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Introduction: Brain tumors seriously endanger human health. Therefore,
accurately identifying the types of brain tumors and adopting corresponding
treatment methods is of vital importance, which is of great significance for
saving patients’ lives. The use of computer-aided systems (CAD) for the
differentiation of brain tumors has proved to be a reliable scheme.

Methods: In this study, a highly accurate Mixed Local and Global (MLG) model for
brain tumor classification is proposed. Compared to prior approaches, the MLG
model achieves effective integration of local and global features by employing
a gated attention mechanism. The MLG model employs Convolutional Neural
Networks (CNNs) to extract local features from images and utilizes the
Transformer to capture global characteristics. This comprehensive scheme
renders the MLG model highly proficient in the task of brain tumor classification.
Specifically, the MLG model is primarily composed of the REMA Block and the
Biformer Block, which are fused through a gated attention mechanism. The
REMA Block serves to extract local features, effectively preventing information
loss and enhancing feature expressiveness. Conversely, the Biformer Block
is responsible for extracting global features, adaptively focusing on relevant
sets of key tokens based on query positions, thereby minimizing attention to
irrelevant information and further boosting model performance. The integration
of features extracted by the REMA Block and the Biformer Block through the
gated attention mechanism further enhances the representation ability of the
features.

Results: To validate the performance of the MLG model, two publicly available
datasets, namely the Chen and Kaggle datasets, were utilized for testing.
Experimental results revealed that the MLG model achieved accuracies of
99.02% and 97.24% on the Chen and Kaggle datasets, respectively, surpassing
other state-of-the-art models. This result fully demonstrates the effectiveness
and superiority of the MLG model in the task of brain tumor classification.

KEYWORDS

classification of brain tumor, CNN, transformer, feature fusion, gated attention
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1 Introduction

Brain diseases most commonly manifest as brain tumors,
which represent a severe health threat to the human body and
necessitate early diagnosis and treatment (Lyu et al., 2024; Akter
et al,, 2024; Liu et al., 2023). The classification of brain tumors
constitutes a significant area of research in medical imaging and
artificial intelligence. Classification of brain tumors using Magnetic
Resonance Imaging (MRI) is the main technique (Li and Zhou,
2025). This process is critical for accurate diagnosis, treatment
planning, and prognosis assessment. Recently, Computer-Aided
Detection and Diagnosis (CAD) systems have played a pivotal
role in assisting medical professionals with the detection and
classification of brain tumors. Traditional manual methods of
brain tumor classification rely heavily on experienced specialists
and are often time-consuming, labor-intensive, and ineflicient
(Sharma et al,, 2024; Zhou et al., 2024). To address this issue,
extensive research has been conducted into automatic classification
techniques that can classify brain tumors from MRI, employing
CAD technology for tumor classification from MRI, which exhibits
high reliability due to its high accuracy.

Traditional machine learning often relies on manually designed
features, which places high demands on the users domain
knowledge and experience. The selection and construction of
features are complex and time-consuming, having a crucial
impact on model performance. When faced with complex, high-
dimensional, or nonlinear problems, the generalization ability of
traditional machine learning algorithms may be limited (Kaur
and Mahajan, 2025). More crucially, when confronted with new,
unseen data, their predictive performance may decline, affecting
their practical utility (Mehnatkesh et al., 2023; Pandiselvi and
Maheswaran, 2019). In contrast, deep learning possesses stronger
data representation capabilities, able to automatically learn high-
level abstract representations of data, significantly enhancing the
performance and effectiveness of machine learning. Deep learning
models are not only highly complex but also capable of handling
more complex tasks and larger datasets. Consequently, deep
learning has found widespread application in the field of medical
imaging, providing powerful support for disease diagnosis and
treatment (Kshatri and Singh, 2023; Mazurowski et al., 2023;
Mukadam and Patil, 2024; Yu et al., 2022).

Convolutional Neural Networks (CNNs), as a type of deep
learning algorithm, have demonstrated remarkable prowess in
the field of image processing, thanks to their unique advantages.
The CNNs not only accept input images, but also adeptly
assign varying degrees of importance to different elements or
objects within those images through learnable weights and biases,
enabling effective differentiation among them. Compared to other
classification algorithms, the CNNs significantly reduce the need
for preprocessing, greatly enhancing ease of use. In earlier image
processing, filters were typically manually designed. However,
CNNs can automatically learn these filters or features during
training. Consequently, CNNs have seen widespread application
in fields such as medical image analysis. Cao et al. (2024)
introduced a Multi-branch Spectral Channel Attention Network
(MbsCANet) for breast cancer classification. By extracting features
in the frequency domain and applying attention mechanisms
to the backbone network, MbsCANet achieves more precise
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feature extraction and classification, thereby not only improving
classification accuracy but also providing robust support for
early diagnosis and treatment of breast cancer. Regarding retinal
disease classification, Peng et al. (2024) proposed a multi-scale-
denoising residual convolutional network (MS-DRCN) model.
This model integrates the strengths of Deep Residual Network
(ResNet) along with multiscale processing and feature fusion
techniques. Aimed at enhancing the accuracy and robustness
of Optical Coherence Tomography (OCT) image classification,
MS-DRCN offers an effective tool for precise diagnosis of
retinal diseases. Moreover, SkinLesNet, a deep learning model
specifically designed for skin lesion classification, is built upon
a CNN architecture that has undergone meticulous design
and optimization (Azeem et al, 2024). Through a series
of CNNs, it progressively extracts image features, enabling
in-depth understanding and analysis of lesion images. This
structure enables the model to precisely capture subtle differences
and key features within the images, significantly boosting
classification accuracy and reliability. As a result, it provides
crucial assistance in the early detection and treatment of skin
lesions.

The Transformer, an attention mechanism originating from the
field of natural language processing, has demonstrated remarkable
performance in computer vision. Its advantages over CNNs are
particularly evident in handling long-distance dependencies and
global contextual information in images (Liu et al., 2021b; Yan et al.,
2023; Huang S. K. et al, 2024). Bofan Song et al. (Song et al,
2024) utilized Vision Transformer (ViT) and Swin Transformer
(SwinT) for the classification of oral cancer images. In the literature
(Huang L. et al, 2024), Swin-residual transformer (SRT), was
proposed for thyroid ultrasound image classification. The SRT
model introduces residual blocks and triplet loss into the SwinT
structure, aiming to improve sensitivity to both global and local
features of thyroid nodules and better identify subtle feature
differences. Additionally, Chincholi and Koestler (2024) designed a
model combining ViT and Detection Transformer architectures for
glaucoma detection. As the application of Transformers in disease
detection continues to grow, researchers have begun exploring
the integration of CNNs with Transformers to simultaneously
extract local and global features. For instance, Fang et al. (2024)
employed CNNs to extract local features while utilizing ViT for
global feature extraction, designing a deep integrated feature fusion
module for feature aggregation. Yan et al. (2023) developed the
Transformer based High Resolution Network (TransHRNet) for
brain tumor segmentation. TransHRNet initially used CNNs as an
encoder for image preprocessing, followed by feeding the extracted
features from the CNNs into an Effective Transformer (EffTrans)
module, and finally generating segmentation results through a
CNNs decoder. Notably, EffTrans incorporates Group Linear
Transformations (GLTs) with an expansion-reduction strategy and
spatial-reduction attention (SRA) layers, significantly reducing
the computational burden and memory consumption of the
Transformer.

The classification of brain tumors poses a highly challenging
task in computer vision. These tumors vary significantly in size,
shape, and location within the brain, and their categorization
depends not only on the characteristics of the lesion itself but
also on the surrounding tissue environment (ThamilSelvi et al.,
2025; Verma and Yadav, 2025). Furthermore, the diversity and
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spatial distribution of brain tumors underscore the importance
of utilizing both local and global features. In response to
these challenges, the Mixed Local and Global (MLG) model
is introduced. The uniqueness of the MLG model lies in its
utilization of two advanced feature extraction methods. On one
hand, Residual Efficient Multi-scale Attention (REMA) block is
designed to extract local fine-grained features. On the other hand,
the Bi-Level transformer (Biformer) block is used to capture the
global context features. The REMA module integrates two layers
of convolution and an Efficient Multi-scale Attention (EMA)
component (Ouyang et al, 2023), which are interconnected
through residual connections. This classical residual connection
design ensures that gradients can propagate more effectively
throughout the network during training, thereby mitigating
gradient vanishing issues (He et al., 2016; Shafiq and Gu, 2022).
Channel attention and spatial attention mechanisms have proven
to be highly effective in generating more discriminative feature
representations (Hu et al., 2018; Woo et al., 2018; Yu et al., 2023).
In this block, EMA enhances both spatial and channel-wise features
and achieves the ability to capture feature information across
different scales by constructing parallel subnetwork structures
operating at multiple resolutions. The core of Biformer is its
Bi-Level Routing Attention (BRA), which facilitates dynamic
and query-based content-aware sparse attention allocation while
circumventing the high computational cost of full-space attention.
Biformer realizes this pattern by introducing the Bi-Level Routing
Attention mechanism, where it first prunes irrelevant key-value
pairs at a coarse-grained region level, and subsequently conducts
fine-grained token-to-token attention computations only within
the selected candidate regions (Zhu et al., 2023). The integration of
features from REMA and Biformer via gated attention mechanisms
further refines these features, enhancing model performance.
To validate the efficacy of the MLG model, two publicly
available brain tumor datasets were utilized for experimental
evaluation. Experimental results demonstrated that the proposed
model outperforms other existing advanced models in terms of
performance. In summary, the main contributions of this paper are
as follows:

e Development of a brain tumor classification model that
integrates both local and global features.

e The innovative application of the REMA module to extract
local features and the use of Biformer for capturing global
features, with both being effectively fused through a gated
attention mechanism.

e Validation of the proposed model on two open datasets,
achieving superior results compared to the current state-of-
the-art performance.

2 Related work

The application of deep learning techniques in medical image
analysis is becoming increasingly popular, particularly in the
study of brain tumor classification, where it has demonstrated
significant value. In recent years, research efforts on brain tumor
classification tasks have continued to deepen, and these studies

Frontiers in Neuroscience

10.3389/fnins.2025.1618514

can be broadly categorized into two camps: one is the CNN-based
approach, and the other is the emerging strategy based on the
Transformer architecture.

2.1 CNN in brain tumor classification

The CNN has been widely used in brain tumor classification
tasks. In the task of brain tumor classification, CNNs have been
widely employed. Kang et al. (2021) adopted a transfer learning-
based framework using a pre-trained deep CNN to extract deep
features from MRI data. By fusing features obtained from different
levels of the network and integrating them with multiple machine
learning classifiers, this method achieved significant results. Alanazi
et al. (2022) proposed a 22-layer CNN model, which was initially
trained on a binary brain tumor dataset. Subsequently, with
the help of transfer learning technique, the model weight was
utilized for multi-class data, resulting in promising outcomes.
Saurav et al. (2023) designed an Attention-Guided Convolutional
Neural Network (AG-CNN) specifically tailored for brain tumor
classification tasks. The network incorporates an internal channel
attention module, which aids in focusing on processing image
regions relevant to tumors, thereby facilitating effective feature
extraction and classification. Alturki et al. (2023) proposed an
optimization scheme for brain tumor classification performance.
The CNNs were utilized to extract deep features from raw brain
tumor MRI data and two classification algorithms including
logistic regression (LR) and stochastic gradient descent (SGD)
were incorporated into a voting ensemble classifier. By inputting
these deep features into the ensemble classifier, the model achieved
accurate classification of brain tumors. Hossain et al. (2023)
conducted a study implementing transfer learning to investigate the
performance of various models, including VGG16, InceptionV3,
and ResNet50, inceptionResNetv2, Xception, for brain tumor
classification. Ultimately, three best performing models were
chosen to be used to construct an ensemble model, which was
named IVX16. Sachdeva et al. (2024) evaluated multiple pre-
trained models such as ResNet50, DenseNet121, EfficientNetBO,
and EfficientNetV2L, et al., by incorporating Dropout layers, global
average pooling layers, and tuning hyperparameters to enhance
model performance. The results show that EfficientNetBO model
achieved a higher classification accuracy.

2.2 Transformer in brain tumor
classification

Transformer has also been applied in brain tumor classification
tasks. Ferdous et al. (2023) proposed a Linear Complexity
Data-Efficient Image Transformer (LCDEiT) framework based
on a teacher-student mechanism specifically designed for tumor
classification from brain MRI images. In the teacher model
component, gated pooling techniques were employed to optimize
the feature extraction efficiency of CNNs. The pre-trained teacher
model was able to extract crucial knowledge pertinent to the
tumor classification task. On the other hand, the student model
introduced an image transformer equipped with an external
attention mechanism, which leveraged the knowledge acquired

frontiersin.org


https://doi.org/10.3389/fnins.2025.1618514
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

Chen et al.

from the teacher model for tumor classification in brain MRI. In
paper, Asiri et al. (2024) proposed an innovative and robust method
based on the SwinT architecture, aiming to improve the accuracy
of brain tumor image classification. This method integrated
complex preprocessing procedure, sophisticated feature extraction
techniques, and a thorough classification system, enabling the
SwinT model to effectively analyze and discriminate various types
of brain tumors. Wang et al. (2024) employed a pre-trained ViT
as the backbone for their brain tumor classification model, named
as RanMerFormer. Additionally, to enhance the computational
efficiency of the ViT backbone, a Token Merging Algorithm
(TMA) was used. Instead of using a traditional linear classification
head, Random Vector Functional Link (RVFL) networks were
utilized. Poornam and Angelina (2024) proposed the ViT with
Attention and Linear Transformation module (VITALT) for brain
tumor detection and classification. VITALT primarily consists of
a ViT, a Split bidirectional feature pyramid network (S-BiFPN),
and a linear transformation module (LTM). ViT was used to
capture global and local features, while S-BiFPN fusions the
features extracted by ViT. The LTM enhanced the model’s linear
expressive ability. In paper ($ahin et al., 2024), the Bayesian Multi-
Objective (BMO) optimization method was employed to optimize
the hyperparameters of the ViT network in order to improve its
performance in brain tumor classification tasks. Gade et al. (2024)
proposed the Lite Swin Transformer (OLiST) model for brain
tumor detection. This model combined the Lite Swin Transformer’s
ability to capture global features with the advantage of CNNs in
extracting local features. By fusing the features extracted by both,
the model leveraged the strengths of both approaches.

In summary, the use of CNNs and Transformers have been
used in brain tumor classification tasks with excellent performance.
CNNs have the advantage of extracting local features of images,
while Transformers have the advantage of exploiting global features
of images. Therefore, this paper innovatively introduces a hybrid
model, MLG, which effectively integrates the respective strengths
of CNNs and Transformers, thus significantly enhancing the
performance of brain tumor classification tasks.

3 Materials and methods

In this section, the datasets used and the proposed model are
described in detail.

3.1 Datasets and preprocessing

In this study, two widely used public datasets, namely the
Chen dataset and the Kaggle dataset, were adopted. The Chen
dataset, provided by Cheng et al. (2015), primarily focuses on
three types of brain tumors: gliomas, meningiomas, and pituitary
tumors. Comprising a total of 3,064 images, this dataset offers a
rich resource for our in-depth research and analysis. On the other
hand, the Kaggle dataset is a meticulously compiled and shared
public dataset by Bhuvaji et al. (2020). This dataset encompasses
four categories of images: glioma tumors, meningioma tumors,
pituitary tumors, and normal brain tissues, totaling 3,264 images.
For eflicient model training and testing, the two datasets were
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randomly divided into a training set and a test set. Specifically,
80% of the data was allocated to the training set for model training
and optimization, while the remaining 20% was designated as
the testing set for evaluating the model’s performance. Detailed
statistics on the number of images in each dataset are presented in
Table 1.

A simple and efficient data preprocessing method is used
in the preprocessing phase of the dataset. In the experimental
process, to preserve the integrity of image content and stability of
features, all images were uniformly resized to 224 x 224 x 3 pixels.
This resizing not only helps maintain the spatial structure and
information integrity of the images but also significantly reduces
computational burden during network training, thereby enhancing
training efficiency. Additionally, normalization was performed,
which is a standard preprocessing step in deep learning. This
aims to mitigate differences in brightness, contrast, and other
attributes among images, enabling the model to focus more acutely
on learning the inherent features of the images. For medical
images, acquiring a large volume of such data can be challenging
(Dhar et al,, 2023). Given that deep neural networks typically
require substantial amounts of data for training, and considering
the relatively limited scale of the datasets utilized in this study,
data augmentation strategies were employed to alleviate overfitting
concerns. Specifically, random rotation and random horizontal
flipping techniques were utilized, both of which effectively enhance
dataset diversity without introducing additional noise, thereby
improving the model’s generalization capability.

3.2 Mixed local and global model

In this section, details of the proposed model are provided. The
architecture of the MLG model, which combines both local and
global components, is depicted in Figure 1. Initially, brain tumor
images undergo preprocessing before being fed into a convolutional
layer with a kernel size of 5 x 5 and a stride of 1, designed to enlarge
the receptive field. Subsequently, a max pooling layer is applied
for downsampling and dimensionality reduction of the extracted
features. And then, the features are further processed through five
REMA and Biformer (RB) Mixing Blocks to refine the extraction of
characteristics specific to brain tumor images. Finally, the resulting
features are classified accordingly. The structure of the RB Mixing
Block is illustrated in Figure 2.

Figure 2 presents the structure of the RB Mixing Block,
primarily consisting of REMA and Biformer units. The REMA

TABLE 1 Details of the datasets.

Dataset Classes Number of Total image
name each class count

Chen Glioma 1,426 3,064
Meningioma 708
Pituitary tumor | 930

Kaggle Glioma 826 3,264
Meningioma 822

Pituitary tumor | 827

No tumor 395
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FIGURE 1
Proposed brain tumor classification system.
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FIGURE 2
The RB Mixing Block structure.

Weight Output

unit is designed to extract local features from the images, while
the Biformer unit focuses on extracting global features. After
combining the features derived from these two modules, a gating
mechanism adjusts the weights of the fused features to better
suit the task of brain tumor classification, thereby enhancing the
model’s classification performance. Here, M denotes the number of
REMA convolution modules used and N denotes the number of
Biformer modules used, M = N = 2. REMA utilizes max pooling
for downsampling, aiming to broaden the receptive field of the
module. On the other hand, Biformer employs convolutions with
a stride of 2 for downsampling, intending to derive higher-level
feature representations. Subsequently, the features extracted by
both REMA and Biformer are merged and subjected to processing
by the gating mechanism. Then, the adjusted features are multiplied
with the original ones to modulate their significance in influencing
the model’s overall performance, effectively filtering out a set
of features that have a more substantial impact on the model’s
classification results. The output of the RB Mixing module can be
expressed as:

outrp = sigmoid(fReMA + fBiformer) X (fREMA + fBiformer) (1)

where, frema and fpiformer Tepresent the features extracted by the
modules REMA and Biformer, respectively.
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In order to present the structure and parameter characteristics
of the REMA module and the Biformer module more clearly. We
have detailed the number of parameters, input dimensions and
output dimensions of these two modules in Table 2.

The structure and computational complexity of the REMA
block and the Biformer block in the MLG model can be understood
more specifically through Table 2.

3.3 REMA Block

The structure of the REMA block is depicted in Figure 3. This
module consists of two convolutional layers and an EMA unit,
interconnected via residual connections to facilitate information
fusion and propagation. This design aims to enhance the model’s
representation learning capacity while alleviating the gradient

TABLE 2 Parameters and dimension information of the REMA block and
the Biformer block.

Block Input size | Output size No. of
parameters

REMA 112 x 112 x 64 | 112 x 112 x 64 74,160

Biformer | 112 x112x 64 | 112 x 112 x 64 10,4576

frontiersin.org


https://doi.org/10.3389/fnins.2025.1618514
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

Chen et al.

10.3389/fnins.2025.1618514

- N
input \
l CxHxW |

G

roups [crG o [cvox wa:
Spatial attention Conv 3x3 |
ClGX HxW | |
Input Cl/Gx HxW GroupNorm ~+— |
41 Cl/Gx wal |
Conv 3x3 AvgPool AvgPool l
C//Gx 1x1 l lC//Gx 1x1 :
Conv 3x3 Softmax Softmax |
l IxC//G l lGC//G I
EMA Matmul < “— Matmul |
i Output :
|
|
Softmax |
J |
Re-weight |
output |
CxHxW /

/

FIGURE 3
REMA structure.

vanishing problem often encountered in deep networks. By
incorporating the EMA unit (Ouyang et al., 2023), the REMA
block is better equipped to capture inherent data features, thereby
boosting the model’s performance. The core idea of the EMA
module is to group the channel dimensions into multiple sub-
features and ensure good distribution of spatial semantic features
within each feature group. This method not only preserves
information in each channel but also reduces computational
overhead. Specifically, the EMA module recalibrates the channel
weights of each parallel branch using global information encoding.
Moreover, the output features from the two parallel branches
are aggregated through cross-dimensional interaction methods,
further enhancing the representational power of the features. Inside
the EMA module, there are three parallel paths designed to extract
attention weight descriptors for the grouped feature maps. Two of
these paths belong to the 1 x 1 branch, while the third one is part
of the 3 x 3 branch. Within the 1 x 1 branch, two one-dimension
global average pooling operations along two spatial directions are
employed to encode channel attention. In contrast, the 3 x 3 branch
uses a single 3 x 3 convolutional kernel to capture multi-scale
feature representations. The output of the REMA module can be
mathematically represented as follows:

out = EMA(conv(conv(x))) + x (2)

The structure of the Biformer Block is depicted in Figure 4.
The core of the Biformer lies in its BRA, which consists of a
deep convolution, two layers of Layer Normalization (LN), and
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a Multilayer Perceptron (MLP) interconnected through residual
connections (Zhu et al., 2023).

The design principle of BRA revolves around dynamic, query-
content based sparsity. Initially, irrelevant key-value pairs are
filtered out at a coarse-grained regional level by constructing and
pruning a directed graph representing region-level relationships.
Subsequently, a fine-grained token-to-token attention mechanism
is applied over the joint set of the remaining, or routed,
regions to selectively focus on locally relevant information while
bypassing globally unrelated data. In BRA process, given a two-
dimensional input feature map X, it is partitioned into S x S
non-overlapping regions, each containing a specific number
of feature vectors. These region-based features undergo linear
projections to generate query, key, and value tensors Q, K,
V. An inter-region association matrix AY is then constructed
by computing average query and key vectors across regions,
with its elements indicating semantic relevance between pairs
of regions. The critical step involves selecting the top k most
related adjacent regions for each region based on this relevance
measure, yielding a routing index matrix I' via row-wise top-
k operations. Building upon this, the model applies fine-grained
token-to-token attention. Specifically, for a query token originating
from region i, it attends to all key-value pairs within the k
routed regions indexed by I}/i’l) through I},i,k)' To efficiently
execute this, despite these regions potentially being scattered
throughout the feature map, the model first employs a gather
operation to collect the key and value tensors from these regions,
forming aggregated key and value sets K; and V. Finally,
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attention computation is performed using the gathered key and
value tensors:

(QK)T
NG

here, /e is usually a factor that scales the denominator in

O = soft max(

)Vg 4+ LCE(V) 3)

the formula for calculating the attention score in order to
prevent the occurrence of over-concentration of weights and
loss of gradients. LCE (V) represents local context enhancement,
which is implemented by depth separable convolution to enhance
local information.

3.4 Loss function

In classification tasks, the cross-entropy loss function is a
commonly used loss function. Originating from the concepts of
entropy and mutual information in information theory, it serves
to quantify the discrepancy between two probability distributions.
Specifically, when training neural networks, it is employed to
measure the difference between the model’s predicted probability
distribution and the true distribution of the observed data. For
classification tasks, assuming the true label is y and the model
predicted probability is q, the cross-entropy loss function can be
expressed as:

H(y,q) = = > yilog(q)) (4)

where, y; represents the true label for the i-th category and q;
denotes the model predicted probability that the sample belongs to
the i-th class.

4 Results

This section introduces the experimental setup, experimental

results, and ablation experiments, collectively serving to

comprehensively and rigorously substantiate the proposed model.
4.1 Experimental apparatus
A PyTorch implementation is performed for the model

proposed by us, while experiments were carried out on a Windows
11 system equipped with a 12GB RTX 4070 GPU and an Intel
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i5-13400F processor. The Adam optimizer was utilized, with the
initial learning rate set at 0.0001, the batch size fixed at 16, and
the number of epochs specified as 50. In our experiments, early
stopping was utilized to prevent overfitting. Detailed information
about the parameters can be found in Table 3.

4.2 Evaluation metrics

In the experiments, the accuracy, recall, precision, and F1-
score were employed as evaluation metrics, with their respective
calculation methods presented in Formulas (5-8). The accuracy is
one of the most commonly used evaluation metrics in classification
problems, representing the proportion of correctly classified
samples out of the total number of samples. The recall, focuses
on the ability of the model to correctly identify positive samples,
which refers to the ratio of true positives (correctly identified
positive instances) to all actual positive instances in the dataset.
The precision measures the proportion of instances predicted by
the model as positive that are truly positive, that is, the ratio
of true positives to all instances predicted as positive. The F1-
score, being the harmonic mean of precision and recall, integrates
the performance of both precision and recall, offering a more
comprehensive assessment of the model’s performance (Zulfigar
et al., 2023; Zebari et al., 2024). When both precision and recall
are high, the Fl-score will also be high, and conversely, when
either of these values is low, so will the Fl-score. This implies
that a high F1-score indicates strong overall performance in terms
of both accurately identifying true positives and minimizing false

predictions.
TN + TP
Accuracy = + (5)
TN + TP + FN + FP
TP
Recall = ——— (6)
TP + FN

TABLE 3 Training Hyper-parameter values of proposed network.

Parameters Value

Initial learning rate 0.0001
Batch size 16
Optimizer Adam
Number of epoch 50
Learning rate decays 0.1
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- TP
Precision = ——— (7)
TP + FP
2TP
Fl —score= ————— (8)
2TP + FP + FN

4.3 The results of the experiment

Figure 5 illustrates the confusion matrices for the classification
results of the model on the test sets of two publicly available
datasets, where G, M, and P stand for glioma, meningioma,
and pituitary adenoma, respectively, and N stands for normal
state, indicating the absence of brain tumor. From the confusion
matrices, detailed classification performance metrics for the model
were calculated according to Formulas (5-8) and summarized in
Table 4. From Table 4, it is evident that, on the test set of the
Chen dataset, the average performance metrics for model MLG
include a recall of 98.88%, precision of 98.94%, F1-score of 98.91%,
and accuracy of 99.02%. On the Kaggle dataset test set, MLG
corresponding metrics are 96.89% for recall, 97.21% for precision,
96.89% for Fl-score, and 97.24% for accuracy. These indicators
demonstrate that across both the Chen and Kaggle datasets, the
MLG model exhibits outstanding classification performance, which
further validates the effectiveness and generalization capabilities of
the MLG model, enabling it to achieve satisfactory performance in
brain tumor classification tasks on diverse datasets.

4.4 Ablation study

In Section 4.3, performance metrics for the classification results
of the proposed model are presented. To further confirm the
validity of the proposed model, an ablation study was performed.
In this study, different combinations of modules are explored
within the framework of the model. This process allows for a
meticulous examination of each component’s contribution to the
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FIGURE 5
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overall performance, thereby providing deeper insights into the
effectiveness and robustness of the proposed model architecture.

In the first part of the study, brain tumor classification was
conducted separately using REMA and Biformer independently.
Figure 6 presents the testing results of various models in the Chen
dataset during the ablation experiment. The accuracies achieved by
REMA and Biformer are 98.53 and 98.37%, respectively, both lower
than the 99.02% accuracy obtained by MLG. Upon conducting
a detailed analysis of the ablation experiment results, it becomes
clear that the integration of the strengths of both the REMA and
Biformer modules within the MLG model effectively boosts the
accuracy rate in brain tumor classification.

In the second part of the study, the performance of the MLG
model upon incorporating the gated attention mechanism was
meticulously examined. The gated attention mechanism plays a
pivotal role within the model, serving to regulate the flow of
information by deciding which pieces of information should be
emphasized and which should be disregarded. By means of gating,
the attention mechanism assigns weights to information based
on its importance, thereby enhancing the model performance by
focusing on crucial features. Figure 7 shows the performance of the
model with and without the gated attention mechanism. Where,
GA stands for Gated Attention. It can be observed that when the
model does not include the gated attention, its performance lags
behind the version with the gated attention mechanism by 2.12%.
The results strongly demonstrate the effectiveness of the gated
attention in improving the performance of the model.

In the third segment of the investigation, the impact of
data augmentation on the MLG model was thoroughly explored,
particularly in scenarios involving small sample datasets. Data
augmentation is a critical technique that can significantly enhance a
model generalization capability while mitigating overfitting issues.
In this work, two prevalent data augmentation strategies were
employed: random rotation and random flipping. Figure 8 provides
a detailed account of the model accuracy rates on both the training
and test sets of the Chen dataset when data augmentation is applied.
Ar stands for data augmentation. From the figure, it is evident

G 1 1 0
150
M- 4 2 3
o 100
=
N- 3 3 0
-50
P 0 1 0 179
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Confusion matrix for model classification results (A) Chen dataset (B) Kaggle dataset.
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TABLE 4 Detailed values of metrics for the proposed model.

Dataset

Tumor |Recall | Precision | F1- Accuracy
type (%) (%) score (%)| (%)

10.3389/fnins.2025.1618514

Chen Glioma 99.30 98.95 99.12 99.02
Meningioma 97.87 97.87 97.87
Pituitary | 99.46 1.00 99.73
Average 98.88 98.94 98.91
Kaggle Glioma 98.92 96.32 97.60 97.24
Meningioma 95.19 97.27 96.22
No Tumor | 94.00 96.91 95.43
Pituitary | 99.44 98.35 98.90
Average 96.89 97.21 96.89
100 - ———— B S
0 | 99.02 ‘
98.53
Accuracy|(%) TR 98.37 |

98 I |

97

96
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Biformer

Method
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FIGURE 6
Classification results by REMA and Biformer.
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Effects of gating attention mechanism on MLG.

that with data augmentation, the training and test set accuracies
reach 99.96 and 99.02%, respectively. In contrast, without data
augmentation, while the accuracy on the training set reached 100%,
the accuracy on the test set notably decreased to 96.73%. This
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FIGURE 8
Impact of data augmentation on MLG.

comparative outcome vividly demonstrates that data augmentation
has a pronounced effect on improving model performance.

5 Discussion

According to the data in Table 4, the MLG model achieves
impressive accuracies of 99.02% on the Chen dataset and 97.24% on
the Kaggle dataset, which attest to its effectiveness and satisfactory
performance. Moreover, through ablation studies, the superiority
of the MLG model was further substantiated, emphasizing the
significant improvements gained by fusing the REMA and Biformer
modules via the gated attention mechanism, rather than merely
adding them together. Additionally, the application of data
augmentation has led to noticeable performance enhancements,
further bolstering the model generalization capabilities.

Beyond internal validation, the proposed model was also
compared against other advanced methods utilizing the same
datasets. Table 5 clearly outlines these comparative results. On
the Chen dataset, the MLG model outperforms the current best-
performing model, Multimodal-CNN Model (Magsood et al,
2022), by 0.1% in accuracy. Similarly, on the Kaggle dataset, the
MLG model surpasses the previously best-reported model IVX16
(Hossain et al., 2023) by an accuracy margin of 0.3%. When
juxtaposed against methodologies outlined in literature sources
paper (Alanazi et al., 2022)and paper (Saurav et al., 2023), the MLG
model consistently demonstrates higher performance on both the
Chen and Kaggle datasets. Precisely, on the Chen dataset, MLG
accuracy exceeds that of paper (Alanazi et al., 2022) by 2.13% and
that of paper (Saurav et al., 2023) by 1.79%. On the Kaggle dataset,
MLG accuracy advantage over paper (Alanazi et al., 2022) is 1.49%,
while over (Saurav et al., 2023) it is 1.53%. These comparative
results serve as compelling evidence of the MLG model superior
performance in the task of brain tumor classification, reinforcing
its potential applicability in real-world scenarios.

The Receiver Operating Characteristic Curve (ROC Curve) is
a widely used visualization tool in statistics, machine learning,
medical diagnostics, and other fields that require categorical
judgments for evaluating the performance of classification models.

frontiersin.org


https://doi.org/10.3389/fnins.2025.1618514
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

Chen et al.

TABLE 5 Compare with advanced methods on datasets Chen and Kaggle.

CNN Sachdeva et al. Transfer Kaggle 96.25
(2024) learning
Jun and Liyuan Attention- Chen 98.61
(2022) Guided
Magsood et al. Multimodal- Chen 98.92b
(2022) CNN
Model
Alanazi et al. 22-layer CNN Chen 96.89
(2022)
Kaggle 95.75
Saurav et al. (2023) AG-CNN Chen 97.23
Kaggle 95.71
Transformer | Wang et al. (2024) | RanMerFormer Chen 98.86
Sahin et al. (2024) BMO Chen 98.09
Hossain et al. IVX16 Kaggle 96.94
(2023)
Anaya-Isaza et al. Cross- Chen 97.22
(2023) Transformer
Dosovitskiy et al. Vision Chen 97.39
(2021) Transformer
Kaggle 95.88
Liu et al. (2021a) Swin Chen 98.69
Transformer
Kaggle 97.10
CNN+ Ferdous et al. LCDEIT Chen 98.11
transformer (2023)
Chen et al. (2025) EnSLDe Chen 98.69
Proposed model MLG Chen 99.02
Kaggle 97.24

It graphically illustrates the trade-off relationship between the
true positive rate (TPR) and false positive rate (FPR) of the
model under different threshold conditions. The area under curve
(AUC), indicates better model performance when its value is larger.

10.3389/fnins.2025.1618514

Typically, the closer the curve is to the upper left corner (with
higher TPR and lower FPR), the better the model performance. The
ROC curves of the model on the two datasets are shown in Figure 9.
It can be observed that the ROC curves closely adhere to the upper
left corner. On the Chen dataset, the AUC values of the MLG
model for glioma, meningioma, and pituitary tumors are 0.9996,
0.9993, and 1.00, respectively. Meanwhile, on the Kaggle dataset,
the AUC values of the MLG model for glioma, meningioma, normal
tissue, and pituitary tumors are 0.9991, 0.9965, 0.9989, and 0.9999,
respectively.

6 Conclusion

Brain tumors, constituting a severe health issue, pose a
significant threat to people’s lives. Therefore, timely and accurate
identification of brain tumor types, followed by appropriate
treatment planning, is critical for patients. The advent of
CAD technology has provided substantial support to doctors in
diagnosing brain tumors. In this paper, a novel MLG brain tumor
classification model is proposed, and the model skillfully integrates
local features and global features, and provides a new solution
for the classification of brain tumors. The core components of
the MLG model are RMEA, Biformer and gated attention. The
RMEA Block, through carefully designed convolutional structures,
efficiently retains information across channels, emphasizing spatial
and channel-wise features, thereby extracting richly informative
local features. Conversely, the Biformer employs a unique BRA
mechanism to dynamically and contextually select a subset of
the most relevant key-value pairs for each query, optimizing
the computational process. Meanwhile, BRA can capture remote
dependencies across regions and even objects, providing powerful
support for extracting global features. The MLG model uses a
gated attention to selectively filter and fuse the local features
extracted by the RMEA block with the global features extracted by
the Biformer block. This significantly enhances the representation
capability of the fused features, thereby improving the classification
performance of the model. The integration of both local and
global features enables the MLG model to exhibit outstanding
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FIGURE 9

ROC curves for the proposed model on (A) Chen dataset (B) Kaggle dataset.
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performance in brain tumor classification tasks. Experimental
results on two public datasets demonstrate that the MLG
model achieves satisfactory performance across multiple metrics,
including accuracy, precision, recall, and Fl-score. Compared
with existing advanced methods, the MLG model exhibits
marked advantages, fully validating its effectiveness in practical
applications. In future work, it is planned to continue exploring
other methods of feature fusion first to further improve the
performance of the MLG model. Secondly, the introduction of
more refined feature detection methods will be explored, or they
will be combined with other advanced attention mechanisms to
enhance the selection ability for key areas. In addition, efforts
will also be made to obtain data on other brain diseases, expand
the application scope of the model, and provide more auxiliary
diagnostic tools for the medical field.
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