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Objective: To explore atrophy patterns in thalamic nuclei at different phases 
of amyotrophic lateral sclerosis (ALS) and determine any correlations between 
thalamic nucleus volume and either cognitive impairments or motor disabilities.

Methods: We used the King’s clinical staging system for ALS to divide 76 
consecutive patients with ALS by disease stage. We  investigated patterns of 
thalamic atrophy in the patients and in 94 healthy controls (HCs). Cognitive 
functions were evaluated with the Mini-Mental State Examination (MMSE), 
Frontal Assessment Battery, Boston Naming Test, and Auditory Verbal Learning 
Test.

Results: Considering all ALS patients, no significant differences were observed 
in the volume of any thalamic nuclei between the ALS group and HCs. Thalamic 
nucleus volumes remained normal in ALS patients at King’s Stage 2 and Stage 3. 
However, atrophy was detected in the bilateral anteroventral nucleus, bilateral 
pulvinar-limitans, bilateral mediodorsal-paratenial-reuniens, bilateral motor 
hub, bilateral sensory hub, and bilateral intralaminar nucleus in patients who 
had reached King’s Stage 3. In these patients, the volume of the bilateral motor 
nuclei was associated with the revised ALS Functional Rating Scale scores, and 
that of the right pulvinar-limitans independently correlated with MMSE scores.

Conclusion: Our study provides a comprehensive profile of thalamic atrophy in 
ALS patients. The thalamic atrophy patterns in these patients extremely differs at 
different King’s Stages, and we suggest that these alterations might result largely 
from sequential, regional patterns of TDP-43 pathology in ALS. Furthermore, 
thalamic atrophy might play important roles in motor disability and global 
cognitive impairments observed in patients with ALS.
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Introduction

Amyotrophic lateral sclerosis (ALS) is a rare neurodegenerative 
disease with both clinical and hereditary heterogeneity (Swinnen and 
Robberecht, 2014; Taylor et al., 2016; Eisen et al., 2017). ALS is likely 
derived from cortical influences, selectively damaging the anterior 
horn cells of the spinal cord, motor nuclei of the brainstem and 
pyramidal tracts, etc., resulting in asymmetric muscle weakness and 
muscle atrophy starting from the distal limbs in patients and is 
currently considered a multisystemic disorder in which almost half of 
patients present with varying degrees of cognitive deficits (Eisen et al., 
2017; Braak et al., 2013). The high differentiation and complexity of 
the human CM system make it more susceptible to the pathology of 
43 kDa transactive response DNA-binding protein (TDP-43) 
pathology in ALS is typically detected in the motor cortex at early 
Braak stages, with sequential spread to the prefrontal cortex, thalamus, 
and hippocampus. The resulting corticospinal tract damage underlies 
asymmetric muscle weakness and distal limb atrophy (Eisen et al., 
2017; Braak et  al., 2013; Brettschneider et  al., 2013; Kassubek 
et al., 2014).

The thalamus is a crucial relay center of the brain, comprising 
multiple highly specific nuclei (Sherman, 2016). Neuronal populations 
located in distinct nuclei of the thalamus are associated with various 
functional specializations, and are connected to different cortical areas 
(Sherman, 2016; Jaramillo et al., 2019). Notably, neuroimaging studies 
of thalamic volume in patients with ALS have so far been largely 
contradictory, with reports of both no differences and smaller 
volumes, compared with healthy individuals (Finegan et al., 2019; Tae 
et al., 2020; Westeneng et al., 2015). Recently, Chipika et al. suggested 
that the controversy is rooted in the averaging of biophysical indices 
across affected and unaffected thalamic nuclei (Chipika et al., 2020). 
However, according to Braak stages, TDP-43 pathology in ALS is not 
typically detected in the large neurons of thalamic nuclei until Braak 
stage 2 (Brettschneider et al., 2013). Thus, thalamic alterations are not 
likely to be an early feature of ALS.

The current study had two aims. First, using a relatively large 
sample, we  wished to verify whether selective atrophy of thalamic 
nuclei occurs in Chinese patients with ALS. We further hypothesized 
that volumetric alterations in these susceptible thalamic nuclei would 
emerge only at advanced disease phases. Thus, we  used the well-
validated King’s clinical staging system for ALS to explore atrophy 
patterns in thalamic nuclei at different disease stages using in vivo 
structural MRI (Roche et al., 2012). Second, the thalamus is known to 
be  essential for cognition (Sherman, 2016; Behrens et  al., 2003). 
Although few studies have focused on this topic in ALS, thalamic 
abnormalities are likely involved in the cognitive impairment observed 
in older individuals and in other neurodegenerative diseases (Low et al., 
2019; Bocchetta et al., 2020; Aggleton et al., 2016). Thus, in the present 
study, we sought to explore distinct thalamic atrophy-related correlates 
of cognitive impairment and motor disability in patients with ALS.

Materials and methods

Participants

Seventy-eight newly diagnosed patients with ALS were consecutively 
included in the study between November 2019 and November 2020. All 

patients met the revised El Escorial criteria for possible, probable, or 
definite ALS. All patients were verified as presenting with progressive 
disability during a three-month telephone follow-up visit. The exclusion 
criteria for the patients were as follows: (1) family history of ALS; (2) 
inability to complete an MRI scan; (3) comorbid frontotemporal 
dementia (FTD); (4) comorbid with other neurological or psychiatric 
conditions, and (5) refused to participate. We used the Rascovsky criteria 
to diagnose FTD (Rascovsky et al., 2011). Additionally, 94 age-matched 
healthy controls (HCs) were also recruited from community. HCs were 
subjected to the same exclusion criteria as ALS patients.

Clinical screening

We recorded all demographic and clinical information, including 
age, sex, education, family history of neurological disease, comorbid 
conditions, site of symptom onset, and disease duration. The revised 
ALS Functional Rating Scale (ALSFRS-R) was used to assess disease 
severity (Cedarbaum et  al., 1999). Depression and anxiety were 
quantified using the Hamilton Depression Rating Scale (HDRS) and 
the Hamilton Anxiety Rating Scale (HARS), respectively (Liu et al., 
2018). The information was then corroborated by an informant (the 
patient’s spouse, relative, or primary caregiver).

Neuropsychological evaluation

The patients completed a neuropsychological test battery to screen 
for cognitive and behavioral features (Liu et al., 2018; Pan et al., 2020). 
Briefly, the screening battery included the Mini-Mental State 
Examination (MMSE), Frontal Assessment Battery (FAB), Boston 
Naming Test (BNT), and Auditory Verbal Learning Test (AVLT). 
Behavioral symptoms were assessed through an interview with the 
informant and quantified using the Frontal Behavioral Inventory (FBI).

ALS staging

During clinical screening, clinical staging was evaluated using 
King’s clinical staging system (Roche et al., 2012). Stages 1–3 of the 
disease are based on the body regions involved (bulbar, upper limbs, 
and lower limbs), and Stage 4 is defined as the necessity of nutritional 
or respiratory support. The King’s staging system might be closely 
linked to anatomical spread. Because the naming of the Stage 4 
milestones is potentially problematic, patients with ALS have 
demonstrated less homogeneity between Stage 4 and the other three 
stages, and only two patients in this cohort were classified as King’s 
Stage 4, we opted not to include Stage 4 in the final analysis.

MRI acquisition

All MRI data were obtained on a 3.0 T magnetic resonance system 
(Philips Medical System Ingenia scanner) with dStream head coil. 
During the scan, all subjects were asked to be quiet, remain supine, 
and refrain from any conscious thinking. Structural images of the 
whole brain were scanned using a three-dimensional (3D) fast spoiled 
gradient-echo sequence: repetition time (TR) = 6.7 ms, echo time 
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(TE) = 3.0 ms, matrix = 68 × 68, voxel size = 1 mm × 1 mm × 1 mm, 
field of view (FOV) = 240 mm × 240 mm, slice thickness = 1.0 mm, 
no slice gap, and a total of 180 slices. FLAIR data were scanned using 
TR = 7,000 ms, Flip Angle 90°, TE = 125 ms, acquisition 
matrix = 272 × 176, and slice thickness 6 mm.

Thalamic nuclei segmentation

In the present study, thalamic nuclei were automatically segmented 
and measured using FreeSurfer version 7.1.0.1 A package available in 
FreeSurfer 7.1.0 was able to automatically segment the thalamic nuclei 
(Iglesias et al., 2018). Using this algorithm, the thalamus was accurately 
segmented into the following nuclei: anteroventral (AV), laterodorsal 
(LD), lateral posterior (LP), ventral anterior (VA), ventral anterior 
magnocellular (VAmc), ventral lateral anterior (VLa), ventral lateral 
posterior (VLp), ventral posterolateral (VPL), ventromedial (VM), 
central medial (CeM), central lateral (CL), paracentral (Pc), 
centromedian (CM), parafascicular (Pf), paratenial (Pt), reuniens 
(medial ventral) (MV-re), mediodorsal medial magnocellular (MDm), 
mediodorsal lateral parvocellular (MDl), lateral geniculate (LGN), 
medial geniculate (MGN), limitans-suprageniculate (L-SG), pulvinar 
anterior (PuA), pulvinar medial (PuM), pulvinar lateral (PuL), and 
pulvinar inferior (PuI) (Figure 1) (Iglesias et al., 2018). The procedure, 
which included motion correction, intensity normalization, automated 
topology corrections, and the automatic segmentation of cortical and 
subcortical regions, has been documented in detail elsewhere (Chipika 
et al., 2020). Total intracranial volume (TIV) was calculated for each 
participant for further analysis as a covariate. FreeSurfer segmentation 
follows the standard quality control of the software and verifies the 
results through repeated measurements to ensure reliability.

1 http://surfer.nmr.mgh.harvard.edu

Several nuclei, including some relevant to ALS, were not examined 
because of their small size or lack of contrast with surrounding white 
matter. These included the laterodorsal, lateral, and medial geniculate 
nuclei. The remaining thalamic nuclei were merged into seven core 
groups based on their distinct physiological function (Table  1) 
(Chipika et  al., 2020; Iglesias et  al., 2018). In the current study, 
we  limited analysis to these core groups because of their reliable 
segmentation and putative involvement in ALS.

Ethical approval

This study was approved by the Research Ethics Committee of 
the School of Medicine, Shandong University. Participant 
information was only collected after all patients and HCs were 
made aware of the purpose of the study and provide informed 
written consent.

Statistical analysis

Clinical data analysis
Continuous variables are reported as the mean and standard 

deviation, whereas categorical variables are reported as the frequency 
and proportion. Student’s t-tests or analysis of variance (ANOVA) 
were used to compare continuous variables (with Mann–Whitney U 
tests as necessary). Categorical variables were compared using 
chi-squared tests. Bonferroni-corrected post hoc t-tests were 
performed to identify pairwise group differences. Bonferroni 
correction is a conservative method that adjusts the significance 
threshold by dividing the alpha level (α = 0.05) by the number of tests, 
which is ideal for confirmatory research where false positives must 
be minimized. p-values < 0.05 indicated significance. All statistical 
analyses were performed using SPSS version 20.0 (IBM Corp., 
Armonk, NY).

FIGURE 1

Atlas-based segmentation of the thalamus. AV, anteroventral; LD, laterodorsal; LP, lateral posterior; VA, ventral anterior; VAmc, ventral anterior 
magnocellular; VLa, ventral lateral anterior; VLp, ventral lateral posterior; VPL, ventral posterolateral; VM, ventromedial; CeM, central medial; CL, central 
lateral; Pc, paracentral; CM, centromedian; Pf, parafascicular; Pt, paratenial; MV-re, reuniens medial ventral; MDm, mediodorsal medial magnocellular; 
MDl, mediodorsal lateral parvocellular; LGN, lateral geniculate; MGN, medial geniculate; L-SG, limitans-suprageniculate; PuA, pulvinar anterior; PuM, 
pulvinar medial; PuL, pulvinar lateral; PuI, pulvinar inferior.
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MRI data analysis
For each GM structure, analysis of variance (ANOVA) models was 

constructed to investigate differences in the structural volumes maps 
between groups. We used age, sex, and TIV as covariates. To identify 
pairwise group differences, further post hoc t-tests were performed 
between groups. After Bonferroni correction, p < 0.05 was taken as 
significant. Partial correlations were performed between the imaging 
metrics and the clinical data, controlling for age, sex, and TIV. To 
avoid type II errors, the partial correlations were restricted to clinical 
data and imaging metrics that were significantly different between 
groups. Values of p < 0.05 were recognised as significant.

Results

Demographic and clinical information

Finally, seventy-six consecutive patients with ALS and 94 HCs 
were included in the present study. All ALS patients completed the 
clinical screening, MRI acquisition, behavior, anxiety and depression 
assessment. A total of 76 ALS patients completed the cognitive test 
battery while the remaining two patients were unable to due to severe 
physical disability. MMSE and FAB scores were lower in the patients 
than in HCs (p < 0.05). HDRS and HARS scores were higher in the 
patients than in HCs (p < 0.05). Demographic and clinical information 
for patients and HCs are shown in Table 2.

Findings among patients with ALS at 
different King’s clinical stages

On the basis of the body regions involved, patients with ALS were 
divided into corresponding King’s clinical stages at clinical screening. 
No significant differences were found among the three patient 
subgroups for most information, except for age and ALSFRS-R score. 
Post-hoc analysis shown that patients at King’s Stage 3 were 
significantly older than those at King’s Stage 1. Moreover, ALSFRS-R 
scores also differed significantly according to King’s stage. 
Demographic and clinical information for each disease-stage group 
are shown in Table 3.

Volumes of thalamic nuclei

No significant differences were observed in thalamic nuclei 
volumes between the whole ALS group and HCs. However, significant 
differences were found for all nuclei except the right lateroposterior 
nucleus when comparing across ALS King’s stage subgroups and HCs 
(Table 4).

Post hoc analysis showed that compared with HCs, ALS patients 
at King’s Stage 3 had reduced volumes for the bilateral anteroventral, 
bilateral pulvinar-limitans, bilateral mediodorsal-paratenial-
reuniens, bilateral motor hub, bilateral sensory hub, bilateral 
intralaminar, and bilateral global thalamus groups after Bonferroni 
correction. No significant differences in thalamus volumes were 
observed between the HCs and patients with ALS at King’s Stage 1 or 
Stage 2. Compared with patients at King’s Stage 1, those at King’s 
Stage 3 had less volume in the left pulvinar-limitans, left mediodorsal-
paratenial-reuniens, bilateral motor hub, bilateral sensory hub, 
bilateral intralaminar, and bilateral global thalamus groups after 
Bonferroni correction. Compared with patients at King’s Stage 2, 
those at King’s Stage 3 had less volume in the bilateral pulvinar-
limitans, bilateral mediodorsal-paratenial-reuniens, bilateral motor 
hub, bilateral sensory hub, bilateral intralaminar, and bilateral global 
thalamus groups after Bonferroni correction. Profiles of the thalamic 
nuclei for HCs and patients with ALS at each disease stage are 
presented in Figure 2.

TABLE 1 Thalamic core group.

Thalamic core group Thalamic nuclei

Anteroventral AV

Pulvinar-limitans PuA, PuM, PuL, PuI, L-SG

Lateroposterior LP

Mediodorsal-paratenial-reuniens MDm, MDl, MV-re, Pt

Motor hub VA, VAmc, VLa, VLp

Sensory hub VPL, VM

Intralaminar CeM, CL, Pc, CM, Pf

AV, anteroventral; LD, laterodorsal; LP, lateral posterior; VA, ventral anterior; VAmc, ventral 
anterior magnocellular; VLa, ventral lateral anterior; VLp, ventral lateral posterior; VPL, 
ventral posterolateral; VM, ventromedial; CeM, central medial; CL, central lateral; Pc, 
paracentral; CM, centromedian; Pf, parafascicular; Pt, paratenial; MV-re, reuniens medial 
ventral; MDm, mediodorsal medial magnocellular; MDl, mediodorsal lateral parvocellular; 
LGN, lateral geniculate; MGN, medial geniculate; L-SG, limitans-suprageniculate; PuA, 
pulvinar anterior; PuM, pulvinar medial; PuL, pulvinar lateral; PuI, pulvinar inferior.

TABLE 2 Demographic and clinical features of patients with ALS and HCs.

Variable Patients with 
ALS (n = 76)

HCs (n = 94) p-value

Age (years) 57.5 ± 11.3 55.2 ± 6.8 0.11

Men/Women (n) 43/33 35/59 0.01

Education 9.5 ± 4.0 10.3 ± 3.8 0.17

ALS duration (month) 11.6 ± 7.5 – –

Bulbar ALS onset n, 

(%)

17 (22.3) – –

ALSFRS-R score 41.4 ± 3.2 – –

Riluzole, n (%) 5 (6.5) – –

King’s clinical stage 

(stages 1/2/3), %

26.3, 52.6, 21.0% – –

MMSE 26.6 ± 3.0 28.3 ± 1.9 <0.01

FAB 14.6 ± 2.0 17.2 ± 0.7 <0.01

FBI 1.2 ± 1.4 – –

BNT 23.7 ± 4.2 24.9 ± 4.1 0.16

AVLT, short delayed 

(5 min)

7.2 ± 3.1 7.7 ± 3.3 0.24

AVLT, long delayed 

(20 min)

6.5 ± 3.3 7.4 ± 2.8 0.06

HARS 8.1 ± 4.6 2.6 ± 3.7 <0.01

HDRS 11.4 ± 7.1 3.4 ± 3.8 <0.01

ALS, amyotrophic lateral sclerosis; HC, healthy control; ALFRS-R, ALS Functional Rating 
Scale-Revised; MMSE, Mini-Mental State Examination; FAB, Frontal Assessment Battery; 
FBI, Frontal Behavioral Inventory; BNT, Boston Naming Test; AVLT, Auditory Verbal 
Learning Test; HARS, Hamilton Anxiety Rating Scale; HDRS, Hamilton Depression Rating 
Scale.
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Correlation analyses

There were no significant correlations between thalamic 
nucleus volume and clinical data for patient at King’s Stage 1 or 
2. However, for patients at King’s Stage 3, we found a significant 
correlation between ALSFRS-R and left (r = 0.517, p = 0.04), and 
right (r = 0.544, p = 0.03) motor nuclei volumes. Moreover, right 
pulvinar-limitans volume significantly correlated with MMSE 
score (r = 0.584, p = 0.02). We  did not find any significant 
correlations between thalamic nuclei volumes and disease course, 
FAB score, BNT score, HARS score, or HDRS score.

Discussion

In a relatively large cohort of patients with ALS, with a state-of-
the-art thalamic segmentation approach, we demonstrated that the 
pattern of thalamic atrophy observed in patients with ALS extremely 
differed at different King’s clinical disease stages. We  found that 
thalamic atrophy, either global or at specific nuclei, did not emerge 
until King’s Stage 3. Furthermore, we also found that after controlling 
for age, sex, and TIV, for patients at Stage 3, reduced volume in 
bilateral thalamic motor nuclei was associated with greater disease 
severity, and reduced volume in the right pulvinar-limitans was 

independently correlated with global cognitive deficit. Thus, thalamic 
atrophy may play pivotal roles in the motor disabilities and cognitive 
impairments in ALS. Our findings align with the perspective that ALS 
is a multisystemic neurodegenerative disorder, with prior 
neuropathology studies suggesting that TDP-43 pathology may 
originate in the motor cortex and spread in a sequential, regional 
pattern. The thalamic atrophy patterns observed in Stage 3 patients 
further support this model of neurodegenerative spread, even as our 
study focuses on subcortical changes (Brettschneider et al., 2013).

Although thalamus abnormalities in patients with ALS have 
been extensively detected by dedicated metabolic and functional 
imaging studies, volumetric atrophy of the thalamus detected by 
structural MRI in patients with ALS remain largely contradictory. 
Some studies have reported no differences, while others have 
reported smaller volumes, and still others have reported focal 
atrophy limited to specific thalamic nuclei (Finegan et al., 2019; Tae 
et al., 2020; Westeneng et al., 2015; Sharma et al., 2011; Chiò et al., 
2014). Brettschneider and colleagues reported that TDP-43 
pathology, which are the signal of neuronal damage in patients with 
ALS, can be divided into four stages according to their range and 
severity (Braak stages) (Brettschneider et al., 2013). Braak stage 2 is 
characterized by TDP-43 pathology in the prefrontal areas, reticular 
formation, and precerebellar nuclei (Brettschneider et al., 2013). 
Moreover, the large neurons of the thalamic nuclei also develop 
TDP-43 pathology at this stage (Brettschneider et al., 2013). Thus, 
according to the Braak stage, TDP-43 pathology-related thalamic 
alterations emerge at Stage 2 (Brettschneider et al., 2013). In line 
with neuropathology studies, our findings further demonstrated that 
atrophy of thalamic nuclei in patients with ALS did not emerge until 
King’s Stage 3. Overall, our data and those of others suggest that 
thalamic alterations are not likely to be an early feature of ALS. The 
controversy regarding thalamic atrophy in previous neuroimaging 
studies of ALS was likely caused by averaging biophysical indices of 
patients across affected and unaffected disease stages (Kassubek 
et al., 2014; Finegan et al., 2019; Tae et al., 2020; Westeneng et al., 
2015). For example, global thalamic volume without nuclear 
segmentation, which masks regional atrophy (Westeneng et  al., 
2015), pooled measurements of functionally distinct nuclei (e.g., 
merging motor and sensory hubs), ignoring regional vulnerability 
to TDP-43 pathology (Chipika et al., 2020).

Indeed, our findings demonstrated that neither global thalamus 
volume nor the volumes of specific thalamic nuclei, differed 
significantly between the ALS group as a whole and HCs. However, 
when we used the well-validated King’s clinical staging system to 
divide ALS patients into disease-stage subgroups, we found that 
although thalamic volume remained normal for patients at King’s 
Stage 1 and 2, global thalamic volume was reduced in patients at 
King’s Stage 3, as were the volumes of a great number of individual 
nuclei. Recently, Tae and colleagues also reported that thalamic 
volumes did not differ significantly between patients with ALS and 
HCs in a group of patients at relatively early-phase ALS (disease 
duration of only 12.99 months) (Tae et al., 2020). Westeneng and 
colleagues reported that even though patients with ALS did not 
exhibit reduced thalamic volume at baseline compared with HCs, 
thalamic volume tended to be reduced after a 5-month follow-up 
(Westeneng et  al., 2015). However, they did not analyze the 
volumes of individual thalamic nuclei. Chipika and colleagues 
reported the involvement of ventral lateral, ventral anterior, 

TABLE 3 Demographic and clinical information for each disease stage 
subgroup.

Variable Stage 1 
(n = 20)

Stage 2 
(n = 40)

Stage 3 
(n = 16)

F or 
χ2

p-
value

Age (years) 53.7 ± 12.3 57.0 ± 10.8 63.2 ± 9.5 3.45 0.04

Men/

Women (n)

11/9 25/15 7/9 1.66 0.43

Education 10.3 ± 3.9 9.1 ± 4.1 9.5 ± 3.6 0.53 0.59

ALS 

duration 

(month)

9.1 ± 4.1 12.1 ± 8.5 13.1 ± 7.6 1.55 0.22

Bulbar ALS 

onset n, (%)

5 (25) 9 (22.5) 3 (18.7) 0.07 0.96

ALSFRS-R 

score

44.5 ± 1.4 41.3 ± 2.3 37.8 ± 2.9 38.05 <0.01

MMSE 27.4 ± 2.6 26.4 ± 2.6 26.1 ± 4.1 1.02 0.36

FAB 15.1 ± 1.1 14.7 ± 2.1 13.8 ± 2.4 1.85 0.17

BNT 25.2 ± 4.8 23.3 ± 3.8 22.8 ± 4.1 1.84 0.16

AVLT, short 

delayed

7.9 ± 3.2 7.0 ± 2.9 6.8 ± 3.2 0.68 0.51

AVLT, long 

delayed

7.2 ± 3.5 6.2 ± 3.3 6.1 ± 3.2 0.67 0.50

HARS 8.7 ± 4.8 7.6 ± 4.6 8.7 ± 4.0 0.44 0.64

HDRS 12.4 ± 9.8 10.5 ± 5.9 12.3 ± 5.4 0.63 0.53

ALS, amyotrophic lateral sclerosis; HC, healthy control; ALFRS-R, ALS Functional Rating 
Scale-Revised; MMSE, Mini-Mental State Examination; FAB, Frontal Assessment Battery; 
FBI, Frontal Behavioral Inventory; BNT, Boston Naming Test; AVLT, Auditory Verbal 
Learning Test; HARS, Hamilton Anxiety Rating Scale; HDRS, Hamilton Depression Rating 
Scale.
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mediodorsal-paratenial-reuniens, and sensory thalamic nuclei in a 
group of patients with advanced-stage ALS (mean ALSFRS-R 
scores of 36.6), suggesting the preferential involvement of specific 
nuclei rather than global thalamic atrophy in patients with ALS 
(Chipika et al., 2020). These studies further support our viewpoint, 
although they do not divide patients into subgroups according to 
disease stages.

The thalamus is well known to participate in many different 
neuronal pathways, with functions that are not restricted to motor 
behavior, including those related to emotional and cognitive 
abilities (Sherman, 2016; Behrens et al., 2003). Atrophy in distinct 
thalamic nuclei might contribute to phenotype-defining cognitive, 
mood, and motor deficits, however, few studies have focused on 
these relationships in patients with ALS (Sherman, 2016; Jaramillo 
et al., 2019). In a group of 20 patients with ALS, Tu and colleagues 
used diffusion MRI to show that widespread changes in diffusion 
patterns in motor and extramotor thalamic regions, as well as 
diffusivity measures, were significantly correlated with disease 
duration and ALSFRS-R score (Tu et al., 2018). Recently, Chipika 
and colleagues found a significant association between pulvinar 
volume and disease duration, but no direct correlations between 
motor nuclei volume and ALSFRS-R score (Chipika et al., 2020). 
The current study further demonstrates that the volume of 
thalamic motor nuclei is associated with ALSFRS-R scores in 
patients with ALS. Foremove, previous studies did not establish 
the relations between specific thalamic nuclei volumes and 
cognitive impairments in ALS patients (Finegan et al., 2019; Tae 
et al., 2020; Westeneng et al., 2015). In particular the thalamus is 
extensively connected to cerebral cortex. and play a key role in 
cognition (Sherman, 2016).

Thus, one of the key findings of this study was to demonstrate 
volume reduction of the specific thalamic nuclei are significantly 
associated with cognitive deficits in patients with ALS. In the present 
study, the volume of the right pulvinar-limitans nucleus was associated 
with global cognitive functions in the patients with ALS. In line with 
our study, in a large cohort of patients with psychotic disorders, 
Huang and colleagues also found that global cognitive function was 
associated with pulvinar volume rather than mediodorsal nuclei 
volumes (Huang et al., 2020). Indeed, the pulvinar is a crucial region 
of the limbic system, and might play a physiological role in attentional 
processing, working memory, and decision making. Effective 
connections between cortical areas could be gated by the pulvinar, 
and, thus, pulvinar lesions could influence cognitive functions 
through the pulvino-cortical circuits (Jaramillo et al., 2019). Moreover, 
recent studies show that cognitive impairment might worsen across 
King’s stages in patients with ALS (Chiò et al., 2019). Our findings 
provide evidence that supports these studies and further highlights the 
fact that cognitive deficits do not rely solely on cortical integrity, but 
also depend on the thalamus in ALS. Thus, the thalamus is critical and 
its degeneration in patients with ALS may underlie some of the 
observed cognitive impairments (Gregory et  al., 2020; Machts 
et al., 2015).

The present study had several limitations. First, we used a cross-
sectional design, preventing the establishment of causality between 
thalamic atrophy, motor disability, and cognitive deficits. Second, our 
results were susceptible to selection bias because the patients who 
visit our center commonly have a relatively short disease course (we 
are the largest ALS center in the Shandong province). Third, our 
study only used structural MRI to explore the changes of thalamic 
gray matter. Further studies are still needed to verify whether our 

TABLE 4 Profiles of the thalamic nuclei at each ALS disease stage and for HCs.

Thalamic nuclei HCs (n = 94) Stage 1 (n = 20) Stage 2 (n = 40) Stage 3 (n = 16) F p-value

Left thalamus, mm3

Anteroventral 113.1 ± 18.9 113.6 ± 16.9 110.6 ± 20.0 99.0 ± 12.4 2.75 0.04

Pulvinar-limitans 1772.5 ± 189.2 1829.3 ± 216.2 1783.2 ± 240.8 1597.7 ± 176.7 4.36 <0.01

Lateroposterior 102.6 ± 17.9 109.1 ± 20.3 102.0 ± 17.5 91.3 ± 20.2 2.83 0.04

Mediodorsal-paratenial-

reuniens

989.2 ± 104.6 990.8 ± 94.6 984.9 ± 125.8 893.6 ± 80.7 3.79 0.01

Motor hub 1708.1 ± 199.2 1716.7 ± 184.6 1709.0 ± 186.3 1473.2 ± 156.8 7.40 <0.01

Sensory hub 852.8 ± 102.3 861.8 ± 107.2 836.4 ± 99.1 732.8 ± 88.9 6.82 <0.01

Intralaminar 373.8 ± 42.9 378.9 ± 48.5 367.1 ± 46.2 325.0 ± 35.3 6.10 <0.01

Global thalamus 6273.8 ± 671.2 6368.9 ± 678.5 6248.7 ± 696.4 5525.4 ± 523.1 6.90 <0.01

Right thalamus, mm3

Anteroventral 118.9 ± 16.6 121.6 ± 14.6 118.3 ± 17.9 106.0 ± 23.7 2.82 0.03

Pulvinar-limitans 1646.0 ± 193.2 1654.7 ± 249.4 1650.6 ± 227.2 1474.7 ± 193.2 3.47 0.01

Lateroposterior 101.4 ± 17.1 106.6 ± 19.4 105.2 ± 15.6 94.1 ± 12.9 2.23 0.08

Mediodorsal-paratenial-

reuniens

983.8 ± 99.8 968.4 ± 110.2 973.2 ± 140.1 868.5 ± 119.7 4.73 <0.01

Motor hub 1718.7 ± 198.9 1702.2 ± 215.2 1450.6 ± 168.6 7.56 <0.01

Sensory hub 827.9 ± 108.5 822.7 ± 109.4 699.3 ± 75.8 6.89 <0.01

Intralaminar 373.5 ± 47.5 369.8 ± 48.0 324.7 ± 36.1 5.37 <0.01

Global thalamus 6131.1 ± 708.5 6105.4 ± 730.6 5331.4 ± 530.6 6.67 <0.01
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findings on thalamic atrophy patterns and stage-dependent 
correlations are similar to those obtained via other imaging 
modalities (e.g., functional MRI, diffusion tensor imaging) or 

pathological analyses (Segobin et  al., 2024). Additionally, 
we  intentionally did not correlate thalamic volumes with cortical 
volumes as an experimental choice, as the study was designed to 

FIGURE 2

Thalamic nuclei profiles for patients with ALS at each disease stage and HCs. Volume (mm3).
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characterize thalamic nuclei alterations in isolation. Forth, we only 
used the MMSE, BNT, AVLT, and FAB to screen cognitive functions 
in the present study. And we did not perform any genetic testing. 
However, the patients included in this study were sporadic cases, and 
very few patients with sporadic ALS in China carry genetic mutations, 
in particular patients with C9orf72 mutation (Liu et  al., 2016). 
Finally, in this consecutive cohort, although we used age, sex, and 
TIV as covariates, ALS patients at King stage 3 were older than 
patients at King stage 1, which is consistent with some previous 
studies (Chiò et  al., 2019; Manera et  al., 2020). Similarly, in a 
population-based study, Manera et al. reported three regions were 
functionally involved in 196 patients with ALS (18.5%) at diagnosis, 
and 180 patients (91.8%) were older than 60 years (Manera et al., 
2020). The onset of ALS appears to involve a multistep process, and 
aging seem to be  one of the process and may accelerate the 
neurodegeneration of ALS. However, these findings need to 
be discussed by further studies.

In conclusion, our study provides a comprehensive profile of 
alterations in thalamic atrophy in patients with ALS. The atrophy 
pattern differed significantly depending on the King’s clinical disease 
stage, and we suggest that these alterations might largely result from 
sequential, regional patterns of TDP-43 pathology in 
ALS. Furthermore, thalamic atrophy might play pivotal roles in the 
motor disability and global cognitive impairments observed in 
patients with ALS.
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