

in ( ),m iA t  per second, ( )+, 1m iA t  is given by:

	
( ) ( )+ = + ,

, ,1 0.001 .m i
m i m i

dA
A t A t

dT 	
(11)

The feedforward signal ( ), ,Post
FS m i t  depends on the connection 

between the maps. In our model, feature maps ( = …1, ,9m ) received 
the input ,m iI  as defined in Equation 9; the conspicuity maps for 
luminance, color, and orientation ( =10,11,12m , respectively) received 
signals from feature maps for luminance ( =1m ), color ( = 2,3,4,5m ), 
and orientation ( = 6,7,8,9m ); and the saliency map ( =13m ) received 
signals from the three conspicuity maps:
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(12)

where ( ), ,Pre
FS p i t  represents the signal from map p at the 

presynaptic layer to neural population i at the postsynaptic layer.
Synaptic transmission between each neural population is modeled 

based on the equations for dynamic synapses (Tsodyks et al., 1998), 
which describe the synaptic resources used by activated neurons that 
recover gradually over time. The lateral signals ( ), ,LS m i t  and 
feedforward signals ( ), ,Pre

FS p i t  are expressed as follows:

	

( ) ( ) ( )

( ) ( ) ( )
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(13)

where L
SEU  (= 0.5) and F

SEU  (= 0.5) are the utilization of synaptic 
efficacy parameters that denote the fractions of synaptic resources 
activated by an action potential; L

ijw  and F
ikw  are the weights of the lateral 

connections and feedforward connections, respectively; and ( ),
L
m jz t  

and ( ),
F
p kz t  are the depressing effects of dynamic synapses for lateral 

connections and feedforward connections, respectively, which represent 
the fractions of available synaptic resources and are updated as follows:

	

( ) ( ) ( )

( ) ( )
( )

τ

τ

−
= − +

−
= − +

, ,
, ,

rec

, ,
, ,

rec

1

1
,

L L
m j m jL L

SE m j m j L

F F
p k p kF F

SE p k p k F

dz z t
U A t z t

dT

dz z t
U A t z t

dT 	

(14)

where τrecL  (= 0.1 sec) and τrecF  (= 0.05 sec) are time constants that 
govern the rate of recovery of synaptic resources. As in Equation 11, 

( )+, 1L
m jz t  and ( )+, 1F

p kz t  are given by:
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These depressing effects cause a temporary decrease in the strength 
of synaptic transmission if the neural populations are highly active, 
which contributes to the normalization of neural activity. We used the 
same values for parameters τ , L

SEU , F
SEU , τrecL , and τrecF  as those in the 

Brecht–Saiki model (de Brecht and Saiki, 2006), as they are within a 
physiologically realistic range (Markram et al., 1998; Tsodyks et al., 1998).

The connection weights for the feedforward and lateral 
connections F

ikw  and L
ijw  depend on the locations of the presynaptic 

and postsynaptic neural populations within the maps. The feedforward 
connection weights F

ikw  were set as follows:
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= − −

 = −
= = −
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x
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(16)

where ( ),i ix y  and ( ),k kx y  denote the coordinates of neural 
population i in the postsynaptic map and neural population k in the 
presynaptic map, respectively. In this setting, excitatory feedforward 
connections exist if the coordinates ( ),i ix y  and ( ),k kx y  are in 
close proximity.

The lateral connection weights L
ijw  were defined by a difference-

of-Gaussian function to implement local excitatory connections and 
distant inhibitory connections (Figure 1D):

	 ( ) ( )πσ σ π βσ βσ

  − −  = −
     

2 2
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in which Ew  and Iw  determine the amplitudes of the Gaussian 
components; σL  and β  determine the standard deviations of the 
Gaussian components; and ijd  is the distance between the two neural 
populations i and j  given by:

	 ( ) ( )= − + −
2 2

.ij i j i jd x x y y
	

(18)
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The lateral connections enabled center-surround competition for 
salience computing, but the optimal values for Ew , Iw , σL , and β  
depend on the resolution at which the visual stimuli are processed. In 
addition, we assumed that there were individual differences in lateral 
interactions owing to variations in neurobiological characteristics. 
Therefore, we tested our model using various lateral connections by 
varying the values of Iw  and σL. We fixed = 2.0Ew  for simplicity and 
β =15 to maintain the excitatory-center, inhibitory-surround structure.

2.3 Models for comparison

We used two additional models—the Brecht-Saiki model (de Brecht 
and Saiki, 2006) and the Itti-Koch model (Itti et al., 1998)—to compare 
eye-movement prediction performance with our proposed model. The 
Brecht-Saiki model was implemented with slight modifications to 
accommodate differences in visual stimuli while preserving its 
fundamental structure. This model processes two color features (red and 
green) and two orientation features (0 and 90 degrees). The color features 
are derived directly from RGB values, while the orientation features are 
extracted using Gabor filters applied to images with a 96 × 54 resolution. 
These features serve as inputs to the artificial neural network. Therefore, 
input ,m iǏ  for neural population i in feature map m is represented as:
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where the constants colČ  ( )= 30  and oriČ  ( )= 30  are set to cause 
neural activity within a reasonable range. The neural network consists 
of maps, each of which is implemented as a 96 × 54 array of neural 
populations. The main differences in the neural network 
implementation from our proposed model (Equations 10–18) are the 
number of the maps and connections between them that underlie the 
feedforward signals. It has four feature maps ( =1,2,3,4m ), two 
conspicuity maps for color and orientation ( = 5,6,m  respectively), and 
a saliency map ( = 7m ). The feedforward signals received by neural 
population i in map m at time t  are given by:
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(20)

instead of Equation 12. Apart from the input (Equation 19) and 
feedforward signals (Equation 20), the other difference from the 
proposed model is that the lateral connection weights were set to be 
the same as those in the original Brecht-Saiki model. They are 

determined by Equation 17 with = 5.0Ew , = 250Iw , σ = 3.2L , and 
β =15 for feature maps and conspicuity maps, and there are no lateral 
connections in the saliency map.

We used the Itti-Koch model implemented in the GBVS toolbox 
for Matlab software (Harel et al., 2006). It computes salience based on 
a luminance feature, color features for red-green opponency and blue–
yellow opponency, and orientation features for 0, 45, 90, and 135 
degrees extracted using Gabor filters. The features were extracted from 
images at multiple scales (Gaussian pyramids) obtained from a visual 
stimulus. The center-surround competition was implemented without 
artificial neural networks. Instead, it followed these steps: first, 
normalization: each feature image was normalized to a fixed range 
 … 0 gM ; second, local maxima averaging: the average lM  of local 
maxima was computed, excluding global maximum gM ; third, global 

scaling: the entire map was multiplied by ( )−
2

g lM M . After the 
center-surround competition for each feature, the feature images were 
integrated into the saliency map.

2.4 Evaluation of the model performance in 
eye-movement prediction

We evaluated the performance of our proposed model with 
various lateral connections, alongside the Brecht-Saiki and Itti-Koch 
models, by applying them to eye-movement data. Performance was 
evaluated by quantifying the correspondence between the saliency 
map and fixation points (ground truth) obtained from eye-movement 
measurements. We used the Normalized Scanpath Saliency (NSS) 
metric for evaluation (Bylinskii et al., 2019; Kümmerer et al., 2018). 
To compute NSS, the saliency map was normalized to have zero mean 
and unit variance, and the normalized saliency values at fixation 
locations were averaged. An NSS value greater than 0 indicated 
correspondence between the saliency map and fixation points, with 
higher values suggesting better eye-movement prediction. We used 
visual stimuli and fixation data from the CAT2000 dataset (Borji and 
Itti, 2015). Considering the computational cost of simulating our 
proposed model with various lateral connection parameters, 
we selected five random visual stimuli from each of the 20 categories 
(100 stimuli in total) and corresponding fixation data instead of using 
the entire dataset. The saliency map at steady state (timepoint = 400t )  
was used for NSS metrics.

Here, we did not reproduce eye movement trajectories from the 
saliency map; instead, we simply used the saliency map as a reference 
metric for assessing the spatial distribution of fixation points. 
Predicting gaze trajectories requires incorporating additional 
characteristics into the model—such as saccade length, fixation 
duration, and inhibition of return—which increases model complexity. 
By using the NSS metric, we did not consider the individual sequence 
or path of eye movements, which offers a more tractable, though less 
precise, means of evaluating model performance.

2.5 Testing parameter estimation from 
simulated data

To assess our model’s ability to quantify individual differences in 
eye movements, we performed parameter estimation using artificially 
generated fixation points. This approach follows the parameter 
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recovery method, which evaluates whether a computational model 
can be effectively applied to behavioral data analysis (Wilson and 
Collins, 2019). The testing process consisted of the following steps. 
First, fixation points were artificially generated based on the saliency 
map computed by our model using a predefined parameter value. 
Second, the model was used to compute saliency maps for the same 
visual stimulus with various parameter values. Third, the NSS metric 
was used to quantify the correspondence between the generated 
fixation points and the computed saliency maps. Ideally, the best 
correspondence (highest NSS score) should occur when the estimation 
parameter matches the value used to generate fixations. We tested the 
estimation of Iw , which determines the strength of lateral connections 
(as described in Equation 17), while keeping σL fixed at 6.4. Fixation 
points were generated under the assumption that the normalized 
saliency map represents their probability distribution. Therefore, the 
saliency map was normalized such that its sum equaled 1, and fixation 
points were sampled accordingly. For each visual stimulus and 
parameter setting, 20 fixation points were generated, reflecting the 
scale of real experimental data used in saliency analysis. We used the 
same 100 CAT2000 visual stimuli from the model performance 
evaluation. The average NSS score across these 100 stimuli was 
computed, using the steady-state saliency map (timepoint = 400t ) for 
both fixation generation and NSS evaluation.

3 Results

Our model computes the time course of neural population 
activity. Figure 2A shows an example of the time series of activity in 
the saliency map caused by the simple visual stimulus shown in 
Figure 1A, which includes a vertical red bar as a salient object and 
many horizontal blue bars as non-salient objects. The activity of neural 
populations increased after stimulus presentation and then reached a 
steady state. The activity corresponding to the red bar became larger 
than that corresponding to the blue bars, indicating that the center-
surround competition weakened the activity for non-salient objects. 
There is still substantial activity for the blue bars (non-salient objects) 
at the steady state compared to the background (Figure 1B).

We evaluated the ability of our model to predict eye movements 
using visual stimuli and fixation data included in the CAT2000 dataset 
(Borji and Itti, 2015). The correspondence between the saliency map 
and the fixation points for each visual stimulus was measured using 

the NSS metric, and the model’s performance in eye-movement 
prediction was quantified as the average NSS score for 100 visual 
stimuli. We tested the model with various values of parameters Iw  and 
σL , which determine the lateral connection weights as described in 
Equation 17 in the Methods section. Figure 3A shows that the model’s 
performance in predicting eye movements varied depending on these 
parameter values. The distribution of lateral connection weights 
corresponding to some of these parameter values is plotted in 
Figure 3B. Lateral connections with excessive excitatory or inhibitory 
connections showed relatively low performance. We then compared 
the performance of our model with two other models. One is the Itti-
Koch model (Itti et al., 1998), which has been used for eye-movement 
analyses (Foulsham and Underwood, 2008; Miura et al., 2025; Yoshida 
et al., 2024) but does not address the neural implementation of center-
surround competition. Our model, when using parameter values that 
provide balanced lateral connections, achieved comparable 
performance with the Itti-Koch model (Figure 3C). The second model 
is the Brecht-Saiki model (de Brecht and Saiki, 2006), which 
implements center-surround competition using an artificial neural 
network but is limited to simple features. The average NSS score for 
this model was close to zero, indicating that its ability to predict eye 
movements for complex visual stimuli was nearly at chance level.

We next examined how saliency computation is altered by changes 
in the neural network parameters of our proposed model. We tested 
lateral connections with different excitatory-inhibitory balances and 
compared the resulting saliency maps. For clarity, we  set Iw  as 

{ }∈ 40,140,500Iw  and σL fixed at 3.2 to construct lateral connections, 
which differ from the parameter settings used for model performance 
evaluation in Figure 3. Figures 4A,B show some examples of visual 
stimuli and the corresponding output saliency maps, while Figure 4C 
shows the distribution of lateral connections used in these cases. 
When inhibitory connections were reduced, our model computed 
similar saliency values for both salient objects and non-salient objects. 
In contrast, when inhibitory connections are increased, the saliency 
of non-salient objects became significantly weaker. These results 
indicate that the difference in saliency between salient and non-salient 
objects is influenced by the excitatory-inhibitory balance. We also 
tested parameter changes related to the signal-to-noise ratio and 
reduced synaptic connections. We introduced baseline activity for 
neural populations by setting the parameter b in Equation 10 to =1b  
( = 0b  for other simulations), allowing each neural population to 
exhibit weak activity even in the absence of signals from other neural 

FIGURE 2

Transition of the neural activity computed in the proposed model for a simple visual stimulus. (A) Time course of the neural activity in the saliency map. 
Image of a vertical red bar and nine horizontal blue bars shown in Figure 1A used for the visual stimulus. The parameters for the lateral connections 
wI  and Lσ  were set as 140wI =  and 3.2,Lσ =  as in Figure 1D. The activity of neural populations in the region corresponding to each bar was 

averaged. (B) The activity of all neural populations in the saliency map at timepoint 400t =  in the same simulation as that of (A).
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populations. This adjustment, which can be regarded as modifying the 
signal-to-noise ratio of neural responses, resulted in a larger difference 
in saliency between salient and non-salient objects (Figure 4D, left). 
For reduced synaptic connections, we set the connection weights of 
60% of randomly chosen lateral connections to 0, which increased 
saliency values for non-salient objects (Figure 4D, right).

The results described above suggest that individual differences in 
saliency computation could be quantified by applying our model to 
eye-movement data analysis. To evaluate whether our model could 
function as a tool for analyzing eye-movement data, we  tested 
parameter estimation by comparing the computed saliency map with 
artificial fixation data. The analysis was based on estimating the 
parameter value that provided the best correspondence between the 
computed saliency map and eye-movement data. Here, we  used 
fixation data artificially generated from the saliency map computed by 
our model with specific parameters, which allowed us to directly 
compare the results of the parameter estimation with the true 
parameter value (i.e., the value used for generating data). The artificial 
fixation data was generated based on our model using five different 
settings where the parameters Iw , which determine lateral connection 
weights, were set as { }∈ 120,160,200,240,280Iw  (See Section 2.5 for 
more detailed methods). Representative examples of generated 
fixation points are shown in Figure 5A. When Iw  was set to the higher 
value, the model computed the saliency map in which salience for 
non-salient objects was weakened as shown in Figure 4B. Consequently, 
the generated fixations tended to cluster in regions of high salience. 
We  then calculated NSS scores to evaluate the correspondence 
between the artificially generated fixation points and the saliency map 
computed by our model using various values of Iw  for estimation. The 
average NSS scores for 100 visual stimuli are plotted in Figure 5B, 
showing that NSS scores were highest when the estimated Iw  value for 
parameter estimation was close to the one used for generating the 

fixation data. This distribution is desirable because the estimated 
parameter value, which achieves the highest correspondence (i.e., the 
highest NSS score), should ideally match the true value used to 
generate the fixation data. These findings demonstrate our model’s 
potential for accurate parameter estimation from eye-movement data.

4 Discussion

In this study, we  proposed a new computational model of 
abnormal bottom-up visual salience to facilitate the investigation of 
how neurobiological abnormalities alter salience computation. 
We designed the model to meet two key requirements. First, the core 
process of salience computing (i.e., center-surround competition) had 
to be  implemented at the neural level. Second, the model had to 
achieve eye-movement prediction performance comparable to that of 
established saliency map models used in previous eye-movement 
studies. We developed our model by extending the Brecht-Saiki model, 
which satisfies the first requirement but not the second, to ensure that 
both criteria were met. Our model incorporates an artificial neural 
network with excitatory center-inhibitory surround lateral connections 
(Figure 1), simulating the time course of neural population activity 
underlying center-surround competition (Figure 2). We demonstrated 
that its performance in predicting eye movements is comparable to 
that of the Itti-Koch model, a widely used model for eye-movement 
analysis, by setting balanced lateral connection parameters (Figure 3). 
We introduced disturbances into the neural network by modifying 
parameters, which resulted in changes in the computed salience 
difference between salient and non-salient objects. In other words, 
they altered the weighting of salience (Figure 4). Finally, we tested 
parameter estimation using artificially generated fixation data and 
demonstrated the potential application of our model in eye-movement 

FIGURE 3

Evaluation of model performance in eye-movement prediction. (A) Correspondence between fixation data measured in experiments and the saliency 
map computed by the proposed model, in which various parameter values wI  and Lσ  for lateral connections were set. Visual stimuli and fixation 
data included in CAT2000 dataset was used. Correspondence between fixations and the saliency map for each visual stimulus was calculated using 
NSS metrics, and the average NSS scores for 100 visual stimuli are plotted. (B) Distribution of lateral connection weights determined by five sets of 
parameter values corresponding to those denoted by colored squares in (A). (C) Comparison of performances of different models. Performances are 
quantified utilizing NSS metrics as in (A). Performances for the Itti-Koch model, the Brecht-Saiki model, and our proposed model with the five 
parameter sets denoted by colored squared in (A) are plotted.
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FIGURE 4

Demonstration of how saliency computing is altered by parameter changes in the proposed model. (A) Visual stimuli of bars (top), sailing (middle), and 
a room (bottom) used for the test. The latter two stimuli were obtained from CAT2000 dataset (Borji and Itti, 2015). (B) Saliency maps computed by the 
proposed model with varied values of the parameter wI  that determined lateral connections. Neural activity of saliency maps at the steady state 
(timepoint = 400)t  for visual stimuli of bars (top row), sailing (middle row), and a room (bottom row). (C) Distribution of lateral connections used for 
computing saliency maps in (B). (D) Saliency maps computed by the proposed model with baseline neural activity (left column) and with reduced 
synaptic connections (right column). Neural activity of saliency maps at the steady state (timepoint =t 400)  for visual stimuli of bars (top row), sailing 
(middle row), and a room (bottom row).

FIGURE 5

Test of parameter estimation from generated fixations. (A) Example of artificially generated fixation points for a visual stimulus (top) obtained from 
CAT2000 dataset (Borji and Itti, 2015). Fixation points were generated from the saliency map computed by the proposed model, where the parameter 

,wI  which modulates lateral connections, was set to 120 (bottom left) or 280 (bottom right). (B) Estimation of the parameter wI  using fixation points 
generated artificially from the saliency map of the proposed model with varied values of { }120,160,200,240,280 .wI ∈  The NSS metric was used to 
quantify the correspondence between the generated fixation points and the saliency map computed by the proposed model with various values of 
wI  for estimation. The NSS scores, averaged for 100 visual stimuli, are plotted.
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analysis (Figure 5). These results suggest that individual differences in 
salience computing, particularly in terms of salience weighting, can 
be quantified by applying our model to eye-movement data.

Our findings indicate that salience must be appropriately weighted 
through balanced center-surround competition. This contrasts with a 
simple winner-take-all strategy, which detects only the most salient 
object and works even if salience for non-salient objects is completely 
eliminated. Neural networks with lateral connections are at risk of 
excessive competition owing to continuous and iterative interactions. 
One key mechanism to overcome this risk is the normalization of 
neural activity within a reasonable range. As in the Brecht-Saiki model, 
we introduced depressing effects (Equation 13) to simulate synaptic 
depression (Abbott et al., 1997), which helps regulate the activity of 
each neural population. The Brecht-Saiki model indicated that synaptic 
depression prevents overcompetition (de Brecht and Saiki, 2006), and 
our model similarly showed that steady-state activity for non-salient 
objects was not entirely eliminated (Figure 2). Our simulations with 
parameter modifications (Figure 4) suggest additional mechanisms for 
achieving balanced competition. Introducing excitatory-inhibitory 
imbalance, baseline neural activity, and reduced synaptic connections 
each affected lateral interactions and altered the weighting of salience. 
Notably, baseline neural activity did not modify lateral connections 
themselves but influenced salience weighting, likely owing to increased 
lateral signaling. Although the neural basis of abnormal visual salience 
remains unknown, our computational modeling in this study provides 
a hypothesis on how neurobiological characteristics influence visual 
salience. We  showed that salience computing is normally well-
balanced, but neurobiological abnormalities can cause unbalanced 
lateral interactions, thereby altering the weighting of salience.

The disturbances introduced into our model are relevant to neural 
mechanisms implicated in mental disorders. First, Yizhar et al. (2011) 
reported that excitatory-inhibitory imbalance in the mouse neocortex 
was associated with social dysfunction (Yizhar et  al., 2011). Since 
excitatory glutamatergic pyramidal neurons and inhibitory GABAergic 
interneurons are indicated to play central roles in maintaining this 
balance, its disruption is linked to the glutamatergic hypothesis of 
schizophrenia (Uliana et al., 2024). Second, Jacob et al. showed that 
dopamine, a neurotransmitter implicated in mental disorders 
including schizophrenia, modulated the neural signal-to-noise ratio 
by altering the baseline activity of prefrontal neurons in monkeys 
(Jacob et  al., 2013). Accordingly, changes in baseline activity can 
be  associated with the dopaminergic hypothesis of schizophrenia 
(McCutcheon et al., 2020; Ott and Nieder, 2019). Finally, reduced 
synaptic connections are consistent to a study in which reduced 
dendritic spine density was observed in neocortical neurons of patients 
with schizophrenia in histological examinations (Garey et al., 1998).

The altered weighting of salience differs from the concept of 
abnormal salience described in conventional theory. The aberrant 
salience hypothesis, a theory of schizophrenia pathophysiology, 
suggests that the misattribution of motivational salience to stimuli 
irrelevant to external conditions may underlie schizophrenia symptoms 
(Kapur, 2003). Motivational salience is attributed based on reward 
prediction and is associated with reward-related learning, in which 
phasic changes in dopamine activity corresponding to reward 
prediction errors adjust corticostriatal learning to ensure accurate 
reward prediction (Bromberg-Martin et al., 2010). If phasic dopamine 
activity occurs independently of stimuli, motivational salience can 
become disturbed. Indeed, spontaneous phasic dopamine activity was 
observed in animals treated with amphetamine (Daberkow et al., 2013), 

which may lead to randomly assigned reward prediction and 
motivational salience unrelated to actual stimuli. In contrast to such 
random generation of salience, the altered weighting of salience 
proposed by our model remains stimuli-dependent. In this case, 
salience that should be  moderate becomes excessively high or low 
(Figure 4). This pattern of alteration is also supported by empirical 
findings in eye-movement studies. Patients with schizophrenia tend to 
concentrate their gaze within a narrower area of the visual stimulus 
compared to healthy controls (Okada et al., 2021). Furthermore, the 
mean value of salience at fixation points, quantified using the Itti-Koch 
model, was higher in participants with schizophrenia than in healthy 
controls (Miura et al., 2025; Yoshida et al., 2024). These findings are 
consistent with our simulations, in which salience for non-salient object 
was attenuated by enhanced lateral interactions (Figure 4), and fixations 
artificially generated from saliency maps with such altered weighting 
tended to cluster in regions of high salience (Figure  5). Therefore, 
disturbances in salience processing may take different forms—some 
individuals may experience random salience generation, others may 
exhibit altered salience weighting, and some may be affected by both. 
To detect abnormalities in salience processing from experimental data, 
models that explicitly address how salience is disturbed are needed 
(Miyata et al., 2024).

Our computational modeling is based on simplified assumptions 
as we focused on bottom-up salience computing associated with 
excitatory center-inhibitory surround lateral interactions. In our 
model, signals corresponding to extracted features are sent to 
multiple maps within the artificial neural network and processed 
separately. However, the corresponding structures in the brain 
remain unclear, and these maps may not be spatially distinct in 
actual neural circuits. This issue relates to the binding problem 
(Treisman, 1996), which concerns how different types of feature 
information are processed separately and integrated. One proposed 
solution to the binding problem is temporal binding (Engel and 
Singer, 2001), which suggests that information integration and 
separation depends on whether neural activity synchronizes or not. 
Therefore, one possible extension of our model would be  to 
introduce neural phase synchronization. Another approach is to 
separate information processing through more complex lateral 
connections. Although we did not consider neuron types in this 
study, the brain consists of various types of neurons, and synaptic 
connectivity depends on neuron type. A simple computational 
saliency map model proposed by Li includes pyramidal cells and 
interneurons in the primary visual cortex, where excitatory 
connections depend on whether neurons prefer similar orientations 
(Li, 2002). Information processing may be  separable through 
connectivity patterns based on the specific features that presynaptic 
and postsynaptic neurons respond. Models incorporating various 
types of connectivity may account for additional bottom-up 
attentional mechanisms. A recent study on avian midbrain networks 
involved in salience computation indicated that bottom-up stimulus 
selection is modulated by local inhibitory surrounds that depend on 
stimulus feature similarity, in combination with global inhibitory 
surrounds that are independent of feature similarity (Qian et al., 
2025). While incorporating such complex biological characteristics 
is beyond the scope of our current study, computational modeling 
based on detailed neurobiological findings may enable a more 
biologically realistic implementation of visual salience computation.

In this study, we  considered the effect of altered bottom-up 
salience on eye movements; however, eye movements do not depend 
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solely on bottom-up salience. They can also be influenced by top-down 
cognition (i.e., semantic understanding of scenes and goal-related 
information). In addition, the balance between bottom-up and 
top-down processes may be  important for visual attention, as an 
eye-movement study suggested that schizophrenia patients tend to 
prioritize bottom-up visual salience over top-down cognition 
(Adámek et al., 2024). Evaluating abnormalities in bottom-up visual 
salience is still possible by applying saliency map models to 
eye-movement data (Miura et al., 2025; Yoshida et al., 2024) because 
bottom-up salience computation itself may not be  disturbed by 
top-down cognition, and eye movements reflect the effect of 
bottom-up salience, which can be  extracted using saliency 
map models.

For more precise analyses of abnormal salience, however, we face 
the challenge of distinguishing altered bottom-up salience, altered 
top-down cognition, and an imbalance between bottom-up and 
top-down processes. To address this issue, it is important to consider 
that top-down cognition depends heavily on whether visual stimuli are 
interpretable. For example, top-down cognition would have strong 
effects on eye movements for meaningful stimuli and weak effects for 
meaningless stimuli. Measuring eye movements with various types of 
visual stimuli is therefore useful, as demonstrated by the CAT2000 
dataset used in this study, which includes 20 categories of images (Borji 
and Itti, 2015). It is also notable that the effects of top-down processes 
do not appear immediately after stimulus presentation but occur later 
in time (Theeuwes, 2010). Data acquisition and analysis based on 
stimulus type and time after presentation may help distinguish 
top-down and bottom-up factors. Using computational models that 
incorporate top-down cognition in combination with models designed 
solely for bottom-up salience is also beneficial. Deep learning-based 
saliency map models are typically trained in an end-to-end manner to 
predict eye movements directly from visual stimuli, and are thus 
considered to reflect both bottom-up salience and top-down cognition. 
This characteristic may explain their high performance in eye-movement 
prediction. Indeed, such models outperform those designed only to 
capture bottom-up salience. For example, Kroner et al. evaluated their 
proposed deep learning-based model using the same dataset and the 
metrics (CAT2000 and NSS) as those employed in the present study, 
reporting an NSS score of 2.30 (Kroner et  al., 2020)—substantially 
higher than the scores achieved by bottom-up salience models, 
including ours, which reached at most around 1.15, as shown in 
Figure 3. However, simply applying such deep learning-based models to 
data analysis makes it difficult to disentangle bottom-up and top-down 
effects on eye movements. As demonstrated by Adámek et al., analyzing 
eye movements with both bottom-up and deep learning-based models, 
and comparing their results, enables a more distinct evaluation of these 
two types of influences (Adámek et  al., 2024). Taken together, our 
proposed model has the potential to quantify altered weighting of 
salience as reflected in eye movements, and this potential can be further 
enhanced through refined experimental designs and analyses.
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