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Spinal cord injury (SCI) is a traumatic neurological disorder with a high incidence 
and limited clinical treatment options. Ferroptosis, a newly discovered form of 
programmed cell death, has shown significant research potential in the field 
of neurological diseases. Stem cells have become an ideal therapeutic option 
for various diseases due to their multidirectional differentiation potential and 
paracrine properties. Existing studies have demonstrated that stem cells possess 
substantial potential in the repair of spinal cord injuries. Recent research has 
found that stem cell transplantation can improve the pathological process of SCI 
by regulating the ferroptosis pathway. This review systematically described the 
molecular mechanisms of ferroptosis in SCI, the biological effects of stem cell 
therapy for SCI, and the therapeutic potential of stem cell-targeted regulation of 
ferroptosis. Additionally, we proposed three key research directions: cross-study 
of ferroptosis signaling pathways and stem cell action mechanisms, optimization 
strategies for therapeutic stem cells, and multimodal combined treatments based 
on ferroptosis regulation. This review aimed to provide new theoretical foundations 
and research perspectives for stem cell therapy in SCI.
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1 Introduction

SCI is a serious disabling disease of the central nervous system, leading to motor, sensory, 
and autonomic dysfunction below the injury site (Anjum et  al., 2020). Based on the 
pathological mechanism, SCI can be divided into primary and secondary injury: the former 
is caused by direct mechanical force and is usually irreversible, while the latter involves a 
cascade of dynamic regulatory reactions and plays a key role in the deterioration of 
neurological function (He et al., 2024). New research suggests that the primary reason for poor 
regeneration and functional recovery in SCI is “microenvironmental imbalance,” which 
manifests as an increase in inhibitory factors at the tissue, cell, and molecular levels, and a 
decrease in promoting factors at different times and locations (Fan et al., 2018). As the core 
pathological event of secondary injury, programmed cell death significantly impairs 
neurological function recovery and clinical prognosis by exacerbating microenvironmental 
damage and neuronal cell death, suggesting that its regulation may become a potential target 
for SCI treatment (Shi et al., 2021; He et al., 2024).

Epidemiological data show that the global prevalence of SCI has risen steadily over the 
past 30 years, with incidence rates in various countries ranging from 236 to 1,298 cases per 
million people (Khorasanizadeh et al., 2019). SCI was once considered an untreatable disease 
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when it was first mentioned in the Edwin Smith Papyrus manuscript 
in the 17th century BC (Hughes, 1988). Although current clinical 
treatments primarily involve surgical intervention, drug therapy, 
hyperbaric oxygen, and physical therapy, the overall efficacy and 
prognosis remain unsatisfactory (Eli et al., 2021; Fehlings et al., 2017; 
Gao et al., 2020). This is mainly due to the lack of effective tools for 
regenerating neural tissue (Jendelova, 2018). Recent studies have 
identified ferroptosis, an iron-dependent form of programmed cell 
death driven by membrane lipid peroxidation (Jiang et al., 2021), as 
playing a crucial role in the pathological process of SCI (Shi et al., 
2021). Ferroptosis is regulated by multiple pathways, including 
cysteine transport, glutathione metabolism, glutathione peroxidase 4 
(GPX4) function, and FSP1 protein, and its activation can lead to 
neuronal dysfunction and increased damage (Li et al., 2022; Ge et al., 
2021). Traditional treatments are still ineffective in preventing the 
occurrence of ferroptosis (Song et al., 2023).

Given the challenges in SCI repair, stem cell therapy has shown 
unique advantages. Stem cells have significant potential in inhibiting 
ferroptosis and promoting neural regeneration by differentiating into 
neurons to replace damaged cells, secreting neurotrophic factors, and 
regulating the inflammatory microenvironment (Song et al., 2023; 
Shao et al., 2019). This strategy offers a new research direction for 
overcoming the existing treatment bottleneck. This review 
systematically discusses the role of stem cell therapy in SCI treatment, 
with a focus on ferroptosis as a therapeutic target.

2 Overview of stem cell therapy

Stem cells are a group of cells with differentiation potential. They 
have the ability to self-renew, proliferate, and differentiate into various 
functional cell types through division. They are widely used to 
generate different tissues and organ systems (Tian et al., 2023). Stem 
cells come from various sources and have different differentiation 
potentials. Based on their differentiation ability, they are classified into 

totipotent, pluripotent, oligopotent, and unipotent stem cells (Kolios 
and Moodley, 2013; Zakrzewski et al., 2019). Totipotent stem cells 
have the highest differentiation potential and can form embryos and 
extraembryonic structures. Pluripotent stem cells (PSCs) can 
proliferate indefinitely and differentiate into cells of all three germ 
layers. These characteristics make PSCs an ideal option for cell therapy 
in various diseases and injuries (Yamanaka, 2020). Oligopotent stem 
cells can differentiate into multiple cell types, such as myeloid stem 
cells that can differentiate into white blood cells. Unipotent stem cells 
have the weakest differentiation ability and can only form one cell 
type, but they can divide repeatedly. Based on their sources, stem cells 
can be classified into various types, such as embryonic stem cells, 
umbilical cord stem cells, bone marrow mesenchymal stem cells, 
tendon stem cells, dental pulp stem cells, and adipose mesenchymal 
stem cells (Ankrum et al., 2014; Nombela-Arrieta et al., 2011; Hu 
et al., 2020; He et al., 2024; Zhang et al., 2023). Currently, stem cells 
are widely used in regenerative medicine for treating SCI, 
osteoarthritis, heart disease, retinopathy, diabetes, and other diseases, 
as well as in tissue engineering and drug testing (Li et al., 2019; Zhang 
et al., 2015; Mikłosz and Chabowski, 2023; Yu et al., 2022; Cofano 
et al., 2019; Figure 1).

Various stem cell populations have shown important application 
potential in SCI regenerative therapy due to their self-renewal 
characteristics and multi-lineage differentiation potential. Current 
preclinical research mainly focuses on three types of stem cells: 
mesenchymal stem cells (MSCs), neural stem cells (NSCs), and 
PSC-derived cells (Martin-Lopez et al., 2021). Among them, MSCs 
not only improve the pro-inflammatory microenvironment of the 
injury site through immunomodulatory effects (Cofano et al., 2019) 
but also repair neuronal mitochondrial function by mediating 
mitochondrial transfer, thereby inhibiting the progression of 
secondary injury (Yao et al., 2023). Additionally, exosomes secreted 
by MSCs, as intercellular communication mediators, can cross the 
blood-spinal cord barrier and achieve precise molecular regulation by 
delivering specific miRNAs, making them unique drug carriers (Liu 

FIGURE 1

Classification and function of stem cells.
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et al., 2021). NSCs work through a dual mechanism: on one hand, they 
secrete immunomodulatory and neurotrophic factors; on the other 
hand, they directly differentiate into neurons and glial cells, 
significantly improving motor function recovery (Zou et al., 2020; 
Huang et al., 2021).

PSCs have become a major focus of research due to their ability to 
differentiate into cells from all three germ layers. They can be induced 
to produce functional cells from the endoderm, mesoderm, and 
ectoderm (Tian et al., 2023). As a classic pluripotent cell, embryonic 
stem cells can differentiate into functional, tissue-specific cells under 
a specific induction system (Evans and Kaufman, 1981). 
Transplantation studies in SCI models have confirmed that 
differentiated neurons and glial cells can accurately integrate into the 
injured area, effectively promoting the reconstruction of neural 
circuits (Shao et  al., 2019). Germline stem cells also show neural 
differentiation potential. For example, spermatogonial stem cells can 
trans-differentiate into functional neurons under specific culture 
conditions (Glaser et al., 2008). These findings not only reveal the 
diversity of stem cell mechanisms (including cell replacement, 
paracrine regulation, and exosome-mediated molecular delivery) but 
also lay a theoretical foundation for the development of multi-target 
combined treatment strategies.

The application of stem cell therapy in SCI has developed a multi-
level research system from basic studies to clinical translation. Human 
PSCs have shown significant potential for neural repair in preclinical 
studies due to their strong neural differentiation ability (Farzaneh 
et al., 2020). In the non-human primate (common marmoset) SCI 
model, transplantation of human induced PSC-derived neural 
precursor cells not only achieves non-tumorigenic differentiation but 
also significantly improves motor function through axon regeneration 
mediated by new neurons (Nagoshi et al., 2020). However, clinical 
translation still faces significant challenges. Existing clinical trial data 
show that stem cell transplantation therapies (e.g., MSCs, adipose-
derived MSCs) have good safety profiles but have not demonstrated 
significant functional improvements (Oh et al., 2016; Bydon et al., 
2024). This discrepancy between preclinical research and clinical 
application may be due to factors such as mismatches in stem cell 
survival rate, transplantation timing, and microenvironment 
regulation, as well as the lack of effective treatment strategies 
(Yamazaki et al., 2020).

Optimizing the stem cell delivery system (e.g., biomaterial scaffold 
loading, targeted homing technology) or implementing combined 
treatment strategies (e.g., co-delivery with neurotrophic factors, 
electrical stimulation synergy) may help overcome the current 
treatment bottleneck. These findings provide an important theoretical 
basis for developing a precise and time-controlled stem cell 
treatment system.

3 Ferroptosis and SCI

Ferroptosis is an iron-dependent form of programmed cell death 
driven by phospholipid peroxidation. The core mechanism involves 
the inactivation of GPX4 or inhibition of the cystine/glutamate 
antiporter (System Xc−), leading to the collapse of antioxidant 
defenses, accumulation of lipid peroxidation-derived reactive oxygen 
species (ROS), and ultimately, oxidative cell death (Li et al., 2020; Liu 
et al., 2022; Tang et al., 2021). This process relies on the peroxidation 

of polyunsaturated fatty acids and free radical chain reactions 
involving iron ions. Ferroptosis plays physiological roles in tumor 
suppression, immune surveillance, and the elimination of drug-
resistant cancer cells. It is also involved in pathological processes, 
including inflammation, neurodegenerative diseases, and ischemia–
reperfusion injury. Its regulatory network encompasses redox 
homeostasis, iron metabolism, lipid metabolism, and mitochondrial 
activity (Jiang et al., 2021; Sun et al., 2020; Wu et al., 2021; Chen 
et al., 2021).

In the pathological process of SCI, ferroptosis exacerbates 
secondary neural injury through a multi-step mechanism. Local 
bleeding from the primary injury leads to red blood cell rupture and 
the release of heme, which is degraded to generate free iron (Fe3+). 
This iron enters the cell through transferrin receptor (TFRC) 
endocytosis and is reduced to Fe2+ (Ohgami et al., 2005), forming an 
unstable labile iron pool (Breuer et  al., 2008). Fe2+ catalyzes the 
generation of hydroxyl radicals (·OH) through the Fenton reaction, 
triggering lipid peroxidation of polyunsaturated fatty acid 
phospholipids (PUFA-PLs). This generates lipid peroxides (PLOOHs), 
which disrupt cell membrane integrity and release damage-associated 
molecular patterns (DAMPs), further activating inflammatory 
responses (Reis and Spickett, 2012; Valko et al., 2005). Simultaneously, 
dysfunction of System Xc− leads to insufficient glutathione (GSH) 
synthesis, resulting in the loss of GSH-dependent GPX4 activity and 
an inability to reduce PLOOHs (Zhang et  al., 2021; Zheng and 
Conrad, 2020). The insufficient compensation of the Ferroptosis 
inhibitory protein 1-ubiquinone pathway further exacerbates the lipid 
free radical chain reaction. In the inflammatory microenvironment, 
microglia release nitric oxide (NO) and proinflammatory factors (e.g., 
TNF-α), upregulate iron uptake-related proteins, and inhibit iron 
export, establishing a vicious cycle of “iron overload-oxidative stress-
inflammation” (Feng et al., 2021). Oligodendrocytes, which are rich 
in PUFA-PLs, are highly sensitive to ferroptosis. Their death leads to 
myelin disintegration and white matter damage, hindering nerve 
conduction. Experimental studies have shown that iron chelators 
(e.g., deferoxamine) inhibit the Fenton reaction by reducing free iron 
levels. Additionally, zinc enhances antioxidant defenses by activating 
the NRF2 pathway, and targeting Acyl-CoA synthetase long-chain 
family member 4 (ACSL4) or supplementing monounsaturated fatty 
acids can regulate lipid metabolism. These strategies significantly 
improve neurological function recovery in animal models and 
provide potential targets for clinical intervention (Li et  al., 2022; 
Figure 2).

Primary injury leads to bleeding, and red blood cells release heme, 
which degrades into Fe3+. This iron is endocytosed and reduced to Fe2+ 
by TFRC, forming an unstable LIP. Fe2+ generates OH· through the 
Fenton reaction, which attacks membrane PUFA-PLs, triggering lipid 
peroxidation and generating PLOOHs. This destroys membrane 
structure and releases DAMPs, which activate inflammation. The 
collapse of the antioxidant system occurs when System Xc− dysfunction 
reduces GSH synthesis, and GPX4 inactivation prevents the clearance 
of PLOOHs. The FSP1-CoQ10 pathway provides insufficient 
compensation, aggravating oxidative damage. Activated microglia in 
the inflammatory microenvironment release NO/TNF-α, upregulate 
TFRC, and inhibit FPN, forming a cycle of “iron accumulation → 
oxidative stress → inflammation.” Oligodendrocytes are sensitive to 
ferroptosis due to the high concentration of PUFA-PLs in myelin. 
Their death triggers demyelination and white matter damage (Table 1).
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4 Application of stem cell therapy 
targeting ferroptosis in SCI

The previous article described the mechanism of ferroptosis after 
spinal cord injury. Concurrently, studies have shown that ferroptosis 
is an important pathological process of neuronal death after spinal 
cord injury. Once iron overload, ROS accumulation, lipid peroxidation 
or characteristic mitochondrial changes occur in cells, ferroptosis will 
occur rapidly (Berndt et  al., 2024; Zheng et  al., 2024). Therefore, 
inhibiting lipid peroxidation and iron overload can be an important 
way to treat spinal cord injury by targeted control of ferroptosis. Stem 
cells can interfere with ferroptosis through complex molecular 
networks, including RNA regulation, mitochondrial repair, and 
activation of key signaling pathways, inhibiting lipid peroxidation and 
iron overload, thereby inhibiting ferroptosis and promoting spinal 

cord injury repair. The following article will describe the specific 
mechanism of stem cell targeted control of ferroptosis to treat spinal 
cord injury.

Recent studies have demonstrated that stem cell-derived exosomes 
play a multi-target role in inhibiting ferroptosis after SCI by delivering 
non-coding RNA or regulating key signaling pathways (Li et al., 2023). 
For example, long non-coding RNA lncGm36569, enriched in 
mesenchymal stem cell exosomes (MSC-exos), binds to miR-5627-5p, 
relieving its transcriptional inhibition of FSP1 and enhancing the 
antioxidant capacity of neurons (Shao et al., 2022). In microRNA-
mediated mechanisms, miR-219-5p delivered by bone marrow 
mesenchymal stem cell exosomes (BMSC-exos) inhibits the 
ubiquitination degradation of NRF2 by targeting the ubiquitin-
binding enzyme UBE2Z. This stabilizes NRF2 protein expression and 
activates the downstream SLC7A11/GPX4 axis, reducing lipid 

FIGURE 2

The core mechanism of ferroptosis in SCI involves the cascade of “iron overload-lipid peroxidation-antioxidant imbalance-inflammatory cycle”.
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peroxidation (Dong et  al., 2024). Another study showed that 
miR-26a-5p delivered by BMSC-exos inhibited the expression of 
Enhancer of Zeste Homolog 2, promoting the activation of the BDNF/
TrkB signaling pathway and the phosphorylation of cAMP response 
element-binding protein. Additionally, miR-26a-5p upregulated the 
K+-Cl− co-transporter 2, which significantly improved 
Lipopolysaccharide-induced Pheochromocytoma Cell Line 12 cell 
injury and promoted spinal cord function recovery (Chen et al., 2024). 
At the circular RNA level, Shao et  al. generated hypoxia-induced 
adipose-derived stem cell-derived exosomes (ADSC-exo) by 
pre-treating ADSCs under hypoxic conditions (93% N₂, 5% CO₂, 2% 
O₂). These exosomes specifically carried circ-Wdfy3, which acted as a 
molecular sponge, adsorbing miR-423-3p and preventing its 
degradation of GPX4 mRNA. This intervention significantly reduced 
ROS accumulation and inflammatory factors (Shao et al., 2024). In 
terms of signaling pathway regulation, Wen et al. demonstrated that 
BMSC-exos inhibited the IL-17 pathway, reduced levels of Fe2+, 
malondialdehyde, and ROS in the SCI model, upregulated the 
expression of GSH, GPX4, and cystine/glutamate antiporter, and 
downregulated the long-chain family member 4 of acyl-CoA 
synthetase. This combination of actions synergistically inhibited 
ferroptosis and promoted functional recovery (Tang et al., 2024).

This non-coding RNA and pathway-based regulatory network is 
highly specific in terms of spatiotemporal control, enabling 
intervention at key points in the ferroptosis process. It provides a 
promising strategy for the precise treatment of SCI.

Mitochondria, crucial for regulating energy metabolism in 
eukaryotic cells, also play an indispensable role in cell proliferation, 

differentiation, immune responses, and redox balance (Nunnari 
and Suomalainen, 2012; Ni et al., 2015). In response to various 
physiological signals or external stimuli, mitochondria have 
developed a complex set of mitochondrial quality control (MQC) 
mechanisms, encompassing mitochondrial biogenesis, dynamics, 
and autophagy (Liu et al., 2024; Ashrafi and Schwarz, 2013). MQC 
is essential for cells to cope with internal and external stresses, 
maintaining mitochondrial function and homeostasis. This process 
involves multiple regulatory levels, including mitochondrial-
nuclear communication (mitochondrial retrograde signaling), 
changes in mitochondrial morphology (mitochondrial dynamics), 
and selective removal of damaged mitochondria (mitochondrial 
autophagy) (Al Amir Dache and Thierry, 2023). Through these 
mechanisms, cells can sense and respond to stress, reshaping the 
mitochondrial network and removing dysfunctional mitochondria, 
thereby ensuring systemic mitochondrial function and intracellular 
homeostasis (Roca-Portoles and Tait, 2021; Rahman and 
Quadrilatero, 2021).

MSCs transfer functional mitochondria to injured neurons 
through intercellular tunneling nanotubes (TNTs), directly 
intervening in MQC imbalance. This process is crucial for 
maintaining mitochondrial homeostasis and promoting neuronal 
survival (Hsu et al., 2016). After SCI, neurons experience ferroptosis 
due to excessive mitochondrial fission and abnormal mitochondrial 
autophagy. Single-cell transcriptome analysis revealed significant 
upregulation of neuronal ferroptosis markers, such as TFRC and 
4-Hydroxynonenal, while mitochondrial morphology showed 
shrinkage and cristae destruction. MSC-derived mitochondria 

TABLE 1 Research progress on ferroptosis-related molecular targets in SCI.

Intervention 
method

Target in vivo efficacy References

Knockout USP11
Autophagy regulation by 

Beclin 1

In vivo knockout of USP11 inhibited the autophagy activation of Beclin 1 and 

significantly reduced neuronal cell ferroptosis.
Rong et al. (2022)

Celastrol NRF2/xCT/GPX4 pathway
Celastrol can repair SCI by inhibiting ferroptosis through upregulating the NRF2/

xCT/GPX4 axis.
Shen et al. (2024)

Zinc NRF2/GPX4 pathway

Zinc promotes the degradation of oxidative stress products and lipid peroxides 

through the NRF2/HO-1 and GPX4 signaling pathways, thereby inhibiting neuronal 

ferroptosis.

Ge et al. (2021)

ADSC-Exos
NRF2/SLC7A11/GPX4 

pathway

ADSC-Exos may inhibit ferroptosis after SCI through the NRF2/SLC7A11/GPX4 

pathway and promote the recovery of vascular and neural functions.
Wu et al. (2024)

Dihydroorotate 

dehydrogenase
P53/ALOX15 pathway

Dihydroorotate dehydrogenase can inhibit the P53/ALOX15 signaling pathway, 

thereby inhibiting lipid peroxidation and neuronal ferroptosis, ultimately alleviating 

SCI.

Li et al. (2023)

SYVN1 HMGB1/NRF2/HO-1 axis
SYVN1 overexpression can alleviate spinal cord ischemia–reperfusion injury by 

downregulating HMGB1 and promoting NRF2/HO-1 pathway activation
Guo et al. (2023)

EPO xCT/GPX4 pathway
EPO mediates ferroptosis inhibition by upregulating xCT and GPX4, thereby 

improving limb function recovery and spinal cord regeneration after SCI.
Kang et al. (2023)

Metformin NRF2 Pathway

Met treatment can reduce malondialdehyde content, regulate inflammatory factor 

levels, activate nuclear factor E2-related factor 2 signaling pathway, and improve 

long-term efficacy by improving motor dysfunction caused by SCI.

Wang et al. (2022)

TMP GPX4/ACSL4 axis

TMP alleviates neuronal ferroptosis by regulating the GPX4/ACSL4 axis, thereby 

protecting the remaining neurons around the injury site, reducing glial scar 

formation, and promoting functional recovery.

Liu et al. (2024)

USP11, ubiquitin-specific protease 11; ADSC-Exos, adipose-derived stem cell exosomes; GPX4, glutathione peroxidase 4; xCT, cystine/glutamate antiporter; SYVN1, synoviolin 1; ASCL4, 
Acyl-CoA synthetase long-chain family member 4; ALOX15, arachidonate 15-lipoxygenase; EPO, erythropoietin; HMGB1, high mobility group box 1; TMP, Tetramethylpyrazine.
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restored mitochondrial dynamic balance by fusing with the 
neuronal mitochondrial network, inhibiting excessive autophagy 
mediated by PINK1/Parkin. In vitro experiments demonstrated that 
MSC co-culture significantly reduced mitochondrial ROS in 
neurons, restored membrane potential and ATP levels, and 
decreased lipid peroxidation products (MDA) and free iron content. 
In vivo, the transplantation of MSCs improved neuronal 
mitochondrial morphology and promoted motor function recovery 
through TNT-dependent mitochondrial transfer. The TNT inhibitor 
cytochalasin D completely reversed this effect. This mechanism 
reveals a novel way for MSCs to inhibit neuronal ferroptosis at the 
sub-organelle level by repairing mitochondrial function and 
reducing the expression of ferroptosis-related markers, offering an 
experimental basis for neuroprotective strategies targeting 
mitochondrial metabolism (Yao et al., 2023).

ADSC-Exos activated NRF2 nuclear translocation, upregulated 
System Xc− expression, promoted GSH synthesis, and enhanced 
GPX4 activity to clear lipid peroxides. In the oxygen–glucose 
deprivation/reperfusion-induced endothelial cell injury model, 
ADSC-Exos treatment reduced intracellular ROS, increased GSH 
levels, and reversed the abnormal accumulation of MDA, a marker 
of ferroptosis. Immunofluorescence and Western blot analysis 
revealed that ADSC-Exos significantly upregulated NRF2 nuclear 
expression and the downstream SLC7A11/GPX4 pathway. NRF2 
inhibition with ML385 blocked these effects, confirming the 
critical role of this pathway in inhibiting ferroptosis. In vivo, 
ADSC-Exos promoted angiogenesis in the SCI area and improved 
motor function. This mechanism synergistically inhibited 
ferroptosis at the molecular level by enhancing cystine uptake, 
GSH metabolism, and lipid peroxidation repair, providing a new 
strategy for targeted vascular-neuron repair (Wu et  al., 2024). 
BMSC-exos reduce ACSL4 expression and ROS levels by inhibiting 
the IL-17 signaling pathway. Studies have shown that IL-17 
pathway activation after SCI promotes ACSL4-mediated lipid 
peroxidation, leading to neuronal ferroptosis. Following BMSC-exo 
intervention, the expression of IL-17 downstream inflammatory 
factors (such as IL-17A, IL-17RA, Act1) decreased, as did ACSL4 
protein levels and ROS generation. In vitro experiments further 
demonstrated that IL-17 neutralizing antibodies could mimic the 
effects of BMSC-exos (Tang et al., 2024).

5 Biomaterials synergy

While many studies have confirmed that stem cells can intervene 
in ferroptosis and promote SCI neuron repair, their effectiveness is 
often limited by the local microenvironment. Therefore, understanding 
the stem cell microenvironment and developing a biomaterial synergy 
with stem cell engineering delivery systems are critical for improving 
the success rate of SCI repair treatments (Pennings et al., 2018; Papa 
et al., 2020; Kubinová, 2020).

The shear-thinning terephthalic acid (TPA)@Laponite 
hydrogel, loaded with dental pulp stem cells (DPSCs), removes 
ROS and regulates synaptic balance through both physical and 
chemical effects (Ying et  al., 2023). The hydrogel demonstrates 
excellent physical properties, allowing it to remain in the body for 
an extended period. Its shear-thinning properties enable it to adapt 
to the mechanical microenvironment of the spinal cord, remove 

lipid ROS in the injury area, inhibit lipid peroxidation, and regulate 
the balance between inhibitory and excitatory neurons. This is 
achieved through the secretion of neurotrophic factors by DPSCs, 
promoting SCI recovery. While TPA@Laponite hydrogel can 
reduce the entanglement of blood vessels and fibrous scars, it 
cannot significantly promote vascular function recovery. In 
contrast, DPSCs can reduce fibrous scar formation, differentiate 
into neural and vascular cells, and aid in vascular function 
restoration. In vivo experiments revealed that combined treatment 
reduced muscle spasms caused by excessive excitation and 
promoted motor function recovery.

Small extracellular vesicles-loaded N-acryloylglycinamide/
gelatin methacrylate/laponite/tannic acid hydrogel (sEVs-NGL/T) 
integrates the antioxidant and anti-inflammatory properties of 
tannic acid with the mechanical support function of laponite to 
construct a three-dimensional scaffold that offers sustained release 
and bioactivity. The hydrogel is characterized by a porous network 
structure, good degradation stability, and a low initial degradation 
rate, providing long-lasting mechanical support. Its moderate 
swelling properties prevent compression of surrounding tissues 
after implantation. In vitro experiments demonstrated that sEVs-
NGL/T hydrogel exhibited significant antioxidant capacity in a 
simulated peroxidative microenvironment, effectively scavenging 
DPPH free radicals and reducing H₂O₂ concentration. Additionally, 
it enhanced the ROS protection of PC12 cells through the 
continuous release of sEVs derived from mesenchymal stem cells. 
In a rat model of spinal cord complete transection, the implantation 
of sEVs-NGL/T significantly improved motor function recovery, 
reduced cystic cavity formation at the injury site, and promoted 
neural tissue repair by inhibiting excessive astrocyte proliferation 
and encouraging nerve fiber regeneration. Furthermore, sEVs-
NGL/T synergistically alleviated the inflammatory response by 
regulating the ROS microenvironment, reducing the levels of lipid 
peroxidation products (4-Hydroxynonenal and 8-Hydroxy-2′-
deoxyguanosine), and inhibiting the release of proinflammatory 
cytokines (TNF-α, IL-6, IL-1β). The sustained release of sEVs 
enhanced the local anti-inflammatory and antioxidant effects (Liu 
et  al., 2022). Studies have shown that human umbilical 
mesenchymal stem cells (Huc-MSCs) can improve the 
inflammatory microenvironment of SCI and promote nerve 
regeneration. However, due to their lack of inherent targeting 
ability and rapid clearance by immune cells, their efficacy is limited 
by the local SCI microenvironment (Wu et al., 2019; Bonilla et al., 
2021). Therefore, the researchers developed a synergistic 
Huc-MSCs and ferroptosis inhibitor nanoparticle sustained-release 
system. The ROS-sensitive nanosystem, mPEG-b-Lys-BECI-TCO, 
anchors Huc-MSCs through a CD44 targeting sequence (Tz-A6 
peptide) and loads a novel ferroptosis inhibitor, Feb-1. In the SCI 
microenvironment, high ROS concentrations trigger the 
degradation of nanocarriers and the release of Feb-1, in 
combination with Huc-MSC transplantation therapy. Experimental 
results showed that this combined therapy significantly promoted 
the expression of GPX4 and xCT signaling pathways, reduced 
neuronal loss, and improved motor function recovery in rats by 
inhibiting ferroptosis and inflammatory responses. Furthermore, 
Western blot analysis revealed that the expression of 
proinflammatory factors (iNOS and IL-1β) was significantly 
reduced in the combined treatment group, and immunofluorescence 

https://doi.org/10.3389/fnins.2025.1622787
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Shen et al. 10.3389/fnins.2025.1622787

Frontiers in Neuroscience 07 frontiersin.org

staining confirmed increased survival of neurons in the injury area 
(Hua et al., 2024).

6 Clinical trial cases

6.1 Clinical trial cases and efficacy 
differences

A phase I study for subacute spinal cord injury (Akhlaghpasand 
et al., 2024) showed that 9 patients received intrathecal injection of 
human umbilical cord mesenchymal stem cells (HUC-MSCs) exosomes 
and no treatment-related adverse events occurred. The efficacy 
evaluation showed that the American Spinal Injury Association (ASIA) 
scale score improved 6 months (37.89 ± 20.65, p = 0.066) and 12 months 
(38.22 ± 20.95, p = 0.066) after injection compared with the baseline 
(36.22 ± 20.92), but due to the small sample size, the efficacy conclusion 
still needs to be interpreted with caution. Among patients with chronic 
spinal cord injury, 3 patients received combined transplantation 
treatment (Zamani et  al., 2022). No motor function recovery was 
observed in the two-year follow-up, which only confirmed the safety of 
the treatment. The efficacy of a phase III trial (Oh et al., 2016) showed 
that only 2 of the 16 patients followed up had improved upper limb 
motor grade, and the remaining 14 showed no improvement in the 
6-month follow-up, accounting for only 12.5% of the patients. This 
shows that autologous MSCs transplantation has limited improvement 
in functional recovery after spinal cord injury, further highlighting the 
efficacy bottleneck of single therapy. Current clinical trials generally 
have problems such as small sample size and inconsistent efficacy 
evaluation tools, resulting in the effectiveness of stem cell therapy has 
not been fully verified. In the future, larger-scale controlled clinical trials 
are needed to verify the effectiveness (Jiang et al., 2013).

6.2 Key barriers to clinical translatio

Most of the current research conclusions are quite different from 
those of animal experiments. The reason is that some studies believe 
that the period, site, and dose of stem cell transplantation have a great 
impact on prognosis. For example, acute application will expose stem 
cells to cytotoxic environments such as excitatory transmitters, 
reactive oxygen species, and inflammatory molecules, which will 
affect the survival rate of stem cells. Some injured parts can be injected 
with stem cells, but they are not suitable for stem cell survival due to 
low blood perfusion, while the normal proximal spinal cord above the 
injured part is at risk of re-injury due to high tissue pressure (Oh et al., 
2016). However, this is only a conjecture and speculation stage, which 
needs to be further verified by control experiments, and is also one of 
the directions for future exploration of stem cell transplantation 
therapy. In addition, allogeneic stem cells may trigger immune 
rejection reactions, and the long-term tumorigenic risk (such as 
teratoma) still needs more follow-up data support.

7 Outlook and conclusion

The stem cell-targeted ferroptosis strategy has opened a new 
avenue for SCI treatment. By intervening in the key pathways of 

ferroptosis through multiple targets, this approach demonstrates 
significant neuroprotective and regenerative potential. When 
combined with a biomaterial delivery system, it can further enhance 
stem cell survival and targeting efficiency, overcoming the limitations 
of the local microenvironment and enabling precise, time- controlled 
treatments. In addition, exosome-mediated RNA regulation and 
mitochondrial transfer mechanisms offer innovative strategies for 
developing cell-free therapies, which may help circumvent the ethical 
and safety concerns associated with traditional stem 
cell transplantation.

Although preclinical studies have confirmed the therapeutic 
potential of stem cell-targeted ferroptosis strategies in animal models, 
clinical translation still faces substantial challenges, including a lack 
of clinical trial data and insufficient evidence of efficacy (Oh et al., 
2016; Akhlaghpasand et al., 2024; Zamani et al., 2022; Shin et al., 
2015). Due to the physiological and anatomical differences between 
animal models and human SCI, the immune responses also vary. 
These differences encompass factors such as SCI level, severity, 
timing, stem cell heterogeneity, low survival rates post-
transplantation, inhibitory effects from the local microenvironment, 
and long-term tumorigenic risks. These issues have yet to 
be systematically addressed, creating a significant gap between basic 
research and clinical application (Lukovic et  al., 2014; Lukovic 
et al., 2012).

Future research should focus on the following areas: (1) deepening 
the study of ferroptosis regulation and stem cell mechanisms; (2) 
clarifying the spatiotemporal expression patterns and synergistic 
effects of key molecules; (3) optimizing stem cell engineering strategies 
to enhance their antioxidant, anti-inflammatory, and exosome 
secretion capabilities through gene editing; (4) improving survival 
rates; (5) promoting multimodal treatments, such as stem cell-
material-electrical stimulation synergy, while integrating 
microenvironment regulation and functional reconstruction (Jiang 
et al., 2013; Li et al., 2024); (6) For ethical optimization of alternative 
cell sources, it is recommended to give priority to adult stem cells with 
less ethical controversy to reduce dependence on embryonic stem cells 
(Lo and Parham, 2009).

Clinical translation faces several challenges: (1) stem cell 
heterogeneity leads to fluctuations in efficacy, and a standardized 
quality control system must be established; (2) differences between 
animal models and human pathology could undermine treatment 
efficacy, requiring verification through organoids or non-human 
primate models; and (3) long-term safety concerns (e.g., 
tumorigenicity and immune rejection) and large-scale preparation 
processes need further improvement (Shin et al., 2015). (4) The 
standardization of the ethical review framework and the ethical 
transparency of clinical transformation require the establishment 
of an interdisciplinary ethical review mechanism covering the 
legitimacy of stem cell sources and safety assessment of gene 
editing technology (Barker et  al., 2018); emphasis is placed on 
improving the transparency and social acceptance of stem cell 
therapy and reducing ethical resistance in technology promotion 
through the disclosure of clinical trial data, optimization of the 
patient informed consent process, and public scientific education 
(King and Perrin, 2014; McCaughey et al., 2016). Despite these 
obstacles, with the continued integration of precision medicine and 
regenerative technologies, the stem cell-targeted ferroptosis 
strategy holds great promise for bridging the gap from laboratory 
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research to clinical application, offering breakthrough treatment 
options for SCI patients in the future.
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