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Introduction: The alterations in the gut microbial network in multiple system 

atrophy (MSA) remain poorly understood. This study aimed to identify 

key gut microbial interaction networks in MSA through comprehensive 

multimodal analyses. 

Methods: Demographic information and frozen fecal specimens were collected 

from 119 participants [MSA, n = 26; Parkinson’s disease (PD), n = 66; healthy 

control (HC), n = 27]. Raw amplicons of the bacterial 16S rRNA V3–V4 gene 

region were processed using two methods: DADA2-denoising and clustering 

into operational taxonomic units. We conducted univariate and multivariable 

analyses to assess the differential abundance of bacterial genera and predicted 

metabolic pathways using four statistical methods: ANCOM, ANCOM-BC, 

ALDEx2, and MaAsLin 2. Interbacterial interactions were assessed using four 

correlation and two network analyses. 

Results: We consistently observed lower levels of Fusicatenibacter in MSA 

patients and lower levels of Butyricicoccus in PD patients compared 

with HCs (q < 0.05), both before and after adjusting for comorbidities, 

diet, and constipation status. The random forest classifiers effectively 

differentiated between MSA and PD, achieving high AUCs (0.75–0.78) in 5-

fold cross-validation. A significant positive interbacterial interaction between 

Ruminococcus gnavus group and Erysipelatoclostridium was uniquely observed 

in MSA patients. Additionally, we identified an increase in the ARGORNPROST-

PWY pathway (L-arginine degradation, q = 0.003) and a decrease in the PWY-

6478 pathway (GDP-D-glycero-α-D-manno-heptose biosynthesis, q = 0.015) in 

MSA patients compared with HCs. 

Conclusion: Future studies are warranted to determine whether fecal 

microbiome-derived signatures can serve as reliable biomarkers for MSA. 

KEYWORDS 

multiple system atrophy, Parkinson’s disease, gut microbiome, 16S rRNA, differential 
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1 Introduction 

Multiple system atrophy (MSA) is a rare adult-onset 
neurodegenerative disorder characterized by glial cytoplasmic 
inclusions made of misfolded α-synuclein (Schrag et al., 1999; 
Spillantini et al., 1998). Although both MSA and Parkinson’s 
disease (PD) are classified as α-synucleinopathies, MSA is 
characterized by levodopa-unresponsive parkinsonism, autonomic 
dysfunction, and cerebellar ataxia (Krismer and Wenning, 2017). 
In contrast to PD, MSA progresses more rapidly, leading to severe 
disability within approximately 5 years and mortality within 
a decade of symptom onset (Watanabe et al., 2002; Wenning 
et al., 2013). While current epidemiological studies have failed to 
establish consistent associations between external environmental 
risk factors and MSA, internal environmental factors, particularly 
the gut microbiome, may contribute to the pathogenesis of MSA 
(Vanacore, 2005). 

The gut microbiome plays a significant role in human health 
and disease through the gut-brain axis, including stimulation 
of immune responses and production of short-chain fatty 
acids (SCFAs) (Wang and Kasper, 2014). Numerous studies, 
including cross-sectional, longitudinal, and meta-analyses, have 
identified consistent alterations in the gut microbiome associated 
with PD, such as the enrichment of Bifidobacterium and 
the depletion of SCFA-producing bacteria like Lachnospiraceae 
and Faecalibacterium (Romano et al., 2021). Similar to PD, 
gut microbial alterations may contribute to the pathogenesis 
of MSA, as patients with MSA exhibit a proinflammatory 
colonic microbiome, impaired intestinal barrier integrity, and 
elevated levels of endotoxin-related intestinal inflammatory 
biomarkers (Engen et al., 2017). Additionally, both MSA and 
PD exhibit α-synuclein over-deposition (Brück et al., 2016). 
Dysbiosis of the gut microbiome, together with gut inflammation 
and hyperpermeability, can lead to α-synuclein seeding and 
propagation from the enteric nervous system to the central nervous 
system (CNS) via the vagus nerve (Klann et al., 2021). It is plausible 
that the gut microbiome contributes to MSA pathogenesis through 
the gut-brain axis. 

In contrast to the growing body of evidence supporting the 
gut microbiome’s role in the pathogenesis and progression of 
PD (Menozzi et al., 2025; Tan et al., 2022), investigations in 
MSA have proven to be challenging because of its rare incidence 
and prevalence. Only few studies with limited sample sizes have 

Abbreviations: MSA, multiple system atrophy; PD, Parkinson’s disease; SCFA, 
short-chain fatty acid; CNS, central nervous system; NTUCC, National 
Taiwan University Cancer Center; HC, healthy control; UPDRS III, Unified 
Parkinson’s Disease Rating Scale Part III; NTUH, National Taiwan University 
Hospital; REC, Research Ethics Committee; OTU, operational taxonomic 
unit; ANCOM, ANalysis of COmposition of Microbiomes; ANCOM-BC, 
ANalysis of COmposition of Microbiomes with Bias Correction; ALDEx2, 
ANOVA-Like Differential Expression 2; MaAsLin 2, Microbiome Multivariable 
Associations with Linear Models 2; AUC, area under the curve; CLR, centered 
log-ratio; SECOM, Sparse Estimation of Correlations among Microbiomes; 
SCNIC, Sparse Cooccurrence Network Investigation for Compositional data; 
SPIEC-EASI, SParse InversE Covariance Estimation for Ecological Association 
Inference; PICRUSt2, Phylogenetic Investigation of Communities by 
Reconstruction of Unobserved States 2; EC, Enzyme Commission; SD, 
standard deviation; PERMANOVA, PERmutational Multivariate ANalysis of 
Variance; BBB, blood-brain barrier; AD, Alzheimer’s disease; DLB, dementia 
with Lewy bodies; NO, nitric oxide; LPS, lipopolysaccharide; TLR4, toll-like 
receptor 4. 

examined the gut microbial composition in MSA. Furthermore, 
recent advancements in computational tools and bioinformatic 
methodologies, coupled with the lack of standardized protocols, 
can lead to inconsistent results in microbiome research (Bharti 
and Grimm, 2021). This study aimed to identify distinctive gut 
microbial signatures in MSA through comprehensive multimodal 
analyses. We employed two amplicon-preprocessing approaches 
and four statistical methods to enhance the robustness and 
reproducibility of our findings. Two statistical models were utilized 
to account for potential confounders, including comorbidities, 
diet, and constipation status. Through the identification of MSA-
specific microbial fingerprints, interaction networks, and relevant 
metabolic pathways, we sought to advance the capabilities of 
dierential diagnosis and enhance our understanding of the 
pathogenesis of MSA. 

2 Materials and methods 

2.1 Study subjects and collection of fecal 
specimens 

This hospital-based case-control study was carried out at 
the National Taiwan University Cancer Center (NTUCC), Taipei, 
Taiwan, from August 2020 to December 2022. Patients meeting 
the criteria for clinically probable MSA according to the 
2022 Movement Disorder Society criteria, as well as patients 
diagnosed with PD based on the United Kingdom Parkinson’s 
Disease Society Brain Bank clinical diagnostic criteria, were 
enrolled by two specialists in movement disorders (S.Y. Cheng, 
M.C. Kuo) (Hughes et al., 1992; Wenning et al., 2022). Each 
patient underwent a minimum follow-up period of 1 year. 
Healthy controls (HCs) were recruited from healthy spouses or 
caregivers of patients, or asymptomatic volunteers at the hospital. 
Individuals under 40 years old, with concurrent malignancies, 
cerebrovascular diseases, or known neurodegenerative diseases, 
were excluded from the study. All subjects completed a face-to-
face interview with a structured, semi-quantitative questionnaire 
adapted from the previous study (Kuo et al., 2022). The 
Unified Parkinson’s Disease Rating Scale Part III (UPDRS III) 
score was assessed in PD patients. (Martínez-Martín et al., 
2015). 

Fecal specimens were collected with informed consent and with 
the approval of the National Taiwan University Hospital (NTUH) 
Research Ethics Committee (REC) (No. 202006060RINB). The 
specimens were stored in a sterile tube at −80◦C until processing. 
All procedures involving human participants in this study were 
conducted in accordance with the ethical standards of the NTUH 
REC and the Declaration of Helsinki. The study was approved 
by the NTUCC REC. 

2.2 DNA extraction, PCR amplification, 
and sequencing 

Fecal DNA was extracted from 200 mg frozen samples 
using the QIAamp Fast DNA Stool Mini Kit (Qiagen, Hilden, 
Germany). The DNA samples were then stored at −20◦C. The 
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341f forward primer and 805r reverse primer were designed 
to include sequences complementary to the upstream and 
downstream regions of the 16S rRNA V3–V4 gene segment, 
along with the Illumina overhang adapter sequences. The dual-
index barcodes and the Illumina sequencing adapters were 
attached to the PCR products using the Nextera XT Index 
Kit (Illumina, CA, United States). The libraries were cleaned, 
normalized, pooled, and sequenced using the MiSeq System 
(Illumina, CA, United States) with V3 reagent for paired-end 
sequencing (2 × 300 bps). 

2.3 Preprocessing of amplicons and 
taxonomic classification 

The analyses of microbial composition were primarily 
conducted utilizing QIIME 2 2022.11 unless otherwise specified 
(Bolyen et al., 2019). Two distinct approaches were employed 
to preprocess the amplicons of 16S rRNA V3-V4 gene segment: 
denoising using DADA2 and de novo clustering into operational 
taxonomic units (OTUs) at a 99% identity threshold (Callahan 
et al., 2016; Rognes et al., 2016). The reference taxonomy 
was SILVA release SSU Ref NR 138.11 (Quast et al., 2013). 
Because SILVA does not curate sequences to the species 
level, species-level information was excluded, and genus-
level assignments may mask biologically divergent species. 
We assembled ecologically informed prior class weights and 
built a bespoke taxonomy classifier (Bokulich et al., 2018; 
Kaehler et al., 2019). 

2.4 Differential abundance analyses 

Multiple algorithms designed for compositional data were 
used to conduct dierential abundance analyses across the study 
groups and between subjects with and without constipation. 
These algorithms included: (1) ANalysis of COmposition of 
Microbiomes (ANCOM) (Mandal et al., 2015), (2) ANalysis of 
COmposition of Microbiomes with Bias Correction (ANCOM-BC) 
(Lin and Peddada, 2020), (3) ANOVA-Like Dierential Expression 
2 (ALDEx2) (Fernandes et al., 2013), and (4) Microbiome 
Multivariable Associations with Linear Models 2 (MaAsLin 2) 
(Mallick et al., 2021). 

ANCOM-BC and MaAsLin 2 support multivariable 
dierential abundance analyses. We estimated the dierential 
abundances of genera using two statistical models. Model 
1 incorporated constipation status, since it is associated 
with gut microbial dysbiosis and can potentially lead to 
spurious associations in microbiome studies of human 
diseases, particularly in Parkinsonism (Aho et al., 2019; 
Vujkovic-Cvijin et al., 2020). Model 2 incorporated potential 
confounders that diered significantly across the study 
groups, including age, sex, hypertension, constipation 
status, medications for constipation, and usage of 
probiotics. 

1 https://www.arb-silva.de/projects/ssu-ref-nr/ 

2.5 Correlation between MSA-associated 
and PD-associated genera 

The ranked relative dierentials estimated by Songbird were 
visualized using Qurro (Fedarko et al., 2020; Morton et al., 2019). 
Log ratios were computed between the top and bottom 25% of 
dierentially abundant genera in comparisons of MSA vs. HC and 
PD vs. HC. The Student’s t-test was used to determine if there 
was a significant dierence between the disease groups and HC. 
To investigate whether the genera that were more abundant in 
MSA were also more abundant in PD, and vice versa, log ratios 
of a genus’s mean relative abundance in MSA vs. HC were plotted 
against PD vs. HC. 

2.6 Using random forest classifiers to 
predict disease and constipation status 

To assess the potential of microbial composition as a predictor 
of disease status, random forest classifiers were trained. Each 
analysis focused on either MSA or PD, along with HC, utilizing 
nested 5-fold cross-validation. Each genus was assigned an 
importance score by the scikit-learn learning estimator (Pedregosa 
et al., 2011). The area under the curve (AUC) and confusion matrix 
were used to evaluate the predictive performance of the classifiers. 

2.7 Microbial correlations and networks 

Four statistical methods were used to calculate the microbial 
correlation matrices within each study group: (1) the Spearman’s 
correlation on centered log-ratio (CLR) transformed data, (2) 
SparCC, (Friedman and Alm, 2012) and Sparse Estimation of 
Correlations among Microbiomes (SECOM) using (3) linear 
correlation and (4) distance correlation (Lin et al., 2022). To ensure 
suÿcient representation for correlation analyses while limiting the 
number of multiple comparisons, genera with a prevalence ≥ 50% 
and an average abundance ≥ 20 within each study group were 
included in the correlation analyses. 

The inference of microbial networks was conducted using 
Sparse Cooccurrence Network Investigation for Compositional 
data (SCNIC) and SParse InversE Covariance Estimation for 
Ecological Association Inference (SPIEC-EASI) (Kurtz et al., 2015; 
Shaer et al., 2023). Genera with an average abundance < 2 in each 
study group were excluded. 

2.8 Differential pathway abundance 
analyses 

Phylogenetic Investigation of Communities by Reconstruction 
of Unobserved States 2 (PICRUSt2) was used to predict the 
functional abundances of Enzyme Commission (EC) numbers 
and to regroup EC numbers into MetaCyc pathways (Caspi 
et al., 2016; Douglas et al., 2020). The outputs from PICRUSt2 
were visualized using STAMP (Parks et al., 2014). Univariate 
and multivariable dierential abundance analyses of MetaCyc 
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pathways were conducted using four statistical methods (ANCOM, 
ANCOM-BC, ALDEx2, and MaAsLin 2). 

2.9 Statistical analyses 

The categorical variables are presented as count (percentage), 
while the numeric variables are presented as mean ± standard 
deviation (SD). The Fisher’s exact test was used to compare 
categorical variables across the study groups. Comparisons of 
age across the study groups were performed using the ANOVA 
with the Tukey’s post-hoc test. The Student’s t-test was used to 
compare age of onset and disease duration between MSA and PD. 
P-values < 0.05 were considered statistical significance. 

The Supplementary material provided details on the microbial 
composition analyses. The features were collapsed at the genus 
level before subsequent analyses. To control false discovery rates, 
q values derived from the Benjamini-Hochberg procedure were 
used in dierential abundance analyses (ANCOM, ALDEx2, and 
MaAsLin 2), except for ANCOM-BC, which adopted the Holm-
Bonferroni method as its default approach. Q values < 0.05 were 
considered statistical significance. The analyses were carried out 
using R packages2 and SAS version 9.4 (SAS Institute Inc., Cary, 
NC, United States) (R Core Team, 2023). 

3 Results 

3.1 Clinicodemographic characteristics 

A total of 119 participants (MSA, n = 26; PD, n = 66; HC, 
n = 27) were enrolled. After quality control, 24 MSA, 52 PD, 
and 27 HC samples remained after DADA2-denoising, while 24 
MSA, 50 PD, and 27 HC samples remained after OTU-clustering. 
Table 1 presents the clinicodemographic characteristics of the study 
subjects with qualified fecal specimens using both approaches. The 
PD patients were older than the MSA patients and HCs (p < 0.01). 
In addition, a greater proportion of MSA and PD patients reported 
experiencing constipation, taking medications for constipation, 
and using probiotics compared with HCs (p < 0.01). The PD 
patients displayed mild motor symptoms according to the UPDRS 
III score (15.2 ± 12.0). Among PD patients, those with constipation 
had higher UPDRS III scores (p = 0.011, Supplementary Table 1). 

3.2 Alpha diversities and beta diversities 

There were no significant dierences in the observed number of 
features, the Shannon’s diversity index, or the Faith’s phylogenetic 
diversity across the study groups using either DADA2-denoising 
or OTU-clustering. The structures of the microbial composition 
are depicted in Supplementary Figure 1. A notable distinction in 
beta diversities, as indicated by unweighted and weighted UniFrac 
distances, was observed between MSA and HC in PERmutational 
Multivariate ANalysis of Variance (PERMANOVA) (q < 0.05, 

2 www.R-project.org/ 

Supplementary Table 2; Anderson, 2001). On the other hand, not 
all beta diversity measurements between PD and HC, or between 
MSA and PD, were significantly dierent. 

3.3 Univariate differential abundance 
analyses 

As shown in Table 2, Fusicatenibacter consistently exhibited a 
significantly lower abundance in MSA than in HC across all four 
algorithms using both DADA2-denoising and OTU-clustering. 
Furthermore, Butyricicoccus was significantly less abundant in MSA 
than in HC when ANCOM-BC was used. On the other hand, 
a significant decrease in Butyricicoccus abundance was observed 
in PD compared with HC across all algorithms, except ALDEx2. 
When comparing MSA and PD, only ANCOM-BC identified 
Limosilactobacillus as exhibiting a significantly greater abundance 
in PD using DADA2-denoising (q = 0.016). 

3.4 Multivariable differential abundance 
analyses 

The dierential abundances of genera were estimated 
after adjusting for potential confounders in two models. 
Model 1 included constipation status, while Model 2 included 
age, sex, hypertension, constipation status, medications for 
constipation, and usage of probiotics. Fusicatenibacter and 
Butyricicoccus remained significantly less abundant in MSA and 
PD, respectively, than in HC (p < 0.01, Supplementary Table 3). 
The eect size exhibited consistency with those observed in the 
univariate analyses. 

In multivariable ANCOM-BC, Phascolarctobacterium 
exhibited a lower abundance in MSA than in HC in Model 1 
using both DADA2-denoising and OTU-clustering (q < 0.05, 
Supplementary Table 4). In Model 2, both multivariable ANCOM-
BC and multivariable MaAsLin 2 identified Butyricicoccus as being 
less abundant and Intestinibacter as being more abundant in MSA 
compared with HC (q < 0.05, Supplementary Tables 4, 5). 

3.5 MSA-associated genera and 
PD-associated genera were correlated 

The ranked relative dierentials are illustrated in Figure 1A. 
Compared with those in HC, genera exhibiting greater abundances 
in MSA tended to be more abundant in PD, and vice versa. At 
the same time, genera with a lower abundance in MSA generally 
displayed a reduced abundance in PD, and vice versa. Figure 1B 
displays the log ratios between the top and bottom 25% of 
dierentially abundant genera between MSA and HC, as well as 
between PD and HC, across the three study groups. The genera 
that dierentiated MSA from HC were capable of dierentiating PD 
from HC, and vice versa (p < 0.005). Both DADA2-denoising and 
OTU-clustering yielded similar results (Supplementary Figure 2). 
Figure 1C displays the log ratios of the mean relative abundances of 
genera (MSA vs. HC against PD vs. HC). The Pearson correlation 
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TABLE 1 Clinicodemographic characteristics. 

Characteristics MSA PD HC P-value 

No. 24 50 27 – 

Sex 0.058 

Male 13 (54.2%) 26 (52.0%) 7 (25.9%) – 

Female 11 (45.8%) 24 (48.0%) 20 (74.1%) – 

Age (years) 62.0 ± 8.4 73.7 ± 8.4 67.1 ± 9.2 < 0.001 

(MSA vs. HC: 0.093, PD vs. HC: 
0.005, MSA vs. PD: < 0.001) 

Age (years) < 0.001 

40–49 1 (4.2%) 0 (0.0%) 0 (0.0%) – 

50–59 5 (20.8%) 4 (8.0%) 5 (18.5%) – 

60–69 15 (62.5%) 12 (24.0%) 13 (48.2%) – 

70–79 3 (12.5%) 21 (42.0%) 7 (25.9%) – 

≥ 80 0 (0.0%) 13 (26.0%) 2 (7.4%) – 

Hypertension 0.042 

Yes 6 (25.0%) 19 (38.0%) 16 (59.3%) – 

No 18 (75.0%) 31 (62.0%) 11 (40.7%) – 

Diabetes mellitus 0.606 

Yes 2 (8.3%) 9 (18.0%) 3 (11.1%) – 

No 22 (91.7%) 41 (82.0%) 24 (88.9%) – 

Hyperlipidemia 0.124 

Yes 6 (25.0%) 13 (26.0%) 13 (48.2%) – 

No 18 (75.0%) 37 (74.0%) 14 (51.9%) – 

Cigarette smoking 0.313 

Yes 0 (0.0%) 1 (2.0%) 2 (7.4%) – 

No 24 (100.0%) 49 (98.0%) 25 (92.6%) – 

Alcohol consumption 1.000 

Yes 0 (0.0%) 1 (2.0%) 1 (3.7%) – 

No 24 (100.0%) 49 (98.0%) 26 (96.3%) – 

Constipation < 0.001 

Yes 19 (79.2%) 28 (56.0%) 7 (25.9%) – 

No 5 (20.8%) 22 (44.0%) 20 (74.1%) – 

Medications for constipation 0.008 

Yes 12 (50.0%) 17 (34.0%) 3 (11.1%) – 

No 12 (50.0%) 33 (66.0%) 24 (88.9%) – 

Usage of probiotics < 0.001 

Yes 12 (50.0%) 25 (50.0%) 2 (7.4%) – 

No 12 (50.0%) 25 (50.0%) 25 (92.6%) – 

Daily vegetables 1.000 

Yes 16 (66.7%) 34 (68.0%) 19 (70.4%) – 

No 8 (33.3%) 16 (32.0%) 8 (29.6%) – 

Daily yogurt 1.000 

Yes 1 (4.2%) 4 (8.0%) 2 (7.4%) – 

No 23 (95.8%) 46 (92.0%) 25 (92.6%) – 

Age of onset (years) 59.5 ± 8.1 69.6 ± 8.6 – < 0.001 

Disease duration (years) 2.0 ± 1.3 4.1 ± 4.6 – 0.004 

UPDRS III – 15.2 ± 12.0 – – 

The categorical variables are presented as count (percentage). The numeric variables are presented as mean ± SD. The Fisher’s exact test was used to compare categorical variables. The ANOVA 
with Tukey’s post-hoc test was used to compare age. The Student’s t-test was used to compare age of onset and disease duration between MSA and PD. HC, healthy control; MSA, multiple 
system atrophy; PD, Parkinson’s disease; UPDRS III, Unified Parkinson’s Disease Rating Scale Part III. 
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TABLE 2 Significant genera identified in differential abundance analyses. 

MSA vs. HC PD vs. HC MSA vs. PD 

ANCOM Genus CLR W value Genus CLR W value Genus CLR W value 

DADA2-denoising Fusicatenibacter −2.08 120 Butyricicoccus −1.38 99 – – – 

OTU-clustering Fusicatenibacter −1.95 209 Butyricicoccus −1.38 190 – – – 

ANCOM-BC Genus LFC q value Genus LFC q value Genus LFC q value 

DADA2-denoising Fusicatenibacter −2.08 < 0.001 Butyricicoccus −1.29 0.019 Limosilactobacillus −0.91 0.016 

Faecalibacterium −1.85 0.024 – – – – – – 

Butyricicoccus −1.50 0.015 – – – – – – 

OTU-clustering Fusicatenibacter −1.93 < 0.001 Butyricicoccus −1.43 < 0.001 – – – 

Butyricicoccus −1.37 0.010 – – – – – – 

ALDEx2 Genus Effect q value Wi Genus Effect q value Wi Genus Effect q value Wi 

DADA2-denoising Fusicatenibacter −0.69 0.024 – – – – – – 

OTU-clustering Fusicatenibacter −0.76 0.020 – – – – – – 

MaAsLin 2 Genus Coefficient q value Genus Coefficient q value Genus Coefficient q value 

DADA2-denoising Fusicatenibacter −2.26 0.013 Butyricicoccus −1.76 0.008 – – – 

OTU-clustering Fusicatenibacter −2.72 0.013 Butyricicoccus −2.01 0.008 – – – 

In ANCOM, the W value represents the number of tests showing significant dierences in the ratios of a particular genus and the other genera between the two study groups. The CLR represents the dierence in the means of centered log-ratio-transformed relative 
abundance of a genus between the two study groups. In ANCOM-BC, the LFC quantifies the eect of study group on the bias-corrected absolute abundance of a particular genus. The q values were determined using the Holm-Bonferroni method. In ALDEx2, the “eect” 
is determined by calculating the median dierence in the CLR-transformed probabilities between the study groups and dividing it by the maximum dierence in the CLR-transformed probabilities within the study groups through 128 Monte Carlo samplings. The q value 
for the Wilcoxon rank test was determined using the Benjamini-Hochberg procedure and is represented as q value Wi . In MaAsLin 2, the “coeÿcient” refers to the eect size in the linear model, representing the dierence between categorical variables. The q values were 
determined using the Benjamini-Hochberg procedure. A positive CLR/LFC/“eect”/“coeÿcient” suggests that the genus is more abundant in the first study group. The genera highlighted in bold were identified using both DADA2-denoising and OTU-clustering. ALDEx2, 
ANOVA-Like Dierential Expression 2; ANCOM, ANalysis of COmposition of Microbiomes; ANCOM-BC, ANalysis of COmposition of Microbiomes with Bias Correction; CLR, centered log-ratio; HC, healthy control; LFC, log fold change; MaAsLin 2, Microbiome 
Multivariable Associations with Linear Models 2; MSA, multiple system atrophy; OTU, operational taxonomic unit; PD, Parkinson’s disease. 
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FIGURE 1 

Correlation between MSA-associated genera and PD-associated genera. (A) Distribution of the top and bottom 25% of differentially abundant 
genera (MSA vs. HC) in the ranks of relative differentials between PD and HC, and vice versa. The red bars represent the top 25% most abundant 
genera in MSA (or PD) compared with HC, while the blue bars represent the bottom 25% least abundant genera in MSA (or PD) compared with HC. 
The ranking of genera was determined by their relative differentials between PD (or MSA) and HC. Songbird was employed to calculate the relative 
differential of each genus, and Qurro was employed to visualize the ranked relative differentials. Songbird was DADA2-denoising was used in sample 
preprocessing. (B) Log ratios between the top and bottom 25% of differentially abundant genera between MSA and HC and between PD and HC. 
P-values were determined using the Student’s t-test. Qurro was used to display the distributions of log ratios. DADA2-denoising was used in sample 
preprocessing. (C) Scatter plot showing the log ratios of mean relative abundances of genera (MSA vs. HC against PD vs. HC). Each dot represents a 
genus. The blue dots represent genera identified through DADA2-denoising, and the orange dots represent genera identified through 
OTU-clustering. Only genera with a mean relative abundance ≥ 0.001 across all three study groups were considered for analysis and visualization. 
HC, healthy control; MSA, multiple system atrophy; OTU, operational taxonomic unit; PD, Parkinson’s disease. 

coeÿcients of the genera identified through DADA2-denoising and 
OTU-clustering were both 0.66 (p < 0.001). 

3.6 Using random forest classifiers to 
predict disease status and identify genera 
with high importance scores 

The AUCs of MSA-HC classifier and PD-HC classifier were 
0.74 and 0.78 using DADA2 denoising (Supplementary Figure 3). 
When using OTU-clustering, the AUCs of MSA-HC classifier 

and PD-HC classifier were 0.67 and 0.78. The random forest 
classifiers built for dierentiating between MSA and PD had 
AUCs of 0.78 and 0.75 using DADA2-denoising and OTU-
clustering, respectively. Supplementary Table 6 presents the 
confusion matrices, which illustrate the sensitivity and specificity 
of the predictive performance. 

Table 3 lists the genera with importance scores ≥ 0.05 in 
the random forest classifiers. Fusicatenibacter had the highest 
importance score in MSA-HC classifiers, while Butyricicoccus 
had the highest importance score in PD-HC classifiers. 
Additionally, using both DADA2-denoising and OTU-clustering, 
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TABLE 3 Crucial genera in random forest classifiers. 

MSA-HC classifier PD-HC classifier MSA-PD classifier 

Genus Importance 
score 

Genus Importance score Genus Importance score 

DADA2-denoising 

Fusicatenibacter 0.066 Butyricicoccus 0.057 Collinsella 0.063 

Faecalibacterium 0.054 Blautia 0.054 Uncultured genus within 

Oscillospiracea 

0.055 

OTU-clustering 

Fusicatenibacter 0.220 Butyricicoccus 0.160 Collinsella 0.095 

Faecalibacterium 0.094 Collinsella 0.076 – – 

Enterorhabdus 0.053 Blautia 0.061 – – 

Escherichia-Shigella 0.052 Eggerthella 0.051 – – 

Genera with higher importance scores demonstrated greater eÿcacy in distinguishing disease status. The importance scores were determined by the scikit-learn learning estimator. Genera with 
importance scores ≥ 0.05 are displayed. Genera highlighted in bold were identified using both DADA2-denoising and OTU-clustering. HC, healthy control; MSA, multiple system atrophy; 
PD, Parkinson’s disease. 

TABLE 4 Significant interbacterial correlations identified in correlation analyses. 

MSA HC PD 

Interbacterial correlation Coefficient P-value Interbacterial 
correlation 

Coefficient P-value 

Spearman’s correlation 

– – – – – – – 

SparCC 

– – – – – – – 

SECOM-linear 

Ruminococcus torques group * 

Erysipelotrichaceae UCG-003 

-0.84/-0.69 0.003/0.004 Blautia * 

Eubacterium hallii 
group 

0.64/0.76 0.002/ < 0.001 – 

– – – Eggerthella * 

Anaerostipes 
-0.81/-0.80 < 0.001/<0.001 – 

– – – Butyricicoccus * 

Anaerostipes 
0.70/0.60 0.002/0.003 – 

SECOM-distance 

Ruminococcus torques group * 

Erysipelotrichaceae UCG-003 

0.90/0.77 0.005/0.004 Eggerthella * 

Anaerostipes 
0.87/0.79 < 0.001/<0.001 – 

– – – Butyricicoccus * 

Anaerostipes 
0.76/0.69 < 0.001/0.002 – 

The interbacterial correlations listed above were identified using both DADA2-denoising and OTU-clustering. In SECOM-linear, the “coeÿcient” represents the Pearson correlation coeÿcient, 
while in SECOM-distance, the “coeÿcient” refers to the distance correlation coeÿcient. The statistics preceding and following the slashes were obtained using DADA2-denoising and OTU-
clustering, respectively. HC, healthy control; MSA, multiple system atrophy; PD, Parkinson’s disease. 

Faecalibacterium and Blautia were found to have importance scores 
≥ 0.05 in MSA-HC classifiers and PD-HC classifiers, respectively. 
In MSA-PD classifiers, the identified genus was Collinsella. 

3.7 Microbial correlations 

Table 4 presents the significant interbacterial correlations 
identified through the correlation analyses. Only correlations 
discovered using both DADA2-denoising and OTU-clustering 
are shown. No interbacterial correlation was found when 
employing the Spearman’s correlation on CLR-transformed 

data or SparCC after controlling for false discovery rates. 
On the other hand, SECOM using linear correlation and 
distance correlation revealed three significant correlations: 
(1) Ruminococcus torques group ∗ Erysipelotrichaceae UCG-
003 (in MSA), (2) Eggerthella ∗ Anaerostipes (in HC), and 
(3) Butyricicoccus ∗ Anaerostipes (in HC). The microbial 
correlation matrices of MSA using DADA2-denoising are 
displayed in Figure 2. The Spearman’s correlation and SparCC 
exhibited similar patterns of interbacterial correlations, while 
SECOM produced sparse correlation matrices. SECOM 
revealed an additional interbacterial correlation using 
distance correlation compared with linear correlation in 
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FIGURE 2 

Microbial correlation matrices in MSA. Four methods were employed to calculate the microbial correlation matrices, including the Spearman’s 
correlation on CLR-transformed data (A), SparCC (B), SECOM using linear correlation (C), and distance correlation (D). Only genera with a 
prevalence ≥ 50% and an average abundance ≥ 20 in each study group were considered for analyses. The correlation coefficient, which ranges 
from –1 to 1, was represented using a color gradient from blue to yellow. Statistical significance is denoted by small circles following correction for 
multiple comparisons. The order of the genera was identical across all four matrices. DADA2-denoising was used in sample preprocessing. MSA, 
multiple system atrophy; SECOM, Sparse Estimation of Correlations among Microbiomes. 

MSA. Supplementary Figures 4-1 to 4-5 present the remaining 
correlation matrices. 

3.8 Microbial networks 

Significant interbacterial interactions were identified in the 
network analyses using both DADA2-denoising and OTU-
clustering. In MSA, the positive interbacterial interaction 
of Ruminococcus gnavus group ∗ Erysipelatoclostridium was 
consistently observed using both SCNIC and SPIEC-EASI (Figure 3 
and Supplementary Table 7). This positive interaction was found to 

be unique to MSA, as it was not detected in the SCNIC or SPEC-
EASI networks of PD and HC using either DADA2-denoising and 
OTU-clustering (Supplementary Figures 5–1, 5–2). 

3.9 Differential pathway abundance 
analyses 

Univariate dierential abundance analyses of MetaCyc 
pathways were conducted using four statistical methods (ANCOM, 
ANCOM-BC, ALDEx2, and MaAsLin 2). The ARGORNPROST-
PWY pathway, a metabolic pathway leading to L-arginine 
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FIGURE 3 

Microbial networks in MSA. (A) In SCNIC networks, edges are defined as correlations with an R value ≥ 0.5. The color of the nodes indicates their 
membership in a particular module. Visualization of the SCNIC networks was achieved using Cytoscape. The interbacterial interactions consistently 
identified using both SCNIC and SPIEC-EASI are highlighted. (B) In SPIEC-EASI networks, the node size is scaled according to the mean of 
CLR-transformed data, and the edge width is proportional to the absolute weight of the connection. Positive correlations are denoted by orange 
edges, while negative correlations are denoted by blue edges. Only edges with an absolute weight ≥ 0.1 are displayed. The interbacterial interactions 
consistently identified using both SCNIC and SPIEC-EASI are highlighted. MSA, multiple system atrophy; SCNIC, Sparse Cooccurrence Network 
Investigation for Compositional data; SPIEC-EASI, SParse InversE Covariance Estimation for Ecological Association Inference. 

degradation (Caspi et al., 2017), was significantly more abundant 
in MSA than in HC using DADA2-denoising across all four 
algorithms (Figures 4A, B and Supplementary Tables 8, 9). 
A similar trend was observed using OTU-clustering, although the 
results did not reach statistical significance. On the other hand, 
the PWY-6478 pathway, a metabolic pathway responsible for 
GDP-D-glycero-α-D-manno-heptose biosynthesis (Caspi et al., 
2017), was significantly less abundant in MSA than in HC in 
certain algorithms (Figures 4C, D and Supplementary Tables 8, 9). 
When comparing MSA with PD, no pathway consistently exhibited 
a significantly dierential abundance. 

The dierential abundances of MetaCyc pathways were further 
assessed after adjusting for potential confounders in two models. 
A significantly increased abundance of the ARGORNPROST-PWY 
pathway and a decreased abundance of the PWY-6478 pathway in 
MSA compared with HC were still identified using multivariable 
ANCOM-BC and multivariable MaAsLin 2, respectively (q < 0.05, 
Supplementary Tables 10, 11). 

3.10 Constipation status was not a 
confounder 

Because constipation may serve as a primary confounder in 
this study, we examined the associations between constipation 
status and microbial signatures. There were no significant 
dierences in the alpha diversities between subjects with and 
without constipation. PERMANOVA revealed no significant 

dierences in the beta diversities associated with constipation 
status (Supplementary Figures 6–1, 6–2). Furthermore, no genera 
exhibited a significantly dierential abundance between subjects 
with and without constipation using either DADA2-denoising or 
OTU-clustering. The sensitivity analyses, including only HCs for 
comparison, yielded similar negative results. 

Distinct genera associated with constipation status were 
identified in dierent study groups using random forest classifiers 
(Supplementary Table 12). The random forest classifiers for 
predicting constipation status in HC had AUCs of 0.77 and 
0.78 using DADA2-denoising and OTU-clustering, respectively. 
However, when applied to MSA or PD, these classifiers exhibited 
limited ability to dierentiate constipation status. The AUCs ranged 
from 0.27 to 0.57, suggesting that constipation status was associated 
with a distinct gut microbial shift in the disease groups compared 
with HC (Supplementary Table 13). In summary, the changes 
in gut microbiome in MSA and PD could not be attributed to 
constipation status. 

4 Discussion 

Previous studies have failed to consistently identify the 
gut microbial signatures associated with MSA and did not 
take potential confounders into consideration. In MSA, only 
higher levels of Akkermansia and lower levels of Blautia and 
Faecalibacterium were observed in more than one study (Barichella 
et al., 2019; Engen et al., 2017; Wan et al., 2019). Besides, only 
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FIGURE 4 

Relative abundances of metabolic pathways across study groups. The box plots illustrates the distribution of relative abundances of the 
ARGORNPROST-PWY pathway (A,B) and the PWY-6478 pathway (C,D). The boxes denote the interquartile range (IQR) (25th–75th). The median 
value is indicated by a line inside the box, while the mean value is represented by a star. The whiskers extend to the upper and lower extreme values. 
The outliers are depicted as crosses. The q values obtained through the Benjamini-Hochberg procedure in univariate MaAsLin 2 are presented. HC, 
healthy control; MSA, multiple system atrophy; OTU, operational taxonomic unit; PD, Parkinson’s disease. 

one of them directly compared the gut microbial composition 
and connections between MSA and PD using a simple co-
abundance network analysis (Barichella et al., 2019). In this study, 
comprehensive multimodal analyses were conducted to reveal the 
altered gut microbial compositions in MSA compared with PD 
and HC. 

To minimize the false-positive findings caused by discrepancies 
between the statistical methods, univariate multimodal analyses 
were conducted. Consistent reductions in the abundances of 
Fusicatenibacter and Butyricicoccus were observed in MSA and 
PD, respectively, in comparison with HC. Similar to other 
SCFA-producing bacteria, reduced levels of Fusicatenibacter and 
Butyricicoccus have been associated with PD (Romano et al., 
2021). Studies have also shown a positive correlation between 
the abundance of Butyricicoccus and the levels of SCFAs in PD 
(Aho et al., 2021). Taken together, the mechanism underlying the 
relationship between Fusicatenibacter and MSA likely involves the 
anti-inflammatory eects of SCFAs, which is partially consistent 
with PD. 

Only Limosilactobacillus exhibited a notable dierence in 
abundance between MSA and PD in the univariate analyses. 
Limosilactobacillus reuteri is a well-studied probiotic bacterium 
known for its antimicrobial and immunomodulatory eects 

(Abuqwider et al., 2022). It can stabilize the blood-brain barrier 
(BBB) dysfunction associated with maternal immune activation 
in rodents and strengthening the gut epithelial barrier in adults 
(Kaur et al., 2023; Lu et al., 2023). Furthermore, a randomized 
controlled trial demonstrated the eÿcacy of a probiotic mixture 
containing Limosilactobacillus reuteri in alleviating constipation in 
PD (Tan et al., 2021). The lower levels of Limosilactobacillus in MSA 
compared with PD may accelerate the immune response from the 
gut-blood barrier to the BBB. 

In multivariable analyses, Phascolarctobacterium exhibited 
lower abundances, while Intestinibacter exhibited higher 
abundances in MSA than in HC. Phascolarctobacterium is capable 
of producing propionate by fermenting succinate (Watanabe et al., 
2012). Given the diverse functions of succinate, including serving as 
a metabolite for cross-feeding and regulating intestinal homeostasis 
(Fernández-Veledo and Vendrell, 2019), the associations between 
Phascolarctobacterium and neurodegenerative diseases have 
shown inconsistent results. On the other hand, Intestinibacter was 
found to be more abundant in children with neurodevelopmental 
disorders (Bojovi´ c et al., 2020). However, the relationship between 
Intestinibacter and PD has not been consistent across studies. 

Although α-synuclein deposits predominate in neurons in 
PD, in MSA they mainly accumulate in oligodendrocytes 
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(Spillantini et al., 1998). Distinct microbial communities in MSA 
versus PD may generate dierent signaling mediators, such 
as bacterial amyloidogenic proteins or metabolites like SCFAs, 
contributing to cell type-specific α-synuclein aggregation (Schmitt 
et al., 2023). SCFAs produced by the gut microbiome can modulate 
neuronal function and microglial maturation (Silva et al., 2020). 
Of note, among plasma SCFAs derived from the gut microbiome, 
acetic and propionic acids were decreased in MSA but increased 
in PD (Chen et al., 2022; He et al., 2021; Yang et al., 2022). 
Consequently, MSA and PD may be characterized by distinct 
patterns of gut microbial dysbiosis that lead to divergent plasma 
SCFA levels, ultimately aecting dierent neuronal populations and 
driving disease-specific α-synuclein pathology. 

We further conducted an ensemble learning method using 
random forest classifiers to leverage the comprehensive gut 
microbial composition to dierentiate between MSA, PD, and HC. 
The AUCs of the random forest classifiers ranged from 0.75 to 
0.78, suggesting the potential utility of the gut microbiome in 
dierentiating MSA from PD. Collinsella, which had importance 
scores > 0.05 in MSA-PD classifiers, is capable of producing 
SCFAs (Kageyama and Benno, 2015). Collinsella exhibits a greater 
abundance in numerous neurodegenerative diseases, including 
Alzheimer’s disease (AD) (Cammann et al., 2023), dementia with 
Lewy bodies (DLB) (Nishiwaki et al., 2022), and early PD (Huang 
et al., 2023). Notably, Collinsella was also found to increase with the 
stage and duration of PD (Zhang et al., 2020). Although the random 
forest classifiers based on the gut microbiome could dierentiate 
MSA from PD, it was diÿcult to trace exactly how a prediction 
was made, limiting their direct clinical application. Furthermore, 
external validation in independent cohorts is needed to confirm 
common gut microbial alterations across populations. 

It is debatable whether a single bacterial genus can significantly 
impact the host’s health status. Therefore, we utilized correlation 
analyses and network analyses to investigate the underlying 
structure of gut microbial compositions across the study groups. 
In MSA, a positive correlation between Ruminococcus torques 
group and Erysipelotrichaceae UCG-003 was identified in SECOM 
using both linear and distance correlation. Additionally, a 
positive interaction between Ruminococcus gnavus group and 
Erysipelatoclostridium was observed in SCNIC and SPIEC-EASI 
networks of MSA. Ruminococcus torques and Ruminococcus 
gnavus are mucosa-associated bacteria that can produce SCFAs by 
degrading mucin (Crost et al., 2023). These bacteria may contribute 
to the pathogenesis of inflammatory bowel disease by either 
providing substrates for non-mucolytic bacteria or producing 
proinflammatory polysaccharides (Wiredu Ocansey et al., 2023). 
Furthermore, an increased abundance of Ruminococcus torques has 
been observed in DLB and multiple sclerosis (Nishiwaki et al., 
2022; Thirion et al., 2023). On the other hand, Erysipelotrichaceae 
UCG-003 and Erysipelatoclostridium have been shown to exhibit 
increased abundances in PD (Lubomski et al., 2022; Rosario et al., 
2021). Erysipelatoclostridium was also positively related to the 
severity of PD (Papić et al., 2022). It is plausible that an interwoven 
metabolic interaction between these coupled bacteria is responsible 
for the observed positive correlations in MSA. 

Notably, functional inference using PICRUSt2 predicted a 
significant increase in the abundance of the ARGORNPROST-
PWY pathway and a significant decrease in the abundance 
of the PWY-6478 pathway in MSA compared with HC. The 

ARGORNPROST-PWY pathway leads to the degradation of 
L-arginine, the primary substrate for nitric oxide (NO) synthesis 
(Caspi et al., 2017). NO is an important regulator of the 
CNS, promoting optimal cerebral blood flow, regulating synaptic 
plasticity, and modulating neurosecretion (Virarkar et al., 2013). 
A previous study reported decreased nitrate levels, the degradation 
product of NO, in the cerebrospinal fluid of MSA patients, 
indicating reduced CNS production of NO (Kuiper et al., 1994). 
L-arginine itself can act as an immunosuppressive agent. In 
a rat model of cerebral ischemia-reperfusion injury, L-arginine 
inhibits the microglial inflammatory response, thereby exerting 
a neuroprotective eect (Chen et al., 2020). In PD and AD, 
agmatine, a metabolite of L-arginine, can reduce oxidative stress 
and decreases neuronal apoptosis by inhibiting excitatory amino 
acid-induced neurotoxicity (Xu et al., 2018). L-arginine also 
inhibits the aggregation of amyloidogenic β-sheet structures by 
interacting with the hydrophobic regions of proteins (Das et al., 
2007). Taken together, the accelerated degradation of L-arginine 
may contribute to the susceptibility to α-synuclein aggregation 
in MSA. 

On the other hand. the PWY-6478 pathway is responsible for 
the GDP-D-glycero-α-D-manno-heptose biosynthesis (Caspi et al., 
2017). Heptoses are common components of proinflammatory 
lipopolysaccharides (LPSs) present on the surface of gram-negative 
bacterial cells (Holst et al., 1991). Gut microbial dysbiosis can lead 
to excessive leakage of LPS from the gut lining. LPSs primarily 
bind to toll-like receptor 4 (TLR4) on immune cells, causing 
excessive production of proinflammatory cytokines. Chronic 
neuroinflammation and neuronal cell death elicited via the gut-
brain axis are key components of neurodegenerative diseases 
(Kalyan et al., 2022). MSA patients have been shown to exhibit 
increased TLR4 expression in their colonic mucosa (Engen et al., 
2017). Despite TLR4’s role in the secretion of inflammatory 
mediators, it may also promote intestinal homeostasis and is 
essential for protection against epithelial injury and bacterial 
invasion (Craig et al., 2023). In our study, the decreased abundance 
of the PWY-6478 pathway in MSA may be associated with 
downregulation of intestinal TLR4 and a reduced reparative 
response to intestinal injury. More studies are needed to elucidate 
the roles of LPSs and TLR4 in the gut environment of MSA. Despite 
a moderate correlation between the genera associated with MSA 
and PD, investigations into the underlying metabolic mechanisms 
deserve more attention. 

Our study has several limitations. First, the sample size 
was relatively small due to the rarity of MSA, which limited 
the statistical power to detect additional genera and metabolic 
pathways associated with MSA and PD. Furthermore, the limited 
number of subjects precluded the use of statistical matching 
techniques; therefore, we conducted multivariable analyses to 
control for potential confounders. Second, the associations 
between diseases and changes in the gut microbiome were 
established through the study’s cross-sectional design. Further 
longitudinal studies are needed to determine whether the identified 
microbial shifts are upstream, downstream, or incidental to 
MSA pathogenesis. Although the comprehensive multimodal 
analyses lend our study relatively robust internal validity, open 
datasets for external validation are needed to confirm these 
gut microbiome-derived signatures. We carefully controlled for 
potential confounders in the statistical analyses. Nonetheless, 
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information on constipation status and daily intake of vegetables 
and yogurt was self-reported and assessed using a subjective 
true/false question, which may have introduced bias. Finally, while 
statistical tests did not show a significant influence of constipation 
on the observed microbial dierences in MSA and PD, constipation 
may still exert residual confounding eects, as certain dysbiosis 
could be exclusively related to constipation in MSA patients. 

In summary, our study provides the first evidence of pivotal 
alterations in gut microbial networks and metabolic pathways 
specific to MSA. Through comprehensive multimodal analyses, 
consistent findings were identified, particularly the decreased 
abundance of Fusicatenibacter in MSA. Although the genera 
associated with MSA and PD showed a moderate correlation, our 
correlation and network analyses revealed unique interbacterial 
interactions specific to MSA, including a novel positive correlation 
between Ruminococcus gnavus group and Erysipelatoclostridium. 
Further studies with larger cohorts are needed to establish 
the clinical utility of fecal microbiome-derived signatures that 
incorporate interbacterial interactions in MSA. Furthermore, we 
identified significantly altered metabolic pathways in MSA, such 
as an increase in the ARGORNPROST-PWY pathway and a 
decrease in the PWY-6478 pathway. Experimental validation, such 
as shotgun metagenomic sequencing, should be performed to 
validate these functional predictions. This provides new directions 
for future studies on microbial metabolic interactions. Our findings 
may contribute to the dierential diagnosis of MSA and enhance 
our understanding of its underlying pathogenesis. 
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Papić, E., Raˇ cki, V., Hero, M., Tomi´ c, Z., Starˇ cevi´ c- ˇ Cižmarevi´ c, N., Kovanda, A.,
et al. (2022). The eects of microbiota abundance on symptom severity in Parkinson’s 
disease: A systematic review. Front. Aging Neurosci. 14:1020172. doi: 10.3389/fnagi. 
2022.1020172 

Parks, D. H., Tyson, G. W., Hugenholtz, P., and Beiko, R. G. (2014). STAMP: 
Statistical analysis of taxonomic and functional profiles. Bioinformatics 30, 3123–3124. 
doi: 10.1093/bioinformatics/btu494 

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al. 
(2011). Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830. 

Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., et al. (2013). 
The SILVA ribosomal RNA gene database project: Improved data processing and 
web-based tools. Nucleic Acids Res. 41, D590–D596. doi: 10.1093/nar/gks1219 

R Core Team (2023). R: A language and environment for statistical computing. R 
foundation for statistical computing. Vienna: R Core Team. 

Rognes, T., Flouri, T., Nichols, B., Quince, C., and Mahé, F. (2016). VSEARCH: A 
versatile open source tool for metagenomics. PeerJ 4:e2584. doi: 10.7717/peerj.2584 

Romano, S., Savva, G. M., Bedarf, J. R., Charles, I. G., Hildebrand, F., and Narbad, 
A. (2021). Meta-analysis of the Parkinson’s disease gut microbiome suggests alterations 
linked to intestinal inflammation. NPJ Parkinsons Dis. 7:27. doi: 10.1038/s41531-021-
00156-z 

Rosario, D., Bidkhori, G., Lee, S., Bedarf, J., Hildebrand, F., Le Chatelier, E., et al. 
(2021). Systematic analysis of gut microbiome reveals the role of bacterial folate and 
homocysteine metabolism in Parkinson’s disease. Cell Rep. 34:108807. doi: 10.1016/j. 
celrep.2021.108807 

Schmitt, V., Masanetz, R. K., Weidenfeller, M., Ebbinghaus, L. S., Süß, P., Rosshart, 
S. P., et al. (2023). Gut-to-brain spreading of pathology in synucleinopathies: A focus 
on molecular signalling mediators. Behav. Brain Res. 452:114574. doi: 10.1016/j.bbr. 
2023.114574 

Schrag, A., Ben-Shlomo, Y., and Quinn, N. P. (1999). Prevalence of progressive 
supranuclear palsy and multiple system atrophy: A cross-sectional study. Lancet 354, 
1771–1775. doi: 10.1016/s0140-6736(99)04137-9 

Shaer, M., Thurimella, K., Sterrett, J. D., and Lozupone, C. A. (2023). SCNIC: 
Sparse correlation network investigation for compositional data. Mol. Ecol. Resour. 23, 
312–325. doi: 10.1111/1755-0998.13704 

Silva, Y. P., Bernardi, A., and Frozza, R. L. (2020). The role of short-chain fatty 
acids from gut microbiota in gut-brain communication. Front. Endocrinol. 11:25. 
doi: 10.3389/fendo.2020.00025 

Spillantini, M. G., Crowther, R. A., Jakes, R., Cairns, N. J., Lantos, P. L., and Goedert, 
M. (1998). Filamentous alpha-synuclein inclusions link multiple system atrophy with 
Parkinson’s disease and dementia with Lewy bodies. Neurosci. Lett. 251, 205–208. 
doi: 10.1016/s0304-3940(98)00504-7 

Tan, A. H., Lim, S. Y., and Lang, A. E. (2022). The microbiome-gut-brain axis in 
Parkinson disease - from basic research to the clinic. Nat. Rev. Neurol. 18, 476–495. 
doi: 10.1038/s41582-022-00681-2 

Tan, A. H., Lim, S. Y., Chong, K. K., A Manap, M. A. A., Hor, J. W., Lim, J. L., 
et al. (2021). Probiotics for constipation in parkinson disease: A randomized placebo-
controlled study. Neurology 96, e772–e782. doi: 10.1212/WNL.0000000000010998 

Thirion, F., Sellebjerg, F., Fan, Y., Lyu, L., Hansen, T. H., Pons, N., et al. (2023). The 
gut microbiota in multiple sclerosis varies with disease activity. Genome Med. 15:1. 
doi: 10.1186/s13073-022-01148-1 

Vanacore, N. (2005). Epidemiological evidence on multiple system atrophy. 
J. Neural Transm. 112, 1605–1612. doi: 10.1007/s00702-005-0380-7 

Virarkar, M., Alappat, L., Bradford, P. G., and Awad, A. B. (2013). L-arginine and 
nitric oxide in CNS function and neurodegenerative diseases. Crit. Rev. Food Sci. Nutr. 
53, 1157–1167. doi: 10.1080/10408398.2011.573885 

Vujkovic-Cvijin, I., Sklar, J., Jiang, L., Natarajan, L., Knight, R., and Belkaid, Y. 
(2020). Host variables confound gut microbiota studies of human disease. Nature 587, 
448–454. doi: 10.1038/s41586-020-2881-9 

Wan, L., Zhou, X., Wang, C., Chen, Z., Peng, H., Hou, X., et al. (2019). Alterations 
of the gut microbiota in multiple system atrophy patients. Front. Neurosci. 13:1102. 
doi: 10.3389/fnins.2019.01102 

Wang, Y., and Kasper, L. H. (2014). The role of microbiome in central nervous 
system disorders. Brain Behav. Immun. 38, 1–12. doi: 10.1016/j.bbi.2013.12.015 

Watanabe, H., Saito, Y., Terao, S., Ando, T., Kachi, T., Mukai, E., et al. (2002). 
Progression and prognosis in multiple system atrophy: An analysis of 230 Japanese 
patients. Brain 125(Pt 5), 1070–1083. doi: 10.1093/brain/awf117 

Watanabe, Y., Nagai, F., and Morotomi, M. (2012). Characterization of 
Phascolarctobacterium succinatutens sp. nov., an asaccharolytic, succinate-utilizing 
bacterium isolated from human feces. Appl. Environ. Microbiol. 78, 511–518. doi: 
10.1128/AEM.06035-11 

Wenning, G. K., Geser, F., Krismer, F., Seppi, K., Duerr, S., Boesch, S., et al. (2013). 
The natural history of multiple system atrophy: A prospective European cohort study. 
Lancet Neurol. 12, 264–274. doi: 10.1016/S1474-4422(12)70327-7 

Wenning, G. K., Stankovic, I., Vignatelli, L., Fanciulli, A., Calandra-Buonaura, 
G., Seppi, K., et al. (2022). The movement disorder society criteria for the 
diagnosis of multiple system atrophy. Mov. Disord. 37, 1131–1148. doi: 10.1002/mds. 
29005 

Wiredu Ocansey, D. K., Hang, S., Yuan, X., Qian, H., Zhou, M., Valerie Olovo, C., 
et al. (2023). The diagnostic and prognostic potential of gut bacteria in inflammatory 
bowel disease. Gut Microbes 15:2176118. doi: 10.1080/19490976.2023.217 
6118 

Xu, W., Gao, L., Li, T., Shao, A., and Zhang, J. (2018). Neuroprotective role of 
agmatine in neurological diseases. Curr. Neuropharmacol. 16, 1296–1305. doi: 10. 
2174/1570159X15666170808120633 

Yang, X., Ai, P., He, X., Mo, C., Zhang, Y., Xu, S., et al. (2022). Parkinson’s disease 
is associated with impaired gut-blood barrier for short-chain fatty acids. Mov. Disord. 
37, 1634–1643. doi: 10.1002/mds.29063 

Zhang, F., Yue, L., Fang, X., Wang, G., Li, C., Sun, X., et al. (2020). Altered gut 
microbiota in Parkinson’s disease patients/healthy spouses and its association with 
clinical features. Parkinson. Relat. Disord. 81, 84–88. doi: 10.1016/j.parkreldis.2020.10. 
034 

Frontiers in Neuroscience 15 frontiersin.org 

https://doi.org/10.3389/fnins.2025.1623165
https://doi.org/10.1002/mdc3.70029
https://doi.org/10.1038/s41467-019-10656-5
https://doi.org/10.1038/s41531-022-00428-2
https://doi.org/10.3389/fnagi.2022.1020172
https://doi.org/10.3389/fnagi.2022.1020172
https://doi.org/10.1093/bioinformatics/btu494
https://doi.org/10.1093/nar/gks1219
https://doi.org/10.7717/peerj.2584
https://doi.org/10.1038/s41531-021-00156-z
https://doi.org/10.1038/s41531-021-00156-z
https://doi.org/10.1016/j.celrep.2021.108807
https://doi.org/10.1016/j.celrep.2021.108807
https://doi.org/10.1016/j.bbr.2023.114574
https://doi.org/10.1016/j.bbr.2023.114574
https://doi.org/10.1016/s0140-6736(99)04137-9
https://doi.org/10.1111/1755-0998.13704
https://doi.org/10.3389/fendo.2020.00025
https://doi.org/10.1016/s0304-3940(98)00504-7
https://doi.org/10.1038/s41582-022-00681-2
https://doi.org/10.1212/WNL.0000000000010998
https://doi.org/10.1186/s13073-022-01148-1
https://doi.org/10.1007/s00702-005-0380-7
https://doi.org/10.1080/10408398.2011.573885
https://doi.org/10.1038/s41586-020-2881-9
https://doi.org/10.3389/fnins.2019.01102
https://doi.org/10.1016/j.bbi.2013.12.015
https://doi.org/10.1093/brain/awf117
https://doi.org/10.1128/AEM.06035-11
https://doi.org/10.1128/AEM.06035-11
https://doi.org/10.1016/S1474-4422(12)70327-7
https://doi.org/10.1002/mds.29005
https://doi.org/10.1002/mds.29005
https://doi.org/10.1080/19490976.2023.2176118
https://doi.org/10.1080/19490976.2023.2176118
https://doi.org/10.2174/1570159X15666170808120633
https://doi.org/10.2174/1570159X15666170808120633
https://doi.org/10.1002/mds.29063
https://doi.org/10.1016/j.parkreldis.2020.10.034
https://doi.org/10.1016/j.parkreldis.2020.10.034
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

	Altered gut microbial networks and metabolic pathways in multiple system atrophy: a comparative 16S rRNA study
	1 Introduction
	2 Materials and methods
	2.1 Study subjects and collection of fecal specimens
	2.2 DNA extraction, PCR amplification, and sequencing
	2.3 Preprocessing of amplicons and taxonomic classification
	2.4 Differential abundance analyses
	2.5 Correlation between MSA-associated and PD-associated genera
	2.6 Using random forest classifiers to predict disease and constipation status
	2.7 Microbial correlations and networks
	2.8 Differential pathway abundance analyses
	2.9 Statistical analyses

	3 Results
	3.1 Clinicodemographic characteristics
	3.2 Alpha diversities and beta diversities
	3.3 Univariate differential abundance analyses
	3.4 Multivariable differential abundance analyses
	3.5 MSA-associated genera and PD-associated genera were correlated
	3.6 Using random forest classifiers to predict disease status and identify genera with high importance scores
	3.7 Microbial correlations
	3.8 Microbial networks
	3.9 Differential pathway abundance analyses
	3.10 Constipation status was not a confounder

	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher's note
	Supplementary material
	References




