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The accurate identification of flight fatigue is crucial for managing pilot training

intensity and preventing aviation accidents. However, as a subjective perception,

flight fatigue is often difficult to evaluate objectively. Heart rate variability

(HRV), derived from electrocardiogram signals and regulated by the autonomic

nervous system, is recognized as an effective biomarker for assessing fatigue

status. This study proposes a novel HRV-based method for the automatic and

objective classification of flight fatigue. This study involved an experimental

investigation conducted with a cohort of 90 pilots. First, we conducted statistical

analyses to investigate whether HRV features and respiratory rate indicators

significantly differed across various fatigue levels. A subset of HRV features and

the respiratory metric were used as input variables for four machine learning

algorithms: decision tree, support vector machine, K-nearest neighbor, and light

gradient-boosting machine (LightGBM). These models were applied to perform

a three-level classification of flight fatigue. Finally, classification performance

was evaluated using average accuracy, precision, recall, and F1 score. Among

these models, LightGBM demonstrated the best performance, achieving an

accuracy of 0.886 ± 0.057, precision of 0.837 ± 0.064, recall of 0.861 ± 0.086,

and F1 score of 0.849 ± 0.067. These findings indicate that a LightGBM model

trained on 12 selected HRV features and one respiratory indicator can accurately

categorize flight fatigue into three levels. Fatigue can be detected even when

mild, enabling real-time monitoring and early warning of flight fatigue. This

approach holds potential for reducing fatigue-related flight accidents.

KEYWORDS

flight fatigue, machine learning, heart rate variability, light gradient-boosting machine,
electrocardiogram

1 Introduction

Flight fatigue refers to the cumulative physical and mental exhaustion experienced by
pilots during flight operations, which is primarily attributed to factors such as extended
flight durations, circadian rhythm disruptions due to jet lag, and heightened psychological
stress (Wingelaar-Jagt et al., 2021). Flight fatigue can lead to a decline in both psychological
and physiological functioning in pilots, manifesting as slower reaction times, impaired
judgment, and reduced motor control precision, posing serious threats to flight safety
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(Gaines et al., 2020; Wingelaar-Jagt et al., 2021; Jun-Ya and
Rui-Shan, 2023). Historically, fatigue-related incidents have been
common among military and commercial pilots (Gaines et al.,
2020; Alzehairi et al., 2021; Wingelaar-Jagt et al., 2021). Such
accidents are often attributed to decreased concentration and
impaired performance caused by fatigue. Research has suggested
that about 20% of aviation accidents are closely linked to flight
fatigue (Boksem et al., 2005; Faber et al., 2012). Therefore, real-time
assessment of fatigue states holds significant practical importance,
as it allows for timely intervention measures to prevent major flight
safety incidents (Wilson et al., 2020).

Based on the aforementioned considerations, numerous
researchers have employed a variety of physiological detection
techniques to assess flight fatigue. Of these, the detection of flight
fatigue using an electrocardiogram (ECG) is regarded as the most
promising method (Abe et al., 2014; Hu and Lodewijks, 2020; Pan
et al., 2021; Li et al., 2022). Heart rate variability (HRV), obtained
from processed ECG signals, has been shown to reflect autonomic
nervous system activity and is widely recognized as an effective
indicator for assessing drowsiness and fatigue levels in the human
body (Abe et al., 2014). Furthermore, HRV monitoring serves as
a non-invasive detection method that poses no risk to the pilot’s
physical wellbeing and does not elicit any obvious discomfort;
it can also be reliably collected through various lightweight
wearable devices (Hu and Lodewijks, 2020; Chen et al., 2024). In
comparison with other fatigue detection technologies such as an
electroencephalogram (EEG), HRV demonstrates superior stability
in-flight environments and is less susceptible to factors, including
head movement, noise, light, temperature, and electromagnetic
interference (Chen et al., 2024). Consequently, it provides a more
precise reflection of the pilot’s actual fatigue status. In recent
years, machine learning algorithms utilizing HRV have become a
major focus in fatigue detection, with significant breakthroughs
in the automatic analysis of mental fatigue. One study used
key HRV features related to fatigue as inputs and successfully
distinguished between normal and fatigued status (Wang et al.,
2023). Another study used neural network algorithms to develop
a driver fatigue model using the power spectral density of
HRV features as input, achieving a fatigue detection accuracy
of up to 90% (Patel et al., 2011). Additionally, models that
employed a support vector machine (SVM) and LightGBM to
classify physical fatigue also achieved promising results (Ramos
et al., 2020; Cosoli et al., 2021). Research has also shown that
combining ECG and respiratory signals can improve the accuracy
of fatigue classification, possibly because respiratory rate (Rsp),
like HRV, effectively reflects fatigue status (Chen et al., 2016;
Xiang et al., 2022).

Using a range of physiological data, four supervised machine
learning algorithms commonly used to classify fatigue levels
are: decision tree (DT), SVM, K-nearest neighbor (KNN), and
LightGBM (Kirodiwal et al., 2022; Ramkumar et al., 2023). The
DT model presents its decision-making process in a tree-like
structure, which facilitates an intuitive understanding of the
model’s reasoning. This is particularly valuable for identifying key
fatigue-related features and interpreting classification outcomes.
In addition, DT models make minimal assumptions about data
distribution, allowing them to be adapted to various types and
distributions of fatigue-related data (Lin et al., 2010). SVM models
have strong generalization ability, even when trained on limited

sample sizes, which enhances their accuracy on unseen data,
making it suitable for studies such as this one, where data
collection can be challenging (Cervantes et al., 2020). The KNN
algorithm can classify data based on the similarity of instances. It
is relatively easy to implement, which allows for rapid responses
to new data samples in fatigue classification tasks. It is also
adaptable to various types of fatigue data and exhibits robustness
against noise and outliers in the dataset (Boateng et al., 2020).
LightGBM utilizes a histogram-based algorithm that enables the
rapid processing of fatigue datasets, improving both training
and prediction efficiency. Furthermore, LightGBM can effectively
address class imbalance issues by fine-tuning its parameters,
thereby enhancing the model’s classification performance (Zeng
et al., 2019). From the above analysis, we conclude that all four
machine learning algorithms discussed demonstrated the capability
to classify fatigue states, each exhibiting distinct advantages.
Consequently, this study employed these four algorithms for
the automatic classification of HRV data collected during
flight.

In prior studies that utilized HRV data to train machine
learning models for fatigue classification, the standard 12-lead ECG
acquisition equipment was predominantly employed (Rudroff,
2024). In practice, this approach is not feasible for pilots during
flight as they are required to wear safety harnesses, and fighter pilots
must wear anti-G suits and helmets, making the acquisition of such
physiological signals impractical. Previous studies have generally
classified fatigue into only two levels: fatigue and non-fatigue
states (Hu and Lodewijks, 2020; Xiang et al., 2022; Chen et al.,
2024). This is typically effective only for identifying severe fatigue,
limiting its effectiveness for timely warning and intervention. To
address these limitations, we propose an automatic classification
method for flight fatigue based on wearable ECG and Rsp
monitoring devices. This method involves training the four
aforementioned machine learning algorithms to perform a three-
level classification of flight fatigue using selected physiological
features. This study aimed to evaluate the potential of wearable
ECG devices in conjunction with machine learning algorithms
for accurate classification and early detection of flight-related
fatigue.

2 Materials and methods

2.1 Participants

We recruited 90 male Chinese volunteer pilots via volunteer
programs with an average cumulative flight time of 896 ± 131 h.
The mean age of the participants was 31.6 ± 6.8 years, with
an average height of 173.5 ± 3.6 cm and an average weight
of 73.8 ± 7.9 kg. All pilots were prohibited from consuming
any medication, alcohol, coffee, tea, or other beverages that may
influence their nervous systems’ excitability within 1 week prior
to the flight. Additionally, all volunteers underwent rigorous
physical examinations within 1 month of the experiment to
ensure that they had no mental illness or sleep-related disorders.
All volunteers were thoroughly informed of the potential risks
prior to participation, including but not limited to drowsiness
and fatigue. Written informed consent was obtained from each
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participant. The study protocol and measurement procedures
were approved by the Ethics Committee of the Air Force
Medical Center. Prior to formal testing, all participants received
training to ensure proper operation of the measurement devices
used in the study.

2.2 Data acquisition method

As shown in Figure 1, each participant was required to wear
an ECG chest strap (SensEcho, Sensecho-1A, Beijing, China) prior
to the experiment. This device was specifically developed for
ECG monitoring during physical activity. It uses three adhesive
electrodes to record single-lead ECG signals at a sampling rate of
200 Hz. Wires embedded in the elastic chest strap also permitted
respiratory signal monitoring at a sampling rate of 25 Hz. The
device incorporated hardware-based noise reduction and software
filtering algorithms to ensure high-quality signal acquisition.
Details about the hardware design and software algorithms may be
obtained from (Zhang et al., 2019).

2.3 Experimental procedures

Prior to data collection, all participants were introduced to the
Rating of Perceived Exertion (RPE) scale and received training
on its use. This scale ranges from 6 to 20, and participants
were instructed to select any integer within this range that best
represented their perceived levels of fatigue. Based on the RPE
scores, fatigue was classified into three levels: (1) “non-fatigue,”
with RPE scores of 6–10; (2) “mild fatigue,” with scores of 11–
16; and (3) “severe fatigue,” with scores of 17–20 (Boksem et al.,
2005; Jiang et al., 2024; Rudroff, 2024). This refined classification
of fatigue levels enabled the precise evaluation and analysis of
the participants’ fatigue levels, providing strong support for the
accurate interpretation of the experimental data.

Participants were asked to wear the ECG monitoring device
30 min prior to flight. Baseline data were collected in a seated
position, during which participants also completed the RPE scale

FIGURE 1

ECG chest strap placement.

assessment. ECG data were continuously monitored throughout
the flight, and data collected within the first 5 min after
flight completion were used for fatigue evaluation. Participants
were again asked to complete the RPE scale immediately after
data collection.

Each participant took part in at least one and up to seven data
collection sessions. Flight durations varied depending on the nature
of the mission, with a maximum duration of 120 min. In total, data
from 392 sessions were collected. All aircraft operated by the pilots
were jet fighters, and flight tasks comprised a variety of routine
flight operation training exercises, including takeoff and landing
procedures, instrument flight training, and aerobatic maneuver
training. Table 1 describes the distribution of fatigue states across
the sessions collected during the experiment. The results suggest
clear individual differences in fatigue perception. For the same
duration of flight, pilots reported varying levels of fatigue; however,
level of fatigue may have also been influenced by the complexity of
the flight tasks performed.

2.4 Data processing method

ECG signals were sampled at 200 Hz. To eliminate noise and
motion artifacts, a low-pass filter with a cutoff frequency of 50 Hz
was applied during signal preprocessing. This was conducted using
the PhysioNet Cardiovascular Signal Toolbox (Clifford Lab, Emory
University, Atlanta, GA, United States) in MATLAB R2018a (Vest
et al., 2018). The selection of HRV features played a critical role
in developing a model with high sensitivity and specificity for
fatigue detection. Including irrelevant or redundant information
related to fatigue can increase computational cost and the risk of
overfitting during model training. Based on the preprocessed ECG
and respiratory signals and previous findings (Zeng et al., 2019;
Wang et al., 2023; Rudroff, 2024), 16 ECG-derived HRV features
and one respiratory feature with demonstrated sensitivity to fatigue
were chosen. Table 2 presents the names and descriptions of these
features.

Existing research indicates that, during states of fatigue, the
sympathetic nervous system (SNS) becomes suppressed, leading
to slower energy metabolism, delayed responses, and reduced
mental alertness. Conversely, the parasympathetic nervous system
(PNS) becomes more active, inhibiting SNS activity, reducing heart
rate, and promoting rest and recovery. In fatigued states, time-
domain HRV features—such as mean heart rate (HR), mean R–R

TABLE 1 Distribution of pilot flight times and fatigue states.

Flight table
fatigue state

Before
flight

Within
30 min

30–60
min

60–90
min

90–120
min

No. of participants
in non-fatigue
state

392 52 17 2 0

No. of participants
in mild fatigue
state

0 31 66 27 25

No. of participants
in severe fatigue
state

0 2 5 81 84
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TABLE 2 Extracted ECG and respiratory features.

Type of
feature

Feature Description

ECG features Mean HR Mean heart rate

Mean RR Mean R–R interval (the time between
successive heartbeats)

SDNN Standard deviation of all RR intervals

SDSD Standard deviation of differences
between adjacent RR intervals,
reflecting short-term variability

RMSSD Root mean square of successive RR
interval differences

pNN20 Percentage of successive RR intervals
that differ by more than 20 ms

pNN50 Percentage of successive RR intervals
that differ by more than 50 ms

LF Absolute power of low-frequency band
(0.04–0.15 Hz)

LFn Normalized low-frequency (LF) power
(i.e., LF divided by total power)

HF Absolute power of high-frequency
band (0.15–0.4 Hz)

HFn Normalized high-frequency (HF)
power (HF divided by total power)

LF/HF Ratio of low-frequency to
high-frequency power

S Total HRV ellipse area, proportional to
SD1 and SD2

SD1 Standard deviation of instantaneous
beat-to-beat variability (short-term

HRV, perpendicular to line-of-identity
in Poincaré plot)

SD2 Standard deviation of continuous
long-term RR variability (along the

line-of-identity in Poincaré plot)

SD1/SD2 Ratio of short-term to long-term HRV

Respiratory indicator MeanRsp Mean respiratory rate

interval (RR), root mean square of successive differences (RMSSD),
standard deviation of normal-to-normal intervals (SDNN), and
the percentage of successive RR intervals that differ by more
than 50 ms (pNN50)—typically show an increase. These changes
reflect enhanced parasympathetic regulation, as the body attempts
to conserve energy and promote recovery by reducing heart rate
and increasing HRV. In terms of frequency-domain indicators,
low-frequency (LF) power increases, high-frequency (HF) power
decreases, and the LF/HF ratio rises. These changes suggest a
relative dominance of sympathetic activity and a reduction in
parasympathetic regulation, indicating that the autonomic nervous
system is in a state of stress during fatigue (Ni et al., 2022).

2.5 Machine learning methods

The performance of the classification models was evaluated
using the following metrics: accuracy, defined as the proportion

of correctly predicted samples out of the total number of samples;
precision, the proportion of true-positive predictions among all
samples predicted as positive; recall, the proportion of true-positive
predictions among all actual positive samples; and F1 score, the
harmonic mean of precision and recall (Dauner et al., 2023).
The mathematical formulas for these four evaluation metrics are
defined as follows (Dauner et al., 2023; Zahid et al., 2023):

Accuracy =
TP + TN

TP + FP + TN + FN
, (1)

Precision =
TP

TP + FP
, (2)

Recall =
TP

TP + FN
, (3)

F1 =
2 Precision Recall
Precision+ Recall

. (4)

In this context, true positive (TP) refers to the number of samples
correctly classified into a given category. False positive (FP)
represents the number of samples incorrectly classified into a
category to which they do not belong. True negative (TN) denotes
the number of correctly classified samples that belong to another
category, while false negative (FN) refers to the number of samples
that belong to a given category but are misclassified into another
category. The average values of these metrics were calculated to
obtain the final performance evaluation of the model.

Tenfold cross-validation was used to assess model performance.
To prevent data from the same participant being used in both
the training and testing sets, each iteration used data from
81 participants for training and data from the remaining nine
participants for testing. Average performance across the 10
iterations was reported as the final result. Additionally, to ensure
that the test samples were representative, each testing set was
required to include at least nine samples for each of the four
flight duration categories (less than 30 min, 30–60 min, 60–
90 min, and 90–120 min). In the above-mentioned method,
all four models employed the same proportion of training and
test sets. This was done to eliminate performance evaluation
differences caused by different data division ratios, evaluate the
performance stability of the models more accurately, and reduce
the errors caused by the randomness of data division. As a
unified data division ratio can simulate the same data environment,
this enabled a better comparison of the model’s performance
during practical use.

Using SPSS R© Statistics version 26.0 (IBM Corp, Armonk, NY,
United States), we performed statistical analyses to examine the
differences in ECG and respiratory features across different states
of fatigue. First, normality tests were performed to determine
whether the data conformed to normal distribution. For features
that met the assumption of normality, one-way repeated-measures
analysis of variance (ANOVA) was used to assess differences
among flight fatigue states. For features that did not meet the
assumption of normality, the Kruskal–Wallis H-test was used to
examine differences across multiple groups. A p-value of < 0.05 was
considered statistically significant.

Frontiers in Neuroscience 04 frontiersin.org

https://doi.org/10.3389/fnins.2025.1621638
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-19-1621638 July 1, 2025 Time: 12:47 # 5

Guo et al. 10.3389/fnins.2025.1621638

3 Results

3.1 Feature selection for model input

As shown in Tables 3, 4, homogeneity of variance tests was
conducted for all ECG indicators. Mean HR, mean RR, SDNN,
RMSSD, and SD2 met the assumption of homogeneity and were
analyzed using ANOVA. In contrast, SDSD, pNN50, pNN20, LF,
HF, LF/HF, LFn, HFn, SD1, SD1/SD2, and S did not meet the
assumption and were analyzed using the Kruskal–Wallis H-test.
Among these features, mean HR, mean RR, SDNN, RMSSD,
pNN50, pNN20, LF, HF, LF/HF, LFn, HFn, and SD1/SD2 showed
statistically significant differences across different states of fatigue.
For the respiratory indicator, mean Rsp met the homogeneity
of variance assumption and was tested using ANOVA, which
indicated significant differences across fatigue states.

Based on the results presented above, 12 ECG features and one
respiratory indicator exhibited statistically significant differences
across the various flight fatigue states.

3.2 Training results of the flight fatigue
classification model

A total of 12 ECG features and one respiratory indicator that
demonstrated statistically significant differences across different

TABLE 3 Results for differences in ECG and respiratory
features (ANOVA test).

Feature Unit F-value P-value

Mean HR Times/min 6.262 < 0.001**

Mean RR Ms 5.731 < 0.001**

SDNN Ms 4.152 0.028*

RMSSD ms 3.621 0.031*

SD2 ms 1.061 0.513

Mean Rsp Times/min 5.268 < 0.001**

**p < 0.01, *p < 0.05.

TABLE 4 Results of differences in ECG features (Kruskal–Wallis H-test).

Feature Unit H-value P-value

SDSD ms 5.182 0.075

pNN50 % 8.752 0.007**

pNN20 % 9.281 0.002**

LF ms2 6.723 0.047*

HF ms2 6.983 0.042*

LF/HF / 20.678 < 0.001**

LFn / 19.525 < 0.001**

HFn / 15.627 < 0.001**

SD1 ms 5.293 0.073

SD1/SD2 / 16.739 < 0.001**

S / 4.134 0.161

**p < 0.01, *p < 0.05.

fatigue states were used as input variables for the models. The ECG
features included mean HR, mean RR, SDNN, RMSSD, pNN50,
pNN20, LF, HF, LF/HF, LFn, HFn, and SD1/SD2. The respiratory
feature was mean Rsp. The DT, SVM, KNN, and LightGBM
algorithms were used to construct the classification models.

During model development, the grid search algorithm was used
to optimize the hyperparameters of the classifier to systematically
search for the best hyperparameter combination within the
specified range to improve the performance of the model. For each
parameter combination, the average accuracy for that combination
was calculated using tenfold cross-validation, and the parameter
combination with the highest average accuracy of the classifier
was selected as the final result. For the DT model, the parameter
space was defined in terms of “max_depth”: [None, 3, 6, 9] and
“criterion”: [“Gini,” “entropy”]; the optimal parameter combination
was a maximum tree depth of 3 and a splitting criterion of Gini
index. For the SVM model, the parameter space was defined in
terms of “C”: [0.1, 1, 10] and “kernel”: [“linear,” “rbf,” “poly”],
with the optimal regularization parameter set to C = 1 and the
kernel parameter set to “rbf.” For the KNN model, the parameter
space was defined as follows: “n_neighbors”: [3,5,7] and weights”:
[“uniform,” “distance”]. The optimal configuration was found with
K = 5 and “distance” as the weighting method. For the LightGBM
model, the parameter space included “num_leaves”: [10, 20, 30, 40,
50, 60] and “learning_rate”: [0.01, 0.05, 0.1, 0.2, 0.3]. The optimal
parameters were a maximum of 60 leaves and a learning rate of 0.01.

Table 5 lists the average accuracy, precision, recall, and F1
score for each of the four machine learning models using the
same feature set to evaluate flight fatigue. The results indicated
that the LightGBM model outperformed all other models across
all performance metrics, achieving an accuracy of 0.886 ± 0.057,
precision of 0.837 ± 0.064, recall of 0.861 ± 0.089, and F1 score
of 0.849 ± 0.067. These results demonstrate the feasibility of using
HRV features and the respiratory indicator to perform a three-level
classification of flight fatigue.

Figure 2 shows the overall confusion matrix of the LightGBM
model in the 10-fold cross-validation process. The row labels
represent the true class of each sample, while the column labels
represent the predicted class. The color shading of each cell
represents the proportion of samples in that row assigned to the
corresponding prediction category.

4 Discussion

This study employed several HRV features—mean HR, mean
RR, SDNN, RMSSD, pNN50, pNN20, LF, HF, LF/HF, LFn, HFn,
and SD1/SD2—and a respiratory indicator, MeanRsp to assess

TABLE 5 Performance of four machine learning models using
different feature sets.

Model Accuracy Precision Recall F1

DT 0.851± 0.073 0.821± 0.086 0.759± 0.087 0.783± 0.091

KNN 0.863± 0.062 0.831± 0.084 0.776± 0.069 0.789± 0.078

SVM 0.851± 0.068 0.796± 0.072 0.823± 0.079 0.824± 0.063

LightGBM 0.886± 0.057 0.837± 0.064 0.861± 0.086 0.849± 0.067
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FIGURE 2

Overall confusion matrix of the LightGBM model based on tenfold cross-validation.

flight fatigue. While these features have been widely used in prior
studies to assess physiological fatigue induced by exercise or mental
fatigue resulting from prolonged cognitive tasks (Rudroff, 2024), we
demonstrate their applicability in evaluating flight-related fatigue.
This is plausible given the nature of flight fatigue, which is a
complex state resulting from high workloads, demanding flight
tasks, and circadian rhythm disruptions – factors that contribute
to both the physiological and psychological components of fatigue
(Sun et al., 2024).

As recorded in Table 5, LightGBM outperformed other
models across all performance metrics. This superiority is
likely attributable to its gradient-boosting DT framework, which
captures nonlinear relationships and allows for more precise
data partitioning and fitting, thereby enhancing model accuracy.
In many real-world classification tasks, prior studies have
also demonstrated that LightGBM achieves higher classification
accuracy than traditional models, such as logistic regression and
SVM, in various tasks (Wei et al., 2023). Moreover, previous studies
have shown that LightGBM is effective for classifying muscle and
mental fatigue caused by prolonged physical activity or driving
(Zeng et al., 2019).

A previous study (Ni et al., 2022) combined LightGBM with a
12-lead ECG device for fatigue classification, achieving a maximum
accuracy of 0.855 and an F1 score of 0.801. These results are
comparable to those of the current study despite using a single-
lead ECG device. This can primarily be attributed to comprehensive
utilization of ECG and respiratory indicators, as well as the
more refined optimization of these indicators. This supports the
feasibility of using wearable ECG devices for accurate flight fatigue
classification.

Based on the results exhibited in Figure 2, the model performed
best when predicting the “non-fatigue” state, achieving 92.82%
accuracy. It performed the worst in predicting “severe fatigue”

states, with only 81.60% accuracy. Examination of the confusion
matrix reveals that this is mainly attributable to the model’s
reduced sensitivity in distinguishing between “mild fatigue” and
“severe fatigue” samples, misclassifying 15.34% of “severe fatigue”
samples as “mild fatigue” and 14.07% of “mild fatigue” samples
as “severe fatigue.” A key factor contributing to this limitation
is class imbalance within the dataset. The dataset contained a
higher number of “non-fatigue” samples than “mild fatigue” and
“severe fatigue” samples. The limited number of fatigue samples
restricted the classifier’s ability to learn robust features for those
states, reducing its generalization performance when predicting
fatigue states.

In terms of detecting flight fatigue, the LightGBM model
in this study demonstrated an accuracy of 0.886 ± 0.057,
precision of 0.837 ± 0.064, recall rate of 0.861 ± 0.086, and
F1 score of 0.849 ± 0.067. These results indicate that a model
trained using HRV and respiratory rate exhibits high overall
performance in the three-class classification task of flight fatigue
and is capable of accurately distinguishing samples across different
fatigue levels. Previous studies focused on flight fatigue detection
based on EEG have achieved similar high accuracy rates, with
some reporting accuracies ranging from 0.8 to 0.9 (Lee et al.,
2020; Wu et al., 2021; Alreshidi et al., 2023; Lee et al., 2023;
Taheri Gorji et al., 2023). However, the acquisition of EEG
signals typically necessitates complex equipment and specialized
electrode placement procedures, and is susceptible to external
electromagnetic interference and other factors, leading to relatively
inferior signal stability and repeatability. By contrast, the chest
strap method employed in this study for detecting HRV and
respiratory rate enables more stable data collection, is less
vulnerable to external interference, and achieves comparable model
performance to the EEG-based approach, thereby demonstrating
certain advantages.
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Several other studies have utilized eye movement indicators,
such as blink frequency and eyelid closure time, for flight
fatigue detection, achieving accuracy rates that range from 0.7
to 0.8 (Borghini et al., 2014; Qin et al., 2021; Xue et al.,
2022). However, eye-tracking devices face significant challenges
related to installation and operational usability in real-world flight
environments. Additionally, pilots may wear goggles or helmets
during flights, which could interfere with the acquisition of eye
movement indicators. The chest strap detection method employed
in this study was unaffected by visual assistive devices, thereby
enhancing the reliability of data collection and surpassing some
studies based on eye movement indicators in terms of detection
accuracy.

Finally, another category of research focused on detecting
fatigue by analyzing pilots’ operational actions, reaction times,
and other behavioral characteristics, achieving accuracy rates that
typically range from 0.6 to 0.75 (Zhou et al., 2022; Wang et al., 2023;
Ghaderi and Saghafi, 2024). However, behavioral and operational
indicators are susceptible to various factors, such as flight mission
types and flight environments, and thus exhibit relatively low
specificity. By contrast, the physiological indicators (HRV and
MeanRsp) examined in this study can reflect the status of the pilot’s
autonomic nervous system and fatigue level more directly, thereby
demonstrating an advantage in terms of detection accuracy.

This study employed the chest strap method for measuring
HRV and MeanRsp, which offers high measurement convenience.
The chest strap is a lightweight and easy-to-wear device that does
not interfere with the pilot’s operation during flight nor impose
any additional burden. Its installation and use are straightforward,
requiring only that it be wrapped around the chest and secured,
without the need for complex settings or calibration processes.
In addition, chest strap devices typically possess wireless data
transmission capabilities, enabling real-time data transfer to the
monitoring system and thereby facilitating continuous flight
monitoring. Conversely, EEG detection necessitates the placement
of multiple electrodes on the scalp, along with the use of auxiliary
materials such as conductive paste to ensure optimal signal quality.
This procedure is not only cumbersome and time-consuming, but
may also cause discomfort for the pilot (Lee et al., 2020; Lee et al.,
2023). In actual flight scenarios, particularly in emergency flight
missions or during long-duration flights, pilots may be unwilling
to allocate a significant amount of time for the installation and
debugging of EEG equipment (Alreshidi et al., 2023; Taheri Gorji
et al., 2023).

Eye-tracking devices generally require precise installation,
either on the pilot’s head or within the cockpit, along with a
rigorous calibration process to ensure the accurate collection
of eye movement data. During flight operations, the pilot’s
head movements and changes in the cockpit environment, such
as fluctuations in lighting conditions, may interfere with the
performance of the eye-tracking device, potentially resulting in
data loss or an increase in measurement errors (Qin et al., 2021;
Xue et al., 2022). However, the chest strap detection method
remains unaffected by factors such as head movement and
lighting conditions, thus ensuring a more stable and convenient
measurement process. Additionally, there have been studies
utilizing blood oxygen sensors placed on the fingers or earlobes to
detect indicators such as pulse oxygen saturation for assessing flight
fatigue (Sammito et al., 2022; Ibrahim et al., 2024). Although these

sensors provide a certain level of convenience, they are typically
limited to detecting a single physiological indicator, whereas the
chest strap employed in this study is capable of simultaneously
measuring two critical physiological indicators. This provides more
comprehensive fatigue-related information, thereby facilitating a
more accurate assessment of pilots’ fatigue states.

Furthermore, the model developed in this study was both
trained and validated under actual in-flight scenarios, yielding
results with high reliability. Given that flight fatigue is influenced
by a multitude of factors, including flight altitude, pilot posture,
and task load, the actual flight environment can effectively capture
the true impact of these variables on pilots’ fatigue states (Jun-
Ya and Rui-Shan, 2023). Many prior studies on flight fatigue
have been conducted using ground-based simulators that primarily
collected physiological data under controlled laboratory conditions
for fatigue analysis (Alzehairi et al., 2021; Chen et al., 2024). While
they may enable in-depth exploration of the relationship between
physiological indicators and fatigue, the absence of actual flight-
related background and environmental factors (such as turbulence
and air current variations) may limit the reliability and applicability
of their findings in real-world flight fatigue monitoring. This study
performed measurements and model training during actual in-
flight operations, thereby avoiding the discrepancies that may arise
between simulator-based environments and real flight conditions.
Consequently, the findings gained greater reliability and practical
applicability.

The automatic three-classification method for flight fatigue
developed in this study holds broad application potential. Its
high detection accuracy and convenient measurement process
enable seamless integration into existing aviation flight monitoring
systems, providing real-time fatigue state monitoring and early
warning capabilities for pilots. By promptly identifying the fatigue
state of pilots, particularly during the early stages of mild fatigue,
appropriate measures (such as adjusting flight task schedules
or reminding pilots to rest) can be implemented to prevent
fatigue from escalating, thereby significantly reducing the risk of
fatigue-induced flight accidents. Some prior studies only achieved
binary classification of fatigue versus non-fatigue states, which,
while capable of identifying fatigue to a certain extent, may have
limitations in effectively managing flight fatigue (Ramos et al.,
2020). As pilot fatigue is a gradual process, the binary classification
method fails to precisely quantify the severity of fatigue and
struggles to detect fatigue in its early stages, thereby hindering
timely implementation of targeted measures.

Moreover, some studies rely solely on a single fatigue indicator
for detection (Lee et al., 2023; Taheri Gorji et al., 2023). Due to
the lack of integration of multiple fatigue-related factors, these
methods may yield incomplete or inaccurate results. In real-
world flight scenarios, fatigue arises from the synergistic effects
of various physiological and psychological factors. Consequently,
detection methods that incorporate multiple indicators can provide
a more accurate assessment of the fatigue state. This study
integrated two critical physiological indicators and performed a
comprehensive analysis using the LightGBM model. This approach
enables more effective detection of flight fatigue and better aligns
with the requirements of real-world flight fatigue monitoring,
demonstrating broader application potential.

This study utilized a chest strap to measure pilots’ HRV
and MeanRsp during actual flight operations, and applied the
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LightGBM machine learning model to achieve automated three-
class classification of flight fatigue. This approach demonstrates
certain advantages in terms of detection accuracy, measurement
convenience, result reliability, and application potential. Compared
with prior studies that relied on EEG, eye movement indicators,
behavioral and operational metrics, as well as ground-based
simulators, the method employed in this study is better suited for
real flight environments and can provide more precise, reliable,
and timely results for flight fatigue monitoring. Furthermore,
while this study only utilized MeanRsp among the respiratory
indicators, the chest strap employed can also measure inspiratory
time, expiratory time, the ratio of inspiratory to expiratory time,
and the high-frequency and low-frequency components of the
respiratory wave. In future research, these additional indicators
could be incorporated comprehensively to train machine learning
models, potentially leading to even more accurate models.

This study has several limitations. Owing to the unique
nature of the profession, the number of participants was relatively
small, which might have affected the model’s stability and
generalizability. In the future, it is advisable to monitor the
HRV and respiratory indicators of a larger number of pilots,
particularly those involved in long-duration flights and high-
complexity missions. Additionally, we did not separately investigate
physical and mental fatigue but instead adopted a general
classification of flight fatigue. As a result, the HRV features
used in the model might not represent the optimal input set
for model training. Future research should focus on identifying
the most effective HRV features specific to the characteristics of
flight fatigue. In future research, it is essential to differentiate
between these two distinct fatigue states and to monitor various
forms of flight-related fatigue independently. Finally, this study
focused exclusively on the physiological parameters of male pilots.
Given that women possess distinct physiological structures and are
potentially more susceptible to fatigue, future research should also
consider conducting separate classification analyses of flight fatigue
among female pilots.

5 Conclusion

This study explored the use of HRV features and respiratory
indicators to automatically assess flight fatigue involving a sample
of 90 pilots based on machine learning. Statistical analysis was
first used to select relevant features, which included 12 HRV
features—mean HR, mean RR, SDNN, RMSSD, pNN50, pNN20,
LF, HF, LF/HF, LFn, HFn, and SD1/SD2—as well as one respiratory
indicator, mean Rsp. These were used as inputs for four machine
learning algorithms: DT, SVM, KNN, and LightGBM. Among
these, LightGBM demonstrated the best performance, confirming
the feasibility of using HRV and respiratory features for flight
fatigue assessment.
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