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Introduction: Accurate mapping of the spatial distribution of diverse cell types
is essential for understanding the cellular organization of brain. However, the
cellular heterogeneity and the substantial cost of manual annotation of cells
in volumetric images hinder existing neural networks from achieving high-
precision segmentation of multiple cell-types within a unified framework.

Methods: To address this challenge, we introduce a self-supervised learning
framework, Voxelwise U-shaped Swin-Mamba network (VUSMamba), for
automatic segmentation of multiple neuronal populations in 300µm thick brain
slices. VUSMamba employs contrastive learning and pretext tasks for self-
supervised learning on unlabeled data, followed by fine-tuning with minimal
annotations. As a proof of concept, we applied the framework to a multi-
cell-type dataset obtained using multiplexed fluorescence in situ hybridization
(multi-FISH) combined with high-speed volumetric microscopy VISoR.

Results: Compared to state-of-the-art baseline models, VUSMamba achieves
higher segmentation accuracy with reduced computational cost. The framework
enables simultaneous high-precision segmentation of glutamatergic neurons,
GABAergic neurons, and nuclei.

Discussion: This work presents a unified self-supervised neural network
framework that o�ers a standardized pipeline for constructing and analyzing
whole-brain cell-type atlases.

KEYWORDS

cell type atlas, cell segmentation, self-supervised learning, fluorescence in situ

hybridization, light sheet microscopy

1 Introduction

Cells within organisms can be classified into distinct types based on shared structural

and functional characteristics, facilitating the study of cellular organization and functional

heterogeneity (Arendt, 2008). As the central organ regulating bodily functions, the brain

necessitates a comprehensive cell type atlas to elucidate the roles and interactions of diverse

cell populations across regions. Recent advances in fluorescence in situ hybridization

(FISH), single-cell sequencing, and spatial transcriptomics have greatly enhanced our

ability to profile gene expression and cellular functions. FISH visualizes target RNAorDNA

molecules via fluorescent probes (Choi et al., 2018; Femino et al., 1998), while single-cell

sequencing reveals transcriptomic heterogeneity at the individual cell level (Armand et al.,

2021; Tanay and Sebé-Pedrós, 2021). Spatial transcriptomics integrates sequencing with
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spatial information, preserving tissue context during gene

expression analysis (Zhuang, 2021; Rao et al., 2021). These

technologies have enabled the construction of region-specific brain

cell atlases, providing critical insights into the cellular architecture

and function of the mammalian brain.

Recent efforts have integrated single-cell RNA sequencing with

spatial transcriptomics to construct cell type atlases of specific

mouse brain regions. The MERFISH enabled the generation of

a spatially resolved molecular atlas for the primary motor cortex

and adjacent areas (Zhang et al., 2021), and was later extended to

image over 1,100 genes in 8 million cells across the entire adult

mouse brain, identifying over 5,000 transcriptionally distinct cell

clusters (Zhang et al., 2023). This whole-brain atlas was built by

integrating single-cell (∼ 7 million cells) and spatial transcriptomic

(∼ 4.3 million cells) datasets acquired via MERFISH. However,

these atlases relied on sparsely sampled 10 µm slices, limiting

their comprehensiveness (Chen et al., 2015; Shi et al., 2023). To

overcome this, methods such as STARmap enabled profiling in 150

µm tissue blocks (Wang et al., 2018), while EASI-FISH further

extended thickness to 300 µm, allowing detailed molecular analysis

in the lateral hypothalamic area (LHA) (Wang et al., 2021). Recent

advances in MERFISH protocols have achieved 3D imaging of 200

µm-thick slices, enhancing speed and accuracy via deep learning

(Fang et al., 2024).

Building upon these developments, this study employs

modified hybridization chain reaction (HCR) (Choi et al., 2018)

FISH labeling combined with the Volumetric Imaging with

Synchronized on-the-fly-scan and Readout (VISoR) (Wang et al.,

2019) high-speed volumetric imaging system to obtain multi-FISH

labeled cell type map data from continuous 300 µm thickness

slices. To enable accurate segmentation of multiple cell types, deep

learningmodels typically require extensive expert annotations. Self-

supervised learning offers an alternative by deriving supervisory

signals from unlabeled data, such as predicting spatial context or

reconstructing missing regions.

Self-supervised learning (SSL) leverages the intrinsic structure

of data to generate supervisory signals, enabling model training

without manual annotations. Through pretext tasks, SSL models

learn transferable representations applicable to downstream tasks

such as classification, detection, and segmentation. Contrastive

learning is a prominent SSL approach, exemplified by methods

such as InstDisc and MoCo, which construct positive and

negative pairs to enhance feature consistency (Wu et al.,

2018; He et al., 2020). The SimCLR further streamlined this

framework using data augmentation to generate positive pairs,

marking a significant milestone in computer vision (Chen et al.,

2020). In biomedical research, SSL has shown transformative

potential. AlphaFold2 leveraged SSL for accurate protein structure

prediction, revolutionizing protein folding studies (Jumper et al.,

2021). Given the high annotation cost in biomedical imaging,

SSL has been widely adopted in segmentation tasks. For instance,

SwinUNETR integrates a hierarchical Transformer encoder with

SSL-based pre-training, achieving strong performance across

multiple medical segmentation benchmarks (Tang et al., 2022).

Despite their effectiveness, Transformer-based models often

suffer from high computational complexity, limiting deployment

in resource-constrained settings. Mamba, a recent architecture

based on state space models (SSMs), addresses this by introducing

selective state space transitions for efficient long-sequence

modeling with linear complexity (Gu et al., 2021). The Mamba

has been successfully applied to biomedical image segmentation,

reducing computational demands while outperforming based

on convolutional neural network (CNN) and transformer

architectures (Liu et al., 2024a,b). Its efficiency makes it particularly

suitable for large-scale whole-brain neuronal image datasets,

facilitating high-throughput single-cell segmentation with reduced

hardware requirements.

Therefore, we propose a novel self-supervised neural

network architecture, Voxel-wise U-shape Swin-Mamba Network

(VUSMamba), for end-to-end segmentation of Hoechst-, Vglut1-,

and Vgat-positive cells in thick brain slices. The workflow begins

with preprocessing of the image data for the three types of labeled

cells (Hoechst, Vglut1, Vgat), followed by the construction of a

self-supervised training dataset. Hoechst staining was used to

label cell nuclei, serving as a reference for the localization of

other fluorescent signals. Three pretext tasks—rotation prediction,

image reconstruction, and image recovery—are designed to

enable representation learning through contrastive self-supervised

learning. The pre-trained model is then fine-tuned using a small

set of manually annotated ground truth (GT) data. Finally, we

quantify the densities of Vglut1+, Vgat+, and co-expressing

Vglut1+-Vgat+ cells across multiple brain regions. Based on the

spatial distribution patterns of Vglut1+ and Vgat+ cells within

selected regions, boundary lines are computed and compared with

anatomical boundaries defined by the Allen mouse brain atlas

Common Coordinate Framework (CCFv3) (Wang et al., 2020).

2 Materials and methods

The overall workflow of this study consisted of six major steps:

brain slice embedding, tissue clearing and FISH labeling, high-

speed volumetric imaging using VISoR, 3D reconstruction of brain

slices, deep learning-based cell segmentation, and quantitative

analysis (Figure 1A).

2.1 Sample preparation

C57BL/6 or virus-injected mice were deeply anesthetized with

1% (w/v) sodium pentobarbital. Cardiac perfusion was performed

sequentially with 20 mL of 37◦C 1× PBS (phosphate buffered

saline; dissolved in RNase-free water), 20 mL of ice-cold 1× PBS,

and 20 mL of ice-cold 1% hydrogel monomer solution (HMS; 1%

acrylamide, 0.0125% bis-acrylamide, 0.25% VA-044 initiator [w/v],

4% PFA in 1× PBS, RNase-free) (Sylwestrak et al., 2016). Brains

were dissected and incubated in 40 mL 4% HMS at 4◦C overnight.

The embedding solution (20 ml of 4% HMS and 20 ml of 4%

BSA) was degassed under vacuum for 10 min. Brains were then

immersed in the solution and sealed for polymerization at 37◦C for

4 h. Embedded brains were trimmed and sectioned into 300 µm

slices using a vibratome (B-S-1018, Bitelligen). Slices were cleared

overnight at 37◦C in 4% SDS/0.2 M boric acid buffer (pH = 8.5)

with gentle shaking (Supplementary Figure 1), then washed three

Frontiers inNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fnins.2025.1622950
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Zheng et al. 10.3389/fnins.2025.1622950

 Volumetric imaging

VISoR

A

Tissue clearing 

and

multi-FISH labeling

Segmentation

based on

deep learning

Quantification

& analysis
Thick slices 

(300 μm)

Align columns

3D reconstruction

B Vglut1

Vgat

C

D

1 mm

1 mm

40 μm

40 μm

1 mm

Hoechst

1 mm 40 μm

E

40 μm

Vglut1 Vgat

FIGURE 1

Diagram of this study. (A) Schematic of the experimental workflow. Mouse brain tissues were sectioned into thick slices (300 µm), followed by tissue
clearing and FISH labeling. Samples were imaged using the VISoR system, aligned and reconstructed into brain slice image. Deep learning-based
segmentation was used for automatic cell identification and quantification of gene expression across the brain. (B–D) Representative coronal images
[Hoechst (B), Vglut1 (C), Vgat (D)] showing nuclear distribution and gene expression at both the brain slice (left) and single-cell resolution (right). (E)
Merged image showing co-localization of Vglut1 and Vgat signals. Scale bar: 10 µm. The thickness of the maximum intensity projection for the
images is 2 µm.

times in 0.3% PBST (1× PBS with 0.3% Triton X-100) at 37◦C for 1

h each, followed by a final wash in 1× PBS at room temperature.

2.2 Fluorescence in situ hybridization

The hybridization protocol was adapted from the HCR 3.0

method (Choi et al., 2018). Mouse brain slices were transferred

to 5 mL tubes and incubated in 1 mL of 30% pre-hybridization

buffer (30% formamide in 5× SSC) at 37◦C for 30 min with

gentle shaking. Slices were then incubated overnight at 37◦C in

1 mL of probe hybridization buffer (30% formamide in 5× SSC

containing a probemixture; 400 nMper probe) with gentle shaking.

The following day, slices were washed at 37◦C with 30% pre-

hybridization buffer four times (2 × 15 min, then 2 × 30 min)

with gentle shaking, followed by two washes at room temperature

in 5× SSCTw (5× SSC with 0.1% Tween-20) for 15 min each.

Samples were then equilibrated in pre-amplification buffer (5 ×

SSCTw) at room temperature for 30 min. Fluorescent hairpins

were prepared by snap-cooling 20 µL of 3 µM hairpin stock in

hairpin buffer (heated at 95◦C for 90 s, then cooled in the dark

at room temperature for 30 min). The snap-cooled hairpins were

added to 1 mL of amplification buffer. Samples were incubated

overnight (>16 h) at room temperature in the dark with 1 mL of

amplification buffer. Excess hairpins were removed by washing at

room temperature in 5× SSCTw (2 × 5 min, 2 × 30 min), 0.5×

SSCTw (2 × 30 min), and 0.5× SSC (3 × 10 min) with gentle

shaking.

2.3 Imaging

Prior to imaging, brain slices were incubated overnight in a

refractive index (RI) matching medium composed of iohexol (650

g), urea (350 g), triethanolamine (140 g), and 210 mL of RNase-

free water. The imaging chamber was filled with the same medium

to ensure consistent optical properties during acquisition. Imaging

was conducted using the VISoR platform (Wang et al., 2019;

Xu et al., 2021), equipped with four excitation lasers (405, 488,

561, and 647 nm; Coherent OBIS series) and a Hamamatsu Flash
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4.0 v3 sCMOS camera. Image acquisition was performed with a

10×, 0.3 numerical aperture water-immersion objective (Olympus)

and a 0.63× relay lens (TV0.63, Olympus), yielding a final voxel

resolution of 1× 1× 3.5 µm3.

2.4 Data preparation

Using the above protocol, Hoechst, Vglut1, and Vgat signals

were labeled. VISoR imaging followed by 3D reconstruction

(Supplementary material) enabled visualization of different

cell types (Figures 1B–E and Supplementary Video 1). The

self-supervised training dataset consists of volumetric images

labeled with Hoechst, Vglut1, and Vgat signals, each with a size of

64×256×256 pixels and a voxel resolution of 2×2×2µm3. A total

of 13,736 volumes were included. Each reconstructed 3D brain slice

(64 × 7, 000 × 5, 000 pixels) was divided into 320 sub-volumes of

64×256×256 pixels. For transfer learning, an additional dataset of

640 expert-annotated volumes was used (Supplementary Table 1).

Due to the high density of cells expressing Vglut1 and Vgat in

the midbrain, the fine-tuning dataset was primarily constructed

by selecting multiple sub-volumes from this region containing

Hoechst, Vglut1, and Vgat signals.

2.5 Self-supervised learning

The sub-volume datasets are normalized before being inputted

into the neural network for training. The normalization formula is:

N(x) =
x−min

max−min
(1)

max andmin, which are hyperparameters, are set to 112 and 1,000,

respectively.

The training and testing of the network were completed on

a workstation equipped with an NVIDIA GeForce RTX 3090

with 24 GB RAM. The neural networks implemented based on

Python 3.10 and Pytorch 2.2.1. The network training utilized the

AdamW optimizer, with a parameter learning rate of 1 × 10−3

and a weight decay rate of 0.1. The warmup cosine learning

rate schedule was employed to promote stable training and

smooth convergence. We employed contrastive learning in self-

supervised training to enable the neural network to learn high-

dimensional representation information. The network was trained

for 100 epochs with a batch size of 1. Self-supervised learning

typically leverages context reconstruction and contrastive encoding

to capture representative features of images (Haghighi et al., 2021;

Zhou et al., 2021; He et al., 2020). Inspired by previous work,

we designed three proxy tasks (rotation task, contrastive task and

recovery task) to facilitate representation learning for fluorescence

microscopy images. Specifically, the rotation task helps the model

capture the structural characteristics of 3D images and produces

diverse sub-volumes for use in contrastive learning. The contrastive

task enables the model to differentiate between regions of interest

(ROIs) associated with distinct cell types, while the recovery task

allows it to learn the contextual associations between various

structures and their surrounding environments. The loss function

is composed of three parts: rotation loss, contrastive loss, and

recovery loss. Their computation formulas are as follows:

lrot = −

R
∑

r=1

yr log
(

ỹr
)

(2)

lcontrast = − log
exp

(

sim
(

vi, vj
)

/t
)

2N
∑

k

1k6=i exp (sim (vi, vk) /t)

(3)

lrecovery =
(

Ygt − Yout

)2
(4)

In rotation prediction tasks, we designated rotations of 0◦, 90◦,

180◦, and 270◦ along the z-axis as representatives of the R class. We

employed Equation 2 to calculate their cross-entropy loss, where yr

and ỹr represented the probability values of the true class and the

predicted rotation class, respectively.

Contrastive encoding demonstrated superior capability in

learning visual representation information within self-supervised

learning (Chen et al., 2020; Park et al., 2020). The implementation

of contrastive encoding involved adding a linear mapping layer

after the encoding layer of the neural network to maximize the

mutual information between positive samples (sub-volumes from

the same volumetric image) and minimize the mutual information

between negative samples (sub-volumes from different volumetric

images) in the output. The Equation 3 was employed to compute

the contrastive loss between the mentioned samples. Here, sim (·)

represented the cosine similarity function, while vi, vj, and vk stand

for the latent representations of different samples. The parameter t

denoted the normalized temperature value. The indicator function

1 was utilized to be 1 when k is not equal to j. N denoted the total

number of samples in the self-supervised training dataset.

In the task of volumetric image recovery, we developed a

method called context-aware volumetric patch exchange for image

recovery. In particular, we randomly sampled volumetric patches of

size 30×30×30 from the input volume image for random exchange.

The exchanged image then underwent a neural network encoding-

decoding structure for image restoration, with the resulting mean

squared error (MSE) loss computed against the original image.

The Equation 4 was used to compute the MSE loss between them,

where Ygt and Yout represent the original image and the predicted

image recovery result, respectively. The three aforementioned loss

functions collectively form the loss function for self-supervised

training:

l = λ1lrot + λ2lcontrast + λ3lrecovery (5)

where λ1, λ2 and λ3 are hyperparameters (Figure 2A). The

ablation study (Supplementary Table 2) demonstrated that the

model achieved optimal segmentation performance when the

hyperparameters were set to λ1 = λ2 = λ3 = 1.

2.6 VUSMamba framework

In this section, we provide an elaborate exposition on the

VUSMamba neural network, with Mamba serving as its central
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FIGURE 2

Self-supervised learning details and VUSMamba network structure. (A) A flowchart of the self-supervised training process. The xi and xjrepresent the
two input contrastive images, and contrastive learning is performed through image rotation prediction, recovery, and reconstruction. The lrot, lcontrast,
and lrecovery correspond to the loss functions for the di�erent operations mentioned above. The yellow arrows point to the results after patch
exchange. (B) A flowchart of VUSMamba for end-to-end 3D cell segmentation. (C) Details of the VSS block composition and tensor processing
workflow. (D) A flowchart of the SS3D for extracting image features.
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component. The VUSMamba framework consisted of two main

parts: encoder and decoder, presenting an overall U-shaped

architecture (Figure 2B). The encoder primarily comprised a Patch

embedding layer, Visual State Space (VSS) blocks (Figure 2C), and

Patch merging layer. The VSS blocks were stacked with parameters

[2, 2, 6, 2]. The decoder was primarily composed of VSS blocks,

Patch expanding layers, and a convolutional layer with a kernel size

of 1 × 1 × 1. The VSS blocks were stacked with parameters [2, 2,

2]. The skip connections in the VUSMamba network enabled the

decoder to combine multi-scale features obtained from the encoder

during the up-sampling process, thereby enhancing the accuracy of

cell segmentation. The following provided a detailed description of

the structure of each layer and module.

2.6.1 Patch embedding layer
This layer was primarily composed of 3D convolutional kernels

and LayerNorm (LN) layers. The input image (W×H×D×1) was

divided into multiple non-overlapping tokens (W4 × H
4 × D

4 × C),

and the channel dimension is mapped to a high-dimensional space

(defined as C). The LN layer can normalize data along the channel

dimension.

2.6.2 VSS block
This block mainly consisted of four components: LN layer,

linear mapping layer, depth wise convolution (DW Conv), and 3D

selective scan (SS3D). The core part of the block was SS3D, which

employed a discretized selective scan mechanism (S6) (Gu et al.,

2021) to extract three-dimensional image features (Figure 2D).

The input image was separated into multiple tokens through the

Patch embedding layer, forming a tensor of length L, denoted as

vk ∈ R
L×C . Then, vk sequentially passed through the LN layer,

linear mapping layer, and DW Conv, before being passed to SS3D

for feature extraction. The calculation method after discretization

using the zeroth-order hold rule for the ordinary differential

equations (ODEs) used in feature extraction is as follows:

hk = Āhk−1 + B̄vk (6)

yk = Chk + Dvk (7)

Ā = e△A (8)

B̄ =
(

e△A − 1
)

A−1B (9)

where A ∈ R
N×N , B,C ∈ R

N×L, △∈ R
N×N , D ∈ R

1 and N was a

state size. In Equation 9, B̄ was approximated using the first-order

Taylor series expansion:

B̄ ≈ (1A) (1A)−11B = 1B (10)

In a 2D image, the image was unfolded into a sequence along

rows and columns, and information from other pixels is obtained

by scanning in four different directions (Liu et al., 2024). Similarly,

we unfolded the image into a sequence along depth, rows, and

columns, and still scan in four different directions to obtain

information from other pixels in 3D images (Figure 2C). Assuming

the input features for SS3D are denoted as z, the calculation process

described above is as follows:

zd = expand
(

z, d
)

(11)

z̃d = S6 (zd) (12)

z̃ = merge (z̃1, z̃2, z̃3, z̃4) (13)

where z̃ is an output feature of SS3D and d ∈ {1, 2, 3, 4} is four

different directions.

Patch merging layer and patch expanding layer. These two

layers could respectively perform 2× down-sampling and up-

sampling on the feature sequence, with the channel dimension

increasing and decreasing by a factor of 2 correspondingly.

Assuming the input feature shape to the Patch merging layer was
W
4 × H

4 ×
D
4 ×C, then the output feature shape was W

8 × H
8 ×

D
8 ×2C.

Likewise, assuming the input feature shape to the Patch expanding

layer was W
32 × H

32 × D
32 × 8C, then the output feature shape was

W
16 × H

16 × D
16 × 4C. Since the input image, after being processed

by the patch embedding layer, became 1
4 of its original size, the

up-sampling factor for the final Patch expanding layer was 4.

Skip connection and 1 × 1 × 1 conv. The functions of these

two structures were respectively to fuse multiple scale features to

increase segmentation accuracy and to perform linear classification

on up-sampled feature maps in the channel dimension.

2.7 Voxel-wise evaluation metrics

The voxel-wise evaluation metrics, including dice score (DSC),

sensitivity (Sst), and jaccard coefficient (Jc), are used to evaluate the

performance of neural network segmentation. The DSC calculated

the Dice coefficient, measuring the overlap between the predicted

segmentation results and the ground truth. It was calculated as:

DSC =
2TP

2TP+ FP+ FN
(14)

where true positives (TP) were the number of correctly predicted

positive pixels, false positives (FP) were the number of incorrectly

predicted positive pixels and false negatives (FN) were the number

of incorrectly predicted negative pixels. The Jc evaluated the

similarity between the predicted segmentation set and the ground

truth set. The Sst assessed the proportion of positive targets in the

predicted set relative to the positive targets in the ground truth set.

Their calculation formulas were as follows:

Jc =
TP

TP+ FP+ FN
(15)

Sst =
TP

TP+ FN
(16)

In addition to the fact that a higher values of Dice, Jc, and Sst

indicated better segmentation performance.
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2.8 Cell-type detection

After segmentation by VUSMamba, the Hoechst images were

processed using a connected component analysis method to

identify individual cell nuclei and extract their centroid coordinates

and volumes. To ensure reliable segmentation, nuclei with volumes

between 110 µm3 and 540 µm3 were considered valid. For cell

type detection, we determined gene expression based on the spatial

correspondence between Hoechst-labeled nuclei and other marker

signals. Specifically, if the segmented mask of a Hoechst-labeled

cell overlapped with a non-zero mask in the segmentation results

of another marker signal, the cell was considered positive for that

gene; otherwise, it was considered negative. The detection of cell-

type in the aforementioned cells was expressed using the following

formula:

G
(

xseg , yseg , zseg
)

=

{

True i ∩mask 6= ∅

False i ∩mask = ∅
(17)

i = I
(

xseg , yseg , zseg
)

(18)

where G (·) was the gene expression matrix, xseg , yseg and zseg were

the coordinates of the Hoechst image segmentation results. The

I (·) was the image under different labeled signal. True and False

indicated whether a cell expressed a particular gene.

3 Result

3.1 Comparison of segmentation results

In this study, VUSMamba was evaluated against state-of-the-

art baseline models based on CNNs and transformer architectures

(Ronneberger et al., 2015; Tang et al., 2022; Chen et al., 2024).

All models were first pre-trained on a self-supervised dataset, and

subsequently fine-tuned using a dataset annotated with ground

truth (GT) labels. For the self-supervised training of SwinUNETR,

proxy tasks were used in accordance with its original design,

without any modifications. For baseline models that do not

incorporate a built-in self-supervised training strategy, the proxy

tasks proposed in this study were applied to ensure consistent

evaluation of all models under self-supervised pre-training. The

test set consisted of single brain slice data from independent

samples (Supplementary Table 1). For each cell type, the slices were

partitioned into 320 sub-volumes, which were manually annotated

and cross-validated by multiple expert reviewers.

The comparative methods include U-Net, a CNN widely

adopted in biomedical image segmentation; SwinUNETR,

which demonstrates strong performance in medical image

segmentation by employing customized pretext tasks and has

achieved outstanding results across multiple public datasets;

and CP-Net, which utilizes a hierarchical segmentation strategy

from global to local regions, enabling effective segmentation of

fine subcellular structures within cells. 3D-HSFormer is a neural

network architecture designed for efficient and high-precision

whole-brain c-Fos+ cell segmentation through supervised learning

(Zheng et al., 2024).

The VUSMamba achieved high-precision segmentation

results on brain slice data labeled with Hoechst, Vglut1,

and Vgat (Figures 3A–C, Supplementary Figure 2 and

Supplementary Video 2). The multi-FISH labeling signals for

both Vglut1 and Vgat exhibited uniform intensity and spatial

distribution across different z positions, confirming consistent

staining quality throughout the imaging depth. Correspondingly,

the segmentation performance of VUSMamba remained stable

across z positions, as reflected by consistently highDice coefficients,

demonstrating its robustness to depth-dependent signal variations

(Supplementary Figure 3). The VUSMamba model demonstrated

superior performance in segmenting Hoechst, Vglut1, and

Vgat signals, outperforming other models in both DSC and Jc

(Figures 3D, E). However, on the Sst metric, its performance

was slightly lower than that of CP-Net (Figure 3F). This can be

attributed to CP-Net’s coarse-to-fine segmentation strategy, which

offers a distinct advantage in detecting small cellular targets.

Despite this, VUSMamba achieved high segmentation accuracy for

nuclei while also offering several practical advantages, including

low computational cost, stable convergence, and fast inference

speed, making it highly competitive for real-world applications

(Supplementary Table 3). Overall, both VUSMamba and CP-Net

exhibited balanced and robust performance across diverse marker

types. SwinUNETR, while excelling in certain metrics, showed

suboptimal results for some categories, suggesting it may be more

appropriate for specific tasks or require further tuning. Traditional

models like UNet and 3D-HSFormer remained strong in select

tasks but were generally outperformed in overall capability.

Based on the segmentation performance of VUSMamba,

it was applied to segment Hoechst, Vglut1, and Vgat signals

on three consecutive brain sections from three adult mice.

VUSMamba achieved high scores across all three segmentation

evaluation metrics in samples from the three different animals

(Supplementary Figure 4).

3.2 Spatial heterogeneity in the distribution
of glutamatergic and GABAergic neurons

Understanding the cellular composition of different brain

areas is fundamental to elucidating the mechanisms underlying

functional specialization in the mammalian brain. Excitatory

and inhibitory neurons, typically marked by the expression of

Vglut1 and Vgat, respectively, play distinct yet complementary

roles in shaping regional neural circuits. To investigate the

spatial distribution and relative abundance of these neuronal

populations, three anatomically and functionally distinct areas

of the mouse brain were examined: the primary somatosensory

cortex barrel field (SSp-bfd), the hippocampal CA1 subfield,

and the posterior part of the basomedial amygdalar nucleus

(BMAp). Results demonstrate that the SSp-bfd (Figures 4A–C)

and BMAp (Figures 4D–F) areas are predominantly composed of

excitatory neurons, with Vglut1+ cells accounting for 59.0% and

65.9% of the total population, respectively. In contrast, the CA1

area (Figures 4G–I) exhibits a more balanced neuronal profile,

with nearly equal proportions of Vglut1+ (42.7%) and Vgat+

(43.9%) cells.
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FIGURE 3

VUSMamba segmentation results are shown and compared with the baseline model. (A–C) Representative examples of segmentation results for
nuclei and neurons labeled with di�erent markers [Hoechst (A), Vglut1 (B), Vgat (C)] in mouse brain slices. The thickness of the maximum intensity
projection for the images is 2 µm. (D–F) Quantitative evaluation of segmentation performance across di�erent models using DSC (D), Jc (E), and
Sst (F).

In summary, the results reveal regional differences in

neuronal composition across brain areas. SSp-bfd and BMAp

are predominantly composed of excitatory neurons, whereas

CA1 exhibits a relatively balanced distribution of excitatory

and inhibitory neurons. These findings provide insight into the

structural heterogeneity of neuronal networks in distinct functional

areas of the brain and offer a foundational framework for

future investigations into region-specific neural circuits and their

associated functions.

3.3 Comparison between molecularly
defined subregion boundaries and CCFv3
annotations

The comprehensive spatial distribution of different cell types

enables the construction of amolecularly defined brain atlas (Zhang

et al., 2023). The EASI-FISH technique enables simultaneous

acquisition of spatial localization and transcriptional profiles of

individual cells at single-cell resolution (Wang et al., 2021).
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FIGURE 4

Spatial distribution and quantification of excitatory and inhibitory neurons in mouse brain areas. (A, D, G) Left: spatial localization of Vglut1 (green)
and Vgat (red) expressing cells in a coronal brain slice. Right: Allen mouse brain atlas overlay highlights anatomical boundaries; yellow boxes mark
the quantified area (SSp-bfd, BMAp, CA1). (B, E, H) Bar graph showing the density of Vglut1+, Vgat+, and double-positive (Vglut1-Vgat) cells in the
SSp-bfd (BMAp, CA1) area (n = 3). (C, F, I) Pie chart indicating the relative proportion of the three cell populations in the SSp-bfd (BMAp, CA1) area.

By selecting representative marker genes (such as Vglut2, Vgat,

Otp, and Meis2), and applying principal component analysis, the

study revealed distinct spatial expression patterns of these genes

within the lateral hypothalamic area (LHA). Leveraging high-

throughput spatial transcriptomics in combination with machine

learning approaches, the researchers achieved a systematic sub-

regional delineation of the mouse LHA. Inspired by the above

findings, this study observed a mutually exclusive distribution of

Vglut1- and Vgat-labeled cell types near the boundary between

the reticular nucleus of the thalamus (RT) and ventral part of

the lateral geniculate complex (LGv) regions (Figures 5A–C). This

distribution pattern closely aligns with the gradient direction and

spatial positioning of the LGv-RT boundary as defined in the

CCFv3 annotation.

To evaluate the differences between molecularly defined

boundaries and those annotated in CCFv3, we first determined

the spatial locations of Vglut1- and Vgat-labeled cells based on

segmentation results. We then calculated the relative enrichment

scores for each pair of cell types. Finally, axial projection heatmaps

were generated for four sub-volumes, using the enrichment scores

of individual cells. It is evident that Vglut1+ and Vgat+ cells

located near the boundary exhibit enrichment scores within the

range of (-1, 1), while the majority of cells outside the boundary

show enrichment scores close to 1 or -1 (Figure 5D). Based on

the sign of the enrichment score, cells within each sub-volume

were classified into two groups, and a gaussian mixture model was

applied to estimate the boundary separating these two distributions

(Figure 5E). The local clustering of cells and the transitional

characteristics at the boundary were clearly visualized through the

distribution maps.

After brain atlas registration, the spatial coordinates of the

two cell groups and their boundary curves from the four axial

projection maps were mapped onto the brain atlas and compared

with the annotated boundary curve on the left side of the RT

region. The RT region boundary curve was manually annotated

by domain experts using ilastik (Berg et al., 2019). To assess the
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Molecularly defined brain region boundaries. (A) Left: Whole-brain coronal section showing the anatomical location of the analyzed region (yellow
box). Right: Higher magnification view of the selected region. (B–C) Further magnified views of boxed regions in A, highlighting intermingled but
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Enrichment score of Vglut1/Vgat. Each dot represents the centroid of a cell. The panels show 32 µm axial projections of sub-volumes arranged from
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Alignment of the molecular boundary to the Allen CCFv3 anatomical atlas across four Z sections (Z1 to Z4). (G) Quantitative comparison between
molecular and anatomical boundaries using MAE, AUC and Pearson correlation coe�cient across Z1 to Z4. (H) Schematic illustrating the method for
calculating boundary deviation. (I) Plot of boundary deviation along the dorsoventral (DV) axis for each Z section (Z1–Z4).
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differences between the two boundary curves, we compared them

within each projection using the same start and end coordinates.

The evaluation was performed using three metrics: mean absolute

error (MAE), area under the curve (AUC), and pearson correlation

coefficient (Figure 5F). Among the four axial projection sub-

volumes, the boundary curves in sub-volume Z4 exhibited lower

MAE and AUC values, indicating a higher degree of overlap

between the two curves. Across all sub-volumes (Z1–Z4), the curves

demonstrated strong correlations in their trajectories (Pearson

correlation coefficients> 0.5), suggesting a high level of consistency

in their overall patterns (Figure 5G).

To more precisely assess the differences between the two

curves, we calculated the shortest distance from each point on the

atlas-annotated boundary (Curve B) to the molecularly defined

boundary (Curve A) along the normal direction (Figure 5H).

This provides a quantitative measure of the spatial displacement

between the two curves. Across the different axial projection maps,

the overall trend indicates that the molecular boundary initially

deviates from the atlas annotation but gradually converges toward

it in the ventral direction. In the Z4 projection, the molecularly

defined boundary shows the closest alignment with the atlas

annotation along the dorsal-ventral (DV) axis compared to the

other projections (Figure 5I).

4 Discussion

In this study, we successfully acquired high-resolution, thick-

section image datasets of excitatory and inhibitory cell types using

multi-FISH labeling combined with the high-speed volumetric

imaging technique VISoR. As a critical step in cell type

identification, accurate cell segmentation is essential for the analysis

of neuronal cell-type image data. However, due to the heterogeneity

in size and intensity among different signal types, relying solely

on manual annotation incurs prohibitively high labor costs. To

address this challenge, we propose VUSMamba, a self-supervised

learning-based neural network capable of extracting generalizable

features from unlabeled images. The model was then fine-tuned

using a small set of annotated data via transfer learning. The

resulting VUSMamba network demonstrates robust performance

and consistently outperforms existing baseline models on multiple

segmentation metrics. Moreover, thanks to the linear time

complexity of the Mamba architecture, the model exhibits

significant advantages in computational efficiency and hardware

compatibility.

This study primarily focuses on achieving accurate cell

segmentation in brain slices from multiple samples; however, it

has not been yet extended to whole-brain datasets encompassing

multiple cell types. Such datasets typically range from terabytes to

petabytes in size and often include multimodal information—such

as structural imaging, molecular markers, and functional activity—

which imposes substantial demands on model’s computational

complexity. Efficient processing of these large-scale data requires

not only optimized algorithm design but also the support of

high-performance computing resources, such as GPU clusters.

This study shows that segmentation errors may occur when

cells are closely adjacent, due to inconsistencies in boundary

annotations among different annotators, which in turn affect model

fine-tuning. Furthermore, variations in imaging modalities (e.g.,

light-sheet microscopy, electron microscopy) and experimental

conditions (e.g., tissue clearing protocols, staining techniques) can

introduce distribution shifts in the data, potentially impairing

model generalization. Conventional approaches often rely on

dataset-specific fine-tuning, which increases computational cost

and limits the scalability and universality of the model. The deep

learning model proposed in this study also faces this challenge.

Therefore, developing a unified deep learning framework capable of

adapting across modalities and experimental conditions is essential

for advancing large-scale, robust analysis of whole-brain imaging

data (Li et al., 2023).

The neocortex and hippocampal regions of the mammalian

brain play critical roles in higher-order neural functions such

as perception, cognition, emotion, and learning. These two

major brain areas are primarily composed of two main types

of neurons: glutamatergic excitatory neurons and GABAergic

inhibitory neurons, both of which have been central subjects in

neuroscience research (Yao et al., 2021, 2023). Our analysis reveals

that, across most brain regions, neurons predominantly express

either glutamatergic or GABAergic marker genes, with single-

gene-expressing neurons accounting for the majority. Notably,

a significant proportion of neurons co-express excitatory and

inhibitory gene markers (e.g., Vglut1-Vgat), suggesting molecular

heterogeneity within these populations. These findings highlight

the diversity in gene expression patterns among glutamatergic

and GABAergic neurons and further support the hypothesis that

functional interactions may exist between excitatory and inhibitory

neuronal subtypes (Pelkey et al., 2020; Kim et al., 2022; Li et al.,

2024).

The CCFv3 brain atlas is primarily based on cytoarchitectural

features (e.g., Nissl staining) and a limited number of molecular

markers, which may overlook heterogeneity at the functional or

molecular level. Increasingly, the spatial distribution of molecularly

defined cell types is being recognized as a key reference for

delineating brain regions (Zeng and Sanes, 2017). However, this

approach requires comprehensive mapping of a broader range

of cell-type-specific spatial distribution patterns. Since this study

focused on labeling only two neuronal populations, specifically

glutamatergic and GABAergic cells identified by Vglut1 and Vgat

expression, it was not feasible to delineate subregions based on the

distribution of multiple cell types. However, quantitative analysis

still enabled the identification of a boundary within the RT region

that effectively separates the spatial distribution of these two cell

populations. This molecularly defined boundary showed a strong

correlation with the boundary annotated in CCFv3, with better

spatial alignment observed on the ventral side compared to the

dorsal side.

In summary, this study presents an efficient and generalizable

framework for high-resolution cell-type segmentation in thick

brain slices, leveraging self-supervised learning to overcome

challenges posed by signal heterogeneity and limited annotations.

Although our current study focuses only on a subset of

neuronal populations within thick brain slices, the results

highlight the potential of integrating molecular labeling with

advanced computational methods to uncover principles of brain
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spatial organization. Future extensions to whole-brain, multimodal

datasets will further enhance our understanding of neuronal

diversity and brain architecture.
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