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Alzheimer’s disease (AD) is a devastating neurodegenerative disorder characterized 
by cognitive decline and neuronal damage. Cadmium exposure has been implicated 
in AD pathogenesis. This study aimed to investigate the potential therapeutic 
effects of Ebixa (memantine), Ginkgo biloba, and selenium in a cadmium-induced 
rat model of AD. Adult male Wistar rats were divided into six groups: control, 
control + Ginkgo-treated, cadmium chloride (CdCl2), CdCl2 + Ebixa-treated, 
CdCl2 + Ginkgo, and CdCl2 + Ginkgo + Selenium. Behavioral tests, including the 
Morris water maze and passive avoidance learning, were conducted. Additionally, 
biochemical analysis of acetylcholine (Ach), choline acetyltransferase (AchT), and 
acetylcholinesterase (AChE) levels in brain homogenates was performed. Histological 
sections of the cerebral cortex, cerebellum, and medulla were examined. Apoptotic 
assessment was conducted using the TUNEL assay. CdCl2 exposure resulted in 
cognitive deficits, reduced Ach levels, and neuronal damage, mirroring AD-like 
characteristics. Ebixa treatment improved spatial memory behavior as well as Ach, 
AchT and AChE levels in the brain. Ginkgo biloba and selenium co-administration 
increased the number of crossings in the Morris water maze test, suggesting 
memory preservation. Additionally, Ginkgo biloba exhibited potential cholinergic 
system protective effects. Histological analysis revealed neuroprotection in the 
cerebral cortex, cerebellum, and medulla. TUNEL assays demonstrated anti-
apoptotic effects of both Ebixa and the combination of Ginkgo and selenium. 
Ebixa, Ginkgo biloba, and selenium showed promise in mitigating cognitive deficits 
and preserving neuronal structures in a CdCl2-induced AD manifestation in rats. 
These findings provide insights into potential therapeutic strategies for AD and 
warrant further investigation.
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1 Introduction

Alzheimer’s disease (AD) is a progressive and debilitating 
neurodegenerative disorder that predominantly affects the elderly. It 
results in a gradual decline in cognitive, behavioral, and social 
functioning, significantly impacting individuals’ ability to live 
independently (Rashid et  al., 2020). The primary mechanisms 
underlying AD include the formation of amyloid plaques and 
neurofibrillary tangles, leading to neuronal damage, especially 
affecting cholinergic neurons. Neuroinflammation and oxidative stress 
are considered potential triggers for AD (Ibrahim et al., 2021). AD is 
a slow progressive neurodegenerative disorder with a high prevalence 
among the elderly and has a huge personal and societal impact 
(Tahami Monfared et al., 2022). The global prevalence of dementia, 
with AD as a leading cause, is expected to double every 20 years, 
resulting in a substantial societal and economic burden (Prince 
et al., 2013).

Currently, there is no curative treatment for AD, and existing 
allopathic medications are associated with high costs and side effects. 
As a result, there is a growing need for safe and effective alternative 
therapies (Thawabteh et al., 2025). Phytoconstituents, such as those 
found in Ginkgo biloba extract, have garnered attention for their 
potential neuroprotective, antioxidant, and anti-inflammatory 
properties (Erbil et al., 2008; Zhang et al., 2022; Chen et al., 2024). 
Ginkgo biloba has a long history of medicinal use, and standardized 
extracts from its leaves are commonly used (Chan et al., 2007; Das 
et al., 2022; Akaberi et al., 2023). Various medicinal plants, including 
Ginkgo biloba, are being explored for their therapeutic potential 
against (Nguyen et al., 2025). Ginkgo biloba extract, notably EGb761, 
has been widely studied and is recognized for its potential 
neuroprotective effects (Zang et al., 2023). In addition, it is believed 
that Ginkgo biloba extract is a potential extract in modulating gut and 
reversing the impairments of microbial metabolism in mice model of 
AD (Yu et al., 2023). This extract is one of the most popular herbal 
supplements and is known for its potential antiapoptotic properties 
providing neuroprotective effects (Di Meo et al., 2020; Yin et al., 2024).

Additionally, selenium has been studied for its potential role in 
reducing Alzheimer’s pathology and protecting against 
neurodegenerative diseases mortality (Du et al., 2016; Tu et al., 2024). 
It was found that neuroinflammation and neurotoxicity effects were 
attenuated with resveratrol-selenium treatments in rat models of AD 
(Abozaid et  al., 2022). It was believed that selenium exhibits 
neuroprotective effects through modulating inflammatory and 
oxidative stress markers in the brain, particularly in the hippocampus 
(Liang et al., 2023). The nanoparticles form of selenium had anti-
neuroinflammation effects via modulating gut microbiota-NLRP3 
inflammasome-brain axis in mice model of AD (Yang et al., 2022). It 
was suggested that selenium intake could be used as a complementary 
therapy in patients with migraine since it had positive effects against 
oxidative stress and associated symptoms in human (Balali et  al., 
2024). Moreover, selenium could block reactive oxygen species-
increased apoptosis using in brain-derived neural progenitor cells 
(Yeo and Kang, 2007). In addition, selenium inhibits hydrogen 
peroxide-mediated apoptosis and oxidative stress in the brain of 
traumatic brain injury animal model (Yeo and Kang, 2007).

Given the significant challenges in treating AD and the potential 
of these natural compounds, this study aims to investigate the 
interactive effect of Ginkgo biloba extract and selenium on 

neurobehavioral changes in male rats associated with clinical 
manifestations of AD. This research study on the interactive effect of 
Ginkgo biloba extract and selenium in mitigating neurobehavioral and 
molecular changes induced by CdCl2 in male rats. It is hypothesized 
that the combined treatment of Ginkgo biloba extract and selenium 
will demonstrate a synergistic effect in ameliorating neurobehavioral 
changes associated with AD in male rats compared to animals treated 
with only either one of them. Our work also provides information 
abourt the effects of Ginkgo biloba extract and selenium on cholinergic 
system in the brain. This study examines the impact of Ginkgo biloba 
extract, selenium and the combined treatments on the histology of the 
brain regions in male rats developed neurobehavioral changes and 
cholinergic alterations observed in AD models. Overall, the current 
study aims to provide valuable insights into the potential therapeutic 
benefits of Ginkgo biloba extract, selenium and their combinations in 
attenuating the progression of AD in pre-clinical phase.

2 Materials and methods

2.1 Experimental animals

Thirty-six adult male Wister rats (200 ± 20 g, 10 weeks old) were 
obtained from the College of Sciences, King Saud University (KSU), 
Riyadh, Saudi Arabia. The rats were housed in controlled conditions 
(22 ± 2°C, 50% humidity, 12/12 h light/dark), with free access to their 
designated diets and drinking water. The experimental protocol was 
approved by the institutional review board of King Saud University 
(Ref. No.: KSU-SE-21-69).

2.2 Experimental design and treatments

The rats were divided into 6 groups (n = 6/group):

 1. Control Group: Administered an equivalent volume of 0.1 
DMSO as a vehicle for 4 weeks.

 2. Ginkgo Biloba-treated Group: Rats were administered with 
Ginkgo Biloba (100 mg/kg/day, PO) (Winter, 1991) for 4 weeks.

 3. CdCl2-treated Group: Rats were given CdCl2 (1.5 mg/kg/day, 
i.p) for 4 weeks (Hao et al., 2020) (PMID: 32739455).

 4. CdCl2 + Ebixa-treated Group: Rats were treated with CdCl2 
(1.5 mg/kg/day, i.p) + Ebixa (30 mg/kg/day, i.p) (Li et al., 2013) 
for 4 weeks.

 5. CdCl2 + Ginkgo Biloba Group: Rats were administered with 
CdCl2 (1.5 mg/kg/day, i.p) + Ginkgo biloba (100 mg/kg/day, 
PO) for 4 weeks.

 6. CdCl2 + Ginkgo Biloba + Selenium Group: Rats were 
administered with CdCl2 (1.5 mg/kg/day) + Ginkgo biloba 
(100 mg/kg/day, PO) + Selenium (0.5 mg/kg/day, PO) 
(Ghaffari et al., 2011) for 4 weeks.

2.3 Behavioral tests

2.3.1 Morris water maze (MWM)
The assessment of spatial memory was performed using the 

MWM during the last week of the experiment. The MWM test 
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measures the ability of rats to remember a hidden fixed-location 
escape platform. Briefly, this test assesses the rats’ memory for a 
hidden fixed-location escape platform in a swimming pool 
(diameter = 1.6 m; depth = 60 cm) that is located 2 cm below the 
water’s surface. The test consists of five training days and a hidden 
platform. The pool is separated into four quadrants: west, south, east, 
and north. The hidden platform was placed in the southern-west 
quadrant to ensure that the swimming distance is equal. The rat was 
released from one quadrant to locate the hidden platform during three 
trials (each lasting 90 s) per day. Escape latency (time to find the 
platform) was recorded as a marker of memory function. Furthermore, 
on day six, an additional probe trial was carried out in which the 
hidden platform was taken away, and the number of times the rats 
crossed the platform’s location was noted (i.e., the rats’ capacity to 
recall the location of the rescue platform) (Vorhees and 
Williams, 2006).

2.3.2 Passive learning avoidance (PAL) tests
Short and long-term memory function was tested using the PAL 

test, which involved exposing rats to an electrical foot shock and 
measuring their avoidance of the dark room as described previously 
(Nassiri-Asl et al., 2012). A wooden apparatus (50 × 50 × 35 cm) 
with two rooms—one large and lit and the other tiny and dark—
separated by a door was employed for the test. An electrical 
stimulator was linked to the floor of the tiny, dimly lit room. There 
are two stages to the test: the investigation phase and the testing 
phase. The rats were put in a big room with a door open throughout 
the exploration phase, which consisted of five trails lasting 5 min 
each, separated by 30 min. They were then free to enter and exit the 
darkroom. In the final experiment, the rats were given an electrical 
foot shock (50 Hz, 1.5 mA/ 1 s) after the door was closed and they 
entered the dark room. After that, every rat was put back in its cage, 
and the testing process (testing with an electrical shock) was 
repeated after 2 h of the last electrical shock trail. As a result, it was 
noted how long it took each animal to enter the darkroom.

2.4 Brains collection and processing

2.4.1 Brains harvesting
After the PAL test, rats were anesthetized using a combination of 

and 20 mg/mL xylazine and 50 mg/mL ketamine followed by cervical 
dislocation, and their brains were collected. Six brains per group were 
fixed in 10% buffered formalin for histological staining, while other 
brains were snap-frozen for further studies. The hippocampus of all 
other brains were quickly dissected by an expert pathologist, snap-frozen 
in liquid nitrogen, and used later for biochemical and molecular studies.

2.4.2 Apoptosis determination
TUNEL Assay was performed in the cerebral cortex of all groups 

to recognize apoptotic nuclei in brain sections according to the 
manufacturer’s instructions.

2.4.3 Preparation of brain homogenates
Frozen hippocampus samples were homogenized in phosphate-

buffered saline and centrifuged, and the supernatants were collected 
for biochemical analysis. Protein levels in the brain homogenates were 
determined using a Bio-Rad substrate reagent and standard proteins.

2.4.4 Determination of Ach levels in the 
hippocampus

Acetylcholine (Ach) levels were determined using an ELISA kit as 
explained previously (Huang et al., 2019). Briefly, 50 μL of the standard, 
blank (0.0 mg/mL standard), other standards, and samples were added 
to the designated wells in the pre-coated 96-well plate. Next, 50 μL of 
detection reagent A was added to each well and incubated for 1 h at 
37°C. The solutions were aspirated from all wells, and each well was 
rinsed three times with 350 μL of 1X washing solution using a multi-
channel pipette. All wells were entirely emptied of fluids. Subsequently, 
100 μL of the detection reagent B working solution was added to each 
well and incubated for 30 min at 37°C while covering it with the Plate 
sealer. The plate was rinsed three times with the washing buffer. 
Subsequently, 90 μL of the substrate solution was added to all wells and 
incubated for 20 min at 37°C in the dark. Ultimately, 50 μL of the 
stopping solution was introduced to every well and the absorbance was 
measured at 450 nm. The level of Ach was indicated as pg./g protein.

2.4.5 Determination of ach, AchT and AChE levels 
in the hippocampus

Choline transferase (AchT) and acetylcholinesterase (AChE) 
activities were determined by an ELISA kit for rats according to the 
manufacture instructions (Gearhart et al., 2006; Huang et al., 2019). 
For AchT assay, 100 μL of the samples or standards were added to the 
designated wells of the pre-coated 96 well plate. The dish was sealed 
and incubated for 1 h at 37°C. The fluids were subsequently removed 
from all wells, and 100 μL of detection reagent A was added to each 
well, followed by incubation for 1 h at 37°C. The liquids from each 
well were removed, and all wells underwent three wash cycles with 
350 μL of 1X washing solution using a multi-channel pipette. The plate 
was dried by tapping it onto an absorbent paper and pouring off the 
excess. Subsequently, 100 μL of the working detection reagent B was 
added to every well and allowed to incubate for 30 min at 37°C. The 
plate was subsequently rinsed three times with the washing buffer. 
Subsequently, 90 μL of the substrate solution was added to every well 
and incubated for 20 min at 37°C in the dark. Finally, 50 μL of the stop 
solution was added to each well, and the absorbance (ABS) was 
measured immediately at 450 nm. For the AChE experiment, 100 μL 
of standards or samples were added to their corresponding wells in the 
pre-coated 96-wells ELISA plate. 100 μL of PBS (pH 7.0–7.2) was used 
as the blank. 10 μL of the balance solution was applied just to the 
sample wells. All of the wells, with the exception of the blank well, 
received 50 μL of the given conjugate, which was then mixed by 
pipetting. The dish was kept at 37°C for an hour. After that, the wells 
were rinsed three times using 350 μL of washing buffer. The plate was 
dried by pounding it on absorbent paper. In a dark environment, 
50 μL of substrate A and 50 μL of substrate B were added to each well, 
and the mixture was incubated for 20 min at 37°C. Following that, the 
absorbance was measured at 450 nm after adding 50 μL of the stop 
solution to each well. The levels of AchE were expressed as pg./g, and 
the concentrations of AchT was expressed as U/g protein.

2.5 Statistical analysis

Statistical analyses were conducted using Graph Pad Prism 
(version 6) with one-way ANOVA followed by Tukey’s post hoc 
test, and similar analysis was performed between groups within 
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each day in escape latency measurements. Significance was set at 
p < 0.05, and data were presented as means ± standard 
deviation (SD).

3 Results

3.1 The behavior’s test

In the Morris water maze test, significant differences were observed 
in the time required to find the hidden platform. These differences were 
notable when we  compare the control, CdCl2 + Ginkgo biloba or 
CdCl2 + Ginkgo biloba + selenium groups data to that of CdCl2-treated 
rats. In addition, CdCl2 + Ebixa-treated rats also exhibited significant 
differences compared to the CdCl2 group. These significant changes 

were observed clearly starting from day 3 to day 5. Therefore, CdCl2 
exposure had notable impacts on spatial memory and learning abilities, 
as depicted in Figure 1A.

3.2 The number of times the rats crossed

During the probe trial of the Morris water maze test, there 
were significant variations in the number of times rats crossed 
over the removed hidden platform. A decrease was apparent in the 
CdCl2-treated group as compared to control, or Ginkgo biloba 
groups, while CdCl2 + Ebixa-treated rats displayed reversing 
effect. In comparison to CdCl2 group, CdCl2 + Ginkgo biloba-
treated rats or CdCl2 + Ginkgo biloba + selenium groups showed 
an increase in the number of crossing times (Figure 1B).

FIGURE 1

Effects of treatments on behavioral parameters. (A) The required time to find the hidden platform in the Morris water maze test. Data were expressed 
as mean ± SD for n = 6 rats/group. (B) The number of rats crossed over the removed hidden platform during the probe trial of the Morris water maze 
test. (C) The time required to enter the dark area during the passive avoidance learning test. Data were expressed as mean ± SD for n = 6 rats/group.  
a: Significantly different as compared to control group. b: Significantly different as compared to control + Ebixa group. c: Significantly different as 
compared to CdCl2 group. d: Significantly different as compared CdCl2 + Ebixa group. e: Significantly different as compared CdCl2 + Ginkgo biloba 
group. Gink, Ginkgo biloba; Sel, selenium.
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3.3 Time to enter the dark area

The time required for rats to enter the dark area in the passive 
avoidance learning test showed significant differences among various 
groups. CdCl2-treated rats had reduced spent time in the dark area 
compared to control and Ginkgo biloba groups, however, Ebixa 
treatments reversed this effect. Moreover, Ginkgo biloba alone or in 
combination with selenium normalized CdCl2-decreased spent time 
in the dark area (Figure 1C).

3.4 Acetylcholine (Ach) levels in the 
hippocampus

Levels of Ach in the hippocampus homogenates exhibited 
significant differences among all groups of rats. CdCl2-treated 
rats had decreased Ach concentration in the hippocampus as 
compared to the other studied groups. However, Ebixa treatments 
increased the hippocampal Ach levels in rats exposed to CdCl2, 
however, it was still lower than control or Ebixa alone groups. 
Similar effects were also observed with Ginkgo biloba alone or in 
combination with selenium. Interestingly, Ginkgo biloba or 
CdCl2 + Ginkgo biloba + selenium groups had higher Ach levels 
in the hippocampus as compared to CdCl2 + Ebixa group 
(Figure 2A).

3.5 Choline acetyltransferase (AchT) in the 
hippocampus

Activity of AchT in the hippocampus showed significant 
differences among all groups of rats. CdCl2-treated rats had 
reduced AchT activity in the hippocampus as compared to the 
other studied groups. However, Ebixa treatments elevated the 
AchtT activity in the hippocampus of rats exposed to CdCl2, 
however, AchtT activity was still lower than control or Ebixa alone 
groups. Ginkgo biloba alone or in combination with selenium 
treatments also reversed the effects of CdCl2 on the AchT activity 
in the hippocampus. Interestingly, Ginkgo biloba or 
CdCl2 + Ginkgo biloba + selenium groups had elevated brain 
AchT activity as compared to CdCl2 + Ebixa group  
(Figure 2B).

3.6 Acetylcholinesterase (AChE) in the 
hippocampus

AChE hippocampal activity revealed significant changes 
among all studied groups. CdCl2-treated rats increased AChE 
hippocampal activity comparing to the other groups od rats. 
However, Ebixa treatments reduced the brain AChE activity in the 
hippocampus of rats exposed to CdCl2, however, the activity was 
still higher than control or Ebixa alone groups. Ginkgo biloba 
alone or in combination with selenium treatments could 
normalize the elevation of AChE hippocampal activity induced by 
CdCl2 in the brain. Interestingly, Ginkgo biloba or CdCl2 + Ginkgo 
biloba + selenium groups had decreased brain AchT activity in the 
hippocampus as compared to CdCl2 + Ebixa group (Figure 2C).

3.7 Histopathology

3.7.1 Cerebral cortex’s section after Ebixa 
treatment

Cerebral cortex sections showed inflammation in CdCl2 group 
compared to control group. Sections of the cerebral cortex showed a 
significant improvement in neuron in Ebixa + CdCl2 group as 
compared to CdCl2 only group (Figure 3).

3.7.2 Cerebellum’s sections after Ebixa treatment
Purkinje cells appeared degenerated or abnormal in the CdCl2 

group but showed significant neuronal protection in the 
CdCl2 + Ebixa group (Figure  4). An improvement in Purkinje 
neurons was also evident in the group after treatment by Ebixa in 
animals exposed to CdCl2, as shown in Figure 4.

3.7.3 Sections of histological structures in 
medulla neuron after Ebixa treatment

Most of the medulla neurons appeared small and pyknotic in the 
CdCl2 group. Ebixa treatment showed improvement in medulla 
neuronal structures, as depicted in Figure 5.

3.7.4 Cerebral cortex’s sections after Ginkgo 
biloba and selenium treatments

The rate of pyknosis in the cerebral cortex was reduced in the 
Ginkgo biloba group. Ginkgo biloba alone or in combination with 
selenium showed improvement in pyramidal cells when compared to 
the Ginkgo biloba group, resulting in significant neuronal 
improvement, as shown in Figure 6.

3.7.5 Cerebellum’s sections after Ginkgo biloba 
and selenium treatments

In the CdCl2 + Ginkgo biloba group, protected neurons were 
observed, and no apoptosis was occurred. More protection was evident 
in the CdCl2 + Ginkgo biloba + selenium group as depicted in Figure 7.

3.7.6 Histological structures in medulla neuron 
after Ginkgo biloba and selenium treatments

The results indicate that the rate of pyknosis was reduced in 
CdCl2 +  Ginkgo biloba group, indicating significant neuronal 
improvement. In addition, similar effects were observed in 
CdCl2 + Ginkgo biloba + selenium group, which show improvement 
in the pyramidal cells (Figure 8).

3.7.7 Apoptotic (TUNEL assay) in the cerebral 
cortex after Ebixa treatment

In the CdCl2 group, apoptotic cells in the cerebral cortex were 
significantly observed as compared to the control group. Ebixa 
treatment induced observable reductions in the apoptosis induced by 
CdCl2 treatment (Figure 9).

3.7.8 Apoptotic (TUNEL assay) after Ginkgo biloba 
and selenium treatments

Ginkgo biloba treatment protected neurons in the cerebral cortex 
from apoptosis-induced by CdCl2 exposure, and similar effects were 
observed in the CdCl2 + Ginkgo biloba + selenium group. These 
groups showed resistance to apoptosis compared to the CdCL2 group, 
as shown in Figure 10.
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4 Discussion

The results of this study indicate that the administration of 
CdCl2 in rats had significant effects on various aspects of behavior, 
brain enzymes, and histological structures, mirroring the 
characteristics of the AD. These parameters include memory 
functioning, cholinergic system, neuroinflammation and neuronal 
death. Importantly, treatments with Ginkgo biloba alone or in 
combination with selenium exhibited varying degrees of efficacy in 
mitigating these effects. Ebixa also showed positive effects against 
these behavioral and molecular impairments-induced by CdCl2 
exposure. Ginkgo biloba alone or in combination with selenium 
reversed CdCl2-induced memory impairments, an effect associated 
with normalizing Ach level as well as AchT and AChE activities in the 
brain. Inflammation and apoptosis were also attenuated in the brains 
of animals exposed to CdCl2.

In the Morris water maze test, CdCl2-treated animals displayed 
impaired spatial memory and learning abilities, characterized by an 
increased time required to find the hidden platform (Halder et al., 
2016; El-Kott et al., 2020b). This aligns with previous studies that have 
shown cadmium-induced cognitive deficits (Deng et  al., 2023). 
Moreover, treatment with Ebixa (memantine) demonstrated a 
significant improvement in cognitive abilities (Zhou et  al., 2019), 
suggesting its potential as a therapeutic option for ameliorating 

CdCl2-induced cognitive impairments. The results of the probe trial 
in the Morris water maze test revealed that CdCl2-treated rats had a 
reduced number of crossings over the removed hidden platform, 
indicating impaired memory recall. In contrast, CdCl2 + Ebixa-
treated rats exhibited resistance to these memory deficits, moreover, 
CdCl2 + Ginkgo biloba + Selenium-treated rats showed a similar 
trend. These findings are consistent with studies that have highlighted 
the memory-enhancing effects of Ginkgo biloba (Ge et al., 2021) and 
selenium (Liu et  al., 2025) indicating their potential effects in 
attenuating behavioral impairments associated with AD. The passive 
avoidance learning test demonstrated significant differences in the 
time required to enter the dark area. CdCl2-exposed rats exhibited a 
shorter latency period compared to the control group, indicating 
impaired avoidance memory, which is in line with the cognitive 
deficits seen in AD animal models (El-Kott et al., 2020a). Notably, 
CdCl2 + Ginkgo biloba + Selenium treatment resulted in increased 
avoidance memory compared to the CdCl2 + Ginkgo biloba treated 
group, highlighting the potential neuroprotective effects of Ginkgo 
biloba and selenium.

Altered level of Ach in the brain areas is a critical characteristic of 
cognitive disorders associated with AD (Ismail et al., 2023). In this study, 
CdCl2 exposure led to a significant decrease in Ach levels in the 
hippocampus, while Ebixa treatment mitigated this effect. Notably, 
Ginkgo biloba and selenium co-administration also led to lower Ach 

FIGURE 2

Effects of treatments on the hippocampus level of Ach, and hippocampal activity of AchT and AChE. (A) Levels of acetylcholine (Ach) in the 
hippocampus homogenates of all groups of rats. (B) Levels of acetylcholine transferase (AchT) in the hippocampus homogenates of all groups of rats. 
(C) Levels of acetylcholine esterase (AchE) in the hippocampus homogenates of all groups of rats. Data were expressed as mean ± SD for n = 6 rats/
group. a: Significantly different as compared to control group. b: Significantly different as compared to control + Ebixa group. c: Significantly different 
as compared to CdCl2 group. d: Significantly different as compared CdCl2 + Ebixa group. Gink, Ginkgo biloba; Sel, selenium.
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levels, indicating their potential in modulating cholinergic 
neurotransmission associated with AD-like characteristics in rats. AchT 
is an essential enzyme for Ach synthesis and maintenance of cholinergic 
function (Oda, 1999; Bagwe and Sathaye, 2022). The CdCl2 + Ginkgo 
biloba and CdCl2 + Ginkgo biloba + selenium groups exhibited an 
increase in AchT levels in the hippocampus compared to the CdCl2, 
suggesting that Ginkgo biloba and selenium may have a stimulating 
effect on cholinergic neurons. Therefore, this finding explains the 

previous results showing increased brain Ach levels after treatment with 
Ginkgo biloba alone or with combinations with selenium. However, 
these findings require further investigation to elucidate the underlying 
mechanisms and responsible signaling pathways. AChE is a key enzyme 
responsible for Ach degradation and is often elevated in 
neurodegenerative diseases (McGleenon et al., 1999; Vecchio et al., 
2021). In this study, AChE levels in the hippocampus were significantly 
decreased in the control + Ginkgo biloba and CdCl2 + Ginkgo biloba + 

FIGURE 3

Histopathological sections of the cerebral cortex (the frontal lobe). (A) Control group, (B) CdCl2 group, (C) CdCl2 + Ebixa group (H & E stain). Scale 
bar = 50 μm. PYC, pyramidal cells.

FIGURE 4

Histopathological sections of the cerebellum. (A) Control group, (B) CdCl2 group, (C) CdCl2 + Ebixa group (H & E stain). Scale bar = 50 μm. ML, 
molecular layer; IGL, inner granular layer; PC, Purkinje cell.

FIGURE 5

Histopathological sections of the medulla neurons (the lowest area of the brainstem). (A) Control group, (B) CdCl2 group, (C) CdCl2 + Ebixa group (H & 
E stain). Scale bar = 50 μm. MN, medullary neurons.
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selenium group compared to CdCl2 groups, indicating a potential role 
for Ginkgo biloba in modulating cholinergic activity. Conversely, CdCl2 
treatment led to an increase in AChE, while CdCl2 + Ebixa resulted in 
a notable decrease. These findings emphasize the efficacy of Ebixa in 
alleviating AChE alterations, in addition to its blocking effect on NMDA 
receptor. It is important to note that Ginkgo biloba extract terpene 
trilactones found in ginkgo, such as ginkgolides A, B, C, and bilobalide, 
are responsible, among others, for its anti-epileptic activity on neurons 
in the hippocampus of the brain, which enhances memory and learning 
capacity and reduces neuronal damage (Biernacka et  al., 2023). 
Moreover, Ginkgo biloba extract contains flavonoids that might have 
potential anti-oxidant, anti-inflammatory and neuroprotective effects 
(Nowak et al., 2021).

The histological analysis of different brain regions further 
supports the cognitive and neuroprotective effects of the Ginkgo 
biloba, selenium and Ebixa. CdCl2 + Ebixa group had significant 
neuronal improvement in the cerebral cortex. This improvement 
highlights the potential effects of Ebixa in preserving cortical neurons, 
possibly by regulating cholinergic signaling pathways observed in our 
current study. Purkinje cells in the cerebellum displayed signs of 
degeneration in the CdCl2 group, but Ebixa treatment offered 
significant neuronal protection suggesting additional promising effect 
for Ebixa. The cerebellum plays a crucial role in motor coordination 
and cognitive functions, and the preservation of Purkinje cells is 

essential for these processes (Zhang et  al., 2023; Zobeiri and 
Cullen, 2024).

The medulla neurons showed signs of pyknosis and shrinkage in 
the group exposed to CdCl2. However, Ebixa treatment resulted in the 
improvement of medulla neurons, emphasizing its potential for 
preserving vital brainstem structures. Ginkgo biloba treatment in the 
Alzheimer led to a reduction in pyknosis and improved the condition 
of pyramidal cells in the cerebral cortex in animals exposed to CdCl2. 
This is in line with previous research suggesting the neuroprotective 
effects of Ginkgo biloba (Ge et al., 2021). Similar to the cerebral cortex, 
Ginkgo biloba treatment resulted in a reduction in pyknosis and the 
preservation of Purkinje cells in rats exposed to CdCl2. This 
neuroprotective effect indicates the potential effects of Ginkgo biloba 
in maintaining the histological characteristics cerebellar areas. The 
apoptotic analysis showed that Ebixa treatment prevented apoptosis 
induced by CdCl2, moreover, Ginkgo biloba alone or in combination 
with selenium produced similar effects in animals exposed to CdCl2. 
These results suggest that both Ebixa, Ginkgo biloba and the 
combination of Ginkgo biloba and selenium have anti-apoptotic effects 
in animals developed AD-like characteristics suggesting that testing 
these compounds against neuronal death and AD progression in 
animal models is crucial.

In conclusion, this study highlights the potential therapeutic 
benefits of Ebixa and Ginkgo biloba alone or in combination with 

FIGURE 6

Histopathological sections of the cerebral cortex (the frontal lobe). (A) Ginkgo biloba group, (B) CdCl2 + Ginkgo biloba group, (C) CdCl2 + Ginkgo 
biloba + selenium group (H & E stain). Scale bar = 50 μm. PYC, pyramidal cells.

FIGURE 7

Histopathological sections of the cerebellum. (A) Ginkgo biloba group, (B) CdCl2 + Ginkgo biloba group, (C) CdCl2 + Ginkgo biloba + selenium group 
(H & E stain). Scale bar = 50 μm. ML, molecular layer; IGL, inner granular layer; PC, Purkinje cell.
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FIGURE 8

Histopathological sections of the medulla neurons (the lowest area of the brainstem). (A) Ginkgo biloba group, (B) CdCl2 + Ginkgo biloba group, 
(C) CdCl2 + Ginkgo biloba + selenium group (H & E stain). Scale bar = 50 μm. MN, medullary neurons.

FIGURE 9

Ebixa reduced CdCl2-induced apoptotic changes in rats’ cerebral cortex. (A) Control group, (B) CdCl2 group, (C) CdCl2 + Ebixa group. TUNEL -positive 
cells appeared brown. Scale bar = 50 μm.
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selenium in mitigating cognitive deficits and preserving brain 
structures in a CdCl2-induced AD-like characteristics in rats. These 
findings provide valuable insights into the potential effects of these 
compounds on the behavioral and molecular changes associated with 
AD in animals. Further research is required to highlight the signaling 
pathways in the brain involved in mediating these positive effects. 
Importantly, memantine, selenium, and Ginkgo biloba can interact in 
complicated ways, affecting antioxidant defenses, enzyme activity, and 
neurological function. More investigation is required to completely 
comprehend these interactions and their consequences for therapeutic 
and harmful consequences, especially in the setting of neurological 
disorders. There is less research on the immediate protein-level 
interactions between Selenium and memantine. Both, however, are 
recognized to have an impact on cellular pathways associated with 
neurotransmitters, oxidative stress, and inflammation, all of which are 
important in neurodegenerative illnesses. As an antioxidant, selenium 
may help reduce some of the oxidative stress that can contribute to 
Alzheimer’s disease and may also boost the overall neuroprotective 
benefits of memantine or Ginkgo biloba.
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FIGURE 10

Ginkgo biloba and selenium reduced CdCl2-induced apoptotic changes in rats’ cerebral cortex. (A) Ginkgo biloba group, (B) CdCl2 + Ginkgo biloba 
group, (C) CdCl2 + Ginkgo biloba + selenium group. Scale bar = 50 μm.
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