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Fragile X Syndrome (FXS), caused by the loss of function of the Fmrl
gene, is characterized by varying degrees of intellectual disability, autistic
features, and sensory hypersensitivity. Despite phenotypic rescue in animal
deletion models, clinical trials in humans have been unsuccessful, likely
due to the heterogeneous nature of FXS. To uncover the basis of
individual- and subgroup-level variation driving treatment failures, we
propose to test and modulate thalamocortical drive as a novel “bottom-
up” neural probe to understand the mechanics of FXS-relevant circuits.
Our study employs trial-level EEG analyses (neurodynamics) to detect
fine-grained differences in brain activity using sensory and statistical
learning paradigms in children with FXS, autism spectrum disorder (ASD),
and typically developing controls. Parallel analysis in the FXS knockout
mouse model will clarify its relevance to human FXS subgroups. In a
randomized crossover study, we will evaluate the efficacy of closed-loop
auditory entrainment, indexed on individual neurodynamic measures, aiming
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to normalize neural responses and enhance statistical learning performance.
We anticipate this approach will yield opportunities to identify more effective
early interventions that alter the trajectory of intellectual development

in FXS.
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Introduction

Fragile X Syndrome (FXS) is an X-linked monogenetic disorder
characterized by reduced Fragile X Messenger Ribonucleoprotein
(FMRP) that presents with diverse cognitive and behavioral
impairments (Hagerman et al., 2017). Despite the discovery of the
silenced Fmrl gene over three decades ago (Pieretti et al., 1991)
and the subsequent development of the Fmrl~/~ knockout (KO)
mouse, translational research has not yet effectively alleviated the
core symptoms of the disorder (Berry-Kravis et al., 2018). Notably,
therapies that have successfully reversed deficits in Fmrl ™/~
KO models have failed to produce positive results in over a
dozen human clinical trials (Erickson et al., 2017; Erickson et al.,
2018). We postulate that this translational failure stems from an
oversimplified assumption of homogeneity in human FXS research.
In stark contrast to the Fmrl~/~ KO mouse model in which
no protein is produced, patients exhibit significant variability
in electroencephalographic (EEG), molecular, and behavioral
phenotypes, likely reflecting human-specific factors including
complex cortical organization and higher-order cognition (Van der
Molen et al., 2014; Goswami et al., 2019; Hall et al., 2008; Heard
et al., 2014; Jonak et al., 2020). This heterogeneity has contributed
to the absence of validated biological markers of the disorder,
exposing a key obstacle to therapeutic progress in FXS (Sahin et al.,
2018).

Thalamocortical circuits and neural oscillations provide
a promising mechanistic framework for addressing this
heterogeneity. Thalamocortical networks regulate the rhythmic
brain activity that underlies sensory processing and cognitive
function, and disruptions in these circuits have been implicated
across multiple neuropsychiatric conditions (Choi et al., 2015;
Llinas et al., 1999, 2005). Therefore, thalamocortical dysrhythmia
may reflect individual differences in the balance between neural
mechanisms driving sensory systems and their impact on
cognition. Importantly, this dysrhythmia can be measured non-
invasively using EEG through alpha oscillations (~10 Hz), which
serve as a proxy for thalamocortical activity (Halgren et al,
2019), and may represent tractable targets for intervention. Brain-
computer interfaces (BCI) offer a promising approach for targeting
these oscillatory disturbances by continuously monitoring brain
activity through EEG, detecting specific neural features like peak
alpha frequency (PAF) in real-time, and automatically adjusting
stimulation parameters to obtain and maintain desired brain
states. This closed-loop approach enables individualized, real-time
modulation of thalamocortical activity, potentially addressing the
heterogeneity observed in FXS.
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This Frontiers in Neuroscience Perspective article uses the
FX ENTRAIN study as an illustrative example for understanding
and modulating the underlying mechanisms contributing to
heterogeneity in FXS by systematically exploring (Figure 1):

(1) Which
characterize FXS pathophysiology?
(2) Can novel BCI interventions effectively modulate these

specific neurophysiological biomarkers reliably

biomarkers?
(3) Does successful biomarker modulation produce measurable
functional improvements?

these
neurophysiological

Addressing questions, our approach targets
linked to thalamocortical

regulation of neural oscillations, a potential source of phenotypic

biomarkers

heterogeneity. We will explore these neurodynamics using auditory
and pattern-based learning paradigms, modulating these sensory
and cognitive systems with individualized auditory entrainment
via BCI, resulting in “bottom up” modulation of thalamocortical
circuits. In our initial prototype, we will monitor PAF and adjust
entrainment frequencies stepwise to obtain a target close to 10 Hz,
examining the potential use for these personalized therapeutic
interventions for patients with FXS.

Identifying neural biomarkers in FXS

EEG as optimal method for non-invasive
biomarker detection

Electroencephalographic is a highly feasible method for
investigating neurophysiological variability in FXS. Dense-array
EEG techniques can provide a real-time examination of brain
activity and can be used to localize superficial cortical sources
within an error margin less than 1 cm (Song et al., 2015). With
the addition of inferior surface data, source localization improves
the estimate accuracy for deeper brain regions (Song et al., 2015).
In the FX ENTRAIN study, EEG collection will occur at each study
visit and will include three primary measures: (1) resting-state EEG,
(2) sensory auditory chirp, and (3) passive, pattern-based statistical
learning (SL). Across these paradigms, we will examine key
biomarkers including alpha and gamma power, PAF, asynchronous
gamma activity, 40 Hz phase synchronization [intertrial coherence
(ITC)], evoked power, transient spectral events, neural entrainment
to structured auditory stimuli, and the word-learning index
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FIGURE 1
Overview of proposal scientific premise and approach.

(WLI). Furthermore, this study will implement trial-level (single-
trial) EEG analyses to assess oscillatory activity and phase
synchronization on a per-trial basis rather than relying solely on
group-averaged effects. This approach allows us to assess variability
in brain activity on a trial-by-trial basis, providing a more detailed
understanding of neurophysiological heterogeneity in FXS. In
addition to quantitative analysis designed around our scientific
goals, the study neurologist will review all research EEG tracings
for any evidence of epileptic activity (Heard et al., 2014).

Translational challenges in FXS
neurophysiology

Group-level EEG abnormalities are well-established in both
humans with FXS and Fmr1~/~ KO mice, presenting a promising
translational bridge. Both populations show increased resting-
state gamma power and a reduction in sound-evoked gamma-
band synchrony, pointing to similar network hyperexcitability and
impaired sensory processing (Wang et al., 2017; Lovelace et al,
2018; Jonak et al., 2022). Furthermore, both human and mouse
studies have identified altered event-related potentials (ERPs), such
as increased N1 auditory evoked potential amplitudes and reduced
habituation to repeated stimuli, which are consistent with auditory
hypersensitivity and deficits in sensory gating (Van der Molen
et al, 2012; Jonak et al., 2020). While high frequency activity has
shown consistent translational connections, exploration of lower
frequencies such as alpha is an emerging area of study. During
resting-state EEG, individuals with FXS demonstrated a reduction
and global leftward shift in alpha, while studies in Fmrl -/~ KO
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mice show conflicting results, with some showing no differences
from controls and others demonstrating a decrease in alpha power
(Pedapati et al., 2022; Jonak et al., 2024; Kozono et al., 2020).
Studies using specific auditory stimulation paradigms reveal a
more nuanced picture. During an auditory gap-in-noise task,
Fmrl™/~ KO mice showed a significant reduction in theta/alpha
band phase synchronization in the primary auditory cortex,
demonstrating impediment to temporal processing (Deane et al.,
2025). However, during an auditory chirp paradigm, individuals
with FXS demonstrated increased alpha synchronization at onset
and offset of stimulation, but no change during stimulation
(Ethridge et al., 2017). Ultimately, these translational challenges
suggest that while group-level effects show key similarities, there
remain neurophysiological features in human FXS that are not
yet adequately captured by the highly uniform Fmrl~/~ KO
mouse model.

Thalamocortical dysrhythmia as source
of heterogeneity

Thalamocortical dysrhythmia (TCD) provides a unifying
these
that alterations in thalamocortical activity may be a system-
these EEG findings and
is thus far underexplored in FXS and preclinical models.

framework for scattered findings. We hypothesize

level hypothesis that underlies
Specifically, TCD 1is an electrophysiological motif derived
from magnetoencephalography and EEG that has been attributed

to the dysregulation of cortical excitability and observed across
neuropsychiatric conditions (i.e., epilepsy, Parkinson’s disease,
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tinnitus, depression, and neuropathic pain) (Choi et al, 2015;
Llinas et al., 1999, 2005). Similarly to our previous findings in FXS
(Pedapati et al.,, 2022), subgroups that display TCD have reduced
alpha power, increased theta power, increased gamma power, and
predominance of theta-gamma cross-frequency coupling (CFC),
a metric describing frequency band interactions, notably lower
frequency regulation of higher frequency activity. Alpha band
frequency has been demonstrated to mediate feedback throughout
the thalamocortical system (Halgren et al., 2019). Abnormalities
in alpha and gamma power demonstrate significant clinical
associations with several core features of FXS, including cognitive
function, anxiety, social communication, and auditory attention.
Our central hypothesis is that disturbances in thalamocortical
function, as measured with EEG, alter global alpha (~10 Hz)
and gamma (>30 Hz) activity which in turn impair sensory and
cognitive function.

Transient events as subgroup biomarkers
in FXS

Standard EEG analyses mask individual differences by
averaging across trials and participants. To address this, the study
team has incorporated signal analysis techniques that examine
transient, non-continuous features (Jones, 2016) of EEG data
to capture inherent neurophysiological variability across males
with full mutation (mosaic and non-mosaic) and females with
FXS (Baker et al, 2019; Meng et al., 2021; Shaffer et al., 2020;
Smith et al., 2021), using trial-by-trial variability measures to
assess individual and subgroup differences. A critical lesson from
recent success in RCTs in FXS is the utility of targeting subgroups
(Berry-Kravis et al., 2018, 2021). Neurodynamic analyses includes
non-continuous, trial-by-trial dynamics of oscillatory activity in
unaveraged data, and can be applied resting-state and ERP studies
(Jones, 2016) and can better reflect individual-level variation
of EEG data (Shin et al, 2017). Several distinct time-domain
neurodynamics, for example, can lead to a net increase in mean
spectral power. Recent studies have shown that neurodynamic
features, which may include brief, high-intensity bursts in
various frequency bands, have been used for granular behavioral
predictions, such as neurocognitive responses (Becker et al., 2020)
or predicting sensory thresholds (Shin et al., 2017).

Task-based paradigms probe
functional networks

Sensory processing through auditory
chirp

To process complex sensory patterns, the brain must detect
cues and mount precise neural responses. We will identify
transient, non-continuous oscillatory features of brain EEG
measured responses to auditory evoked potentials (AEPs) to a
chirp stimulus in unaveraged trial by trial data at the sensor
level. We will test that features of these transient oscillations are
associated with individual and subgroup-level variation (including
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mosaic status and clinical phenotype). In addition, we will
compare neurodynamic features of AEPs between Fmrl~/~ KO
and wildtype mice to identify which human subgroup most
closely matches the neurodynamic profile of the mouse model.
The auditory chirp stimulus probes thalamocortical processing
by measuring how neural oscillations synchronize with dynamic
frequency changes. This synchrony metric used is intertrial
coherence (ITC), also referred to as the phase-locking factor. ITC
measures the consistency of the EEG signal’s phase alignment
across multiple presentations (trials) of a specific stimulus or
pattern element. High ITC indicates that neural oscillations are
reliably phase-locked to the input, reflecting a precise, robust neural
encoding - essentially, a clear “signal” relative to background
activity. Conversely, low ITC suggests variability or temporal jitter
in the neural response, indicating a less precise or “noisier” neural
representation. Analyzing ITC allows us to move beyond averaged
amplitudes and probe the fidelity of neural information processing,
foreshadowing the signal-to-noise (S/N) framework discussed later.
Individuals with FXS show reduced gamma ITC to the chirp
stimuli, indicating impaired fidelity in basic sensory processing
(Ethridge et al., 2017, 2019).

Cognitive processing through statistical
learning

Statistical learning (SL) is a fundamental ability to extract
patterns and regularities from sensory input through passive
exposure, without explicit instruction or conscious effort to learn
(Bulf et al., 2011; Krogh et al., 2013). This process is crucial for
typical development, particularly in language acquisition for tasks
like segmenting words from continuous speech (Saffran, 2018).
Despite its importance, SL remains largely unexplored in FXS and
has received limited attention in ASD (Obeid et al., 20165 Scott-
Van Zeeland et al., 2010). Given that improving communication is a
primary goal for many families affected by FXS (Bailey et al., 2008),
understanding whether SL is impaired and potentially amenable to
intervention holds significant clinical relevance. A major advantage
of studying SL is its feasibility; it can be assessed passively
using EEG across diverse functional levels and ages, including
infants (Choi et al., 2020), overcoming challenges posed by more
demanding neurocognitive tests (Budimirovic et al., 2017; Schmitt
et al.,, 2019, 2020; Shaffer et al., 2020).

To quantify how the brain tracks statistical patterns and
responds to sensory inputs using EEG, our approach focuses on
neurodynamic features that reflect the consistency and precision
of neural responses on a trial-by-trial basis. Importantly, the
neural entrainment that occurs during statistical learning, as the
brain implicitly identifies recurring patterns within an auditory
stream, like auditory chirp, can also be effectively quantified using
ITC (Batterink and Paller, 2017; Batterink, 2017). Derived from
ITC, WLI assesses the shift in the ratio of word to syllable
frequency, demonstrating an EEG-derived measure of passive
pattern-based learning (Figure 2). Therefore, ITC provides a
common neurodynamic measure to assess response fidelity in
both a controlled sensory paradigm (chirp) and a passive learning
task tapping into cognitive processes (SL). This positions SL,
quantified via metrics like ITC and WL, as an ideal and feasible
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A. SL Stimulus

Syllables (11)

ti doh moo fee bah
nay leh vi puh kie
goh

Pseudowords (6)
tidohmoo feebahkie
naylehvi moopuhti
dohtibah vinayfee

C. Word-Learning index
syllable frequency
(random; 3.3 Hz)

.| word frequency |¥

1| (Structured;1.1 Hz)

B. Passive SL Task
Passive task suitable for all participants W)

Structured Condition (1.1Hz):

1vinayfee ! tidohmoo'feebahkie:moopuhtis
' | v | '

Random Condition (3.3 Hz):
dohfeenayfeemookiebahpuhtivileh

Outcome EEG-based measure
of entrainment, WLI (see panel C)

D. Active SL Task

Active task attempted with all participants
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“Hit the button when the " 6"
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JU W

03 |
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01 Tt B

Intertrial Coherence (ITC)

target target
r > 3 y (3rd syllable) (1st syllable)
Frequency (Hz) 1st Position  3rd Position
BLE = Reaction - Reaction
WL|= —LITC (Word Frequency) Outcome Time Time

ITC (Syllable Frequency)

FIGURE 2

Assessment of statistical learning (SL). (A) Eleven synthesized
generated syllables are combined into six trisyllabic pseudowords.
(B) A structured (experimental) and random (control) stream are
played to the participant during EEG. (C) Word learning index (WLI)
is a previously vali-dated EEG-based entrainment measure of
learning. Similar our sensory index, it is also based on intertrial
coherence (ITC). SL leads to perceptual grouping of trisyllabic
words, indexed by a relative increase in phase synchrony at the
word presentation rate and a decrease in synchrony at the syllable
rate over exposure. (D) Behavioral Learning Effect (BLE) is a
reaction-time based measure of SL. Participants respond to a target
syllable embedded in a continuous auditory stream of
pseudowords.

bridge between investigating basic sensory processing deficits and
understanding their potential impact on cognitive functions like
implicit learning in FXS.

To assess individual differences in neurodynamics, these
EEG markers of SL performance will be examined, including
neural entrainment, phase synchronization, WLI, and trial-by-
trial variability in EEG responses. This approach will provide
insight into how the BCI entrainment may help shift alpha
oscillations, an indicator of thalamocortical activity, into a more
functionally adaptive range, ultimately improving SL performance
in individuals with FXS.

BClI as intervention in sensory and
cognitive perturbation studies

Binaural beats as alpha auditory
entrainment stimulation

Our study aims to use data from these sensory and cognitive
objectives to parameterize a novel BCI that uses auditory stimuli
to enhance alpha oscillations. This approach is designed to test a
key question: whether the normalization of targeted EEG activity
can lead to improved sensory and SL markers within the disorder.
We will employ a non-invasive BCI using auditory binaural beats,
referred to as alpha auditory entrainment (AAE) to modulate
neural activity. Binaural beats are an established phenomenon in
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which two tones of slightly different frequencies are presented to
each ear, and the brain perceives a beat frequency equal to the
difference between the two tones (Ingendoh et al., 2023). This
non-invasive, low-risk approach offers a promising way to entrain
neural oscillations.

Modulation of TCD biomarkers

Our BCI intervention will be designed to enhance alpha
oscillations, which we have identified as a key component of TCD
as a source of heterogeneity in FXS. Specifically, we will use the
individual’s PAF to parameterize the BCI, providing a personalized
starting point for entrainment. While PAF is our initial target, this
framework is designed to be adaptable, allowing for the modulation
of other biomarkers, like spectral events. This approach directly ties
back to the concept of TCD, as we hypothesize that modulating
alpha oscillations will restore the top-down inhibitory control
needed to normalize aberrant gamma activity.

Individualized stimulation to address
heterogeneity

A central component of our approach is the use of a closed-loop
system. Unlike traditional open-loop interventions, our BCI will be
individualized for each participant. By targeting each individual’s
unique PAF, we account for the significant heterogeneity that
exists in FXS and address the issue of clinical instability observed
in previous trials. Further, the closed-loop system allows us to
monitor the effect of the auditory binaural beats stimulation in
real-time. We can check whether the biomarker is being altered
or improved and adjust the stimulation parameters dynamically
based on this feedback. This creates a cyclical, informed, and
personalized approach to neuromodulation, which will allow us to
directly quantify the effect of the BCI intervention by monitoring
real-time EEG to see if the alpha rhythms are “paced” into a
typical range. Our large collection of preliminary data demonstrates
that individuals with FXS have “noisy” asynchronous gamma
activity and a marked reduction in alpha power, suggesting
altered thalamocortical function. We will test if individualized
auditory perturbation compared to a sham condition will result
in normalization of these neurodynamic responses. Furthermore,
we will test whether this change in EEG activity is directly
associated with improvements in statistical learning (SL) behavioral
performance for a subset of participants. The results will directly
address whether the EEG alterations observed in FXS represent a
physiological mechanism that can be tractably targeted, or if they
simply reflect compensatory changes.

Study goals

The scientific goals of FX ENTRAIN are to identify

pathophysiological mechanisms, specifically, disruptions in
thalamocortical regulation and abnormal neural oscillations, that
can be targeted to alleviate core sensory and cognitive impairments

in FXS via the following steps: (1) study non-continuous features
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(source-localized EEG measured neurodynamics) of sensory-
driven brain activity to characterize patient-level heterogeneity
and constitute group effects; (2) identify neurodynamic features in
the Fmr1~/~ KO which are conserved in patient subgroups; (3)
examine neurodynamics associated with statistical learning, which
reflects cognitive processes rather than sensory driven responses;
(4) develop an individualized controlled closed-loop auditory
intervention to modulate brain activity and normalize sensory
and cognitive neurodynamics. These efforts have potential to be
highly impactful by providing a mechanism for enhancement
of early brain-based interventions, which could in turn alter
the trajectory of intellectual development in which no definitive
treatments are available.

Study design and methodology

The human studies in this project will consist of a case-
control study (Aim 1 and 2) and an acute randomized clinical trial
(RCT) (Aim 3). The case-control study will be completed over two
visits of approximately 4-h each and separated by approximately
1-4 weeks, including: blood draw for genetic and molecular
analyses (if required for genetic testing), medical and psychological
assessments, neurocognitive testing, and EEG/AEP procedures.
Subjects will be then eligible for a two-visit, randomized controlled,
crossover acute perturbation study to investigate the effect of
auditory intervention or sham stimulation on neural responses
associated with (1) the auditory chirp response and (2) statistical
learning. We estimate that the two visits will be approximately
4 h each, separated by a 1-4-week washout. We will account for
differences in the two visits by considering sequence in our analysis.
In sufficiently cooperative participants, behavioral responses to the
SL learning task will be obtained in addition to EEG measures.

The primary neurophysiological measures explored in this
study include:

e Resting-state EEG: Alpha and gamma power, PAE and
asynchronous gamma activity.

e Sensory auditory chirp responses: Phase synchronization
(40 Hz intertrial coherence), evoked power, and transient
spectral events.

e Statistical learning task responses: Neural entrainment to
structured auditory stimuli, phase synchronization, and WLL

o Effects of AAE: Modulation of
synchronization changes, and impact on sensory and

alpha oscillations,

cognitive EEG markers.
For the murine component, we have also setup a collaboration
to obtain resting state and auditory evoked potentials to compare
neurodynamic features between the Fmrl~/~ KO model and

human subgroups (Lovelace et al., 2018; Jonak et al., 2020). This
paper will focus on exclusively describing the human study design.

Study population

The target enrollment for the case control study is 120 subjects
between the ages of 5 and 10 years old. This includes 40 FXS (>200
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CGG repeats) and 40 IQ-, sex-, and chronologically aged matched
non-syndromic (i.e., idiopathic) ASD controls, and 40 sex- and
chronologically aged matched typically developing controls (TDC).
Males and females will be recruited in 1:1 ratio for all studies, as FXS
females have been understudied despite significant disability. An
age and sex matched idiopathic ASD group was included to weaken
the inference that genetic liability alone would account for group
difference. Moreover, some of our scientific propositions share a
common element-diminished PAF (Dickinson et al., 2018)-in both
ASD and a monogenic autism-related condition like FXS, which
could yield broader insights beyond the specific syndrome.

Study rigor, data and code
availability

The team has worked closely with the study biostatistician
to design a valid and robust experimental design to study the
major goals. Study data is kept in a secure REDCap database
and reviewed by multiple team members to ensure the integrity
and minimize biases. EEG and behavioral data are coded and
blinded concerning subject and group status during preprocessing
for analysis. Similarly, sham or entrainment conditions will be
randomized with a blinded key until completion of the study
and database lock. The study team will also upload complete,
cleaned, de-identified data to the National Database for Autism
Research (NDAR) within 9 months of the final year of project
funding. All code used for study analysis, including operations and
raw files, will be uploaded to the project’s central code repository
at http://github.com/cincibrainlab. This will provide transparent
access to all study team members and potential peer-reviewers an
audit trail of code modifications and the ability to independently
reproduce the results.

Study governance

The FX ENTRAIN investigative team is comprised of a rare
combination of preclinical and clinical experts from multiple
institutions with a track record of positive working relationships
focused on a disease using parallel interrelated approaches to tackle
major challenges. FX ENTRAIN was designed to work in concert
with a large existing National Institute of Child Health and Human
Development (NICHD) Fragile X Center at the home institution.
In addition, we have convened a family advisory committee steered
by the Director of Research Facilitation and Associate Director at
the National Fragile X Foundation to ensure results are effectively
disseminated to appropriate stakeholders.

Progress and future directions

FX ENTRAIN (clinicaltrials.gov: NCT06227780) was opened
on 5/2023 and is actively enrolling subjects with a estimated
study completion date of 5/2028. We have collected pilot data
on 19 participants which is being used to optimize the BCI
intervention for the RCT.
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Conclusion

Addressing heterogeneity in FXS, FX ENTRAIN employs
neurodynamics to analyze individual variability in EEG signatures
linked to sensory and cognitive disturbances. Non-invasive
perturbation is used critically, both to test causal influences of brain
activity on function and to probe underlying circuit regulation. This
innovative, collaborative research aims to translate understanding
of neurodynamic targets into personalized, effective treatments for
cognitive symptoms in FXS.
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