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The startle response is a reflexive contraction of skeletal musculature in response 
to a strong acoustic stimulus that is evolutionarily preserved across species. There 
is a broad and comprehensive literature connecting components of the startle 
response such as latency, magnitude and pre-pulse inhibition, to psychosis status 
and risk. In this review, we examine the startle response in human subjects with 
22q11.2 Deletion Syndrome (22qDel) and in analogous animal models. 22qDel 
is a copy number variant disorder typically involving ~1.5 to 3 Mb of DNA on the 
proximal 22q region, which occurs in approximately 1 in 2000–6,000 births, and 
serves as the most robust single genetic predictor of psychosis risk (conferring 
~30x higher risk). By comparing the human literature directly to the genetic mouse 
models, we identify areas of convergence and divergence between human and 
animal results and highlight gaps related to differences in neurodevelopmental 
stages, experimental design, stimulus outcome measurements, and genetic deletion 
areas in each animal model. We then highlight the translational power of the 
acoustic startle response and how it can be studied in conjunction with more 
basic cellular investigations related to basic neural function and responsiveness. 
Because the acoustic startle response is seen across vertebrate species with 
well characterized circuitry, we argue for using the acoustic startle response as 
a translational biological probe of underlying neurobiology relevant to 22qDel 
and by extension, psychosis and psychosis risk.
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Introduction

22q11.2 deletion syndrome (22qDel) is a chromosomal interstitial-deletion disorder that 
occurs in 1 in 2000–6,000 live births (Botto et al., 2003; Olsen et al., 2018; Blagojevic et al., 
2021). The deletion confers risk for a variety of neurodevelopmental and psychiatric disorders, 
the most documented of which are psychotic disorders. Twenty to 30 % of individuals with 
22qDel develop SCZ by early adulthood, making 22qDel one of the most robust genetic 
predictors of schizophrenia (SCZ; Jonas et al., 2014; Olsen et al., 2018). SCZ associated with 
22qDel is phenotypically comparable to idiopathic SCZ at the level of both symptoms and 
brain morphology (Bassett et al., 2003, 2005; Sun et al., 2020; Supekar et al., 2024; Zinkstok et 
al., 2019).

The acoustic startle response (ASR) is a promising translational target for studying the 
neurobiological pathways that connect the genetic changes in 22qDel with global symptoms 
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in SCZ. The ASR is the reflexive contraction of skeletal musculature 
that is mediated by a pontine-based, three-synapse subcortical 
neural circuit in humans, non-human primates, and rodents on 
exposure to a strong acoustic stimulus (Koch, 1999). It has been 
studied extensively in SCZ and other psychiatric disorders. Changes 
in the ASR, such as greater startle latency, associate with psychosis 
symptoms and can predict conversion to psychosis for clinical high 
risk groups (Braff et  al., 2001; Swerdlow et  al., 2008, 2016; 
Cadenhead et al., 2020).

The 22q11.2 region includes several genes that might affect 
neuronal processing related to ASR. The PRODH, COMT, DGCR8, 
TBX1, ZDHHC8, and CXCR4 genes are involved in neuronal 
development, synaptic function, and dopaminergic, GABAergic and 
glutamatergic signaling (Boot et al., 2008; Squarcione et al., 2013; de 
Koning et al., 2015). The PRODH gene affects proline metabolism and 
the balance between glutamate and GABA synthesis, impacting 
neuronal activity and sensory processing in 22qDel. The COMT gene, 
affecting dopamine metabolism, indirectly influences GABAergic 
function by altering dopamine levels, impacting cognitive functions 
and sensory processing. These genes may affect ASR through their 
roles in neurotransmitter signaling within startle circuits, particularly 
PRODH’s influence on excitatory/inhibitory balance in brainstem 
nuclei and COMT’s effects on dopaminergic modulation of startle 
magnitude and habituation. The developmental roles of TBX1 and 
DGCR8 may also impact the proper formation of the three-synapse 
pontine circuit underlying the startle response.

As a promising target for translational research, the ASR has been 
studied in humans with 22qDel and in mouse models of 22qDel. This 
mini review will summarize and compare findings to date in human 
subjects with this deletion syndrome and mouse deletion models, and 
it will identify areas in need of further research.

ASR

The ASR is a fast, involuntary motor reaction to sudden and 
intense stimuli, and its core neural architecture is highly conserved 
across mammalian species (Koch, 1999; Zheng and Schmid, 2023) The 
response is generated from a simple, three-synapse brainstem circuit: 
auditory input reaches cochlear root neurons (CRNs), which project 
directly to giant neurons in the caudal pontine reticular nucleus 
(PnC), which then activate spinal motor neurons to produce the 
reflexive motor response (Davis et al., 1982; Lee et al., 1996; Davis, 
1997; Koch, 1999; Fendt et al., 2001; Zheng and Schmid, 2023). This 
circuit enables startle responses within ~10–20 ms of stimulus onset 
depending on the species. The latency and magnitude of response 
depend on glutamatergic excitation, particularly via AMPA and 
NMDA receptors. Blocking these receptors in the PnC has been 
shown to reduce or abolish ASR in rodent models (Miserendino and 
Davis, 1993). GluA4 knockout mice that lack a key AMPA receptor 
subunit essentially lack ASR (García-Hernández and Rubio, 2022). 
GABA is implicated in prepulse inhibition (Yeomans et al., 2010) but 
does not directly mediate the ASR.

In humans, the ASR is studied by attaching electrodes to the face 
to measure the electromyographic signal from the eyeblink response 
elicited by the startling stimulus (Landis and Hunt, 1939). In rodents, 
the ASR is studied by movement as captured by a piezoelectric 
movement-sensitive platform.

There are two ASR variables that have been studied in 22qDel 
humans and 22qDel mouse models. The first is startle magnitude, 
which is assessed in humans by measuring the magnitude of the 
eyeblink response that the auditory stimulus elicits (Graham, 1975). 
It is measured in rodents via the animal’s movement in response to the 
stimulus (Hoffman and Searle, 1968; Saito et  al., 2020). Human 
findings on the relationship between startle magnitude and SCZ are 
mixed; some studies have found reduced magnitude in SCZ vs. control 
participants (Kumari et al., 2005; Quednow et al., 2006; Minassian 
et al., 2007; Greenwood et al., 2010; Matsuo et al., 2016), but most 
studies have found no between-group difference (Braff et al., 1992, 
2005; Cadenhead et al., 2000; Parwani et al., 2000; Ludewig et al., 
2002; Perry et  al., 2002; Wynn et al., 2004; Swerdlow et al., 2006; 
Takahashi et al., 2008; Hasenkamp et al., 2010; Storozheva et al., 2016).

The second variable is prepulse inhibition (PPI). PPI indicates the 
reduction in startle magnitude that occurs when the startling sound 
is preceded by a non-startling tone (Hoffman and Searle, 1968; 
Graham, 1975). It is used to index sensorimotor gating (San-Martin 
et  al., 2020). PPI impairment has been consistently found in 
non-22qDel SCZ [Braff et al., 1978, 1992; Hasenkamp et al., 2010; 
Swerdlow and Light, 2018; Massa et al., 2020; and see reviews in Braff 
et al., 2001 (human studies of prepulse inhibition); Swerdlow et al., 
2008; San-Martin et  al., 2020] but not in first-degree relatives of 
individuals with SCZ (review in Li et al., 2021).

A third variable, startle latency, has been measured in human 
22qDel studies but not animal studies. Startle latency is the time 
between the startling stimulus and the startle response. Latency serves 
as a marker for speed of neural processing, and SCZ is associated with 
slower latency in several studies (Braff et al., 1978, 1999; Swerdlow 
et al., 2006; Hasenkamp et al., 2010; Smith et al., 2017; Massa et al., 
2020) but not all (Braff et al., 1992; Parwani et al., 2000).

ASR PPI, magnitude, and latency are highly heritable, making 
them attractive investigation targets for research on the genetics of 
SCZ (Anokhin et al., 2003; Hasenkamp et al., 2010; Quednow et al., 
2011; Greenwood et al., 2020; Massa et al., 2020).

The ASR is affected by many variables. Startle paradigm factors 
include background noise; the volume, duration, and rise-and-fall 
time of the startling tone; and whether a non-startling tone precedes 
the startling (Hoffman and Searle, 1968; Ison and Hoffman, 1983; 
Zheng and Schmid, 2023). Startle responses are also affected by 
exposure to the startling stimulus over time; responsivity can 
be decreased by habituation (Hoffman and Searle, 1968), where the 
subject acclimates to the stimulus, and increased by fear potentiation, 
where the startling tone is linked to an aversive stimulus (Davis et al., 
1993; Grillon and Baas, 2003). In humans, ASR is affected by age, 
gender, menstrual cycle phase, medication status, genetic background, 
and smoking status (Swerdlow et al., 1997, 2006; Braff et al., 2001; 
Duncan et  al., 2001; Ludewig et  al., 2002; Jovanovic et  al., 2004; 
Gebhardt et al., 2012; Fargotstein et al., 2018; Swerdlow and Light, 
2018). In a meta-analysis, PPI was also related to education level and 
continent (potentially indicating a relationship between ethnicity and 
PPI) (San-Martin et al., 2020). Neurobiologically, startle magnitude is 
decreased by NMDA and non-NMDA glutamate antagonists 
(Miserendino and Davis, 1993) and increased by direct and indirect 
dopamine agonists (Kehne and Sorenson, 1978; Davis, 1980; 
Johansson et al., 1995; Martinez et al., 1999; Swerdlow et al., 2002).

Psychosis research has focused on several genes in the human 
22q11.2 region. The catechol-O-methyl-transferase (COMT) gene and 
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the proline dehydrogenase 1 (PRODH) gene mediate the ASR and 
potentially both mediate dopamine levels (Parker et al., 2024). The 
COMT gene encodes an enzyme critical to dopamine catabolism in 
the prefrontal cortex. The COMT-Val allele codes for a high-activity 
enzyme, and the COMT-Met allele codes for a low-activity enzyme 
(Paylor and Lindsay, 2006). COMT-Met associates with higher cortical 
dopamine and lower midbrain dopamine levels (Chen et al., 2004; 
Meyer-Lindenberg et al., 2005). In human 22qDel studies, PPI has 
been lower in COMT-Met than COMT-Val (Vorstman et al., 2009; De 
Koning et al., 2012). Another 22q11.2 region gene, PRODH, affects 
proline levels, and higher proline levels can increase dopamine release 
in the prefrontal cortex (Stark et al., 2009; Vorstman et al., 2009). The 
COMT and PRODH genes may have an interaction that indicates a 
homeostatic response to elevated dopaminergic signaling in the 
frontal cortex (Paterlini et  al., 2005). De Koning et  al. found that 
COMT-Met interacted with high proline levels in 22qDel to yield 
further reduced startle magnitude (De Koning et al., 2015). A recent 
mouse paper has found that a third gene in the region syntenic to 
human 22q11.2, Tbx1, may selectively affect acoustic sensorimotor 
gating (Hiramoto et al., 2025).

ASR in 22qDel humans

Previous 22qDel research has examined ASR in children (Sobin 
et al., 2005a, 2005b; Vorstman et al., 2009) as well as in adolescents and 
adults (De Koning et  al., 2012, 2015; McCabe et  al., 2014; Parker 
et al., 2024).

There have been mixed findings on startle magnitude in 22qDel. 
Most studies have found no difference in startle magnitude between 
22qDel and control groups (Sobin et al., 2005a, 2005b; Vorstman et al., 
2009; De Koning et al., 2012; McCabe et al., 2014), but a more recent 
study found decreased startle magnitude in 22qDel subjects (Parker 
et al., 2024). This difference was further evidenced by the significantly 
higher number of 22qDel subjects classified as non-startlers (i.e., did 
not have a measurable blink response to at least four of the first six 
startling stimuli): while 25% of control subjects were non-startlers, 
64.5% of 22qDel subjects were non-startlers. McCabe et al. (2014) also 
found a non-significant trend (p = 0.07) toward more no-response 
pulse trials in the 22qDel group compared to their control group, and 
Sobin et  al. (2005b) removed three 22qDel participants from PPI 
analysis for being non-startlers (compared to no control participants). 
While de Koning et al. (2012, 2015) did not report between-group 
magnitude differences, they found lower startle magnitude and PPI in 
participants with the COMT-Met allele than the COMT-Val allele. The 
magnitude was further decreased in hyperprolinemic subjects (2015).

Findings on PPI in 22qDel have also been mixed, with studies 
reporting reduced PPI in 22qDel children (Sobin et al., 2005a, 2005b; 
Vorstman et al., 2009) but not adults (De Koning et al., 2012). Sobin 
et al. (2005a, 2005b) report that reduced PPI in both their cohorts was 
largely driven by decreased PPI in 22qDel boys vs. control boys; the 
PPI difference in 22qDel vs. control girls was much smaller. 22qDel 
PPI could not be meaningfully computed in the Parker et al. cohort 
(2024) due to the number of prepulse trials that elicited no 
startle response.

Startle latency has been studied less than magnitude or PPI in 
human studies. Sobin et al. (2005a, 2005b) found no difference in 
latency between children with and without 22qDel, while Parker et al. 

(2024) found that latency was prolonged in adolescents and adults 
with 22qDel.

These studies are summarized in Table 1. The inconsistency of 
22qDel ASR findings could be from differences in participant age, 
paradigm design, or the relatively small sample sizes of studies. 
Additional research will need to determine whether differences in 
22qDel ASR are marked from a young age or if they emerge in the 
psychosis risk window from late adolescence to early adulthood.

ASR in 22qDel mouse models

Mouse models are useful for 22qDel research because mouse 
genomic region 16qA13 (MMU16) is thought to be syntenic to the 
human 22q11.2 region (Paylor and Lindsay, 2006). Mouse models 
used to study 22qDel vary in the size and location of the MMU16 
deletion as well as in mouse genetic background. There is one strain 
modeling the most prevalent 3.0 mb deletion in humans (Del(3.0 Mb) 
in Saito et  al., 2020), five strains approximating the less-common 
1.5mB deletion (1. Df(16)1/+ in Lindsay et al., 1999; 2. Lgdel/+ in 
Merscher et  al., 2001; 3. Df(16)A+/− in Stark et  al., 2009; 4. 
Df(h22q11)/+ in Didriksen et al., 2017; 5. Del(1.5 Mb)/+ in Saito et al., 
2021), and one strain modeling a 1.4 Mb deletion on a section of 
22q11 that is rarely deleted on its own in humans (Del(1.4 Mb) + in 
Saito et al., 2021). There are also mouse lines modeling deletions of 
smaller sections of the 22q11 region or with single gene knockouts 
from the deletion region (Kimber et al., 1999; Paylor et al., 2006). This 
review addresses mouse models with deletions covering a substantial 
part of the 16qA13 region. See Tables 2, 3 for information on the 
mouse lines reviewed. For more detailed information about 22qDel 
mouse models, see Ellegood et al., 2014; Meechan et al., 2015; Paylor 
and Lindsay, 2006; and Saito et al., 2020, 2021. For insight into the 
opportunities and limits of using mouse models in the context of 
schizophrenia, see Villarin and Kellendonk, 2025.

As shown in Tables 4, 5, PPI has been consistently reduced in 
22qDel mouse models (Paylor et al., 2001, 2006; Long et al., 2006; 
Stark et al., 2009; Sigurdsson, 2016; Didriksen et al., 2017; Scarborough 
et al., 2019; Saito et al., 2020, 2021; Tripathi et al., 2020). The only 
model that has been tested for PPI that has not shown reduced PPI is 
Del(1.4 Mb)/+, which intentionally isolates a part of the deletion 
region that is not ever deleted in isolation in humans (Saito et al., 
2021). Conversely, ASR magnitude has been increased in most mouse 
models [Del(3.0 Mb)/+; Df(h22q11)/+; LgDel; Df(16)1/+], though 
there was no difference found in two models [Del(1.4 Mb)/+, which 
does not replicate human 22qDel (Saito et al., 2021); and Df(16)A+/− 
(Stark et al., 2009)]. With the exception of a 150 kb deletion model 
(Kimber et al., 1999), partial models of the deletion have either shown 
increased magnitude and decreased latency or no difference (Paylor 
et  al., 2006). Kimber et  al.’s model demonstrated no difference in 
magnitude and increased PPI. Notably, no mouse data have been 
published on startle response latency in 22qDel.

Discussion of 22qDel translational 
findings

Current ASR findings between mouse and human 22qDel 
research show similar overall trends, with greater internal 
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consistency among mouse findings. PPI is reduced in all mouse 
models of 22qDel (Paylor et al., 2001, 2006; Long et al., 2006; Stark 
et al., 2009; Sigurdsson, 2016; Didriksen et al., 2017; Scarborough 
et al., 2019; Saito et al., 2020, 2021; Tripathi et al., 2020), and PPI in 
people with 22qDel has been either reduced (Sobin et al., 2005a, 
2005b; Vorstman et al., 2009) or no significant PPI difference was 
found (De Koning et  al., 2012; McCabe et  al., 2014). Startle 
magnitude findings have been more divergent. Most human studies 
showed no difference in startle magnitude between 22qDel and 
control groups (reduced magnitude in 22qDel in Parker et al., 2024; 
no difference in Sobin et al., 2005a, 2005b; De Koning et al., 2012; 
McCabe et al., 2014). While two mouse studies found no magnitude 
difference in 22qDel models (Stark et al., 2009; Saito et al., 2021), 
most found a significant startle magnitude increase in 22qDel  
mice (Paylor et al., 2001, 2006; Long et al., 2006; Didriksen et al., 
2017; Scarborough et al., 2019; Saito et al., 2020; Tripathi et al., 
2020). To our knowledge, startle latency has not yet been studied 
in mice.

There are several factors that could inform the inconsistencies 
within human data and between human and mouse studies. First, the 
ASR is affected by estrogen. Menstrual cycle phase significantly affects 
PPI in adult humans (Swerdlow et al., 1997; Jovanovic et al., 2004), 
and estrogen levels modulate PPI and startle latency in mice 
(Charitidi et al., 2012). It is thought that the estrogen effect on PPI is 
mediated by estrogen effects on dopaminergic and possibly 
serotonergic signaling (see Koch, 1998; and discussions in Swerdlow 
et al., 1997; Jovanovic et al., 2004). Two human studies have found 
that differences in PPI in 22qDel have been largely driven by 
decreased PPI in 22qDel boys vs. control boys (Sobin et al., 2005a, 
2005b). In contrast, another study found greater startle latency in 
CHR participants who later converted to psychosis, but only in 
females (Cadenhead et al., 2020). Only two out of 10 experiments on 
22qDel model mice have included female mice; the greater 
consistency in mouse results, especially PPI, could potentially be due 
to more stable sample estrogen levels.

The human studies have varied in participant age, which 
complicates cross comparison. The human startle response changes 
significantly through childhood, and PPI matures around age 9–10 
(Gebhardt et al., 2012). Adolescent PPI changes in healthy boys are 
more pronounced than in healthy girls (Giannopoulos et al., 2022). 
PPI also changes more slowly throughout the course of adulthood 
(Ellwanger et al., 2003). It is unknown to what extent ASR differences 
between individuals with and without 22qDel may be influenced by 
age. At this point, the only studies reporting decreased PPI in humans 
with 22qDel have been on children (Sobin et  al., 2005a, 2005b; 
Vorstman et al., 2009). Mouse age has varied across studies, though 
most mice have been post-puberty (except possibly Didriksen et al., 
2017). Hearing loss is a 22qDel phenotype that must be addressed in 
mouse and human ASR research. 22qDel mouse models generally 
have poor hearing (Fuchs et al., 2013), and they also display delayed-
onset auditory thalamocortical projections that emerge between 2 and 
4 months of age (Chun et al., 2014, 2017).

Mouse ASR is also influenced by genetic background 
(Pietropaolo and Crusio, 2009), and the genetic background of 
human 22qDel carriers affects their likelihood of developing 
psychiatric symptoms (Bassett et  al., 2017; Cleynen et  al., 2021). 
Obviously, genetic background varies widely in human 22qDel 
research. While several different genetic lines have been used for 
22qDel mouse models, genetic background is far more controlled, 
which may also explain the consistency across mouse results. Finally, 
studies on both humans and mice have had relatively small sample 
sizes (see Tables 1, 4, 5).

It is noteworthy that the increased startle magnitude observed 
in 22qDel mouse models does not align with startle magnitude 
findings in the context of psychosis. While some studies on startle 
magnitude in psychosis have found reduced magnitude in SCZ vs. 
control participants (Kumari et al., 2005; Quednow et al., 2006; 
Minassian et al., 2007; Matsuo et al., 2016; Greenwood et al., 2020), 
most have found no significant difference between groups (Braff 
et  al., 1992, 2005; Cadenhead et  al., 2000; Parwani et  al., 2000; 

TABLE 1 Startle studies in 22qDel.

Study Ages N (22qDel) N (Con) 22qDel vs control results* Comments

Magnitude Latency PPI

Sobin et al. 

(2005a)

Children 21 25 ND ND decreased PPI ↓ largely seen in 22qDel boys vs. control 

boys. %PPI correlated with higher (less 

efficient) executive attention index scores.

Sobin et al. 

(2005b)

Children 25 23 ND ND decreased PPI ↓ largely seen in 22qDel boys vs. control 

boys.

Vorstman et al. 

(2009)

Children, 

including 

adolescents

40 33 NA NA decreased Nonsignificant trend toward ↓ PPI in 

COMT(Met) vs. COMT(Val) 22qDel 

subgroups.

de Koning et al. 

(2012)

Adults 23 21 ND NA ND PPI and magnitude ↓ in 22qDel COMT(Met) 

(n = 15) vs. COMT(Val) (n = 8) subgroups.

McCabe et al. 

(2014)

Adolescents 

and young 

adults

17 19 ND NA ND Nonsignificant trend toward ↓ PPI in 22qDel 

vs. controls in active tasks. No difference in 

passive PPI tasks.

Parker et al. 

(2024)

Adolescents 

and adults

31 32 decreased slowed NA could not assess PPI because low startle

*ND indicates no difference between groups; NA indicates not assessed.
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Ludewig et al., 2002; Perry et al., 2002; Wynn et al., 2004; Swerdlow 
et  al., 2006; Takahashi et  al., 2008; Hasenkamp et  al., 2010; 
Storozheva et  al., 2016). This is consistent with human 22qDel 

research findings, but inconsistent with the reliably increased 
startle magnitude in 22qDel mice models. On the other hand, the 
decrease in PPI found in all mouse models of 22qDel and in three 

TABLE 2 Mouse 22qDel models,1.2mb + deletions.

Model name First paper Deletion region Mouse background

Df1/+ (or Df(16)1/+) Lindsay et al. (1999) Dgcr14-Ufd11 Mixed C57/Bl6C-/C-; 129S5/SvEvBrd (noncongenic). backcrossed Df1/+ 

males w/ WT C57BL/6c−/c- females for 4–5 generations

Lgdel/+ Merscher et al. (2001) Dgcr2-Hira C57/B16N (noncongenic)

Df(16)A+/− Stark et al. (2009) Dgcr2-Hira C57/B16J (noncongenic)

Df(h22q11)/+ Didriksen et al. (2017) Dgcr2-Hira C57/B16J (noncongenic)

Del(1.5 Mb)/+ Saito et al. (2021) Dgcr2-Hira backcrossed to C57BL/6 N for 3 generations

Del(1.4 Mb)/+ Saito et al. (2021) Pi4ka-Dgcr2 backcrossed to C57BL/6 N for 3 generations

Del(3.0 Mb)/+ Saito et al. (2020) Pi4ka-Hira backcrossed to C57BL/6 N for 4 generations

TABLE 3 Mouse 22qDel models, multi-gene partial deletions.

Model name First paper Deletion region Mouse background

unnamed Kimber et al. (1999) Znf74-Ctp 129SvEvTac or mixed 129SvEvTac (noncongenic)

Df2 Lindsay et al. (2001) Es2el-Txmd2 N5–6 C57BL/6c−/c− background. Backcrossed C57BL/6c−/c−;129S5/SvEvBrd mice with 

C57BL/6c−/c− mice for 5–6 generations

Df3 Lindsay et al. (2001) Es2el-Cdcrel1 see Df2

Df4 Lindsay et al. (2001) T10-Hira see Df2

Df5 Paylor et al. (2006) ?-Hira see Df2

TABLE 4 Startle in 22qDel mouse models (1.2mb+).

Study Model name Age n (transgenic) n (WT) Transgenic vs WT Results*

Magnitude Latency PPI

Saito et al. (2021) Del(1.5 Mb)/+ 8–11 weeks 12 (all male) 12 (all male) ND NA decreased

Saito et al. (2021) Del(1.4 Mb)/+ 8–11 weeks 12 (all male) 12 (all male) ND NA ND

Saito et al. (2020) Del(3.0 Mb)/+ 2–5 months 15 (all male) 15 (all male) increased NA decreased

Didriksen et al. (2017) Df(h22q11)/+ 6–21 weeks 91 (all male) 91 (all male) increased NA decreased

Stark et al. (2009) Df(16)A+/− 18 weeks 31 (21 m, 10 f) 29 (19 m, 10 f) ND NA decreased

Long et al. (2006) LgDel (Lgdel/+) 3–4 months 14 (6 m, 8 f) 12 (7 m, 5 f) increased NA decreased

Paylor et al. (2001) Df1/+ (Df(16)1/+) 8 weeks 19 (10 m, 9 f) 21 (11 m, 10 f) increased NA decreased

Paylor et al. (2006) Df1/+ (Df(16)1/+) 8–16 weeks 6 (? m, ? f) 6 (? m, ? f) increased NA decreased

Scarborough et al. (2019) Df(h22q11)/+ 12–14 weeks 14 (all male) 11 (all male) increased NA decreased

Tripathi et al. (2020) Df(h22q11)/+ 10–13 weeks 7–10 (all male) 7–10 (all male) increased NA decreased

*ND indicates no difference between groups; NA indicates not assessed.

TABLE 5 Startle in 22qDel mouse models (partial deletions).

Study Model name Age n (transgenic) n (WT) Transgenic vs WT Results*

Magnitude Latency PPI

Kimber et al. (1999) unnamed 3–4 months 18 (all male) 14 (all male) ND NA increased

Paylor et al. (2006) Df2 8–16 weeks 25–35 total case and WT littermates, m and f ND NA ND

Paylor et al. (2006) Df3 8–16 weeks 25–35 total case and WT littermates, m and f increased NA decreased

Paylor et al. (2006) Df4 8–16 weeks 25–35 total case and WT littermates, m and f increased NA decreased

Paylor et al. (2006) Df5 8–16 weeks 25–35 total case and WT littermates, m and f ND NA ND

*ND indicates no difference between groups; NA indicates not assessed.
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of the five human 22qDel studies on PPI is consistent with PPI 
reduction as a SCZ endophenotype (as reviewed in Swerdlow and 
Light, 2018).

Finally, it is important to acknowledge the role of medication as a 
confounding factor in research on 22qDel patients. Because 22qDel 
patients are at elevated risk for a variety of psychiatric syndromes, 
including ADHD, they are more likely to be prescribed a variety of 
psychotropic medications (Fiksinski et  al., 2021). This includes 
antipsychotics which tend to normalize startle parameters, and 
psychostimulants which may amplify them (Ashare et  al., 2010). 
Protocols for research with clinical samples typically do not include 
restriction of prescribed medications, thus we are not aware of any 
published studies of 22qDel samples that include only nonmedicated 
patients. Further, subgrouping 22q Del patients based on medication 
status diminishes statistical power for detecting differences from healthy 
controls. While this limitation is unavoidable in human studies, it is not 
relevant to animal models, and likely explains the greater consistency in 
studies of ASR based on animal models of 22qDel.

Conclusion

Translational ASR research has advanced our understanding of the 
neurobiology underlying several psychiatric disorders (Davis et al., 
1993; Braff et al., 2001; Swerdlow et al., 2001, 2016). The ASR can 
be  easily studied across species using analogous paradigms. Since 
startle circuitry and neurochemistry have been established in animal 
models (Lee et al., 1996; Koch, 1999; Fendt et al., 2001; Zheng and 
Schmid, 2023), ASR abnormalities in human conditions can provide 
insight into the neurobiology of those conditions. 22qDel research 
matters in its own right, and, given the high risk of SCZ development 
that 22qDel confers, this research will provide important inroads into 
the neurobiology of psychosis. To date, there are areas of convergence 
and divergence in ASR variables between human and mouse 22qDel 
studies. Further translational study of the ASR in 22qDel holds promise 
for identifying underlying neurobiology and potential treatment 
targets for 22qDel and SCZ.
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