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Objective: Construct a predictive model for rehabilitation outcomes in 

ischemic stroke patients 3 months post-stroke using resting state functional 

magnetic resonance imaging (fMRI) images, as well as synchronized 

electroencephalography (EEG) and electromyography (EMG) time series data. 

Methods: A total of 102 hemiplegic patients with ischemic stroke were 

recruited. Resting - state functional magnetic resonance imaging (fMRI) scans 

were carried out on all patients and 86 of them underwent simultaneous 

electroencephalogram (EEG) and electromyogram (EMG) examinations. After 

data preprocessing, we established prediction models based on time-series data 

and fMRI images separately. The predictions of the time - series model and 

the fMRI model were integrated using ensemble learning methods to create 

a multimodal fusion prediction model. The accuracy, recall, precision, F1 -

score, and the area under the ROC curve (AUC) were calculated to evaluate 

the performance of the model. 

Results: Compared to unimodal prediction models, multimodal fusion models 

demonstrated superior predictive performance. The ShuffleNet-LSTM model 

outperformed other multimodal fusion approaches. The area under the ROC 

curve was 0.8665, accuracy was 0.8031, F1-score was 0.7829, recall was 0.774, 

and precision was 0.833. 

Conclusion: A deep learning-based rehabilitation prediction model utilizing 

multimodal signals was successfully developed. The ShuffleNet-LSTM model 

exhibited excellent performance among multimodal fusion models, effectively 

enhancing the accuracy of predicting lower-limb motor function recovery in 

stroke patients. 

KEYWORDS 

rehabilitation prediction model, ischemic stroke, deep learning, model visualization, 
motor dysfunction 
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1 Introduction 

Stroke rehabilitation is a complex and critical research 
domain focused on promoting functional recovery and neural 
reorganization following brain injury (Kindred et al., 2019). 
Neuroplastic remodeling occurs not only in the acute phase 
following stroke but also persists throughout the rehabilitation 
process. It involves two principal components: functional 
remodeling, characterized by the redistribution of neural activity 
to compensate for damaged regions; and structural remodeling, 
encompassing neuronal regeneration, synaptic plasticity, and 
reorganization of neural connectivity driven by rehabilitation 
training (Wang et al., 2019). Recent advances in neurophysiological 
and imaging technologies, such as EEG, EMG, and fMRI, have 
enabled more precise and multidimensional investigations into 
the mechanisms of neural remodeling underlying post-stroke 
motor dysfunction. These modalities capture complementary 
information on neural activity, muscular responses, and cerebral 
hemodynamics. 

With the rapid advancement of artificial intelligence (AI) 
technology, its application in the medical field is becoming 
increasingly comprehensive (Hulsen, 2022). Prognostic prediction, 
a critical aspect of medical treatment, has gained new opportunities 
through AI. By conducting in-depth analyses of patient clinical 
data, AI can predict disease progression and prognosis, assisting 
physicians in gaining a more precise understanding of patients’ 
conditions, formulating more eective treatment plans, and 
ultimately improving patient outcomes. 

Ischemic stroke is associated with high incidence, mortality, 
and disability. Many patients experience prolonged motor 
dysfunction, contributing to a substantial socioeconomic burden. 
Consequently, accurately predicting stroke prognosis is of 
considerable importance. The integration of deep learning with 
multimodal data has emerged as a significant trend in AI research 
(Suzuki, 2017). Machine learning techniques can identify complex 
relationships among multiple variables and extract valuable 
insights from time-series, clinical, and imaging data. In recent 
years, extensive research has explored the application of machine 
learning in stroke studies, aiming to advance diagnosis, prognosis, 
and treatment strategies. Most studies have focused on using 
clinical data to predict outcomes after stroke (Kim et al., 2022). 
However, research on rehabilitation prediction incorporating 
multimodal data remains limited. 

The deep neural network (DNN) model, a machine learning 
technique, is constructed within an artificial neural network 
(ANN) framework inspired by the structure of the human brain 
(Huang et al., 2022). The ANN architecture consists of multiple 
hidden layers positioned between the input and output layers (Du 
et al., 2016). In 1980, (Fukushima, 1980) the neocognitron was 
introduced, leading to the development of the convolutional neural 
network (CNN). LeCun et al. later proposed the backpropagation 
algorithm for training multilayer networks, significantly advancing 
CNN development. The LeNet-5 model achieved notable success 

Abbreviations: AI, artificial intelligence; ANN, artificial neural network; AUC, 
the area under the ROC curve; CNN, convolutional neural network; DNN, 
deep neural network; EEG, electroencephalogram; EMG, electromyogram; 
FMA, the lower-limb Fugl-Meyer Assessment; fMRI, functional magnetic 
resonance imaging. 

in digital recognition tasks, marking CNN’s practical application 
(LeCun et al., 1998). As a representative DNN model, CNN 
processes two-dimensional data from multiple channels through 
repeated convolution and pooling operations (Hwang et al., 2021). 
These operations facilitate the extraction of key features from 
input data, enabling CNNs to identify image patterns and analyze 
visual information eectively. The application of deep learning 
algorithms to process multimodal fMRI data for developing 
computer-aided diagnostic and treatment tools has demonstrated 
significant research value and promising clinical applications. 
LSTM networks, (Hochreiter and Schmidhuber, 1997) a specialized 
form of recurrent neural networks (RNNs), are designed to handle 
sequence data such as time series or natural language. LSTM 
networks address the challenge of long-term dependency learning, 
which traditional RNNs struggle to achieve. 

Resting-state functional magnetic resonance imaging (rs-
fMRI) captures spontaneous neural activity via blood oxygen 
level-dependent (BOLD) signals, providing insight into large-
scale functional connectivity patterns associated with post-stroke 
neural reorganization. Simultaneous EEG-EMG recordings oer 
complementary information: EEG reflects cortical excitability 
and functional connectivity, whereas EMG assesses peripheral 
neuromuscular integrity. Integrating these modalities enables 
a comprehensive evaluation of “cortico-muscular coupling” 
(Guggisberg et al., 2019). 

In recent years, the integration of AI with medicine has 
contributed to the advancement of multimodal fusion models. 
Unlike traditional unimodal assessment methods, which capture 
only a limited aspect of a patient’s condition, multimodal fusion 
models integrate diverse data sources, providing a comprehensive 
and in-depth representation of lower limb motor dysfunction. 
This approach enhances the accuracy of diagnosis and supports 
the development of personalized treatment plans. In this study, 
a deep learning-based multimodal fusion prediction model was 
developed to assess the rehabilitation outcomes of stroke patients 
3 months post-stroke. 

2 Materials and methods 

2.1 Data collection 

2.1.1 Inclusion criteria 
(1) Diagnosis consistent with the Chinese Guidelines for the 

Diagnosis and Treatment of Acute Ischemic Stroke (2018). 
(2) Age range between 40 and 79 years. 
(3) Initial diagnosis made at least 2 weeks prior, presenting with 

hemiplegia and a stable condition. 
(4) Lower limb muscle strength graded as III or higher. 
(5) Ability to comprehend the study objectives, with informed 

consent obtained from the patient or family. 

2.1.2 Exclusion criteria 
(1) Unstable vital signs. 
(2) Severe diseases aecting the heart, lungs, kidneys, liver, 

or other organs. 
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(3) Lower limb motor dysfunction resulting from causes 
other than stroke. 

(4) History of seizures or medication use aecting 
cortical excitability. 

(5) Scalp or lower limb skin injuries interfering with EEG and 
electromyography (EMG) assessments. 

(6) Severe cognitive impairment preventing participation in 
experimental tasks. 

A total of 102 stroke patients were recruited from the 
Rehabilitation Department of the Second Aÿliated Hospital 
of Harbin Medical University, and resting-state functional 
MRI (rs-fMRI) data were obtained from all participants. 
Among them, 86 patients additionally underwent synchronized 
electroencephalogram (EEG) and electromyogram (EMG) 
assessments at baseline to predict rehabilitation outcomes, which 
were categorized as either good or poor at a 3-month follow-up. 
Rehabilitation outcomes were evaluated using the lower-limb 
Fugl-Meyer Assessment (FMA) scale, which has a maximum score 
of 34 points. According to the 2016 American Stroke Rehabilitation 
Guidelines (AHA/ASA), patients with baseline lower-limb FMA 
scores ≤ 17 (≤50% of maximum) are classified as high-risk for 
persistent mobility deficits and require intensive, task-specific gait 
training (Winstein et al., 2016). Furthermore, multiple studies 
have demonstrated that an FMA score ≤ 17 predicts diÿculties 
in regaining independent walking ability (Sullivan et al., 2010). 
Therefore, an FMA score of 17 was selected as the cuto to 
distinguish between “good” and “poor” outcomes. All baseline 
assessments–including rs-fMRI, EEG-EMG, and initial FMA– were 
completed within 2 weeks of hospital admission. Follow-up FMA 
evaluations were conducted 3 months post-stroke (±1 week). 

2.2 Clinical data collection and scale 
evaluation 

Clinical data collection was conducted using a data acquisition 
system independently developed by Harbin Institute of 
Technology. The FMA scale assessment was performed by 
professional rehabilitation department personnel. 

2.3 EEG and EMG tests 

A hip/knee flexion-extension experimental paradigm was 
developed, with each trial comprising four sequential phases: 
preparation, flexion, rest, and extension. Data were collected 
using a synchronized EEG-EMG acquisition system independently 
developed by the Harbin Institute of Technology, which enables 
hardware-level synchronization across 16channels at a sampling 
rate of 1000 Hz. Electroencephalographic (EEG) signals were 
recorded using the international 10–20 system, with primary 
electrode sites including P4, CP2, FC5, C3, P3, C2, FC6, C4, CP6, 
F3, FC2, FC1, F4, CP5, C1, and CP1. Electromyographic (EMG) 
signals were obtained from major muscles involved in hip and 
knee movements, including the rectus femoris, vastus medialis, 
long head of the biceps femoris, gluteus maximus, semitendinosus, 

and proximal rectus femoris. Detailed recording procedures are 
provided in the Methods section. 

2.4 Resting-state fMRI examination 

fMRI data were acquired using a 3.0 T GE Architect 
superconducting MR scanner in the hospital’s magnetic resonance 
unit. During rs-fMRI data collection, all participants were 
instructed to lie flat, remain quiet, minimize movement, keep their 
eyes open, and avoid systematic cognitive activities. The rs-fMRI 
scanning parameters included a visual field of 220 mm × 220 mm, 
a matrix of 64 × 64 × 35, a TR of 2000 ms, a TE of 30 ms, a dynamic 
scan duration of 240 s, 35 layers, and a layer thickness of 4 mm. 

2.5 Data preprocessing 

Time-series data were recorded at a sampling frequency of 
1000 Hz over 9 min and stored in txt format. MRI data consisted 
of high-resolution axial slices. To preprocess temporal data, a 
150 Hz bandpass filter was applied to eliminate low-frequency 
drift and high-frequency noise, followed by artifact removal. 
The filtered signals were segmented into non-overlapping 10-s 
windows, with each window representing an independent input 
sample. To enhance model training stability, each signal window 
was normalized to zero mean and unit variance. For MRI data 
preprocessing, the images were resampled to a uniform resolution, 
and non-informative slices were removed through a slice screening 
process. Each remaining MRI slice was resized to 224 × 224 pixels 
for input into the deep learning model. All preprocessing steps were 
implemented using a standardized Python data processing pipeline 
to ensure consistency. Resting-state fMRI data were available 
for 102 patients, among whom 86 also had synchronized EEG 
and EMG recordings. A stratified random sampling method was 
employed to ensure that the proportion of patients with “good” and 
“poor” recovery outcomes was maintained across all data subsets. 
For the fMRI-based models (n = 102), the data were split into 70% 
for training (n = 71), 15% for validation (n = 15), and 15% for 
testing (n = 16). For the EEG-EMG-based models (n = 86), 70% 
were used for training (n = 60), 15% for validation (n = 13), and 
15% for testing (n = 13). 

2.6 Rehabilitation prediction model 
construction 

2.6.1 Predictive model based on temporal 
sequence data 

To extract temporal features from EEG and EMG time-series 
data, a deep learning-based temporal model was developed. The 
model architecture comprised three layers of stacked LSTM units, 
with hidden layer sizes of 128, 64, and 32 units, respectively. A fully 
connected layer was applied at the final stage to complete the binary 
classification task, outputting the probability of rehabilitation 
outcomes. Cross-entropy loss was utilized as the loss function, 
and the Adam optimizer was employed with an initial learning 
rate of 0.001. A dynamic learning rate adjustment mechanism was 
incorporated to enhance convergence eÿciency during training. 
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2.6.2 Predictive model based on MRI imaging 
A 2D convolutional neural network (2D-CNN) was 

constructed for MRI image-based prediction. MRI slices from 
each patient were treated as independent input samples. The 
model architecture was built upon ResNet50, FBNet, GhostNet, 
RegNet, and ShueNet. Transfer learning was employed by 
initializing the network with pre-trained weights, followed by 
fine-tuning on the study dataset to optimize performance for the 
rehabilitation prediction task. For each MRI slice, the network 
outputted a probability value corresponding to the predicted 
rehabilitation outcome. 

2.6.3 Multimodal fusion predictive model 
The multimodal fusion model integrates prediction outputs 

from the temporal sequence model and the MRI-based model using 
an ensemble learning approach. The prediction scores derived from 
the temporal data model are averaged to obtain a temporal feature 
prediction score. This score is then combined with the prediction 
score from the MRI model to generate the final rehabilitation 
outcome prediction. Weight coeÿcients are optimized through 
cross-validation to ensure eective integration of information from 
dierent modalities. 

2.7 Experimental setting 

All models were trained on NVIDIA RTX 3090 GPUs with 
batch sizes of 32 for temporal sequence data and 16 for MRI slice 
data. The training process spanned 50 epochs, with the learning 
rate dynamically adjusted after each epoch based on validation 
set loss. An early stopping strategy was employed to mitigate 
overfitting. Additionally, online data augmentation techniques 
were applied to MRI data, including random rotation (−15◦ to 
15◦), horizontal flipping, and brightness adjustments, to enhance 
the model’s robustness. 

2.8 Model evaluation 

To assess model performance, key evaluation metrics including 
accuracy, recall, precision, F1-score, and the area under the ROC 
curve (AUC) were computed. The predictive performance of the 
multimodal fusion model was compared against single-modality 
models to demonstrate improvements in accuracy and robustness. 

2.9 Model interpretability 

To enhance the clinical interpretability of the model, Gradient-
weighted Class Activation Mapping (Grad-CAM) was used to 
visualize prediction results for MRI images. Grad-CAM generates 
heatmaps highlighting the most significant activation regions 
contributing to classification outcomes. Specifically, Grad-CAM 
calculates the gradient of classification results on the final 
network feature map through backpropagation, utilizing gradient-
weighted feature maps to indicate areas of high model attention. 
The generated heatmaps were overlaid onto original MRI 
slices to visually identify critical brain regions that influenced 
rehabilitation predictions. 

TABLE 1 fMRI prediction model evaluation. 

Method Accuracy Recall F1-
score 

Precision 

FBNet 0.7138 0.7416 0.7132 0.7524 

GhostNet 0.6338 0.6275 0.6264 0.6259 

Regnet 0.6123 0.6667 0.5917 0.7595 

Shuenet 0.7169 0.6896 0.6928 0.7191 

Resnet50 0.5815 0.5 0.3677 0.2908 

TABLE 2 EEG - EMG prediction model evaluation. 

Method Accuracy Recall F1-
score 

Precision 

LSTM 0.68 0.6833 0.6753 0.6763 

TABLE 3 Multimodal fusion prediction model evaluation. 

Method Accuracy Recall F1-
score 

Precision 

FBNet_LSTM 0.8 0.7652 0.7741 0.8507 

GhostNet_LSTM 0.7754 0.7368 0.7426 0.8308 

Regnet_LSTM 0.76 0.7287 0.7343 0.7819 

Shuenet_LSTM 0.8031 0.774 0.7829 0.833 

Resnet50_LSTM 0.6615 0.709 0.6508 0.7764 

3 Results 

In the imaging group, FBNet demonstrated the highest 
performance across all evaluation indicators, exhibiting superior 
classification capability. The validation set achieved an accuracy 
of 0.7138, with notable advantages in recall rate, F1-score, and 
precision. In contrast, ResNet50 showed the weakest performance 
among the models compared (Table 1). 

In the EEG-EMG group, classification analysis of temporal data 
using the LSTM model resulted in a validation set accuracy of 0.68, 
a recall of 0.6833, an F1-score of 0.6753, and a precision of 0.6763 
(Table 2). 

In the multimodal fusion group, classification performance 
improved significantly by integrating the outputs of the image 
model and the LSTM sequence model. The FBNet_LSTM fusion 
model achieved a validation accuracy of 0.8 with an F1-
score of 0.7741, ranking as the second-best among the fusion 
models. However, further improvements were observed with the 
ShueNet_LSTM fusion model, which attained an accuracy of 
0.8031 and an F1-score of 0.7829, demonstrating the eectiveness 
of multimodal fusion in enhancing information complementarity 
(Table 3). 

ROC curves serve as an eective tool for evaluating 
classification model performance, particularly in threshold 
selection and addressing class imbalance. These curves illustrate 
model performance by depicting variations in true positive and 
false positive rates across dierent thresholds. The area AUC is 
utilized to quantify the overall classifier performance. For the 
ShueNet_LSTM model, the ROC curve exhibits an AUC of 
0.8665, indicating strong classification capability (Figure 1). 
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FIGURE 1 

ROC curves of the multimodal fusion models. 

In this study, feature maps in the middle layer of the model were 
weighted according to specific rules. The heatmap visualization 
enables an assessment of which input regions receive higher weight 
or “attention” when the model makes predictions or classifications. 
A color gradient typically indicates weight magnitude, with darker 
colors representing greater attention. The fMRI slice presented in 
Figure 2, where the Grad-CAM attention map was generated, is 
an axial view at the level of the frontal motor cortex. Specifically, 
this slice corresponds to the anatomical plane encompassing the 
primary motor cortex (M1) and the supplementary motor area 
(SMA) within the frontal lobe–regions critically involved in the 
regulation of lower-limb motor function. As highlighted in the 
heatmap, regions of high attention overlap with the lateral and 
medial frontal gyri, which is consistent with their established 
roles in post-stroke motor recovery, as demonstrated in previous 
neuroimaging studies. These findings suggest that, in the context 
of rehabilitation outcome prediction, the model places significant 
emphasis on image features derived from motor-related cortical 
regions, indicating a potential functional correlation with the 
rehabilitation process. 

4 Discussion 

Research on predicting motor function recovery following 
ischemic stroke often begins with an analysis of basic clinical data. 
Although clinical factors alone contribute to stroke rehabilitation 

predictions, their predictive accuracy remains limited. In recent 
years, various methods for forecasting functional recovery after 
stroke have gained significant research attention (Liang et al., 
2022). Deep learning techniques utilize large datasets to train and 
develop models capable of handling new data, (LeCun et al., 2015; 
Sarker, 2021) demonstrating success across various domains. The 
clinical condition of ischemic stroke patients generates extensive 
information and image data (González, 2012). 

Deep neural networks are developed by adjusting parameters 
such as the loss function, learning rate, and iterations. The 
optimal model is then selected based on accuracy evaluations and 
comparisons (Fan et al., 2022). Multi-layered complex networks 
eectively capture intricate relationships between input and output 
variables (Kammeraad et al., 2020). CNNs are a subset of deep 
neural networks designed to process two-dimensional data with 
multiple channels. These networks repeatedly apply convolution 
and pooling operations to extract meaningful features from input 
data, (Hwang et al., 2021) making them eective for image pattern 
recognition and processing. CNN-based deep learning methods 
have been utilized to develop EEG models capable of transforming 
EEG data into motor function scores (Li et al., 2022). In Kim 
et al. (2021) developed a CNN model for patients with coronary 
radiation-induced infarction. By extracting three consecutive T2-
weighted brain MRI images at the level of the lateral ventricles for 
each patient, the model was trained to predict independent gait 
recovery 6 months post-infarction. 
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FIGURE 2 

Gradient-weighted class activation mapping heatmap. The left is the original fMRI image, and the right is the heat map superimposed onto the 
original fMRI section. 

This study aims to predict rehabilitation outcomes in stroke 
patients 3 months post-event by developing a deep learning 
multimodal fusion prediction model. A comparative analysis of 
five models–FBNet, GhostNet, RegNet, ShueNet, and ResNet50– 
reveals that FBNet outperforms all others across evaluation metrics, 
demonstrating strong classification capabilities. These findings 
indicate that FBNet not only predicts categories with greater 
accuracy but also eectively covers samples from dierent classes. 
Across all metrics, GhostNet scores slightly lower, particularly in 
terms of its F1-score, which is limited to 0.6264. This suggests some 
imbalance between precision and recall, potentially influenced by 
data distribution or the adaptability of the pre-trained model, 
warranting further investigation in future experiments. 

RegNet exhibits the weakest performance among the models, 
despite achieving a relatively high precision of 0.7595. However, 
its recall is limited to 0.6667, resulting in a low overall F1-
score of 0.5917. This indicates diÿculty in correctly identifying 
positive class samples, although for categories it can predict, 
accuracy remains relatively high. The model’s limitations may 
be attributed to lower complexity or restricted feature extraction 
capabilities, which hinder its ability to capture data characteristics 
in specific scenarios. 

In the electroencephalogram and electromyogram group, the 
LSTM model was applied for classification analysis of sequential 
data. Overall, the LSTM model demonstrated stable performance in 
processing electroencephalogram and electromyogram sequential 
data. Although its metrics are slightly lower than those of the 
top-performing image models, such as FBNet and ShueNet, its 
classification ability remains strong, considering it relies solely on 
sequential data. These results suggest that electroencephalogram 
and electromyogram data provide useful information for 

classification tasks; however, some degree of information loss 
or noise may be present, limiting the model’s overall performance. 

In the multimodal fusion group, classification performance 
improved significantly by integrating the outputs of the image 
model and the LSTM sequence model. The FBNet_LSTM fusion 
model achieved a validation accuracy of 0.8 with an F1-score 
of 0.7741, ranking as the second-best among the fusion models. 
A further enhancement was observed with the ShueNet_LSTM 
fusion model, which achieved an accuracy of 0.8031 and an F1-
score of 0.7829, highlighting the advantages of multimodal fusion 
in complementing information. This fusion approach enables the 
spatial features of image data and the temporal features of sequence 
data to be jointly leveraged, allowing for a more comprehensive 
understanding of data patterns. 

In contrast, the fusion models of GhostNet_LSTM and 
RegNet_LSTM achieved validation accuracies of 0.7754 and 0.76, 
respectively, surpassing their individual image models. However, 
their overall performance remained slightly lower than that 
of FBNet_LSTM and ShueNet_LSTM. This suggests that the 
inherent limitations of GhostNet and RegNet in feature extraction 
may have influenced the final fusion outcome. Additionally, 
although the fusion model of ResNet50_LSTM showed some 
improvement, its accuracy and F1-score remained significantly 
lower than those of other fusion models. This may be attributed 
to the weak performance of ResNet50 in the standalone image 
classification task. It can be inferred that weaker unimodal models 
may not fully exploit the potential of the data, even when 
incorporated into a multimodal fusion framework. 

A comprehensive analysis indicates that multimodal fusion is 
an eective approach for enhancing classification performance. 
By integrating data from dierent modalities, the strengths 
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of individual features can be better utilized. ShueNet_LSTM 
demonstrated the highest performance within the multimodal 
fusion group, confirming the synergistic eect of the lightweight 
model and the sequence network. FBNet_LSTM ranked as the 
second-best fusion model, further emphasizing the significance 
of FBNet’s image feature extraction capabilities within the fusion 
framework. Overall, multimodal fusion emerges as the optimal 
strategy for performance improvement in this task, and further 
exploration of more advanced fusion mechanisms may enhance the 
results even further. 

Due to the inherent black-box nature of deep learning models, 
visualizing the complex computational processes and decision 
mechanisms during inference remains challenging. Consequently, 
an increasing number of studies have focused on enhancing the 
interpretability of deep learning models (Pan et al., 2023). Given 
the complexity of brain structure and function, conventional 
data visualization methods often fail to eectively illustrate the 
decision-making basis of these models. The gradient-weighted class 
activation map provides valuable insights into model behavior by 
highlighting the regions of high activation. As shown in the figure, 
these activated brain regions indicate that the model heavily relies 
on their image features for rehabilitation prediction, suggesting a 
strong correlation with the rehabilitation process, which has been 
clinically validated. Model visualization not only allows researchers 
to analyze the internal mechanisms of deep learning models, 
facilitating improvements in model architecture and parameter 
optimization, but also provides clinicians with visualization tools 
to accurately identify rehabilitation intervention targets, thereby 
accelerating patient recovery. 

Resting-state functional magnetic resonance imaging 
(fMRI) oers a macroscopic view of brain network 
connectivity (e.g., motor network integrity), while simultaneous 
electroencephalogram (EEG) and electromyography (EMG) 
capture micro-level cortical-muscular dynamics, such as the 
latency between motor cortex activation and peripheral muscle 
response. Combined, these modalities provide complementary 
neurophysiological information essential for predicting 
rehabilitation outcomes. The proposed ShueNet-LSTM model 
addresses the limitations of unimodal approaches by integrating 
spatial resolution of fMRI with the temporal sensitivity of 
EEG/EMG, thereby enhancing predictive performance. This 
multimodal synergy accounts for the model’s superior classification 
accuracy (AUC: 0.8665), compared to models based solely on fMRI 
(AUC: 0.7169) or EEG/EMG (AUC: 0.6800). Clinically, the model 
oers the following utilities:(1) early identification of patients at 
risk of poor recovery within 2 weeks post-stroke, enabling timely 
initiation of intensive rehabilitation; (2) stratification of patients 
based on predicted recovery trajectories to optimize resource 
allocation; (3) individualized rehabilitation planning through 
interpretation of Grad-CAM attention maps. 

5 Limitations and prospects 

This study adopts a binary outcome framework for predictive 
analysis, primarily to address the urgent clinical demand for 
rapid prognosis assessment. This categorical approach oers 
practical utility by providing clear guidance for acute-phase 

treatment planning and prioritization of rehabilitation resources. 
However, we acknowledge that treating the lower-limb Fugl-Meyer 
Assessment (FMA) score as a continuous variable would yield more 
granular information. Continuous outcomes not only quantify 
degrees of functional recovery but also capture subtle changes 
in motor performance over time, thereby oering more refined 
insights for adjusting individualized rehabilitation strategies. 
Therefore, future research will focus on continuous outcome 
prediction as a key direction. We plan to incorporate model 
architectures such as deep neural networks (DNNs), which are 
well-suited for regression tasks. By integrating larger longitudinal 
datasets–currently being collected–that capture dynamic changes 
in FMA scores across multiple time points, we aim to develop 
dynamic regression models capable of phase-specific tracking and 
predictive optimization of the rehabilitation process. 

Furthermore, the relatively small sample size of this study 
may limit the model’s generalizability, particularly in capturing 
rehabilitation heterogeneity among ischemic stroke subtypes 
(such as dierent infarction locations and disease duration). 
Future multi-center collaborative studies will incorporate larger 
patient cohorts with broader clinical characteristics (including 
comorbidities and diverse rehabilitation interventions) to enhance 
the model’s adaptability to varied clinical scenarios and improve 
its clinical reliability. This study has certain limitations, including 
a small sample size. Future research will focus on expanding the 
study through multicenter trials to enhance the generalizability and 
robustness of the findings. 

6 Conclusion 

The ShueNet_LSTM model achieved the highest 
performance among the multimodal fusion models, confirming 
the synergistic eect of the lightweight model and the sequence 
network. This combination significantly enhances the accuracy 
of long-term lower limb motor function state prediction and 
dynamic prognosis. The results provide strong technical support 
for precise evaluation and data-driven decision-making in related 
fields, contributing to improved rehabilitation strategies and 
clinical assessments. 
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