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The cannabinoid receptor type 1 (CB1R) is the most widely expressed G protein-
coupled receptor in the brain, with high concentrations in the basal ganglia, 
hippocampus, and cerebellum. Predominantly localized in presynaptic terminals, 
CB1R modulates synaptic transmission through retrograde endocannabinoid signaling. 
Its expression follows an ontogenetic trajectory, with region- and age-specific 
patterns that are particularly dynamic during adolescence. This developmental 
window is characterized by marked neuroplasticity and heightened impulsivity, 
a trait closely associated with increased vulnerability to substance use disorders 
(SUDs). While the prefrontal cortex has traditionally been viewed as the primary 
locus of self-control, growing evidence supports a broader regulatory network 
involving CB1R-rich subcortical structures. In particular, the hippocampus and 
cerebellum contribute to the modulation of impulsive behavior through their 
connectivity with prefrontal and limbic circuits. CB1R signaling in these regions 
influences decision-making, reward sensitivity, and response inhibition—all processes 
critical to the emergence of impulsive traits and drug-seeking behavior. This review 
integrates preclinical and clinical evidence to propose a distributed CB1R-regulated 
neurocircuit that underlies impulsivity and mediates risk for SUDs. We highlight 
adolescence as a critical period during which CB1R ontogeny may transiently 
unbalance inhibitory control systems, creating a neurobiological substrate for risky 
behaviors. Furthermore, we identify key knowledge gaps, including the underexplored 
ontogeny of CB1R in the cerebellum and its functional implications in addiction 
vulnerability. Understanding the dynamic role of CB1R across development and 
brain regions offers a more comprehensive model of impulsivity and its pathological 
escalation into substance use. This perspective may inform translational strategies 
targeting the endocannabinoid system for early prevention.
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Introduction

The endocannabinoid system (ECS) regulates emotional, motivational, and cognitive 
processes associated with impulsivity and drug addiction. Within this system, the cannabinoid 
type-1 receptor (CB1R) plays an important role due to its widespread expression in brain 
regions involved in these functions, including the prefrontal cortex (PFC), hippocampus, basal 
ganglia, amygdala, and cerebellum (Herkenham et al., 1990; Mackie, 2005; Tsou et al., 1998). 
This distribution suggests that CB1R coordinates cortical and subcortical mechanisms 
involved in impulse control and drug addiction.
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Accumulating evidence indicates that CB1R contributes to 
impulsive behavior and may increase susceptibility to substance use 
disorders (SUDs) (Cinnamon Bidwell et al., 2013; Romero-Torres 
et  al., 2023; Schneider et  al., 2015). Moreover, age-dependent 
differences in CB1R expression and function have been observed 
(Amancio-Belmont et  al., 2017; Meyer et  al., 2018), potentially 
contributing to increased impulsivity during key 
developmental periods.

Impulsivity is a multidimensional trait encompassing poor 
inhibitory control, premature responding, and maladaptive decision-
making. These dimensions have been consistently associated with the 
initiation of drug use, a higher vulnerability to developing SUDs, early 
dropout from treatment, and more frequent relapses in individuals 
(Ersche et al., 2010; Stevens et al., 2014; Verdejo-García et al., 2008). 
Adolescence represents a critical neurodevelopmental period 
characterized by elevated impulsive behavior, which may increase the 
risk of initiating substance use and developing SUDs (Jordan and 
Andersen, 2017).

This review aims to synthesize recent findings on the role of CB1R 
in impulsivity, with a particular emphasis on its contribution to SUDs 
vulnerability. We  examine both preclinical and clinical evidence 
linking CB1R function to impulsivity-related behaviors, highlighting 
age-dependent differences and therapeutic potential.

CB1 receptor: expression and function

Since the 1990s, evidence has revealed the existence of an 
endogenous cannabinoid system (ECS) in the brain and the 
periphery. This ECS is composed of endogenous cannabinoids, of 
which the most studied are anandamide and 2 arachidonoyl glycerol 
(Devane et al., 1992; Hanus et al., 2001; Mechoulam et al., 1995), 
enzymes for the synthesis [N-acyl-phosphatidylethanolamine 
(NAPE)], diacylglycerol (DAG) and degradation [fatty acid amide 
hydrolase (FAAH), monoacylglycerol lipase (MAGL)], and 
cannabinoids receptors CB1R and CB2R, which mediate their actions 
(Devane et  al., 1988; Matsuda et  al., 1990; Munro et  al., 1993). 
Agonist stimulation of both receptors activates several transduction 
pathways via the Gi/o family of G proteins-coupled signaling 
cascades, leading to inhibition of neurotransmitter release (Howlett 
et al., 2002).

CB1R is highly concentrated at presynaptic terminals, where it 
mediates retrograde signaling of endocannabinoids (Katona et al., 
1999; Tsou et al., 1998). In addition to neurons, CB1R is expressed, 
although to a much lesser extent, in astrocytes, oligodendrocytes, and 
microglia (Stella, 2009). The basal ganglia, hippocampus, and 
cerebellum are the structures exhibiting the highest levels of CB1R 
expression (Herkenham et al., 1990; Matsuda et al., 1993). CB1R is 
predominantly localized at the presynaptic terminals of 
cholecystokinin-expressing (CCK) GABAergic interneurons and 
certain glutamatergic neurons (Katona et al., 1999). This distribution 
enables CB1R to modulate both inhibitory and excitatory synaptic 
transmission. Additionally, CB1R is present in glutamatergic neurons, 
albeit at lower levels, contributing to the fine-tuning of excitatory 
neurotransmission (Hill et al., 2007; Katona et al., 1999; Marsicano 
and Lutz, 1999). This dual localization highlights the crucial role of 
CB1R in maintaining the balance between excitation and inhibition 
in neural circuits.

CB1R activity is involved in several physiological functions, 
including neuronal development (Fride, 2008), coordination and 
control of movement (Giuffrida and Piomelli, 2000), stress response 
(Beins et al., 2021), food intake (Kirkham et al., 2002; Méndez-Díaz 
et al., 2015), regulation of sleep (Méndez-Díaz et al., 2013; Prospéro-
García et al., 2016), body temperature (Smirnov and Kiyatkin, 2008), 
pain (Yang et al., 2016), immune function (Pandey et al., 2009), reward 
(Méndez-Díaz et  al., 2019; Parsons and Hurd, 2015) and higher 
cognitive functions, especially those related to learning and memory 
(Marsicano and Lafenêtre, 2009). Emerging evidence suggests a role 
for CB1R in behavioral regulation, including inhibitory control and 
decision-making.

In mesolimbic circuits, CB1R modulates dopaminergic activity, 
particularly in the ventral tegmental area (VTA) and nucleus 
accumbens (NAcc). This modulation enhances the reinforcing effects 
of both natural rewards (Amancio-Belmont et al., 2017; Méndez-Díaz 
et al., 2012) and drug of abuse (Amancio-Belmont et al., 2019; Castañé 
et al., 2002; Manzanedo et al., 2004), contributing to motivation and 
goal-directed behavior, but also to pathological reinforcement 
processes underlying drug-seeking and addiction such as drug-
seeking and drug addiction (Peters et al., 2020). CB1R also influences 
stress-coping mechanisms by modulating hypothalamic–pituitary–
adrenal (HPA) axis activity. Under stress, endocannabinoid signaling 
increases, promoting neuroendocrine and behavioral adaptation by 
dampening glutamatergic excitability and reducing anxiety-like 
behaviors (Morena et al., 2016).

Impulsivity

Impulsivity is defined as a predisposition toward rapid, unplanned 
reactions in response to internal or external stimuli, often yielding 
negative consequences (De Wit, 2009; Gell et al., 2024; Peyton et al., 
2019). The ability to make rapid decisions without hesitation can 
be  advantageous in certain situations, but impulsive behavior is 
generally maladaptive in everyday life (Peyton et al., 2019). Impulsivity 
is a broad, multifaceted construct typically described in two ways: (1) 
impulsive action, defined as a lack of behavioral inhibition regardless 
of potential negative consequences, and (2) impulsive choice, defined 
as failure of self-control or inability to delay gratification (Figure 1) 
(Grant and Chamberlain, 2014; Weafer et al., 2014). Impulsivity plays 
a crucial role in human behavior and is closely linked to cognitive 
control and decision-making processes (Dalley et al., 2011).

The ability to regulate emotions and behaviors in the face of 
temptation or impulses is known as self-control, involves delaying 
gratification, resisting immediate urges, and focusing on long-term 
goals (Duckworth and Steinberg, 2015) and depends critically of the 
PFC (Dalley et al., 2002; Euston et al., 2012; Friedman and Robbins, 
2022; Kim and Lee, 2011). Therefore, the culmination of PFC 
development during adulthood contributes to rational decision-
making, which is largely based on self-control. In this context, adults 
are expected to display fewer impulsive actions in daily life (Harden 
and Tucker-Drob, 2011). When adults consistently make impulsive 
choices or risky decisions, these may be  maladaptive and even 
symptomatic of psychiatric disorders, such as SUDs (De Wit, 2009; 
Méndez Díaz et al., 2021; Raji et al., 2025).

Adolescents, however, often exhibit impulsive behavior driven by 
a desire for sensation, novelty, and adventure, leading to increased 
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risk-taking and heightened reward sensitivity (Doremus-Fitzwater 
and Spear, 2016; Harden and Tucker-Drob, 2011). In a longitudinal 
study with a two-year follow-up, sensation seeking significantly 
mediated the effect of resting-state hyperconnectivity (particularly in 
prefrontal, medial frontoparietal, and occipitotemporal networks) on 
subsequent alcohol use. These findings highlight the role of 
connectivity within and between inhibitory control and reward-
processing networks in contributing to facets of impulsivity and risk 
for early substance use initiation among adolescents (Antón-Toro 
et al., 2022).

Adolescent alcohol misuse (AAM) has been associated with 
disruptions in brain development. A longitudinal machine learning 
analysis of the IMAGEN dataset (n = 1,182) identified 
neuroanatomical features in adolescence that predicted 
AAM. Specifically, reduced white matter integrity in the corpus 
callosum, internal capsule, and brainstem, as well as alterations in gray 
matter in the occipital, frontal, and temporal lobes, as well as the 
cingulate cortex, were significant predictors of later alcohol misuse 
(Rane et al., 2022). These findings support the notion that adolescence 
represents a critical window of vulnerability, during which structural 
immaturity os circuits for impulse control, reward, and cognitive 
regulation confers risk for SUDs.

Impulsivity has been consistently described in adolescent rodents. 
Using several experimental paradigms, Andrzejewski et al. (2011) 
found that adolescent rats display impaired learning, reduced 
behavioral inhibition, and lower self-control compared to adult rats. 
Additionally, both female and male adolescent rats exhibit more 
impulsive actions than their adult counterparts (Burton and Fletcher, 
2012). Adolescent mice also show increased impulsivity in tasks such 
as the Five-Choice Serial Reaction Time Task (5-CSRTT) (Ciampoli 
et al., 2017) and the Delayed Delivery Task (Adriani and Laviola, 
2003). Moreover, adolescent rats exhibit rapid consumption patterns 
and an increased eagerness to seek out palatable food (Amancio-
Belmont et al., 2017; Friemel et al., 2010). In this context, heightened 
reward sensitivity may also generalize to drug intake, as natural 
reinforcers and drugs of abuse engage overlapping neurobiological 

pathways. For example, low doses of alcohol, nicotine, cocaine, and 
amphetamine produce conditioned place preference in adolescents, 
but not adults, suggesting that adolescents may be more sensitive to 
the rewarding effects of drugs of abuse (Brenhouse et al., 2008; Philpot 
et al., 2003; Vastola et al., 2002; Zakharova et al., 2009).

Although impulsivity is often conceptualized as a failure of self-
regulation, it may be more accurately conceptualized as the result of 
imbalances or inefficiencies within the neural circuits that support 
self-control. While the PFC remains central, growing evidence 
highlights the contribution of subcortical partners (Méndez Díaz 
et  al., 2021). The PFC exerts top-down executive control through 
extensive bidirectional connections with structures such as the basal 
ganglia, which are involved in action selection and motor inhibition, 
mainly via the dorsal striatum (Aron et al., 2003; Terra et al., 2020). 
Thalamocortical pathways support these cortico-striatal loops, which 
enhance response suppression and attentional control (Alexander and 
Crutcher, 1990; Aron and Poldrack, 2006). The amygdala contributes 
emotional salience, influencing behavior in affectively charged 
contexts (Guex et al., 2020), while the VTA modulates reward-driven 
behaviors through dopaminergic projections to the PFC and NAcc 
(Flores-Dourojeanni et al., 2021; Han et al., 2017). Together, these 
regions form an integrated cortico-subcortical network essential for 
delaying gratification, suppressing impulsive tendencies, and 
promoting adaptive, goal-directed behavior.

CB1 receptor and impulsivity

Experimental evidence demonstrates that CB1R regulates 
impulsivity. In humans, the systemic administration of Δ9-
Tetrahydrocannabinol (THC) increases impulsive responding on the 
Stop task (McDonald et al., 2003). In rodents, systemic administration 
of SR141716A, a CB1R antagonist, enhanced inhibitory control by 
decreasing the number of premature responses in the 5-CSRTT in rats 
(Pattij et  al., 2007). Chronic exposure to WIN 55,212–2, a CB1R 
agonist, during adolescence increased impulsive choice in 

FIGURE 1

Overview of different modalities of impulsive behavior and neuropsychological tasks used to measure them. Impulsivity is typically conceptualized in 
two distinct forms: impulsive action, which refers to a failure of behavioral inhibition despite potential negative consequences, and impulsive choice, 
which involves a deficit in self-control or an inability to delay gratification.
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delay-discounting tasks: adolescent-onset administration produced a 
marked preference for smaller, immediate rewards, whereas adult-
onset exposure had a much weaker effect, underscoring adolescence 
as a critical window of vulnerability to cannabinoid-induced deficits 
in self-control (Johnson et al., 2019).

Research further supports the link between CB1R signaling and 
impulse control, particularly through evidence from pathological 
models that demonstrate how CB1R upregulation affects behavioral 
inhibition. In a study involving a Tat transgenic mouse model of 
HIV-associated neurocognitive disorders (HAND), female mice 
expressing the viral Tat protein exhibited deficits in inhibitory control 
during a Go/No-Go task. These impairments were accompanied by 
increased CB1R expression in the infralimbic cortex, a subregion of 
the PFC that plays a crucial role in behavioral regulation. Importantly, 
higher levels of CB1R expression were associated with poorer task 
performance, suggesting that CB1R overexpression may impair 
top-down inhibitory processes, even outside the context of typical 
neurodevelopment (Jacobs et al., 2019).

The developmental trajectory of CB1R expression shows marked 
age-dependent variation. Western blot and immunohistochemistry 
studies reveal that adolescent rodents exhibit lower CB1R expression 
in the medial prefrontal cortex (mPFC), hippocampus (dorsal and 
ventral), and NAcc compared to adults and aged animals (Amancio-
Belmont et al., 2017) while showing relatively higher levels in specific 
dorsal hippocampal subfields such as CA3 and dentate gyrus 
(Romero-Torres et al., 2023).

These findings are particularly relevant when considered in the 
context of adolescence, a developmental window characterized by 
naturally elevated impulsivity and an immature prefrontal regulatory 
system. During this period, CB1R expression undergoes dynamic 
changes, and even subtle disruptions in its signaling, whether due to 
genetic, pharmacological, or environmental factors, can have lasting 
effects on impulse control. Given the heightened plasticity and 
ongoing maturation of front-cortical and subcortical networks during 
adolescence, increased CB1R expression in key regions may exacerbate 
existing vulnerabilities. This supports the notion that adolescent 
brains are not only more reactive to endocannabinoid modulation but 
also more susceptible to its dysregulation (Cass et al., 2014), potentially 
contributing to long-term behavioral disinhibition and an increased 
risk of substance use.

Impulsivity as an adaptive feature in 
adolescence

Although impulsivity is often framed as a risk factor for 
maladaptive behaviors (particularly substance use), it also serves 
important adaptive functions during adolescent development. From 
an evolutionary perspective, increased impulsivity and risk-taking in 
adolescence may have conferred advantages by promoting novelty-
seeking, exploration of new environments, and the pursuit of 
independence from parental figures (Ellis et al., 2012; Spear, 2000). 
These behaviors are essential for acquiring new skills, forming social 
connections, and developing survival strategies necessary 
for adulthood.

Within this framework, the transient configuration of CB1R 
expression and endocannabinoid signaling during adolescence should 
not be  pathologized but instead understood as part of a broader 

neurodevelopmental strategy. Endocannabinoid signaling plays a key 
role in modulating synaptic plasticity, emotional regulation, and the 
maturation of prefrontal-limbic circuitry during this critical 
developmental period (Meyer et al., 2018; Tseng and Molla, 2025).

The challenge arises when these adaptive behaviors occur in 
environments saturated with immediate rewards and risks, such as 
easy access to psychoactive substances, lack of adult guidance, or 
emotionally unstable contexts, where impulsive tendencies can 
quickly escalate into maladaptive and harmful patterns (Casey et al., 
2011; Chambers et al., 2003; Steinberg, 2008).

Therefore, rather than attempting to suppress impulsivity entirely, 
a more constructive approach involves creating supportive 
environments, in families, schools, and communities, that help 
adolescents channel their exploratory drive into safe and enriching 
activities (Carvalho et  al., 2023; Joo and Lee, 2020; Khurana and 
Romer, 2020). Recognizing impulsivity as a developmentally 
appropriate trait and focusing on strengthening self-regulatory 
scaffolding through education, emotional support, and positive 
reinforcement may reduce the risk of impulsivity contributing to long-
term negative outcomes (Carvalho et  al., 2023; Zelazo and 
Carlson, 2012).

CB1 receptor and substance use 
disorder

The cannabinoid type 1 receptor (CB1R) plays a central role in the 
neurobiology of SUDs, given its modulatory influence on reward 
processing, reinforcement learning, and motivation (Parsons and 
Hurd, 2015; Serrano and Parsons, 2011). Preclinical studies have 
shown that activation of CB1R increases alcohol intake in a two-bottle 
choice paradigm (Colombo et al., 2002), increases morphine-induced 
CPP (Manzanedo et al., 2004), and reinstates nicotine and cocaine-
seeking behavior (De Vries et al., 2001; Gamaleddin et al., 2012).

In contrast, pharmacological blockade of CB1R with 
antagonists such as rimonabant or AM251 has been shown to 
reduce alcohol, nicotine, morphine, methamphetamine, and heroin 
self-administration (Caille et al., 2007; Caillé and Parsons, 2003; 
Cohen et  al., 2002; Economidou et  al., 2006; Vinklerová et  al., 
2002). Also, CB1R blockade significantly attenuates motivation for 
cocaine self-administration under a progressive ratio schedule of 
reinforcement (Soria et  al., 2005; Xi et  al., 2008) and reduces 
alcohol intake in a two-bottle choice paradigm (Colombo et al., 
1998). Moreover, CB1R blockade prevents nicotine and morphine-
induced CPP (Le Foll and Goldberg, 2004; Manzanedo et al., 2004) 
and reduces cocaine-induced CPP (Delis et al., 2017). In addition, 
CB1R blockade attenuates cocaine- and cue-induced reinstatement 
of cocaine-seeking behavior, but not stress-induced reinstatement 
(De Vries et  al., 2001). Also, reduces nicotine cue-induced 
reinstatement of nicotine-seeking behavior (Gamaleddin et  al., 
2012). Additionally, CB1R KO mice reduce alcohol intake in a 
two-bottle choice paradigm, prevent alcohol-induced CPP (Houchi 
et  al., 2005; Thanos et  al., 2005), and nicotine-induced CPP 
(Castañé et al., 2002). Also, CB1R KO mice have lower motivation 
for cocaine self-administration under a progressive ratio schedule 
of reinforcement (Soria et  al., 2005). Furthermore, using 
non-maternal care deprivation and maternal care deprivation rats, 
higher alcohol consumption in a two-bottle choice paradigm was 
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correlated with high CB1R expression in the NAcc and low CB1R 
expression in the mPFC (Amancio-Belmont et al., 2019). These 
findings support the view that CB1R contributes not only to the 
initiation of substance use but also to the maintenance and relapse 
stages of addiction.

Importantly, CB1R expression exhibits developmental plasticity, 
with adolescence representing a period of enhanced susceptibility to 
drug-induced neuroadaptations. Exposure to cannabinoids during 
adolescence can lead to persistent changes in CB1R expression, CB1R 
signaling, and synaptic plasticity (Burston et al., 2010; Rubino et al., 
2009; Weed et al., 2016), particularly in regions involved in impulse 
control and reward processing (Miller et  al., 2019). For instance, 
adolescent cannabinoid exposure has been associated with increased 
impulsive decision-making (Cajiao-Manrique et al., 2023; Dougherty 
et al., 2013), altered dopaminergic function (Solinas and Melis, 2024), 
and greater vulnerability to subsequent drug use, even when the initial 
exposure is limited to this developmental window (Orihuel 
et al., 2021).

Furthermore, clinical and postmortem studies in individuals with 
SUDs have revealed dysregulation of the ECS, including altered CB1R 
expression in prefrontal and limbic regions (Hirvonen et al., 2012; 
Endorzain et al., 2015). These alterations may reflect both pre-existing 
vulnerabilities and neuroadaptive responses to chronic substance use. 
Emerging evidence suggests that individual differences in CB1R 
function influenced by genetic variations, early-life experiences, or 
developmental stages may increase the risk of SUDs by impacting 
traits such as impulsivity, reward sensitivity, and stress responsiveness 
(Haughey et al., 2008; Schacht et al., 2012; Amancio-Belmont et al., 
2020; Romero-Torres et al., 2023).

Altogether, this body of evidence supports a model in which 
CB1R acts as a molecular gateway linking impulsive behavior and 
substance use vulnerability. Given its positioning at the interface of 
executive control, affective processing, and motivational systems, 
CB1R may play a critical role in the neurobiological underpinnings of 
addiction (Parsons and Hurd, 2015; Zapata and Lupica, 2021).

The hippocampus and cerebellum in 
impulsivity and SUDs

While most research has focused on prefrontal-limbic circuits, 
emerging evidence indicates that additional CB1R-rich regions, such 
as the hippocampus and cerebellum, play a complementary role in 
linking impulsivity with substance use vulnerability. These structures, 
through their connections with executive and motivational networks, 
provide an expanded framework for understanding the neurobiology 
of addiction.

The hippocampus is traditionally known for its roles in learning, 
memory, and spatial navigation. However, it also plays a key role in 
behavioral flexibility and the integration of contextual and emotional 
cues that affect decision-making. When hippocampal function is 
disrupted (Abela and Chudasama, 2014), it can lead to difficulties in 
evaluating long-term outcomes, which may result in more impulsive 
choices. Notably, research has found that adolescent rats have higher 
levels of CB1R expression in the dorsal and ventral hippocampus 
compared to adults (Amancio-Belmont et al., 2017). This difference 
may contribute to changes in reward processing and increased 
impulsivity during adolescence.

Recent research has further elucidated the role of the hippocampus 
in impulsivity and substance use behaviors. In a study by Romero-
Torres et al. (2023), adolescent rats exhibited higher impulsivity in a 
delay discounting task compared to adults, alongside increased 
alcohol consumption and alcohol-CPP. Notably, these behavioral 
tendencies correlated with elevated CB1R expression in the CA3 and 
dentate gyrus regions of the dorsal hippocampus, suggesting a 
significant involvement of hippocampal CB1R in modulating 
impulsive actions and alcohol-seeking behaviors during adolescence.

The cerebellum, traditionally viewed as a motor coordination 
center, has recently been implicated in higher-order functions, 
including cognitive and affective regulation. Cerebellar circuits 
interact with prefrontal and limbic regions via cerebello-thalamo-
cortical and cerebello-striatal pathways(Palesi et al., 2017; Watson 
et  al., 2014), supporting functions such as temporal prediction, 
response inhibition, and reward expectancy (Kostadinov and Häusser, 
2022; Mannarelli et al., 2020). CB1R is expressed in Purkinje cells and 
cerebellar interneurons (Ashton et  al., 2004), where it modulates 
synaptic transmission and timing precision. Preclinical studies 
indicate that cerebellar CB1R activity may influence impulsive 
behavior by regulating the temporal dynamics of decision-making and 
motor output. For example, cerebellar disruption has been linked to 
premature responses and poor delay discounting performance, 
hallmarks of impulsive behavior (Miquel et al., 2019; Murphy et al., 
2017; Ortiz et al., 2015).

Despite the increasing interest in the role of the cerebellum in 
behavioral regulation, little is known about the ontogeny of CB1R 
expression within cerebellar circuits. This knowledge gap is significant, 
especially considering the cerebellum’s growing importance in 
impulsivity and vulnerability to substance use. Understanding how the 
developmental trajectories of cerebellar CB1R contribute to the 
maturation of self-control and the neurobiological mechanisms 
underlying SUDs could provide valuable insights.

Incorporating these regions into more comprehensive models of 
impulsivity and SUDs could help clarify behavioral phenomena that 
prefrontal mechanisms alone do not fully explain, such as impulsive 
actions in neutral contexts or rapid shifts between goal-directed and 
habitual behavior. We  proposed integrating the cerebellum into 
broader circuits of self-control, emphasizing its anatomical 
connectivity with prefrontal and subcortical regions.

The role of CB1R in adolescence: 
developmental considerations

Adolescence is a unique period of neurodevelopment 
characterized by significant structural and functional changes in the 
brain. These changes include synaptic pruning, myelination, and the 
maturation of cortico-subcortical circuits (Arain et al., 2013; Juraska 
and Drzewiecki, 2020). Alongside these changes, there are fluctuations 
in endocannabinoid signaling, particularly involving the expression 
and functionality of the CB1R. The expression of CB1R follows an 
ontogenetically regulated pattern, with region-specific changes that 
peak at different stages (de Fonseca et al., 1993; Mato et al., 2003). 
Research in rodents has indicated that CB1R expression is elevated in 
various brain regions during early adolescence but gradually decreases 
into adulthood, particularly in the PFC and hippocampus (Heng et al., 
2011; Meyer et al., 2018).

https://doi.org/10.3389/fnins.2025.1621242
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Amancio-Belmont et al.� 10.3389/fnins.2025.1621242

Frontiers in Neuroscience 06 frontiersin.org

This transient elevation of CB1R, during adolescence may reflect 
the system’s role in shaping synaptic connectivity and regulating 
excitatory-inhibitory balance during critical periods of plasticity, 
making this stage particularly vulnerable to external insults. CB1R 
density is especially high in prefrontal, hippocampal, and cerebellar 
circuits, which are still undergoing synaptic refinement. Exogenous 
activation of CB1R during this period can disrupt excitatory-
inhibitory balance and interfere with the maturation of executive 
functions and impulse control, ultimately leading to persistent 
cognitive and behavioral alterations (Schneider, 2008). Cannabis, one 
of the most commonly used drugs during adolescence, has been 
shown to impair cognitive processes such as short-term memory 
function or attention (Sullivan, 2000). Neuroimaging studies revealed 
that adolescent cannabis users exhibit a lower percentage of gray 
matter and a higher percentage of white matter relative to whole brain 
volume (Pope et al., 2003). Cannabis use has also been associated with 
increased vulnerability to other drugs of abuse, such as opioids 
(Ellgren et al., 2007). In line with these findings, preclinical studies 
demonstrate that adolescent cannabinoid exposure produces enduring 
impairment in working memory, behavioral flexibility, and response 
inhibition in adulthood (Molla and Tseng, 2020; Renard et al., 2018).

Moreover, CB1R activity during adolescence appears to shape the 
development of motivational systems. Enhanced CB1R signaling in 
limbic and mesolimbic areas may amplify reward sensitivity and 
novelty-seeking behavior, traits that are adaptive for exploration but 
may also increase susceptibility to risk-taking and substance use, 
especially in adverse environments (Renard et al., 2016; Schneider 
et al., 2015).

Taken together, these findings emphasize that the adolescent ECS 
is not dysfunctional, but developmentally distinct. The typical 
ontogeny of CB1R expression and function may itself represent a 
neurobiological substrate of vulnerability to impulsive behavior and 
substance use. Understanding this temporally dynamic profile is 
essential for identifying sensitive periods in which interventions may 
be  most effective for promoting self-regulation and 
preventing addiction.

These findings support a more distributed view of impulse control, 
in which hippocampal and cerebellar networks, through their 
interactions with CB1R, shape behavioral outcomes relevant to 
substance use. Yet, this distributed model does not diminish the 
central role of the PFC. While the PFC has traditionally been regarded 
as the primary node for executive control, its relevance becomes 
particularly evident during adolescence, when this region undergoes 
protracted maturation. Together with hippocampal and cerebellar 
contributions, these interactions highlight a broader network in which 
CB1R influences developmental trajectories of impulse control and 
vulnerability to SUDs.

The hippocampus, with its dense CB1R innervation, participates 
not only in memory formation but also in the contextual evaluation 
of actions and outcomes. CB1R signaling in the hippocampus 
modulates behavioral flexibility and decision-making under 
uncertainty, processes that are core to impulsive control (Abush and 
Akirav, 2010).

The cerebellum is now recognized as a contributor to cognitive 
and affective regulation. CB1R signaling is critical for long-term 
depression (LTD) at parallel fiber–Purkinje cell synapses, a 
mechanism essential for motor learning and sensorimotor adaptation 
(Safo and Regehr, 2005). Through the synchronized activity of 

Purkinje cells and cerebellar nuclei neurons, cerebellar circuits enable 
accurate timing and anticipatory control of both motor and cognitive 
outputs (Person and Raman, 2012). Its afferent and efferent 
connections with midbrain and limbic regions provide the 
neuroanatomical basis for involvement in emotional regulation 
(Schutter and Van Honk, 2005), as exemplified in the cerebellar 
cognitive affective syndrome (CCAS), characterized by deficits in 
executive function and affect modulation (Schmahmann, 2019). 
Recent anatomical and functional evidence demonstrates that the 
cerebellum may directly influence reward-related midbrain circuits: 
in mice, optogenetic activation of excitatory projections from the 
deep cerebellar nuclei to the VTA promotes reward-seeking behavior, 
underscoring a cerebello–VTA pathway that contributes to 
reinforcement (Carta et  al., 2019). This connectivity suggests a 
potential route by which cerebellar CB1R signaling could modulate 
mesolimbic dopamine activity, thereby indirectly influencing 
impulsivity and vulnerability to substance use disorders. Overall, 
these findings support the view that the cerebellum may fine-tune 
impulsive responses through modulation of prefrontal and 
limbic outputs.

However, the ontogenetic CB1R expression in the cerebellum and 
its relationship to behavioral outcomes remain largely unexplored. 
This knowledge gap is of particular interest to our laboratory and 
represents a focus of our ongoing research.

An integrative model of CB1R and 
impulsivity

Converging clinical and preclinical evidence supports an 
integrative model wherein CB1R modulates impulsivity by affecting 
both cortical control systems, such as PFC, and subcortical evaluative 
networks, including the hippocampus, cerebellum. This expanded 
neurobiological framework moves beyond the focus on the PFC and 
aligns with modern models of distributed executive function. 
Additionally, it highlights the significance of developmental periods, 
such as adolescence, during which alterations in CB1R signaling may 
lead to persistent changes in self-regulation and behavioral trajectories 
associated with SUDs.

Building on this well-established cortico-subcortical framework, 
we propose that other brain structures, specifically the hippocampus 
and the cerebellum, may play a more integral role in the regulation of 
self-control than initially recognized. The hippocampus, through its 
connections with the VTA, amygdala, and PFC, provides contextual 
and mnemonic input that is critical for evaluating action-outcome 
contingencies and delaying responses. Similarly, the cerebellum, 
which projects to the PFC and basal ganglia via thalamic relays, has 
been increasingly implicated in the modulation of cognitive timing, 
error prediction, and inhibitory motor control. The high density of 
CB1R in these regions further supports their potential involvement in 
the endocannabinoid modulation of impulsivity.

Taken together, we suggest that the hippocampus and cerebellum, 
which have traditionally been overlooked in models of impulse 
regulation, may be  part of a broader, distributed circuit that 
contributes to both cognitive and motor aspects of self-control. 
Recognizing these extended interactions may enhance our 
understanding of the neurobiological mechanisms underlying 
impulsivity and expand the scope of future interventions.
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Therapeutic perspectives and 
challenges in CB1R modulation

While CB1R remains a promising target for modulating 
impulsivity and, by extension, vulnerability to SUDs, direct 
pharmacological manipulation presents significant challenges. CB1R 
antagonists or inverse agonists have shown potential in reducing drug-
seeking behavior and improving cognitive control in preclinical 
models; however, their clinical translation has been hindered by 
psychiatric side effects, including anxiety and depression, as observed 
in trials with rimonabant (Christensen et  al., 2007; Vinod and 
Hungund, 2006).

Efforts to develop CB1R antagonists without the psychiatric side 
effects observed with inverse agonists such as rimonabant are 
ongoing. The neutral antagonist AM6527 has shown efficacy in 
reducing drug-seeking behavior in preclinical models while avoiding 
aversive or depressive-like effects (Soler-Cedeño et al., 2024), but 
remains under investigation and has not yet progressed to 
clinical trials.

Given these limitations, a more viable avenue may involve indirect 
modulation of CB1R signaling to enhance behavioral self-regulation. 
It has been demonstrated that developing self-control during 
childhood and adolescence is associated with improved academic 
achievement, healthier social relationships, and reduced risk-taking 
behaviors across the lifespan, like drug abuse (Diamond and Lee, 
2011; Duckworth et al., 2019).

Conclusion

CB1R emerges as a key neuromodulator element linking 
impulsivity and vulnerability to SUDs, particularly during 
adolescence, a developmental period marked by dynamic changes in 
endocannabinoid signaling. While traditionally centered on the PFC, 
impulse control involves a broader network that includes the 
hippocampus and cerebellum, both of which are enriched in CB1R 
and undergo significant maturation during adolescence. 
Understanding how CB1R contributes to the regulation of self-control 
across cortical and subcortical regions offers a more integrative 
framework for identifying neurobiological risk factors and potential 
intervention targets for impulsivity-driven behaviors and addiction.
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