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Brain-Computer Interfaces (BCIs) leverage brain signals to facilitate

communication and control, particularly benefiting individuals with

motor impairments. Motor imagery (MI)-based BCIs, utilizing non-invasive

electroencephalography (EEG), face challenges due to high signal variability,

noise, and class overlap. Deep learning architectures, such as CNNs and LSTMs,

have improved EEG classification but still struggle to fully capture discriminative

features for overlapping motor imagery classes. This study introduces a hybrid

deep neural architecture that integrates Convolutional Neural Networks,

Long Short-Term Memory networks, and a novel SVM-enhanced attention

mechanism. The proposed method embeds the margin maximization objective

of Support Vector Machines directly into the self-attention computation

to improve interclass separability during feature learning. We evaluate our

model on four benchmark datasets: Physionet, Weibo, BCI Competition

IV 2a, and 2b, using a Leave-One-Subject-Out (LOSO) protocol to ensure

robustness and generalizability. Results demonstrate consistent improvements

in classification accuracy, F1-score, and sensitivity compared to conventional

attention mechanisms and baseline CNN-LSTM models. Additionally, the model

significantly reduces computational cost, supporting real-time BCI applications.

Our findings highlight the potential of SVM-enhanced attention to improve

EEG decoding performance by enforcing feature relevance and geometric class

separability simultaneously.

KEYWORDS

brain-computer interface, motor imagery, EEG classification, deep learning,

convolutional neural network, long short-term memory, self-attention mechanism,

support vector machine

1 Introduction

BCIs are devices that can circumvent traditional communication channels (such as

muscles and speech), converting various images of activity of the brain to instructions,

allowing direct communication between the human cortex and external devices (Millan

et al., 2010). People with ALS and Parkinson’s disease may require the BCI-assisted system

for communication. BCI can be used to send the signal directly without needing anymuscle

activity. This paper applies batch normalization (BN) within a CNN framework to solve

the over-fitting problem. We use ReLU activation in convolutional layers to accelerate

the training duration. Batch normalization improves classification performance with fewer

training epochs. Signal recordings of brain activity used by BCIs can be either invasive

or non-invasive. Invasive BCIs require surgical intervention to implant electrodes directly
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on or inside the cortex, whereas non-invasive BCIs do not

require surgical manipulations. Non-invasive BCIs can use various

brain signals as inputs, such as electroencephalograms (EEG),

magnetoencephalograms (MEG), blood-oxygen-level-dependent

(BOLD) signals, and (de) oxyhemoglobin concentrations (Nijholt

et al., 2008). EEG is preferred due to its high temporal resolution,

safety, and low cost. It does not need any invasion (Sundararajan

et al., 2015), although it is still necessary to develop alternative

interfaces that allow disabled people to use EEG for communication

with autonomous systems.

An EEG signal known as motor imaging (MI) relates to brain

signals generated by visualizing limb movement but not natural

limb movement (Al-Saegh et al., 2021). Analyzing the MI signal

makes it possible to judge the imaginary movement intention and

operate the external device. Eventually, motor imagery control has

significant potential for applications such as in various fields, such

as recreational activity rehabilitation function, motor assistance

function, etc.

Therefore, the MI signal has become one of the most

commonly used signals in the BCI. However, EEG classification

is challenging because of non-stationary EEG signals and the

influence of many background waveforms and artifacts. To address

these challenges, this study focuses on integrating SVM within

the attention mechanism to improve EEG classification. While

attention mechanisms help highlight relevant EEG features, they

do not inherently optimize class separability.

Despite recent advancements in EEG classification, existing

methods still struggle with subtle and overlapping patterns, which

are common in motor imagery tasks. CNNs, widely used for

feature extraction, are effective at capturing spatial structures

but often fail to model long-range dependencies, making them

insufficient for complex temporal variations. Long Short-Term

Memory (LSTM) networks, on the other hand, excel at modeling

temporal dependencies but can struggle with high-dimensional

EEG data, leading to suboptimal feature extraction and difficulty

in distinguishing overlapping motor imagery patterns. Attention

mechanisms have been introduced to address these issues,

but standard attention lacks the ability to explicitly enforce

class separation. This limitation reduces their effectiveness in

distinguishing closely related motor imagery classes, especially

when EEG signals exhibit significant overlap. This highlights a

gap in current approaches—where a combination of attention

mechanisms and margin-based learning techniques, such as SVM,

could provide a more effective solution. To address this gap,

we propose integrating SVM’s margin-maximization principle

into the attention mechanism to simultaneously support feature

relevance and class boundary separation. This integration ensures

that overlapping EEG features are better distinguished, leading to

improved classification performance and robustness against noise.

Classifying motor imagery EEG data presents significant

challenges due to the high dimensionality, inherent noise,

and overlapping signal patterns in EEG recordings. These

characteristics make it difficult for standard classification methods

to identify clear, distinct patterns, leading to reduced accuracy

in motor imagery tasks. Attention mechanisms have emerged as

a promising approach to tackle this complexity by allowing the

model to selectively focus on relevant features, thus enhancing

the representation of task-specific patterns in noisy data. However,

traditional attention models focus on feature weighting but lack

explicit optimization for class boundaries, which is essential for

distinguishing motor imagery tasks in noisy EEG data. This

combination enhances the model’s robustness and accuracy in

motor imagery classification, especially in dealing with overlapping

features typical of EEG signals.

Nowadays, almost all Motor Imagery BCI (MI-BCI) systems

summarize the most relevant information about the measurements

in two kinds of covariance matrices: the covariance matrices of the

filtered observations employed for dimensionality reduction and

the covariance matrices of the features required for classification

purposes. In the first stage of the dimension reduction technique,

we select those sub-spaces of the observations that retain most of

the discriminative powers. We can, for example, employ (CSP) to

MI EEG data (Pfurtscheller et al., 1991).

The use of DL for the categorization of MI EEG data primarily

concerns the following issues:

• what are the most effective model selection procedures for

deep learning categorization of MI EEG data?

• which input data format has the most significant influence on

the deep learning system?

• what frequency range should be considered throughout

the analysis?

The comprehensive review by Al-Saegh et al. (2021)

summarizes major aspects of motor imagery EEG classification,

including benchmark datasets, deep neural network (DNN)

architectures, key frequency bands, regularization strategies, and

preprocessing techniques commonly used in the field.

The usage of EEG signals in motor imagery tasks suffers

from poor spatial resolution due to the volumetric calculation

effects. It may result in a not perfectly accurate design and

application of BCI. This paper introduces the framework with

sparse spectrotemporal decomposition. It is a CNN architecture

with improved classification accuracy in terms of accuracy, and

kappa value, squeeze, and excitation (SE) blocks. The channels are

re-calibrated more precisely.

This study seeks to answer the following research question:

can integrating SVM constraints within the attention mechanism

enhance EEG classification by improving class separability, refining

feature representation, and increasing robustness against noise in

motor imagery tasks? Successfully addressing this question would

contribute to the development of more accurate and reliable EEG-

based classification models, which are essential for real-world

BCI applications.

2 Related work

Attention mechanisms have become crucial in EEG

classification, enhancing feature selection by focusing on task-

relevant EEG patterns in noisy data. Recent studies have applied

attention-based models to EEG tasks such as, including music-

induced emotion recognition, motor imagery, and multimodal

EEG analysis (Wang et al., 2024; Pichandi et al., 2024; Gao et al.,

Frontiers inNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fnins.2025.1622847
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Otarbay and Kyzyrkanov 10.3389/fnins.2025.1622847

2024). For example, Wang et al. employed a bidirectional LSTM

with attention to enhance EEG-based music-induced emotional

state recognition, where the model selectively emphasizes key

EEG features relevant to emotion (Wang et al., 2024). Similarly,

Pichandi et al. introduced a hybrid attention-based deep learning

model for parallel feature extraction, improving the classification

of EEG signals related to emotional states (Pichandi et al., 2024).

These studies underscore the versatility of attention in EEG

applications, particularly in handling high-dimensional data.

Building on this, recent works have demonstrated the effectiveness

of hybrid attention mechanisms in motor imagery, depression

diagnosis, and multimodal EEG analysis.

Recent advancements in attention-based models have further

improved EEG classification performance. Liu and Huang (2024)

introduced DualDomain-AttenNet, a hybrid deep learning model

that synergizes time-frequency analysis with attention mechanisms

to enhance motor imagery EEG classification (Liu and Huang,

2024). Similarly, Gao et al. (2024) developed a multiscale

feature fusion network integrating attention mechanisms, which

significantly improved the decoding of motor imagery EEG data

by focusing on relevant spatial and temporal features (Gao et al.,

2024). Wang et al. (2022) explored hybrid neural networks with

attentionmechanisms for depression diagnosis, demonstrating that

attention-enhanced models can extract meaningful EEG features

even from complex clinical datasets (Wang et al., 2022).

Moreover, Hybrid models combining SVM with attention

mechanisms have shown promise for handling high-dimensional

EEG data. Recent research has explored hybrid models that

integrate SVM with deep learning techniques to refine EEG feature

separability, particularly in unsupervised and sparse representation

learning. Tanwar et al.’s wearable-based stress recognition model

incorporates SVM alongside attention layers, enabling the model

to focus on stress-related features within complex EEG signals,

thus enhancing classification accuracy (Tanwar et al., 2024). In

another study, Liu et al. combined an attention mechanism with

an SVM-based convolutional capsule network to improve emotion

recognition accuracy, particularly in high-dimensional EEG data

classification tasks (Liu et al., 2023).

In addition to stress and emotion recognition, hybrid SVM

models have been explored for various EEG classification tasks.

Liang et al. (2021) introduced EEGFuseNet, a hybrid deep learning

approach that integrates unsupervised feature characterization

with SVM-based classifiers to enhance high-dimensional EEG

classification (Liang et al., 2021). Similarly, Prabhakar and Lee

(2022) developed a sparse representation-based hybrid model,

combining deep learning with SVM to improve EEG signal

robustness against noise (Prabhakar and Lee, 2022). These studies

demonstrate the potential of SVM-based hybrid models in

EEG classification, particularly in improving class separability

and robustness. However, they primarily use SVM for feature

selection or post-processing, rather than fully embedding its

optimization principles within deep learning architectures. This

indicates a fundamental gap in the development of hybrid deep

learning models—existing methods fail to integrate SVM’s margin-

maximization properties directly into attentionmechanisms, which

are crucial for refining class separability in EEG classification.

Although SVM has shown strong performance in high-

dimensional EEG tasks, its integration into deep networks

remains limited. Most existing approaches either employ

SVM as a standalone classifier or use it for feature selection

without fully embedding its optimization principles within deep

networks. Liang et al. (2021) and Prabhakar and Lee (2022)

demonstrated the feasibility of SVM-hybrid models, yet these

implementations primarily rely on conventional feature extraction

rather than incorporating SVM constraints into deep learning

layers (Liang et al., 2021; Prabhakar and Lee, 2022). The lack of

a structured approach to integrate SVM’s margin-maximization

capability directly into attention mechanisms presents a significant

research gap.

In motor imagery tasks, attention mechanisms have proven

valuable. Gao et al. developed a multiscale feature fusion network

incorporating attention to decode motor imagery signals in EEG

data, achieving high classification accuracy by emphasizing relevant

motor imagery features (Gao et al., 2024). Similarly, Ma et al. used

attention mechanisms within a CNN-BI-LSTM model to enhance

seizure prediction, allowing the model to focus on seizure-related

features in multi-channel EEG data (Ma et al., 2023).

Multimodal approaches also benefit from attention

mechanisms. For instance, Cao et al. designed a classroom

fatigue recognition model based on self-attention, which fuses

EEG with other physiological signals. This approach effectively

handles high-dimensional data and ensures robust performance by

selectively emphasizing significant EEG features related to fatigue

detection (Cao et al., 2024). These recent advancements highlight

the adaptability and effectiveness of attention mechanisms in

EEG classification, especially when combined with SVM in hybrid

models to tackle high-dimensional challenges. Tao et al. introduced

the Gated Transformer architecture to apply EEG signals decoded

from the human brain signals (Tao et al., 2021).

3 Methods

To address the limitations identified in previous work, this

study proposes a novel hybrid architecture that enhances EEG

classification by explicitly optimizing for class separability. In

motor imagery tasks, EEG signals are inherently noisy, non-

stationary, and often exhibit significant overlap between classes.

While attention mechanisms have proven effective at focusing

on task-relevant features, they do not inherently enforce inter-

class margin constraints during learning. As a result, even with

attention, classification performance can suffer in the presence of

overlapping features.

To overcome this challenge, we introduce an SVM-enhanced

attention mechanism that integrates the margin-maximization

principle of Support Vector Machines (SVM) directly into

the attention computation. By embedding SVM optimization

constraints within the attention layer, our approach not only

captures feature relevance but also promotes the geometric

separation of classes in the feature space. This dual objective leads

to more robust decision boundaries and improved performance in

noisy EEG environments.

Unlike previous hybrid models that use SVM in post-

processing or as a standalone classifier, our method incorporates

the margin-based formulation into the deep learning pipeline.
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FIGURE 1

In-depth architecture of convolutional neural networks for EEG signal decoding in BCIs applications.

Specifically, the SVM constraints are embedded within the self-

attention mechanism, ensuring that feature selection and class

separability are jointly optimized during training. The following

subsections describe the data preprocessing steps, neural network

architecture, and the implementation of the SVM-enhanced

attention module.

3.1 Datasets

This study utilizes four publicly available EEG datasets widely

used inmotor imagery classification research. Each dataset includes

labeled EEG signals recorded during imagined limb movements.

Our experiments were conducted using binary classification tasks

(e.g., left-hand vs. right-hand imagery) to ensure consistency across

datasets. All trials were segmented into 4-s epochs following the

motor imagery cue, and only sessions involving right and left-hand

imagery were retained for model training and evaluation.

Weibo 2014 dataset consists of EEG recordings from ten

healthy, right-handed individuals (three female, seven male) aged

between 23 and 25 years (Yi et al., 2014). A Neuroscan SynAmps2

amplifier was used to record EEG signals at 1,000 Hz, which

were subsequently downsampled to 200 Hz. Participants were

visually cued to imagine performing either left- or right-hand

movements. Each subject completed nine sessions with 60 trials

per session, totaling 540 trials per participant. The dataset was

designed to examine differences between simple and compound

motor imagery.

PhysioNet dataset, sourced from the PhysioBank repository,

contains EEG recordings from 109 participants who performed

various motor imagery tasks (Goldberger et al., 2000). The signals

were acquired at a sampling rate of 160 Hz. For consistency with

other datasets, we selected only the trials involving left- and right-

hand imagery. Each subject performed 46 trials.

BCI Competition IV dataset 2a (referred to as BCI-IV 2a)

dataset includes EEG data from nine subjects instructed to imagine

four movements: left hand, right hand, both feet, and tongue

(Tangermann et al., 2012). EEG was recorded using 22 Ag/AgCl

electrodes at a sampling rate of 250 Hz, filtered between 0.5 and

100 Hz. For this study, only left- and right-hand imagery trials

were used.

BCI Competition IV dataset 2b (referred to as BCI-IV 2b)

also contains recordings from nine participants performing left-

and right-handmotor imagery tasks (Leeb et al., 2007). EEG signals

were recorded at 250 Hz and filtered in the 0.5-100 Hz range. Each

subject completed five sessions. During the first two sessions, visual

feedback was provided via an animated smiling face; the final three

sessions were conducted without feedback.

3.2 Prepossessing of raw data

Raw EEG signals usually contain undesirable background

noise, such as eye blinks requiring elimination before beginning

the fundamental analysis. Furthermore, augmenting the raw EEG

to meet the needs is occasionally helpful. It is possible to use

one or more preprocessing procedures (Somers et al., 2018) might

be applied.

The deep learning research has shown enhanced performance

in learning from raw EEG data, mitigating the need for

preprocessing or handcrafted features (Zhang et al., 2020;

Schirrmeister et al., 2017; Craik et al., 2019). Here, we apply

minimal preprocessing to all four datasets, using a 4 Hz high-pass

filter to suppress low-frequency noise while retaining informative

signal components, and perform basic artifact rejection through

statistical thresholding (Schirrmeister et al., 2017; Lawhern et al.,

2018). The overall architecture of the CNN used for feature

extraction is illustrated in Figure 1.

In this regard, the EEGwaveforms were high-pass filtered above

4 Hz using a fourth-order Butterworth IIR filter. The a high-pass

filter with a 4 Hz cut-off frequency was used to suppress electro-

oculographic artifacts that arose due to eye movement dominant

between 0.1 and 4 Hz band in EEG.

Other than that, and as it was suggested by Schirrmeister et al.

(2017), we did not apply low-pass filtering to leave the raw EEG

data intact.
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Further, the continuous EEG was segmented into a lefthand

and right-hand imagination trial with a 4-s length following the

motor imagery onset. Subsequently, EEG data trials were artifact

corrected by applying a statistical threshold to exclude: (i) bad EEG

trials correlated with egregious movement noise; and (ii) channels

that are noisy because of possible poor connection to the scalp of

a participant. Bad trials were identified by calculating the mean

absolute value per trial and eliminating trials with values higher

than three standard deviations over the mean trial.

The preprocessing pipeline described above was applied

consistently across all datasets to ensure comparability. This

includes the use of a 4 Hz high-pass filter, artifact rejection via

statistical thresholding, and trial segmentation into 4-s windows

following motor imagery onset. No dataset-specific adjustments

or alternative filtering procedures were introduced, allowing the

evaluation to focus purely on model performance rather than

differences in data preparation.

3.3 Deep neural networks architecture

We have implemented an approach that differs from that of

Abibullaev et al. (2020), where we do not create separate depth

dimensions for the input data but instead use the EEG channel as

the CNN depth dimension. As with colors in RGB images, some

channels are correlated, and some are linearly uncorrelated. We

increase the depth to extract more features of EEG channels. Using

EEG channels as depth allows us not to create a new dimension and

to decrease the size of the output layer used as an input for a many-

to-one LSTM layer and following a fully connected layer. By doing

so, we increase computation speed by maintaining comparable

results. Our approach can be used for real-time applications. The

example for 3 EEG channels as convolution layer’s depth (channels)

and depth dimension 3:9:18 is increased with kernel size 1× 8.

We tested this architecture with kernels (1× 8), (1× 24), and (1

× 40). Instead of increasing depth in geometric progression (chans,

chans2, chans3 ...), we used algebraic progression (chans, chans× 2,

chans × 3 ...), as shown in Figure 2, which further decreased time

spent on CNN computation. The embedded bidirectional LSTM

layer uses samples over the timespan (LSTM units) and EEG or

CNN channels as input features. Hidden units consisted of 128

nodes for Physionet and Weibo and 256 for BCI IV 2a and BCI

IV 2b. We started from a higher CNN depth compared to the

original approach (Abibullaev et al., 2020) to reduce the input

length to the LSTM layer. The overall architecture first extracts

spatial features using CNN, then models temporal dependencies

through the bidirectional LSTM, and finally applies an SVM-

enhanced attention mechanism to reweight the LSTM outputs,

promoting features that maximize class separability before passing

them to the final classification layer.

3.4 Transformer networks for BCI IV 2b and
Physionet

Transformer networks are based on an attention mechanism

and allow GPUs to run in parallel. We can activate or deactivate

the CNN by changing the ConvDOWN boolean. Moreover, it is

possible to crop the data for suitable deep learning classification.

All data are concatenated, and 45-length crops are used if there is

more than one file. The input images are resized to 72, and the patch

size is extracted from the input data.

We create and encode patches. It is also possible to

create multiple layers of the Transformer block. There is a

Layer normalization 1. Then the authors recommend creating

a multi-head attention layer, Skip connection 1, adding Layer

normalization 2, MLP, and Skip connection 2. Figure 3 provides a

detailed visual representation of this architecture, where each layer

is clearly structured and connected. The yellow blocks illustrate the

core operations (e.g., attention, normalization, feedforward) used

within the blue flow diagrams representing the transformer and

residual convolutional blocks.

One may create a [batchsize, projectiondim] tensor, add MLP,

classify outputs, and create the Keras model. Then, the authors

fill the train tensor-board and the validation tensor-board; if the

best accuracy is less, the best loss value for all models is selected.

The authors initialize the best as -infinity for custom metric and

accuracy in this work. Those are three metrics: 0 for profit, 1 for

accuracy, and 2 for loss.

We use sensor boards in the transformer networks model. We

stop the training process if no metric is improving.

To optimize the negative log-likelihood loss

importing from transformers, we employed AdamW

(Loshchilov and Hutter, 2019).

3.5 SVM-self attention mechanisms

Support Vector Machines (SVM) are supervised learning

models widely used for classification tasks, particularly in high-

dimensional spaces where clear class separation is crucial.

Traditional self-attention mechanisms in deep learning compute

attention scores solely based on feature similarity but do not

explicitly optimize for class separability. To address this limitation,

we propose an SVM-enhanced attention mechanism that embeds

the margin-maximization principle of SVMs directly into the

attention computation. By incorporating SVM constraints, this

approach ensures that feature selection is influenced not only by

input relevance but also by the need to maximize the decision

margin between different classes, improving EEG classification by

refining class boundaries.

The proposed SVM-enhanced attention mechanism modifies

the standard self-attention by enforcing margin constraints

that refine attention weight computation, ensuring optimal

class separation. Unlike conventional attention, which assigns

weights based only on feature similarity, our approach integrates

SVM optimization to refine decision boundaries and improve

classification accuracy. The computed attention weights play a

dual role: capturing input relevance while enforcing inter-class

margin constraints to optimize class separability. The traditional

self-attention mechanism computes attention scores using queries

Q, keys K, and values V as follows:

Attention(Q,K,V) = softmax

(

QKT

√

dk

)

V
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FIGURE 2

Detailed architecture of the CNN and bidirectional LSTM model used for motor imagery EEG classification across all datasets.

In the SVM self-attention mechanism, the attention weights

A are computed by solving the following optimization problem:

minimize
A

1

2
‖A‖2 + C

n
∑

i=1

ξi

Subject to the constraints:

yi(A · φ(xi)+ b) ≥ 1− ξi, ξi ≥ 0

Where:

- φ(xi) is the feature representation obtained from the

transformer encoder,

- yi represents the class labels,

- ξi are the slack variables,

- C is the regularization parameter.

Figure 4 illustrates the key components of the transformer

architecture used in our model. Figure 4a shows the transformer

encoder, which applies multi-head self-attention and feedforward

layers to the input sequence. Figure 4b presents the decoder

structure, incorporating masked self-attention for target inputs and

cross-attention to encoder outputs. Figure 4c details the scaled

dot-product and multi-head attention mechanisms that underlie

both encoder and decoder computations. Several blocks in the

figure include two outgoing arrows to represent parallel processing

paths—typically one leading to a residual connection and the other

to the next operation in the sequence. These paths are sequentially

combined according to the standard transformer flow. In our

framework, SVM-enhanced attention is incorporated within the

encoder to optimize attention weights for both relevance and class

separability in EEG classification tasks.

With the integration and model architecture detailed, we

now reflect on the implications and potential impact of our

proposed method.

3.6 Proposed hybrid model:
SVM-enhanced attention for motor
imagery EEG classification

The overall structure of the proposed hybridmodel is illustrated

in Figure 5. The model processes raw EEG signals through
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FIGURE 3

Transformer-based architecture with residual convolution blocks.

a sequence of modules, beginning with convolutional layers for

spatial feature extraction, followed by LSTM layers to model

temporal dependencies. These representations are then refined by

an SVM-enhanced attention mechanism before being passed to

the final output layer for classification. This layered integration is

designed to combine spatial, temporal, and discriminative learning

in a unified architecture.

The proposed model integrates convolutional neural networks

(CNN), long short-termmemory (LSTM) layers, and a novel SVM-

enhanced attention mechanism to improve motor imagery EEG

classification in brain-computer interface (BCI) applications. This

architecture is designed to leverage the complementary strengths

of CNN and LSTM while refining class separability through an

SVM-driven attention mechanism.

CNN layers are employed to extract spatial features from EEG

signals by capturing localized activation patterns across different

electrodes. These layers are particularly effective in learning spatial

dependencies within EEG data, enhancing the model’s ability

to distinguish motor imagery tasks. Subsequently, LSTM layers

are incorporated to model temporal dependencies, ensuring that

sequential relationships in the EEG time series are effectively

captured. While CNN layers focus on spatial representation,

LSTM layers ensure that relevant temporal information

is preserved.

The SVM-enhanced attention mechanism is introduced at the

final stage of feature processing to refine class boundaries by

incorporating the margin-maximization principle of SVM into the

self-attention layer. Unlike traditional self-attention, which assigns

importance weights based on feature similarity, the proposed

mechanism enforces SVM constraints to ensure that the learned

feature representations are not only relevant but also optimally

separated in the decision space.

The modified self-attention mechanism follows the standard

attention computation:

Attention(Q,K,V) = softmax

(

QKT

√

dk

)

V

In contrast to this softmax-based attention mechanism,

our proposed SVM-enhanced attention replaces the softmax

operation with weights A obtained through margin-based

optimization. Specifically, we formulate an SVM-inspired objective

that encourages the learned attention weights to maximize the

separability between motor imagery classes:

minimize
A

1

2
‖A‖2 + C

n
∑

i=1

ξi subject to yi(A · φ(xi)+ b)

≥ 1− ξi, ξi ≥ 0

In this formulation:

- φ(xi) are the encoder-derived features (analogous to

keys/queries), - yi are class labels, - ξi are slack variables allowing

soft margins, - C regulates the trade-off between classification error

and margin size.

The optimized weights A replace the softmax attention scores

and are used to modulate V , prioritizing class-separating features.

This makes the attention mechanism not only context-aware but

also class-discriminative.

To implement the proposed SVM-augmented attention in a

differentiable manner, we reformulate the original constrained

optimization as a smooth, unconstrained objective using a

differentiable hinge loss. Specifically, we approximate the slack-

variable-based constraint using the soft hinge function:
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FIGURE 4

Illustration of transformer encoder/decoder module. (A) Transformer-encoder module. (B) Complete transformer architecture, highlighting the

transformer decoder module. (C) Scaled Dot-Product attention and multi-head attention mechanisms.

FIGURE 5

Architectural flow of SVM-enhanced attention mechanism.
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TABLE 1 Training and test accuracy (%) for BCI IV 2a using CNN+LSTM.

Subject CNN depth /
Kernel size

Validation
Acc.

Test
Acc.

1 (3,6,9,12,15) / (1,24) 0.71 0.75

2 (3,6,9,12,15,18,21) / (1,40) 0.57 0.56

3 (3,6,9,12,15) / (1,40) 0.55 0.53

4 (3,6,9,12,15) / (1,8) 0.90 0.92

5 (3,6,9,12,15,18) / (1,8) 0.84 0.80

6 (3,6,9,12,15,18) / (1,24) 0.78 0.72

7 (3,6,9,12,15) / (1,24) 0.71 0.76

8 (3,6,9,12,15) / (1,40) 0.81 0.78

9 (3,6,9,12,15) / (1,8) 0.75 0.82

Average 0.73 0.74

LSVM =
1

2
‖A‖2 + C

n
∑

i=1

max(0, 1− yi(A · φ(xi)+ b))

Here, A represents the learned attention weights, φ(xi) are

the feature representations (e.g., output of encoder or projection

of query/key vectors), yi ∈ {−1, 1} are class labels, and C is

the regularization parameter controlling the margin. This loss is

fully differentiable and integrated into the computational graph,

allowing gradient flow through A using standard backpropagation.

The PyTorch autograd engine handles the gradient computation

without requiring an external quadratic programming solver.

However, in our SVM self-attention, the attention weightsA are

determined by solving an optimization problem that maximizes the

decision margin:

minimize
A

1

2
‖A‖2 + C

n
∑

i=1

ξi

subject to the constraints:

yi(A · φ(xi)+ b) ≥ 1− ξi, ξi ≥ 0

where:

- φ(xi) represents the transformed feature embeddings from the

transformer encoder,

- yi denotes the class labels,

- ξi are slack variables allowing for a soft-margin SVM

formulation,

- C is a regularization parameter controlling the trade-off

between margin maximization and misclassification penalties.

Through this formulation, the attention mechanism prioritizes

features that contribute to class separability, ensuring that feature

vectors belonging to different motor imagery classes are positioned

with a maximized margin in the latent space.

In this hybrid framework, CNN and LSTM modules serve

as feature extractors, while the SVM-enhanced attention module

acts as a feature refiner to optimize class discrimination. This

TABLE 2 Training and test accuracy (%) for Weibo-2014 dataset using

CNN+LSTM.

Subject CNN depth /
Kernel size

Validation
Acc.

Test
Acc.

1 (22,44,66,88,110) / (1,8) 0.75 0.81

2 (22,44,66,88,110) / (1,40) 0.59 0.66

3 (22,44,66,88,110) / (1,24) 0.94 0.91

4 (22,44,66,88,110,132) /

(1,24)

0.68 0.55

5 (22,44,66,88,110) / (1,24) 0.55 0.64

6 (22,44,66,88,110,132) /

(1,24)

0.53 0.64

7 (22,44,66,88,110,132) /

(1,24)

0.61 0.57

8 (22,44,66,88,110) / (1,8) 0.93 0.93

9 (22,44,66,88,110) / (1,40) 0.88 0.81

Average 0.72 0.72

integration effectively mitigates issues of feature overlap and poor

separability common in EEG-based classification tasks.

By embedding SVM principles directly into the self-attention

layer, this model ensures that attention weight computation aligns

with optimal class separation rather than mere feature relevance.

The inclusion of SVM constraints enforces a geometric separation

of class boundaries, thereby reducing misclassification errors and

improving EEG decoding performance. This novel integration of

CNN, LSTM, and SVM-enhanced attention results in amore robust

and interpretable EEG classification framework suitable for real-

time BCI applications.

4 Results

We conducted a comparative evaluation of the proposed

SVM Self-Attention mechanism against several hybrid models

using subject-independent evaluation, where models are tested on

BCI IV 2a subjects not seen during training (LOSO protocol).

The analysis focused on classification accuracy across four key

motor imagery EEG datasets. Tables 1–3 present the CNN-LSTM

Network test results on the BCI IV 2a, Weibo, and BCI IV 2b

datasets, respectively. In these tables, the left column displays

the structural hyperparameters explored during the experiments,

while the first column highlights the ConvNet architecture that

achieved the best performance on each dataset. This consistent

format allows for a clear comparison of the network’s performance

across different datasets, with each table showing the results from a

different dataset.

After comparing the hyper-parameters, we also compare the

ConvNetopt to EEGNet architecture based on different subjects.

This process helps to choose a suitable model. The advantage is

to get information about the structural hyperparameter, but the

algorithmic hyperparameter is unknown. Also, both weights and

epoch sizes can be estimated.
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TABLE 3 Training and test accuracy (%) for BCI-dataset 2B using

CNN+LSTM.

Subject CNN depth /
Kernel size

Validation
Acc.

Test
Acc.

1 (60,120,180,240,300) /

(1,24)

0.71 0.72

2 (60,120,180,240,300) /

(1,24)

0.64 0.69

3 (60,120,180,240,300) / (1,8) 0.50 0.69

4 (60,120,180,240,300,360,420)

/ (1,40)

0.57 0.66

5 (60,120,180,240,300,360) /

(1,24)

0.62 0.56

6 (60,120,180,240,300,360) /

(1,24)

0.81 0.68

7 (60,120,180,240,300,360) /

(1,24)

0.91 0.81

8 (60,120,180,240,300,360) /

(1,24)

0.67 0.59

9 (60,120,180,240,300,360) /

(1,24)

0.74 0.78

10 (60,120,180,240,300,360) /

(1,24)

0.66 0.75

Average 0.68 0.69

While comparing ConvNetopt to EEGNet architecture based

on BCI Dataset 2B shows the following sets with percentages:

training -70%; validation -15% and test-15%. The validation set

helps estimate each approach’s epoch length in this case. Tables 4, 5

accurately classify the following locations at different subjects

using the EEGNet and ConvNetopt: training, validation, and test.

To evaluate the impact of the SVM Self-Attention mechanism,

we compared it against CNN-LSTM and other attention-based

models on the same datasets. As summarized in Tables 6, 7, the

SVM Self-Attention model consistently outperformed CNN-LSTM

across BCI IV 2a, Weibo, and BCI IV 2b datasets. Compared

to conventional attention mechanisms such as Multi-Head

Attention and CNN-Transformer Hybrid, SVM Self-Attention

demonstrated superior classification accuracy, particularly in

subject-independent evaluations. The improvement is attributed

to its ability to refine feature representations by optimizing class

separability, a limitation in traditional attention approaches.

To systematically evaluate the contribution of each

architectural component, an ablation study was conducted.

Table 8 summarizes the results of progressively modifying the

model architecture: starting from a baseline CNN-LSTM, then

adding multi-head attention, replacing LSTM with a Transformer

encoder, and finally introducing the SVM-enhanced attention

mechanism. Each enhancement led to consistent improvements in

F1-score, class separation, and sensitivity. Notably, the integration

of SVM constraints into the attention mechanism resulted in the

largest performance gains, highlighting its role in improving class

separability and overall model robustness.

Further comparison of different CNN architectures for motor

imagery EEG classification is presented in Tables 6, 7. These two

datasets were selected for focused transformer-based evaluation

due to their contrasting properties: BCI IV 2b includes a low

number of channels (3), while Physionet contains high-density

EEG recordings across a large subject pool (64 channels and 109

subjects), enabling assessment of model adaptability under varying

data conditions. These tables provide the performance comparison

of multiple CNN-based hybrid models, including SVM-Self

Attention, CNN Transformer Hybrid, Multi-Head Attention, and

Deep CNN with Attention, evaluated using Leave-One-Subject-

Out (LOSO) methodology.

To assess statistical significance, we conducted one-way

ANOVA tests on classification accuracy across subjects for each

dataset. The results confirmed that the observed differences

between models are statistically significant for BCI IV 2a (p =

8.56 × 10−8), BCI IV 2b (p = 7.16 × 10−7), and Physionet

(p = 0.0265), while no significant difference was found for Weibo

(p = 0.270). Figure 6 presents boxplots comparing the accuracy

distributions of each model across datasets, demonstrating that

our proposed SVM-Self Attention model maintains consistently

high median performance and lower variance compared to

other methods.

Table 6 summarizes the results for subject-independent

evaluation on the Weibo dataset, while Table 7 presents results

for the Physionet dataset, using the Leave-One-Subject-Out

(LOSO) protocol to ensure that each subject was excluded from the

training set during testing. For each subject, the best-performing

models are highlighted in bold. The columns represent test results

for individual subjects (S0 to S9 for Weibo, and S0 to S90 for

Physionet), and the final column shows the average accuracy

across all subjects. Different CNN configurations are denoted as

C[2], C[12], K[3, 8], etc., representing variations in the network

depth and kernel sizes. The “Params” column lists the number of

parameters for each model, providing insight into the complexity

of the architectures. Additionally, Table 9 compares different CNN

depth configurations and their impact on output dimensionality

and computation time on the Physionet dataset, demonstrating the

efficiency gains achieved with reduced layer complexity.

To further illustrate the impact of SVM constraints on attention

weight distribution, we present a heatmap visualization of attention

weights in Figure 7. This visualization highlights how the SVM

Self-Attention mechanism selectively focuses on relevant features,

particularly enhancing class separability by directing attention

toward more discriminative EEG signal components. The higher

intensity regions in the heatmap correspond to feature positions

where the SVM margin constraints exert a greater influence,

reinforcing the importance of inter-class separability.

As the baseline, the results of Abibullaev et al. (2020) were used

to compare, and this paper’s research approach took less time than

Abibullaev et al. (2020), but the results of both methods showed

approximately the same accuracy.

We use three channels as the depth of CNN in the BCI

IV 2b dataset. Because we made EEG channels analogically as

RGB channels, we extracted features from those channels directly

without creating separate CNN depth. This allowed us to end up

with 1,344 flattened layer sizes instead of 49,152 for the Physionet

dataset compared to work (Abibullaev et al., 2020). Considering

timesteps, 448 features instead of 16,384 for the LSTM layer were

used. As can be seen, more minor features resulted in faster

convergence preserving similar results. These improvements in

classification performance are accompanied by a reduction in
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TABLE 4 Accuracy (%) comparison of the proposed SVM-self attention model with CNN-based and transformer-based baselines on BCI IV 2a test

subjects using subject-independent evaluation (LOSO protocol).

Model S1 S2 S4 S5 S6 S7 S8 S9 Avg. Params

Deep CNN + Attention 90.11 68.22 79.12 73.45 77.34 70.12 85.11 86.33 80.91 950.21k

SVM self attention 82.15 66.23 73.11 69.22 77.65 68.12 83.11 85.12 77.43 20.05M

CNN-transformer

hybrid

60.12 57.22 56.45 58.12 61.23 59.12 62.33 63.23 59.77 3.00M

Multi-head attention 61.13 58.33 57.22 59.44 62.14 61.12 63.44 65.12 61.03 1.02M

C[12, 24] K(3,8) 77.43 62.56 68.11 61.23 70.54 63.45 75.11 78.33 70.55 8.50M

C[24, 12] K(3, 8) 69.85 62.12 67.21 58.67 66.44 63.12 74.23 76.35 68.15 3.95M

C[48, 24, 12] K(3, 8) 72.31 55.14 70.54 62.33 75.23 61.15 78.12 79.23 70.02 2.50M

C[96, 48, 24, 12] K(3, 8) 75.22 60.11 72.11 64.22 77.41 65.01 80.54 81.14 73.14 1.40M

C[24, 12] K(3, 24) 65.41 61.23 65.12 58.45 70.13 60.23 78.15 79.23 68.35 4.10M

C[48, 24, 12] K(3, 24) 71.45 58.12 69.22 61.34 74.54 63.12 77.56 78.12 70.09 2.75M

C[96, 48, 24, 12] K(3, 24) 74.56 64.21 71.24 63.12 76.44 67.23 81.33 80.65 73.44 1.60M

C[12, 24] K(3, 8) 77.43 62.56 68.11 61.23 70.54 63.45 75.11 78.33 70.55 8.50M

C[12, 24, 48] K(3, 8) 72.11 60.32 70.11 65.21 74.66 62.54 79.24 81.11 71.96 8.60M

C[12, 24, 48, 96] K(3, 8) 74.15 62.22 72.34 66.11 78.13 65.32 82.11 84.22 74.31 8.75M

C[12, 24] K(3, 24) 68.54 63.21 66.15 62.13 73.33 61.23 76.32 80.33 70.55 8.65M

C[12, 24, 48] K(3, 24) 69.55 59.12 67.23 65.23 75.14 64.11 77.56 82.12 71.69 8.80M

C[12, 24, 48, 96] K(3, 24) 71.12 61.23 69.45 67.12 77.45 65.22 80.11 83.33 73.58 8.92M

Bold values indicate the results obtained using the proposed method presented in this study.

TABLE 5 Accuracy (%) of SVM-self attention vs. CNN and attention-based models on BCI IV 2b using subject-independent LOSO evaluation.

Model S1 S2 S4 S5 S6 S7 S8 S9 Avg. Params

SVM self attention 85.12 68.22 96.55 79.88 84.33 81.22 87.44 88.12 81.47 20.55M

CNN transformer hybrid 80.44 70.22 94.44 78.44 82.33 77.88 85.33 86.77 80.41 1.55M

Multi-head attention 61.13 58.33 57.22 59.44 62.14 61.12 63.44 65.12 61.03 1.02M

Deep CNN + attention 90.11 68.22 79.12 73.45 77.34 70.12 85.11 86.33 80.91 950.21k

C[24, 12] K(3, 8) 74.32 60.85 91.12 74.28 78.31 73.95 80.23 82.45 74.01 510.55k

C[48, 24, 12] K(3, 8) 75.64 61.75 92.55 76.12 78.44 74.85 82.44 83.23 75.12 275.22k

C[96, 48, 24, 12] K(3, 8) 78.42 62.23 93.54 77.19 79.66 76.88 83.45 84.34 76.77 190.12k

C[24, 12] K(3, 24) 76.11 63.88 90.66 73.99 79.77 74.14 82.12 81.98 75.53 517.90k

C[48, 24, 12] K(3, 24) 77.14 65.12 91.88 75.21 81.12 76.12 83.44 82.22 76.35 310.24k

C[96, 48, 24, 12] K(3, 24) 79.77 66.45 93.12 77.44 82.34 77.33 84.55 84.65 78.01 335.66k

C[12, 24] K(3, 8) 78.55 64.55 91.44 74.55 80.22 75.88 83.11 82.44 76.29 1.00M

C[12, 24, 48] K(3, 8) 79.88 65.22 93.55 76.22 82.11 77.15 84.33 84.12 77.61 1.03M

C[12, 24, 48, 96] K(3, 8) 80.23 66.35 94.12 77.55 83.44 78.45 85.11 85.44 78.66 1.10M

Bold values indicate the results obtained using the proposed method presented in this study.

computational complexity. Compared to Abibullaev et al. (2020),

our CNN+LSTM model with SVM Self-Attention significantly

reduces feature space dimensionality while preserving accuracy.

The flattened output is reduced from 49,152 to 1,344, and training

time is optimized from 1 m 37 s to 0 m 20 s.

To further contextualize the performance of our proposed

SVM-Self Attention model, we compared it against recent state-

of-the-art methods evaluated on the BCI Competition IV datasets.

Table 10 presents classification accuracies for several benchmark

architectures, including CIACNet (Liao et al., 2025), MSCFormer

(Zhao et al., 2025), CLTNet (Gu et al., 2025), CTNet (Zhao et al.,

2024), and EEGNet Fusion (Chowdhury et al., 2023). These models

integrate advanced mechanisms such as multi-scale attention,

Transformer encoders, and hybrid CNN-LSTM modules. While

CIACNet achieved the highest reported accuracy of 90.05% on

BCI IV 2b, our SVM-Self Attention model reached a comparable
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TABLE 6 Accuracy (%) of SVM-Self Attention vs. CNN and attention-based models on Weibo dataset using subject-independent LOSO evaluation.

Model S0 S1 S3 S4 S5 S6 S7 S8 S9 Avg. Params

SVM-self attention 68.75 70.00 84.13 84.75 85.13 70.00 71.88 85.38 56.38 75.88 21.17k

CNN transformer hybrid 58.75 59.00 70.63 75.13 79.88 72.50 72.50 68.25 55.88 67.50 2.73M

Multi-head attention 62.50 62.50 65.00 77.88 85.13 70.25 68.63 73.75 58.13 68.88 128.8k

Deep CNN with attention 75.00 85.00 60.00 62.50 95.00 91.88 83.75 58.13 73.88 73.88 379.49k

C[16, 8] K(3, 8) 50.63 65.63 48.13 51.88 62.86 61.88 60.63 63.46 46.25 56.35 9.97M

C[32, 16, 8] K(3, 8) 54.38 67.5 72.14 71.88 74.38 68.13 65 71.88 61.65 66.13 5.06M

C[64, 32, 16, 8] K(3, 8) 72.5 69.38 68.88 74.63 81.88 75 76.25 85 53.75 72.38 2.65M

C[16, 8] K(3, 24) 58.13 62.5 47.5 55 72.5 65.63 58.63 63.63 47.5 58.19 9.97M

C[32, 16, 8] K(3, 24) 71.88 73.75 70 72.5 75.13 71.88 70 81.88 61.65 71.01 5.09M

C[64, 32, 16, 8] K(3, 24) 68.75 64.38 72.5 74.38 80.63 78.13 68.13 79.38 60.63 71.63 2.78M

C[8, 16] K(3, 8) 59.38 58.13 50.63 69.29 71.25 75.88 68.13 51.25 68.75 62.69 19.90M

C[8, 16, 32] K(3, 8) 68.75 65.63 74.29 81.88 79.38 76.25 76.25 68.13 60.63 71.88 20.17M

C[8, 16, 32] K(3, 24) 68.13 59.38 55 65.71 73.75 63.75 60.63 73.75 56.88 63.88 19.92M

C[8, 16, 32, 64] K(3, 24) 67.5 68.13 67.86 67.5 76.88 67.5 65.63 68.25 56.88 67.13 20.04M

C[8, 16, 32, 64] K(3, 8) 68.13 65 80.63 76.25 82.5 79.38 73.13 83.63 60.25 74.44 20.84M

Bold values indicate the results obtained using the proposed method presented in this study.

TABLE 7 Accuracy (%) of SVM-Self Attention vs. CNN and attention-based models on Physionet dataset using subject-independent LOSO evaluation.

Model S0 S10 S30 S40 S50 S60 S70 S80 S90 Avg. Params

SVM-Self Attention 77.78 88.10 66.67 93.18 99.99 95.56 90.48 86.47 93.33 86.47 1.20M

CNN Transformer Hybrid 77.78 69.05 40.48 77.27 84.44 75.56 79.48 73.81 73.81 73.81 526.76k

Multi-Head Attention 80.34 83.33 64.29 81.82 95.56 95.56 92.86 88.10 83.08 83.08 264.53k

Deep CNN with Attention 75.00 85.00 60.00 62.50 95.00 91.88 83.75 58.13 73.88 73.88 379.49k

C[16, 8] K(3, 8) 71.11 76.19 57.14 70.45 93.33 86.67 77.78 88.1 50 72.19 6.69M

C[32, 16, 8] K(3, 8) 73.33 76.19 45.24 72.73 91.11 91.11 86.67 95.24 57.14 72.43 3.43M

C[64, 32, 16, 8] K(3, 8) 77.78 83.33 52.38 81.82 93.33 93.33 82.22 88.1 45.24 74.42 1.77M

C[16, 8] K(3, 24) 66.67 80.95 50 77.27 91.11 93.33 86.67 90.48 57.14 73.81 6.70M

C[32, 16, 8] K(3, 24) 64.44 71.43 59.52 75 91.11 93.33 80 85.71 59.52 73.34 3.46M

C[64, 32, 16, 8] K(3, 24) 68.89 71.43 50 79.55 91.11 95.56 84.44 90.48 64.29 74.02 1.90M

C[8, 16] K(3, 8) 75.56 73.81 61.9 84.1 95.56 86.67 91.11 90.48 42.86 74.87 13.38M

C[8, 16, 32] K(3, 8) 82.22 78.57 59.52 86.36 86.67 91.11 77.78 90.48 54.76 74.75 13.66M

C[8, 16, 32, 64] K(3, 8) 73.33 76.19 50 86.36 91.11 95.56 77.78 88.1 59.52 73.57 13.71M

C[8, 16] K(3, 24) 73.33 76.19 47.62 79.55 93.33 88.89 91.11 92.86 73.81 77 13.39M

C[8, 16, 32] K(3, 24) 73.33 83.33 52.38 70.45 91.11 88.89 68.89 88.1 78.57 75.06 13.69M

C[8, 16, 32, 64] K(3, 24) 80 85.71 45.24 77.27 88.89 86.67 88.89 90.48 61.9 75.17 13.84M

Bold values indicate the results obtained using the proposed method presented in this study.

90.48%, while also maintaining a strong result of 83.33% on BCI

IV 2a-on par with or exceeding the performance of CLTNet and

MSCFormer. These outcomes demonstrate that the integration of

SVM-based margin optimization within the attention mechanism

leads to robust generalization across different motor imagery

datasets, while remaining competitive with more complex and

parameter-heavy architectures.

The CNN-LSTM network results on the Physionet dataset are

provided in Supplementary materials (Supplementary Table S1).

This table presents the validation accuracy (Val acc) and test

accuracy (Test acc) for various CNN configurations, with each row

corresponding to a different subject index (S). The CNN depth is

specified as a sequence of layer sizes, and the kernel sizes are listed

in parentheses [e.g., K(1,24)], indicating the dimensions used for

the convolution operations. The table is organized into columns

showing the subject index, CNN depth, kernel size, validation

accuracy, and test accuracy, providing a structured overview of the

network’s performance across multiple subjects.
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FIGURE 6

Boxplot comparison of classification accuracies for four representative models.

TABLE 8 Ablation study results: contribution of CNN, LSTM, transformer,

and SVM-based attention.

Model variant F1-score Class
separation

Sensitivity

CNN + LSTM 0.74 1.12 0.65

+ Multi-head attention 0.76 1.18 0.67

+ Transformer 0.78 1.22 0.71

+ SVM-enhanced

attention (proposed in

this research)

0.83 1.39 0.78

Bold values indicate the results obtained using the proposed method presented in this study.

While this study centers on binary classification (left- vs.

right-hand motor imagery), the proposed attention-enhanced

CNN+LSTM model with SVM-based feature separation is

architecturally compatible with multi-class classification tasks.

The softmax-based output layer, cross-entropy loss function, and

margin-based attention regularization can be directly scaled to

handle multiple motor imagery classes, such as feet or tongue

imagery, without altering the core structure. Previous studies

employing attention mechanisms and CNN-LSTM hybrids for

multi-class MI tasks (Zhang et al., 2020; Lawhern et al., 2018) have

demonstrated that feature extraction pipelines like ours generalize

well beyond binary classification when additional class labels are

incorporated. Therefore, the proposed model offers a viable basis

TABLE 9 Comparison of CNN depth and EEG channel configurations on

physionet dataset.

Layer EEG channels = 64 EEG channels = 64

CNN
depth:
1–256

Flattened
Output

CNN
Depth:
64–448

Flattened
output

1 (1, 8, 64, 90) 46080 (1, 128, 1, 90) 11,520

2 (1, 16, 64, 45) 46080 (1, 192, 1, 45) 8,640

3 (1, 32, 64, 23) 47104 (1, 256, 1, 23) 5,888

4 (1, 64, 64, 12) 49152 (1, 320, 1, 12) 3,840

5 (1, 128, 64, 6) 49152 (1, 384, 1, 6) 2,304

6 (1, 256, 64, 3) 49152 (1, 448, 1, 3) 1,344

Completion time: 1m 37s 0m 20s

for extension to more complex BCI paradigms involving multiple

control commands.

Subject-dependent analysis has low generalization capabilities.

Training on the same data of the corresponding subject

has high volatility considering result repeatability. However,

regarding all subjects, generated data can be used for average

value derivation and comparison with subject independent

analysis. Below is an example of average over the best test

accuracy scores which were achieve with particular CNN
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FIGURE 7

Heatmap visualization of attention weights in the SVM Self-Attention mechanism, demonstrating the model’s focus on relevant EEG features across

di�erent trials.

architectures at training time. We used the same neural network

architecture as is given on Figure 2, but with new experimental

activation function abs(x) ∗ tanh(x) after fully connected layers.

It dampens low-level fluctuations and has internal weight

decaying properties.

5 Discussion

This study introduces a hybrid deep learning architecture

that combines convolutional neural networks (CNN), long short-

term memory (LSTM) layers, and an SVM-enhanced attention

mechanism to improve motor imagery (MI) EEG classification in

brain-computer interface (BCI) applications. The model leverages

spatial feature extraction, temporal sequence modeling, and

margin-based optimization to enhance classification accuracy,

particularly in noisy, high-dimensional EEG data.

A key contribution of this work is the integration of SVM

constraints into the attention mechanism. By embedding the

margin-maximization principle, the modified attentionmechanism

not only captures relevant features but also improves inter-class

separability. This is especially important for EEG data, which

often contain overlapping patterns. As a result, the SVM-

enhanced attention mechanism reduces misclassification by

prioritizing features that contribute most to class differentiation,

thereby improving robustness in subject-independent evaluations

(Tables 6, 7).

Our model also introduces an efficient approach to CNN

input design by treating EEG channels as the depth dimension,

similar to RGB channels in image data. This strategy avoids

the need to expand input dimensions artificially, enabling a

significant reduction in the flattened layer size—e.g., from

49,152 to 1,344 in the Physionet dataset—while maintaining

high classification performance. This design not only reduces

computational complexity but also accelerates training, which is

crucial for real-time applications.

While the integration of SVM into the attention layer

introduces an additional optimization step, its complexity is

constrained to a lower-dimensional attention space rather than

the full feature space. Empirically, the overhead was minimal

compared to the overall training time, and it was offset by

faster convergence and reduced input dimensionality. Thus, the
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TABLE 10 Comparison of our model with recent deep learning methods

on BCI Competition IV datasets.

Model BCI IV 2a
(Acc %)

BCI IV 2b
(Acc %)

References

CIACNet (CNN +

attention)

85.15 90.05 Liao et al., 2025

MSCFormer (CNN +

transformer)

82.95 88.00 Zhao et al., 2025

CLTNet (CNN +

LSTM + transformer)

83.02 87.11 Gu et al., 2025

CTNet (CNN +

transformer)

82.52 88.49 Zhao et al., 2024

EEGNet fusion

(Multi-branch CNN)

74.30 84.10 Chowdhury et al.,

2023

SVM-self attention

(ours)

83.33 90.48 This work

Bold values indicate the results obtained using the proposed method presented in this study.

improved class separability justifies the marginal increase in

computation, supporting feasibility for real-time BCI systems.

In comparative experiments across four datasets (BCI IV 2a,

Weibo, BCI IV 2b, and Physionet), the CNN+LSTM architecture

consistently outperformed both pure CNN and Transformer-

based models. The Transformer’s relatively lower performance is

attributed to its need for larger datasets to capture long-range

dependencies effectively, which may not be fully achievable with

typical EEG data. In contrast, the LSTM component is well-suited

to capturing the temporal dynamics inherent in EEG signals.

Despite its advantages, the model exhibits certain

limitations. Subject-dependent analyses revealed variability in

results, underscoring the need for personalization or domain

adaptation strategies. Moreover, while the model was evaluated

primarily on binary classification tasks, extending it to multi-

class scenarios remains an important direction for future

research. Addressing class imbalance and ensuring stable

performance across more complex tasks are additional challenges

worth investigating.

The SVM Self-Attention mechanism is particularly promising

for real-time BCI applications. By enhancing class separability

and suppressing noise, it supports reliable and responsive system

behavior in scenarios like assistive communication, neurofeedback,

and interactive control systems. Future work may explore

lightweight adaptations of the attention mechanism and pruning

techniques to further reduce latency and facilitate deployment in

embedded environments.

Finally, Table 10 shows that our SVM-Self Attention model

performs competitively or better than recent state-of-the-art

methods (Liao et al., 2025; Zhao et al., 2025; Gu et al., 2025; Zhao

et al., 2024; Chowdhury et al., 2023). This confirms the effectiveness

of integrating margin-based optimization within deep learning

frameworks for EEG decoding.

In summary, the proposed architecture effectively balances

performance and efficiency by unifying CNN, LSTM, and SVM-

based attention components. These findings contribute to the

development of robust, interpretable, and deployable BCI systems.

Future efforts should focus on improving model generalization,

expanding to multi-class settings, and optimizing for real-time

usage under resource-constrained conditions, while also exploring

attention-based multi-modal processing advances as demonstrated

in Zhao et al. (2023).

6 Conclusions

This study aimed to improve the classification of motor

imagery (MI) EEG signals by exploring and optimizing deep

learning models across four benchmark datasets: Physionet, BCI

Competition IV 2a, 2b, andWeibo. A total of 109 subjects from the

Physionet dataset were included, with detailed evaluation results

provided in the Supplementary materials. Additional subjects from

the other datasets ensured diversity and robustness in cross-

dataset analysis.

The primary objective was to identify a high-performing

model suitable for real-time BCI systems. Experimental results

demonstrated that the CNN+LSTM hybrid architecture, especially

when combined with the proposed SVM-enhanced attention

mechanism, achieved competitive or superior accuracy compared

to state-of-the-art methods. This model effectively captured both

spatial and temporal patterns and improved class separability

through margin-based attention refinement.

Transformer-based models were also evaluated, particularly

on the Physionet dataset, where they produced strong results.

However, the CNN+LSTM approach with SVM Self-Attention

consistently outperformed them across multiple settings. These

findings highlight the importance of integrating class boundary

optimization directly into attentionmechanisms for complex, noisy

EEG signals.

Additionally, the CNN architecture introduced by Abibullaev

et al. (2020) was revisited and demonstrated comparable accuracy

with significantly lower computational time. This supports its use

as a lightweight yet effective baseline for MI classification.

In conclusion, the proposed architecture provides a robust

and computationally efficient solution for MI EEG classification,

with strong potential for real-time brain-computer interface (BCI)

applications.
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