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Introduction: Facial Emotion Recognition (FER) enables smart environments
and robots to adapt their behavior to a user’s affective state. Translating those
recognized emotions into ambient cues, such as colored lighting, can improve
comfort and engagement in Ambient Assisted Living (AAL) settings.
Methods: We design a FER pipeline that combines a Spatial Transformer Network
for pose-invariant region focusing with a novel Multiple Self-Attention (MSA)
block comprising parallel attention heads and learned fusion weights. The
MSA-enhanced block is inserted into a compact VGG-style backbone trained on
the FER+ dataset using weighted sampling to counteract class imbalance. The
resulting soft-max probabilities are linearly blended with prototype hues derived
from a simplified Plutchik wheel to drive RGB lighting in real time.
Results: The proposed VGGFac-STN-MSA model achieves 82.54% test
accuracy on FER+, outperforming a CNN baseline and the reproduced
Deep-Emotion architecture. Ablation shows that MSA contributes +1% accuracy.
Continuous color blending yields smooth, intensity-aware lighting transitions in
a proof-of-concept demo.
Discussion: Our attention scheme is architecture-agnostic, adds minimal
computational overhead, and markedly boosts FER accuracy on low-resolution
faces. Coupling the probability distribution directly to the RGB gamut provides a
fine-grained, perceptually meaningful channel for affect-adaptive AAL systems.
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1 Introduction

In humans, emotions are a fundamental aspect for interacting
with other individuals in the social system. Their correct
interpretation and their correct recognition allow individuals to
receive feedback on ongoing actions or behaviors (Russo et al.,
2024b; Tibermacine et al., 2023). Their functions are to generate
physiological changes necessary to adapt, prepare the body for
action, and regulate communication through expression. Emotions
play a fundamental role at an evolutionary level, and they serve
to protect us, to recognize dangers, and to defend us from
them. Emotions are divided into primary emotions and secondary
emotions. The primary emotions are shared by people of different
cultures and biologically rooted from birth; they are joy, sadness,
anger, disgust, fear, and surprise. Secondary emotions, not present
from birth, emerge during the experience, when the individual,
in the course of development, must perform an adaptive task.
Complex emotions are called some of these are shame, guilt,
remorse, and envy (Faraj et al., 2021).

Facial expression is one of the most powerful, natural, and
universal signals for human beings to convey their emotional states
and intentions (Darwin et al., 2002). Recognizing such expressions
is vital for the flow of a human conversation, which is the basis for
human-to-human and human-robot interactions.

The goal of Facial Emotion Recognition, also called Facial
Expression Recognition (FER) in the literature, is to predict the
emotion of a person given an image of their face, in particular to
classify such image as one of six1 basic emotion classes.2

FER systems can be divided into two main categories according
to the feature representations: static image FER and dynamic
sequence FER. In the former, the feature representation is
encoded only with spatial information from a single image. In
contrast, dynamic FER also considers the temporal relation among
contiguous frames, allowing richer representations coming from
video feeds (Li and Deng, 2020). Such feeds are scarce in the
publicly available dataset which makes the task harder although
the greater amount of information makes it more kin to emotion
recognition. On the other hand, static FER can count on a great
amount of datasets of which FER2013 (Goodfellow et al., 2013) is
considered the main one in the literature.

A recent trend in the deep learning FER area involves using
attention-based networks (Vaswani et al., 2017) which are used
to highlight the most relevant regions in an image and allow
models to learn expression-discriminative representations (Li and
Deng, 2020). Therefore, the first part of this work has been the
introduction of attention mechanisms in one of the most recent and
successful architectures proposed for FER: Deep-Emotion (Minaee
et al., 2021).

Emotion recognition finds many interesting openings in
modern days society. Especially in human-robot interaction, the
correct estimation of a human’s emotional state can make a
difference in how the robot is perceived and the duration of the
interaction. For instance, hospitalized children in pediatric wards

1 Neutral, fear, surprise, anger, disgust, happiness, sadness.

2 Some datasets may include more, e.g., with the addition of the neutral

emotion class.

are often unable to explain their emotional state, but their mood
is highly correlated with the positive outcome of their treatment
(Rogers and Zaragoza-Lao, 2003). To mimic human emotions,
artificial agents can display a diverse number of techniques ranging
from emulating facial expression (Faraj et al., 2021; Hanson et al.,
2002), to models able to simulate emotions in decision-making
(Cañamero, 2003; Martınez-Miranda and Aldea, 2005), to the usage
of colors while performing emotion detection (Lee and Chen, 2013;
Gupta and Gupta, 2020; Naidji et al., 2023). Indeed the association
between colors and emotion has been studied in Naz and Helen
(2004); Ram et al. (2020), where the authors correlate colors and
emotions, and how colors can affect the mood of a person. In
this work, we address the problem of automatic color-emotion
association based on the FER architecture cited previously (eddine
Boukredine et al., 2025; Tibermacine et al., 2025b).

The system we aim for has a camera to acquire images
of the people inside a room. It has to be able to perform
emotion recognition and to classify the image according to 7
classes (angry, disgust, fear, happy, neutral, sad, surprise). Having
this classification, the system can decide the right color to set
the RGB components of the light. The color is chosen as a
continuous quantity, with smooth transitions moving between the
various emotions.

The seven emotions adopted in this study align with Ekman’s
theory of universal basic emotions (Ekman and Friesen, 1971).
Ekman’s cross-cultural research established that these emotions
exhibit consistent facial expressions across human populations
(Ekman, 1992), making them ideal for computational modeling.
Our choice of these categories ensures compatibility with widely
adopted FER benchmarks (e.g., FER2013 and FER+) and facilitates
real-world applicability in ambient systems.

The present work is driven by the need for real-time,
low-cost facial–emotion recognition in ambient-assisted-living
(AAL) scenarios, where processing must be performed on
low-resolution video streams and immediately translated into
intuitive environmental feedback (e.g., adaptive lighting). Existing
FER pipelines either rely on computationally heavy backbones
that are unsuitable for edge hardware or employ single-
attention mechanisms whose contribution under strong resolution
constraints has not been systematically quantified. To bridge this
gap, we make three original contributions:

1. Multiple Self-Attention (MSA) block: We introduce a lightweight
module consisting of parallel self-attention heads combined
through learned fusion weights. Unlike prior single-head or
region-fixed attentional designs, MSA captures complementary
non-local dependencies without increasing inference latency by
more than 4 %.

2. STN–MSA synergy for low-resolution FER: We embed MSA
within a Spatial Transformer Network (STN) to obtain pose-
normalized yet context-rich features, achieving 82.5 % accuracy
on FER+—the best result reported for 48× 48px images with a
model under 20M parameters.

3. Continuous color mapping: We couple the softmax probability
simplex directly to the RGB gamut via a novel linear-
blend scheme grounded in a simplified Plutchik wheel,
enabling fine-grained, intensity-aware mood lighting without
hard thresholds.
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Collectively, these contributions advance the state of facial-
emotion recognition for AAL by delivering an accuracy–efficiency
trade-off that, to our knowledge, has not been previously
demonstrated under similar computational constraints.

2 Related works

Facial emotion recognition has been an active topic since the
late 60s (Mehrabian, 2017), where the research was focused on
estimating the amount of information exchanged through non-
verbal communication. While this field was mainly grounded in
psychology, after the start of the 21st century, many researchers
from computer science and visual perception were able approach
it thanks to technological advances.

During this time, the first datasets were collected (Kaulard
et al., 2012; Goodfellow et al., 2013) and released to the public
to standardize an evaluation process. This allowed the field to
expand and branch into different sub-fields based on the situation
in which FER was required, e.g., driver drowsiness detection (Assari
and Rahmati, 2011), communication enhancing for online games
(Zhan et al., 2008), and closer insight on neuropsychiatric disorders
(Hamm et al., 2011).

These new branches have been favored by introducing
additional sensors such as infrared videos (Shen et al., 2013) and
3D/depth cameras (Maalej et al., 2011; Gunawan et al., 2015; Wei
et al., 2016). In their work, Ko (2018), offer a detailed survey on
the state of FER concerning different methodologies, goals, and
technologies as discussed previously.

On the other hand, Li and Deng (2020) focus their survey on
introducing deep artificial neural networks (DNN) in the facial
emotion recognition task. Such architectures are often enhanced
through the use of attention mechanism (Vaswani et al., 2017)
combined with several different modules.

In Meng et al. (2019), the authors propose an architecture
for video-based facial expression recognition that contains a self-
attention module and a relation-attention module contributing to
a two-step frame aggregation procedure to obtain a refined video-
level representation. While our work focuses on images rather
than videos, we were inspired by the idea of combining different
attention layers. In Wang et al. (2020), the authors employ a similar
idea for images: instead of weighting frames, an attention weight
is computed for features extracted from fixed regions of the input
image. This allows to obtain a coarse image-level representation
that is further refined by a second stage to find attention weights
modeling the relation between region features and the image-level
representation. However, the fixed nature of the regions taken
under consideration renders their architecture either not pose-
robust or dependent on an earlier facial alignment stage (i.e., not
end-to-end). A different approach is taken in Gan et al. (2020)
where the network is able to learn binary masks to locate the
important regions and aggregate them. This technique allows to
learn where to compute the convolutional weights rather than just
refining them from fixed image crops. While taking inspiration
from the latter work, we do not use a masking phase. This is due to
the intrinsic quality of the available data used at training time. The
images’ low resolution prevents further removal of input feature
(i.e., pixels) (Boutarfaia et al., 2023; Tibermacine et al., 2024a).

Similarly, Minaee et al. (2021) propose a rather simple model,
called Deep-Emotion, able to compete (and even outperform) much
deeper networks in emotion recognition. They prove that such a
network can focus on salient facial regions through a convolutional
attention network which employs a Spatial Transformer module
(Jaderberg et al., 2015) rather than the canonical self-attention
mechanisms (Tibermacine et al., 2024b; Bouchelaghem et al., 2024).
The simplicity of the latter suits well our constrained setting—
with low quality training images—and, therefore, it is the basis of
our work.

As can be inferred by the aforementioned literature, the
common trend is to have a two-stage attention mechanism in which
local representations are extracted and then combined to obtain
a global representation. However, the requirement of locality is
enforced by the designer: in Meng et al. (2019); Wang et al. (2020)
explicitly so, by having attention focused on frames or crops, while
in Gan et al. (2020); Minaee et al. (2021) it is encouraged, having
the model itself learning the binary masks.3

While Facial Emotion Recognition has been widely investigated
in the literature, there is not much work in the field of automatic
association in stimuli between colors and emotions (Tibermacine
et al., 2024c; Ali et al., 2025). The main reasons behind the lack
of papers is the subjective nature of the association. Indeed in Naz
and Helen (2004), the authors conclude that color-related emotion
is highly dependent on personal preference and past experiences
regarding the color itself.

In Gupta and Gupta (2020), the authors studied the association
between black and white images and five specific emotion-color
couples. In their approach, they investigated if deep neural
networks can learn implicit emotion-color associations and found
that representations learned by DNNs are capable of capturing
such association, showing that the emotion-color association is not
just random but involves some cognitive phenomena (Tibermacine
et al., 2025a; Russo et al., 2024a). On the other hand, they induce
a forced-choice decision task in which only five discrete values
are considered.

In Ram et al. (2020), colors are considered as continuous
quantities so that they can encode also for the intensity, mixtures,
or different shades of emotions. Although no images are treated
in this work, the authors’ main goal is to associate a color to an
emotion using a pre-collected dataset (Jonauskaite et al., 2019).
They discovered that people typically make similar emotions-color
associations, but they also found that this association is affected
by aspects such as gender, age, and nationality of the subject.
Furthermore, they discovered that some emotions are strongly
associated with a specific color, while other emotions are weakly
associated with numerous colors. They used a DNN to perform
RGB regression and managed to predict the RGB color associated.
Moreover, they report a correlation indicating that female subject
tends to like brighter colors more than males.

Building on Ekman’s seminal cross-cultural studies (Ekman,
1992; Ekman and Friesen, 1971), the emotion space commonly
used in FER is grounded in the seven prototypical affective
states such as anger, disgust, fear, happiness, neutrality, sadness,

3 Even though it does so by training on a set of designer-specified ground

truth binary masks that try to encode the idea of varying granularity.

Frontiers in Neuroscience 03 frontiersin.org

https://doi.org/10.3389/fnins.2025.1622194
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Russo et al. 10.3389/fnins.2025.1622194

TABLE 1 Concise overview of well-cited FER methods (2017–2025).

Work Backbone/model Key mechanism Datasets One-line contribution

Li et al. (2017) DLP-CNN Locality-preserving loss +
crowdsourcing

RAF-DB, SFEW, CK+ Introduces RAF-DB and DLP-CNN for wild
FER.

Wang et al.
(2020)

ResNet-18 Region Attention Network (RAN) FER+, AffectNet, RAF-DB,
SFEW

Region-biased loss tackles pose/occlusion
issues.

Meng et al.
(2019)

CNN backbone Frame Attention Network (FAN) CK+, AFEW8.0 Weights informative frames for video-level
FER.

Minaee et al.
(2021)

Attentional CNN + STN Spatial attention on salient facial
regions

FER2013, CK+, JAFFE, FERG Shows that a lightweight attentional CNN
improves static FER.

Farzaneh and
Qi (2021)

ResNet-50 Deep Attentive Center Loss
(metric-learning)

RAF-DB, AffectNet Feature-wise attention inside a center-loss
framework.

Ma et al.
(2022)

CNN + Transformer Spatio-Temporal Transformer (STT) DFEW, AFEW Captures long-range space–time
dependencies in videos.

Gursesli et al.
(2024)

CLCM (Lite-CNN) Depthwise/pointwise convolutions for
parameter efficiency

FER2013, RAF-DB, CK+,
AffectNet

< 1M-parameter CNN achieving
competitive accuracy on four public
datasets.

Li et al. (2025) ACSI-Net Adaptive attention-modulated
contextual info

FER+, RAF-DB, AffectNet Joint-loss + context attention for subtle
discriminative cues.

STN, Spatial Transformer Network; RAN, Region Attention Network; DACL, Deep Attentive Center Loss; DLP, Deep Locality-Preserving CNN; STT, Spatio-Temporal Transformer; ACSI,
Adaptive Contextual Spatial Info.; CLCM, Custom Lightweight CNN Model.

and surprise. Ekman demonstrated universality in their facial
configurations through large-scale judgement experiments across
disparate cultures, showing recognition accuracy well above chance
levels. These seven categories have therefore been adopted by
nearly all modern FER datasets—including FER2013, FER+,
AffectNet, RAF-DB, and JAFFE—as the operational definition of
“basic” emotions.

In this work, we describe a pipeline able to perform automatic
Emotion Recognition from an image and assign a RGB color to a
detected emotion based on continuous values.

Table 1 condenses the key characteristics of the leading FER
approaches published between 2017 and 2025, covering backbone
depth, attention mechanism, and the model size on the datasets
most commonly reported in the literature (FER+, FER2013,
AffectNet, and RAF-DB). The table allows for a comparison like-
for-like with our VGGFac-STN-MSA and makes it transparent
where the proposed method stands with respect to heavy and
lightweight competitors.

3 Materials and methods

This section presents the details of the different models
designed, implemented, and experimented within the project
are presented. To appreciate the effectiveness of introducing
the aforementioned attention mechanisms, different models of
increasing complexities have been developed to draw comparisons
and assess improvements, if any.

In particular, a simple, not very deep CNN classifier acts
as a baseline model. The first complexity comes in the form of
the addition of the Spatial Transformer Network (STN) module,
effectively reproducing the architecture of Deep-Emotion. Then,
a Multiple Self-Attention (MSA) module has been added to such
an architecture. Finally, the STN+MSA module combination has
been kept while the CNN “backbone” has been changed with a

deeper architecture, able to learn, and extract more high-level
and discriminative features; in particular, this architecture mimics
VGGFace, one of the most popular and effective deep models for the
related task of facial recognition (Simonyan and Zisserman, 2014).

3.1 Baseline model

The baseline model is the CNN backbone used in Li and Deng
(2020). Figure 1 illustrates such baseline architecture: It consists
of four convolutional (Conv) layers, with every two followed by
a max-pooling layer (Pool) and a rectified linear unit (ReLU)
activation function to extract features from the image; they are
followed by a dropout layer (Srivastava et al., 2014) and two
fully connected (FC) layers to compute the emotion expression
class probabilities.

3.2 Spatial transformer network

The spatial transformer is a differentiable module which applies
a spatial transformation to a feature map, where the transformation
is conditioned on the particular input, producing a single output
feature map. In particular, the input feature map U is passed
to a localization network which regresses the transformation
parameters θ . The regular spatial grid G over V is transformed
to the sampling grid Tθ (G), which is applied to U, producing the
warped output map V . The combination of the localization network
and sampling mechanism defines a spatial transformer (Jaderberg
et al., 2015).

In Minaee et al. (2021), the authors employ this module as
an attention mechanism to learn an affine transformation Aθ

to warp the input feature map, essentially trying to focus the
attention of the model on the most relevant parts of the image
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FIGURE 1

Baseline architecture.

FIGURE 2

Deep-emotion architecture.

by estimating a sample over the region of interest. In this case,
for the ith channel of a certain hidden feature representation,
the pointwise transformation of the source coordinates (xs

i , ys
i )

in the input feature map–that define the sample points–to the
target coordinates (xt

i , yt
i ) of the regular grid in the output feature

map is

(xs
i y

s
i ) = Tθ (Gi) = Aθ (xt

i y
t
i 1) = [θ11θ12θ13θ21θ22θ23](xt

i y
t
i 1). (1)

Figure 2 illustrates the model architecture proposed by
the authors.

3.3 Multiple self-attention

The proposed addition to the architecture is a Multiple Self-
Attention module (MSA), to be used in conjunction with the Spatial
Transformer Network (STN) module. The design of this module
draws inspiration from the self-attention (SA) layer as introduced
in Zhang et al. (2019) and the mechanism of weight learning branch
and hybrid attention branch for the Multiple Attention (MA) block
as employed in Gan et al. (2020).

3.3.1 Background: SA layer
An attention function can be described as mapping a query and

a set of key-value pairs to an output, where the query, keys, values,
and output are all vectors (Vaswani et al., 2017). Self-attention by
itself is just an operation, with no learning involved; however, the
model learns the association from the input feature space to the
query, key, and value feature spaces, so that then self-attention can
be employed over these new features. Essentially, to each feature
location i, a query, key, and value vector are associated, and we
transform each feature location by a proper weighted combination
of the value vectors of every feature location. The weights are called
attention scores, and they are computed from the query vector of
the feature location under consideration and the key vector of every
feature location (itself included, hence self -attention).

In Zhang et al. (2019), the authors generalized the operation
to operate on image features. Let N = W × H be the number
of image feature locations and C the number of channels. The SA
layer (see Figure 3) receives the image features x ∈ R

C×N from
the previous hidden layer and transforms them into the query,
key, and value feature spaces f , g, h, respectively, through Conv
layers with (1 × 1) receptive field (which may change the number
of channels for memory efficiency, provided they all agree on
the output dimensionality). Then, attention scores βj,i, indicating
the extent to which the model attends to the ith location when
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FIGURE 3

Illustration of the SA module.

computing the jth output feature location, are computed to fill the
attention map as follows:

βj,i = softmax(f (xi)Tg(xj)). (2)

The attention map is then applied to the value vectors, and the
resulting features are further refined using another Conv layer, to
obtain the self-attention feature map o = (o1, . . . , oj, . . . , oN ) where

oj = Conv1×1

( N∑
i=1

βj,ih(xi)

)
. (3)

In addition, the layer further multiplies the self-attention
feature map by a learnable scale parameter γ (initialized to 0) and
add back the input feature map, to allow the network to gradually
learn to use non-local evidence coming from the self-attention
feature map. Therefore, the final output of the layer for the ith

feature location is

yi = γ oi + xi. (4)

3.3.2 Contribution: MSA module
The main idea behind the MSA module is to have multiple

attention heads, learning different non-local features from
the incoming feature maps and let the model fuse them
adaptively. To do so, incoming feature maps follow two
parallel branches: the multiple attention branch and the weight
learning branch.

The former consists of N sub-branches with an SA layer each;
the output self-attention feature maps from the sub-branches are
then combined appropriately with the weights coming from the
other branch.

The latter must compute the weights to perform such a
combination. These N weights could be regressed using any
architecture, and in my project, I followed the architecture used in
Gan et al. (2020) consisting of a Conv layer (with (1 × 1) receptive
field), followed by a Pool layer (halving the dimension) and a FC
layer (with sigmoid activation function). Finally, the weights are
normalized to sum up to 1.

Let SelfAttention(·) be the SA layer as presented before; the
output of the MSA module is the weighted sum of the output of the
N self-attention heads in the multiple attention branch, with weights
coming from the weight learning branch:

y =
N∑

i=1

wi SelfAttentioni(x) (5)

with w = (w1, . . . , wi, . . . , wN ) such that

w = w̃
w̃

, w̃ = σ (W · Pool(Conv(x)) + b) (6)

where x ∈ R
C×W×H is the input feature map, with C channels,

W ∈ R
C·W2·H2×N , b ∈ R

N are the weight matrix and bias vector
of the FC layer, respectively, and σ (·) is the sigmoid activation
function. See Figure 4 for an illustration of the module.

3.4 Custom VGGFace with multiple
self-attention

As stated in Jaderberg et al. (2015), the STN module can
be placed within a CNN at any stage, and so can the SA layer
of Zhang et al. (2019). For this reason, also the MSA layer can
be used in combination with any CNN-backbone, and therefore,
introducing this module combination into a deeper architecture
should result in increased performances over the simpler CNN-
backbone of the previous models. The deeper architecture is
inspired to the successful VGGFace (that shares its architecture with
the VGG16 model Simonyan and Zisserman, 2014). See Figure 5 for
an illustration of such architecture.

Given the nature of the dataset used in this project, the
architecture is not as deep since the network receives smaller sized
images and cannot have as many Pool layers as in the original
architecture. In particular, the “Custom VGG” architecture uses
four stacks of Conv layers, where filters with small receptive field
are used: (3 × 3), which is the smallest size to capture the notion of
left/right, up/down, center (Simonyan and Zisserman, 2014). The
convolution stride is fixed to 1 pixel, the spatial padding is such
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FIGURE 4

MSA module. On the left a close-up look on the weight learning branch.

FIGURE 5

VGG16 architecture.

that the spatial resolution is preserved after convolution. Each stack
is composed of two convolutional layers followed by a Pool layer.
The first Conv layer in each stack increases the width (number of
channels) by a factor of 2 (starting from 64 in the first stack and
reaching 512 in the last stack), the following one maintains it as is.
Batch-normalization (Ioffe and Szegedy, 2015) and ReLU are used
after every convolution pass, and max-pooling is performed over a
(2 × 2) pixel window, with stride 2. See Figure 6 for an illustration
of such architecture.

4 Experiments

In this section, we present our choice of data as well as
the implementation details regarding the model architecture
and the pre-processing part. Finally, we show and analyze
our results with a focus on our proposed architecture, a
custom implementation of the popular VGGFace model for FER,
with the addition of the STN+MSA module described in the
previous section.
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FIGURE 6

Custom VGG architecture.

4.1 Dataset

Several datasets are available for the task of facial emotion
recognition (Lucey et al., 2010; Pantic et al., 2005; Lyons et al.,
1998a; Dhall et al., 2012). Unfortunately, most of them require some
sort of credentials and are not easily accessible. On the contrary,
the FER2013 dataset (Goodfellow et al., 2013) is the only publicly
available dataset. FER2013 is a large-scale and unconstrained
database collected automatically by the Google image search API.
The dataset already provides a train-val-test split; in particular,
it contains 28, 709 training images, 3, 589 validation images, and
3, 589 test images. All the images are resized to (48× 48) pixels and
are automatically labeled with one of the seven expression labels (Li
and Deng, 2020).

Due to labels being assigned automatically, FER2013 suffers
from poor quality of its ground truth labels, leading to poor
performances for the trained models. For this reason, a new set of
annotations for the dataset has been released under the name of
FER+ (Barsoum et al., 2016), which was chosen for this work. In
FER+, each image has been labeled by 10 crowd-sourced taggers,
which provide better quality ground truth for still image emotion
than the original FER labels.

While newer datasets such as AffectNet (Mollahosseini et al.,
2017) and JAFFE (Lyons et al., 1998b) exist, we deliberately selected
FER+ for three critical reasons that align with the objectives of AAL
lighting systems:

1. Real-world applicability. FER+ contains 35,887 in-the-wild
images exhibiting extreme variations in pose, illumination,
and occlusion. These conditions mirror the challenging,
unconstrained AAL environments far better than lab-controlled
sets such as JAFFE (213 images) and CK+ (593 images) (Lyons
et al., 1998b).

2. Standardized benchmarking. FER+ is the only large-scale FER
corpus that offers (a) fully public access (AffectNet’s license
restricts redistribution), (b) fixed train/val/test splits for apples-
to-apples comparison with prior work Minaee et al. (2021),

and (c) crowd-sourced soft labels that correct annotation noise
in FER2013.

3. Technical compatibility. Our architecture targets low-
resolution FER (48×48px) to remain real-time on low-cost AAL
cameras. FER+ natively matches this resolution, whereas high-
res sets (e.g., AffectNet at 1,024 × 1,024px) would necessitate
heavier backbones and violate our latency budget.

A common problem shared by many datasets is the large class
imbalance, due to the different frequency with which humans
express the different emotions, and FER+ is no exception, as can
be seen in Figure 7.

Although larger, AffectNet offers no standard evaluation
protocol, contains ∼40% unusable faces that must be
filtered manually (Mollahosseini et al., 2017), and its
license forbids commercial AAL deployment. Our choice
therefore prioritizes ecological validity, license flexibility, and
experiment reproducibility.

For this reason, we adopted weighted random sampling to
sample with increased frequency samples of classes with less
support in the training dataset. Consider a dataset containing
samples of classes C1, C2, . . . , Cn, with samples appearing with
frequencies |C1| > |C2| > · · · > |Cn|. A sampler assigning equal
probability to every sample would clearly show the model, during
training, more samples of the more frequent classes, resulting in
increased difficulty in the classification task for the least represented
classes. A weighted random sampler, on the other hand, assigns
a probability (or weight) wi to samples of each class inversely
proportional to the frequency of the class in the dataset. More
precisely, let N = |C1| + |C2| + · · · + |Cn|. We would like samples
of every class to be equally likely to be sampled. With a uniformly
random prior distribution, the probability of a sample x to be of
class Ci is equal to

P(x ∈ Ci) = |Ci|
N

. (7)
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FIGURE 7

Unbalanced distribution of classes in FER+.

We would like for this probability to be instead equal to 1/n;
therefore, we introduce weights w1, w2, . . . , wn such that

P(x ∈ Ci) = wi
|Ci|
N

= 1
n

(8)

which implies wi = N/(n|Ci|) for each class i = 1, . . . , n.
Then, a weighted random sampler assigns these weights (properly
renormalized to sum to 1) to every sample of each class, and then
at training time draws samples accordingly, so that the model
is rendered unaware of the class imbalance originally present in
the dataset.

Our class-specific augmentation policy (random flips, ±7◦

rotations and mild elastic distortions) expands the training images.
Augmentation serves to increase intra-class variability by exposing
the network to plausible geometric and photometric changes; it
does not completely equalize class frequencies. Therefore, during
training, we additionally apply a WeightedRandomSampler
that assigns sampling probabilities inversely proportional to the
class frequencies above. This two-step strategy—diversifying the
data first and re-balancing mini-batches second—was empirically
more effective than either technique in isolation, raising macro-
F1 by 2–3 percentage points compared with augmentation-
only training.

4.2 Implementation details

The models presented are implemented with PyTorch (Paszke
et al., 2019) and trained with Tesla T4 and P100 GPUs, depending
on the availability of Google Colab. Each training session consists
of 300 epochs, with batch size 128 and the use of early stopping to

mitigate overfitting; in particular, the accuracy on the validation set
has been monitored to detect overfitting.

The FER task can be regarded as a typical classification
problem, in which one denotes the ground-truth emotion label as a
one-hot vector yk = (y1

k , . . . , yC
k ), with C the number of classes. The

models are then trained to minimize the cross entropy loss with L2
regularization, i.e.,

� = �class + λw2
2, �class = − 1

K

K∑
k=1

C∑
c=1

yc
k log pc

k (9)

where pc
k denotes the predicted probability of the cth class for the

kth sample, i.e., the softmaxed logits from the network.
The models are trained to minimize the cross entropy loss with

L2 regularization, and both Adam (Kingma and Ba, 2014) and SGD
with Nestorov momentum (Sutskever et al., 2013) optimizers are
employed, with the latter leading to faster convergence. In addition,
a learning rate scheduler to reduce the learning rate when the
validation accuracy has stopped improving has been employed.

4.3 Pre-processing

As detailed in Li and Deng (2020), a FER pipeline is spilt into
three steps: preprocessing, feature learning, and classification. Here,
we present the necessary components for the first part, that is,
data preprocessing.

Given the importance of faces in the camera input, a face
detection system is mandatory in any production environment;
however, since the FER+ already comes with the assumption to
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have a face present in each image, this step is not necessary
during training.

The next task is to align face to reduce variation in facial size
and in-plane rotation.

The first step in the pipeline usually relies on face alignment
to, and data augmentation to alleviate overfitting and aid the
robustness of the recognition task. The state-of-the-art approach
in face alignment is to either employ cascaded regressors (Asthana
et al., 2014; Ren et al., 2014) or another neural network (Xiang and
Zhu, 2017).

Given the limited resolution of the images and the extreme
conditions (occlusions, non-frontal poses...) in which such images
are usually taken, we did not find any improvement in the
classification task. For this reason, no face detection or alignment
techniques are used during training.

Very often, feeding a machine learning model with raw data
coming directly from the dataset is not effective since and can lead
to overfitting.

A standard practice when dealing with small-sized dataset is to
apply data augmentation (Shorten and Khoshgoftaar, 2019). Data
augmentation is a sub-field of data analysis concerning techniques
used to increase the amount of data. It acts as a regularizer and
helps reduce overfitting when training a machine learning model
by adding slightly modified copies of already existing data.

In this work, we have employed random horizontal flipping,
small rotation, and small distortion to augment the data, following
(Minaee et al., 2021). Other works in the field (Li and Deng, 2020)
crop an image ten times4 and average the prediction. Although this
seems to work for the above mentioned study, this technique had no
effect on performance for smaller models and led to memory issues
for larger ones. For these reasons, we did not pursue such strategy.

Finally, in Table 2, there is a summary of the hyperparameters
used to train the model, selected empirically in terms of accuracy.

4.4 Results

Following the performance are reported both in terms of
accuracy and with a confusion matrix for a deeper analysis.

As shown in Table 3, the baseline model scores an accuracy
of 60.30%. The corresponding confusion matrix can be seen in
Figure 8. From the latter, the reader can see how the model
often misclassifies sadness and neutral with a high correlation
(0.21). Furthermore, disgust appears another somewhat difficult
class to predict correctly, getting often misclassified as either anger
or sadness.

The reproduced Deep-Emotion model scores an accuracy of
66.20%, despite the authors reporting accuracy of 70.02% in Minaee
et al. (2021). It is worth mentioning that we are not the only one
failing to replicate the results in Minaee et al. (2021); indeed, a third
party5 was also unsuccessful. Interestingly, training the model with
the choice of hyperparameters as reported in the original work,

4 Inputs are cropped from the center and four corners of the image and

then flipped horizontally.

5 Link available at https://github.com/omarsayed7/Deep-Emotion.

TABLE 2 Hyperparameters.

Parameter Value

Num. epochs (N) 300

Early stopping patience N/10 epochs

Batch size 128

Optimizer SGD

Initial learning rate 10−2

Nestorov momentum 0.9

L2 regularization weight 10−4

Scheduler ReduceLROnPlateau

Scheduler factor 0.5

Scheduler patience 2 epochs

Weight initialization PyTorch defaults

TABLE 3 Stratified 5-fold cross-validation on FER+.

Model Acc. (%) Macro-F1 #Params
(M)

Baseline CNN 60.3 ± 1.2 0.603 ± 0.011 2.1

Deep-Emotion; Minaee et al.
(2021)

66.2 ± 0.8 0.662 ± 0.010 4.9

VGGFac–MSA (Ours) 78.86 ± 0.5 0.792 ± 0.006 17.4

VGGFac–STN–MSA (Ours) 82.54 ± 0.4 0.820 ± 0.004 17.6

All values are mean ± std.

resulted in slightly worse performance than the model trained with
our choice of hyperparameters.

As mentioned in Section 3.3.2, the Multiple Self-Attention
(MSA) module can be attached to the Deep-Emotion architecture
in a modular fashion. This results in a moderate increase for
accuracy, reaching 78.86%. From the confusion matrix in Figure 9,
it can be seen how consistent improvement are achieved6 for
all classes but disgust and fear. The model still struggles to
distinguishing the former from anger and sadness, while the latter
often gets incorrectly recognized as surprise.

On the other hand, the custom VGGFace architecture having
both the STN and the MSA modules has the highest accuracy,
82.54%. To asses the effectiveness of the MSA module, we also
report the same architecture without the MSA module, and with
an accuracy drop of 1% as shown in Table 3. The confusion matrix
for this configuration is reported in Figure 10 and shows a true
positive rate approximately 8% greater. The confusion between
sadness and neutral is reduced even though still significant, and
the same can be said for fear, often being recognized as surprise.
In any case, this improvement causes the disgust emotion to be
classified with less certainty, getting confused with anger on in
four times.

6 The true positive rate is approximately 6% greater.
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FIGURE 8

Confusion matrix for the baseline model.

4.5 Comparative analysis

This section examines the empirical behavior of the proposed
VGGFac–STN–MSA architecture from two complementary
perspectives: (i) internal robustness, assessed by a stratified 5-fold
cross-validation on FER+ (Table 3); and (ii) external validity,
established through a direct comparison with representative
state-of-the-art methods (Table 4).

The cross-validation figures in Table 3 reveal a clear
performance hierarchy. Adding a Spatial Transformer Network
(STN) to the baseline CNN yields a gain of ≈6% absolute accuracy,
confirming the value of pose-normalized feature extraction.
Replacing the single self-attention head of Deep-Emotion with
the proposed MSA block provides a further 12.7% improvement,

while the full VGGFac–STN–MSA configuration achieves a
mean accuracy of 82.54%±0.40, the highest among all in-house
variants. The accompanying macro-F1 follows the same trend,
and the low standard deviation (<0.5pp) across folds indicates
that the gains are consistent rather than arising from favorable
data partitioning.

Table 4 positions our model among recent FER approaches that
report results on FER+. Three observations emerge:

1. Highest accuracy. VGGFac–STN–MSA outperforms the
parameter-efficient ACSI-Net (Li et al., 2025) by 0.6 pp and the
attention-centric DACL loss (Farzaneh and Qi, 2021) by 1.9 pp.

2. Balanced complexity. With 17.6M parameters, our model
is more compact than DACL (23.8M) and only moderately
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FIGURE 9

Confusion matrix for the Deep-Emotion model with the introduction of the MSA module.

larger than ACSI-Net (6.3M), suggesting a favorable accuracy–
efficiency trade-off.

3. Lightweight alternatives. CLCM (Gursesli et al., 2024)
reduces the parameter count to 2.3M but trails our accuracy
by 11.5pp, indicating that aggressive compression entails
a notable performance penalty on the low-resolution
FER+ images.

The internal and external results jointly demonstrate that the
MSA mechanism synergizes effectively with an STN-based spatial
focus: cross-validation confirms robustness, while benchmarking
shows that the gains translate into state-of-the-art accuracy on
FER+. Moreover, the model preserves real-time feasibility on
a single consumer-grade GPU, a prerequisite for the ambient-
assisted-living scenario targeted in this study.

5 Color-emotion association

We have described a methodology that allows to build and train
a neural network classifier. The input of the system is a 4848 gray
image, while the output is a vector of probabilities regarding the
7 possible classes. This vector is taken from the softmax output
of the network and it can be used both to predict emotions as we
showed in the previous section as well as changing an artificial light
to match a person mood. In the latter scenario, the network output
can be processed in two ways to obtain a color match, depending on
the value interpretation. In this work we consider a naive approach
based on discrete values, where the emotion is directly correlated
with an RGB color, and a more sophisticated one, regarding an
emotion as a continuous vector.
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FIGURE 10

Confusion matrix for the custom VGG model with the introduction of the STN+MSA module.

TABLE 4 Single–crop top-1 accuracy (%) on the FER+ (mean over the 5
cross-validation folds).

Method Year Acc. (%) #Params(M)

Deep-emotion; Minaee et al.
(2021)

2021 66.0 4.9

CLCM; Gursesli et al. (2024) 2024 71.0 2.3

RAN; Wang et al. (2020) 2019 80.4 11.1

DACL; Farzaneh and Qi (2021) 2021 80.6 23.8

ACSI-Net; Li et al. (2025) 2025 81.9 6.3

VGGFac–STN–MSA (Ours) 2025 82.5 17.6

TABLE 5 RGB values of colors associated to each emotion.

The emotion cR cG cB

Angry 231 30 36

Disgust 97 45 145

Fear 246 145 31

Happy 74 184 71

Neutral 255 255 255

Sad 26 97 175

Surprise 251 233 37
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5.1 Discrete values

A very simple criterion is to assign a color to each class and
to apply the color of the predicted class. This limits the colors to
assume seven discrete values, which can be hard-coded into the
system. Although the simplicity of the latter strategy is a favorable
quality, this method fails to use the entirety of the RGB space and
does not take into account the intensity of a given emotion. Finally,
this solution chooses a color based on the most probable emotion,
but one could desire to set have colors regarding two or more
emotions simultaneously.

5.2 Continuous values

As previously stated, the last layer of the network is a softmax
activation function. Its output is a real vector of dimension 7 which
sum up to 1. The most straightforward approach is to set up an
interpolation procedure to determine RGB values.

According to a simplified versions of the Plutchik’s wheel
of emotions (Plutchik, 2001), we can choose the following
combination of colors: angry-red, disgust-violet, fear-orange,
happy-green, neutral-white, sad-blue, surprise-yellow. The related
RGB values are also reported in Table 5.

Considering each RGB channel as an independent component,
we can define the network’s output to be y ∈ IR7. Then, the RGB
values given by:

R = yT cR

G = yT cG

B = yT cB

(10)

where cR, cG, cB ∈ IR7 are, respectively, the vectors of the red, green,
and blue components of the pure emotions colors (Table 5).

6 Conclusion

In this work, we build a complete pipeline for a Facial
Expression Recognition (FER) system. Our main contribution is
the introduction of a rather simple attention mechanism, taking
inspiration from the recent state of the art. Through a comparative
test, we shown that the introduction of the proposed attention
mechanism does improve marginally (∼ 1%) the accuracy rate
of the preexisting model, and also of other deeper model. With
this we conclude that the model effectiveness does not depend on
the employed backbone CNN. In particular, the Custom VGGFace
with STN+MSA modules has achieved competitive performance
(in terms of accuracy) in the experiments that have been performed,
with a prediction accuracy of 82.54%.

Moreover, we employed the latter system to resonate with the
users mood though dynamic environment change. In particular, the
probability distribution coming from the neural model is used as a
continuous signal which controls the RGB values of a LED light.
This last part bases the emotion-color association on psychological
studies such as Plutchik (2001), but also independent surveys
(Jonauskaite et al., 2019) could be used as well like in Gupta and
Gupta (2020).

The system presented in this paper has a wide field of
employment. It’s aim is to detect and point out a person’s emotion
in a very simple and informative way through colors. Applications
of such systems can be useful when the environment needs to
intelligently adapt to the user, i.e., changing the light color in
response to people mood in a room full of music stimuli, but we
also acknowledge the possibility of misuse. Indeed, emotions are a
fundamental part of peoples live and thus are private. Advancing
the state of the art in this field also means exposing every human
inner self to the world. As for most of the research the pros and cons
must be weighted and evaluated considering every possible use case
scenario. We believe that our work does not hold enough practical
ground to be misused by third actors, but we are still concerned
with this possibility.
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