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LEM-UNet: an edge-guided
network for 3D multimodal
images segmentation in focal
cortical dysplasia
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1School of Information and Communication Engineering, Beijing University of Posts and
Telecommunications, Beijing, China, 2Pediatric Epilepsy Center, Peking University First Hospital,
Beijing, China

Introduction: Focal cortical dysplasia (FCD) is one of the common causes
of refractory epilepsy. The subtle and indistinct edge of FCD lesions pose
considerable challenges for accurate lesion localization. Therefore, we propose
an edge guided segmentation network based on Laplacian pyramid to improve
the localization performance of FCD lesions.
Methods: This is a retrospective study evaluated on two independent datasets.
The proposed Laplacian Edge Mix UNet (LEM-UNet) builds upon the MedNeXt
baseline and incorporates the Laplacian Edge Attention (LEA) block and the
Multi-strategy Feature Fusion (MFF) block. LEA block captures lesion details and
edge information during the encoding phase by integrating Laplacian pyramid
feature maps with an attention mechanism, while MFF block fuses edge features
with high level features during the decoding phase.
Results: The model’s performance was assessed through 5-fold cross-validation
across both Open and Private Datasets, demonstrating superior performance.
The average Dice Coefficient achieved 0.452 and 0.597 on the Open and Private
Datasets, respectively, representing improvements of 2.40% and 2.90% compared
to the baseline model.
Discussion: The results demonstrate the importance of focusing on lesion edge
in the FCD segmentation task. The integration of the Laplacian pyramid enhances
the mode’s ability to capture lesions with blurred edge and subtle features.
LEM-UNet exhibits significant advantages over current FCD segmentation
algorithms. The source code and pre trained model weights are available at
https://github.com/simplify403/LEM-UNet.

KEYWORDS

focal cortical dysplasia, multimodal medical imaging, deep learning, edge information,
medical image segmentation

1 Introduction

Epilepsy is a prevalent chronic neurological disorder characterized by the abrupt,
abnormal discharge of brain neurons (Fisher et al., 2005). Most epilepsy patients can
control seizures using medications, but one-third of patients develop drug-resistant
epilepsy (DRE). Prolonged epileptic seizures can lead to severe consequences such as brain
damage, decreased quality of life, and even premature death (Avakyan et al., 2017). Focal
cortical dysplasia (FCD), a malformation of cortical development, is the most common
cause of DRE (Kabat and Król, 2012). Clinically, an effective treatment for patients with
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DRE is surgical resection of FCD lesions. About 70% of patients
experience seizure relief after surgery (Wagstyl et al., 2022). A
favorable outcome is associated with the complete resection of FCD
lesions (Willard et al., 2022).

In clinical diagnosis, physicians can identify FCD lesions
by analyzing neuroimaging results. Magnetic Resonance
Imaging (MRI) is a medical imaging technique that uses the
principles of nuclear magnetic resonance to produce detailed
images of the internal structures of the human body. On MRI
scans, characteristic manifestations of FCD include increased
cortical thickness, blurring of the gray/white matter junction,
the presence of a transmantle sign, abnormal cortical folding
pattern, and increased signal intensity on FLAIR/T2-weighted
MRI (Urbach et al., 2022) as depicted in Figure 1. Positron
Emission Tomography (PET) is a nuclear medicine imaging
technique used to observe biological processes and functional
activities within the human body. Between seizures, PET images
using fluorodeoxyglucose show hypometabolism in areas of
gray matter tissue that are associated with the epileptogenic
region (Baete et al., 2004). However, the identification of FCD
lesions in clinical practice remains a formidable challenge. Firstly,
FCD lesions are often subtle, exhibit diverse morphological
features, and possess poorly defined edge, making them difficult
to detect through routine visual inspection. Secondly, the analysis
of high-resolution 3D imaging datasets is time-consuming,
requires specialized expertise, and can be subjective in certain
cases. Therefore, there is an urgent need for precise and
efficient computational techniques to assist in the localization of
FCD lesions.

In the early stages, the task of FCD lesion detection
primarily focused on the extraction of cortical morphological
features, with the main approaches including voxel-based
morphometry (Mechelli et al., 2005) and surface-based
morphometry (Thesen et al., 2011). The extracted voluminous
cortical morphological features were then input into machine
learning models to distinguish between normal and pathological
tissues, such as David et al. (2021); Jin et al. (2018); and
Hong et al. (2014). However, these methods exhibit several
limitations: the computation of features is complex and extremely

E 1FIGUR

(a) A T1-weighted MRI slice of normal brain; (b) abnormal gray matter thickening in a T1-weighted MRI slice in red box; (c) blurred junction of gray
and white matter in a T1-weighted MRI slice in red box; (d) increased signal intensity in FLAIR in red box.

time-consuming, and some basic features are insufficient to
accurately differentiate FCD lesions.

Currently, deep learning-based models have achieved
remarkable success in various medical imaging tasks, significantly
advancing disease detection and diagnosis. Convolutional Neural
Networks (CNNs) are the most widely used model for the detection
of FCD lesions, with a lot of work is based on it, such as Gill et al.
(2021) and Wang et al. (2020). Enhanced model designs have led to
improved detection performance. Dev et al. (2019) trained a U-Net
using 2D slices derived from 3D FLAIR-weighted sequence images.
Niyas et al. (2021) proposed a 3D Res-UNet model for segmenting
FCD lesions from MRI volumes, leveraging inter-slice information
from 3D MRI data to achieve superior segmentation performance.
Thomas et al. (2020) introduced a Multi-Res-Attention UNet to
address the significant semantic gap in feature mapping caused by
long-range connections between the encoder and decoder layers,
resulting in a higher FCD detection rate. The nnU-Net framework
has been proposed as a self-adaptive solution for diverse medical
image segmentation tasks (Isensee et al., 2018). Spitzer et al.
(2023) developed a graph-based nnU-Net for segmenting FCD
lesions using surface-based cortical data, achieving a 22%–27%
improvement in specificity compared to baseline methods. Zhang
S. et al. (2024) employed a 3D full-resolution nnU-Net for
automatic lesion segmentation, demonstrating strong performance
in FCD lesion detection with a sensitivity of 0.73. Zhang X.
et al. (2024) integrated multi-scale transformers into CNN-based
encoding and decoding structures to overcome the limitations of
local receptive fields in CNN models and successfully identified
lesions in 82.4% of patients.

The aforementioned methods have significantly contributed
to the detection of FCD lesions. However, traditional methods
based on manual extraction of cortical morphological features
combined with machine learning exhibit several limitations:
(1) feature extraction is computationally complex and time-
consuming, (2) basic features are insufficient to fully capture
lesion characteristics. Transformer-based models, while powerful,
demand substantial computational resources and are challenging
to train on small datasets. CNN-based models have demonstrated
significant potential in the field of lesion segmentation due to their
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excellent local perception capabilities. However, they still exhibit
limitations when applied to FCD lesion segmentation tasks. FCD
lesions are characterized by blurred edge, making it challenging
for networks to accurately capture and identify edges and subtle
lesions. Integrating edge detection methods into convolutional
models opens new avenues to address these challenges. In other
medical image segmentation tasks, models incorporating edge
detection methods have shown exceptional performance, as seen
in Zhu et al. (2023) and Lu et al. (2023). However, there is a paucity
of relevant research in the task of FCD lesion segmentation.

To address these clinical needs and the shortcomings of existing
algorithms, this study proposes an edge information-guided FCD
lesion segmentation model. Based on the MedNext (Roy et al.,
2023) network architecture, the main contributions of this paper
are as follows:

1. We propose a Laplacian edge attention block to extract edge
features from the T1 modality and integrate them with attention
mechanisms, enabling spatial localization from global edges to
FCD lesion edges.

2. We propose a multi-strategy feature fusion block to effectively
combine high-frequency edge information with network
decoding information.

2 Materials and methods

2.1 Materials

Our network was evaluated on two distinct datasets: the
Open Dataset, provided by the Department of Epileptology at
the University Hospital Bonn (Schuch et al., 2023) and our
proprietary dataset, referred to as the Private Dataset. More detailed
information on the two datasets is shown in Table 1 and the brief
introduction of the two datasets is as follows.

Open dataset: Open dataset consists of 85 people with FCD
type II and 85 control persons. Data for each patient include
preoperative T1, preoperative FLAIR and lesion ground truth.
Lesion ground truth was annotated on FLAIR images by two
neurologists. Because 7 patients underwent a FLAIR sequence with
thick slices, we excluded these data and ended up with 78 3D cases.

Private dataset: Private dataset consists of 125 patients. Among
them, 41.6% of the patients were diagnosed with FCD IIB
pathologically, 24.8% with FCD IIA, and 18.4% with other types of
malformation of cortical development, while the remaining small
proportion was attributed to other etiological causes. Each patient
contains preoperative 3-T T1, FLAIR, FDG-PET images, and lesion
ground truth. Lesion ground truth was annotated on T1 images by
the physician. This study has obtained approval from the Ethics
Committee of Peking University First Hospital. All participants
provided written informed consent for us to use their data for
research purposes.

2.2 Methods

2.2.1 Model architecture
Before detailing our method, we provide a concise overview

of the MedNeXt network. MedNeXt enhances the nnU-Net
framework by introducing several specialized modules: MedNeXt

TABLE 1 Subjects characteristics of FCD.

Characteristics Private
dataset

Open dataset

Number 125 78

Age of surgery(years, mean ± std) 5.98 ± 4.15 6.30 ± 2.48

Sex (male:female) 78:47 44:34

Hemisphere (left:right) 60:65 41:37

Undergoing surgery 125 46

Pathology

FCD IA 3 0

FCD IB 10 0

FCD IIA 31 15

FCD IIB 52 31

FCD IIIB 1 0

MCD 23 0

TSC 2 0

Gliosis 1 0

MOGHE 2 0

NA 0 32

One year outcome

Seizure-free 118 34

Not seizure-free 7 8

NA 0 36

std, standard deviation; FCD, focal cortical dysplasia; MCD, malformation of cortical
development; TSC, tuberous sclerosis complex; MOGHE, mild malformation of cortical
development with oligodendroglial hyperplasia; NA, not applicable; Pathology classifications
are based on the International League Against Epilepsy (ILAE) criteria recommendations for
the neuropathologic workup of epilepsy surgery brain tissue.

Block, MedNeXt 2×down Block, MedNeXt 2×up Block, Stem
Block and Output/Deep Supervision Block. Our approach adopts
the MedNeXt network, adhering to the architectural components
outlined in the original paper.

The proposed network architecture, illustrated in Figure 2,
comprises an encoder-decoder model, Laplacian edge attention
blocks, and multi-strategy feature fusion blocks. The encoder-
decoder model, derived from MedNeXt, supports composite
scaling in depth, width, and receptive field to effectively
extract contextual and high-level features from multimodal
images. The Laplacian edge attention block integrates Laplacian
pyramid features with encoded network features to enhance edge
representation, directing the network’s focus toward lesion edge.
The multi-strategy feature fusion blocks combine edge features
with decoded network features, employing diverse fusion strategies
across decoding layers to retain edge information from shallow
features. The subsequent sections elaborate on the structure and
efficacy of the Laplacian edge attention block and the multi-strategy
feature fusion block.

2.2.1.1 Laplacian edge attention block
The segmentation of FCD lesions is particularly challenging

due to their ambiguous edge. The LEA block addresses this by
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FIGURE 2

The overall framework of the proposed methodology. (a) Inputs to the model; (b) encoding of the T1 image; (c) the architecture of LEM-UNet. The
LEA and MFF blocks are integrated into the first two encoding layers and the last two decoding layers, respectively. The three-colored dashed data
stream denotes the three inputs to the LEA block. The dark blue blocks represent downsampling or stem results, the gray blocks represent the results
after upsampling or MedNeXt block, and the light blue block represents the results after MedNeXt block.

enhancing edge information, enabling the network to better focus
on lesion edge and thereby improving segmentation performance.
Since edge features are inherently shallow, the LEA block is applied
to the first and second layers of the encoding process to effectively
capture texture details of lesion edges.

The LEA block proposed in this paper is shown in Figure 3.
Each LEA block receives three inputs: encoded feature f i

e from the
main network branch, encoded feature f i

e−T1 from the T1 branch,
and high-frequency features f i

l from the Laplacian pyramid. These
features generate an output feature map f i

edge after being processed
by the LEA block, which then enters the subsequent network for
feature fusion processing. The following section will detail the
inputs of the LEA block and its specific processing methods.

2.2.1.1.1 Input of LEA block
The input of LEA block consists of three features.

• Encoded feature f i
e : Our backbone network continues to

use the MedNext encoding-decoding model to process
multimodal data, representing the feature maps extracted after
MedNext block as f i

e ∈ R
Ci×Di×Hi×Wi . To obtain rich shallow-

level features, the first and second layer feature maps after
MedNext processing are used, namely f 1

e ∈ R
C×D×H×W and

f 2
e ∈ R

2C× D
2 × H

2 × W
2 , as shown by the black dotted data stream

in Figure 2.
• Encoded feature f i

e−T1 from branch T1: The T1-weighted
MRI contains rich tissue texture and structural information.
We individually extracted the characteristics, still using the

MedNext network blocks, and obtained characteristics f 1
e−T1 ∈

R
C×D×H×W and f 2

e−T1 ∈ R
2C× D

2 × H
2 × W

2 , as shown by the blue
dotted data stream in Figure 2. Parameters R and B refer to
paper (Roy et al., 2023).

• High frequency features f i
l : The Laplacian pyramid is a

multiresolution image representation method based on the
Gaussian pyramid, capable of capturing edges and detail
information of images at different scales (Burt and Adelson,
1987). In this paper, this classic edge detection technique is
selected to highlight the high-frequency edge features and the
detail features of the images. In the LEA block, T1-weighted
MRI is used as input to construct the Laplacian pyramid, as
T1-weighted MRI provides rich texture information and clear
anatomical structures. The specific calculation can be seen in
Equation 1.

Nk = N, if k = 0 ,

Nk = d(gs(Nk−1)), if k ≥ 1 ,

Lk = Nk − up(Nk+1) ,

(1)

where N represents the input image, gs represents the
convolution operator with Gaussian filter, d is the 2×
downsampling operation, and up is the 2× linear interpolation
upsampling. We denote f i

l = Li(N). As the image scale
decreases, due to multiple processes of Gaussian filtering,
upsampling, and downsampling, the high-frequency details
in the feature maps significantly decrease. Therefore, the first
and second layers of the Laplacian pyramid feature f 1

l ∈
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FIGURE 3

The architecture of Laplacian Edge Attention (LEA) block.

R
1×D×H×W and f 2

l ∈ R
1× D

2 × H
2 × W

2 are selected as inputs for
the LEA block, as shown by the red dotted data stream in
Figure 2.

2.2.1.1.2 Procedure of LEA block
At the ith layer, the LEA block receives the three inputs

mentioned above. At first, f i
e and f i

e−T1 are each passed through
a Convolutional Block Attention Module (CBAM) (Woo et al.,
2018). The CBAM primarily consists of two components: channel
attention and spatial attention, which serve to emphasize useful
channel features and important spatial locations, respectively.
Subsequently, the weights of the feature maps are adjusted to
enhance the representation of salient features and f i

map is obtained.
The process is shown in Equation 2.

β = 1 − λ ,

f i
map = BN(CBAM(f i

e ) × λ + CBAM(f i
e−T1) × β),

(2)

where BN is the batch normalization, λ is a learnable parameter,
with the purpose of adjusting the weights of f i

e and f i
e−T1,

allowing the network to autonomously learn the complementary
information between this two features.

The high frequency features f i
l correspond to the overall edge

information and texture features of the original image. In order to
obtain edge information and detailed features related to the FCD
lesions, we fuse f i

l and f i
map, further screening the features to ensure

that the edges of the FCD lesions are highlighted, and finally obtain
the edge attention feature f i

edge, characterized as follows Equation 3.

mapi = σ (con[f i
l , f i

map]) ,

f i
edge = g(BN(Cov(mapi))) .

(3)

In this context, the symbol σ signifies the sigmoid function, Cov
signifies the 1 × 1 × 1 convolution, con is Concatenation operation
and the symbol g represents GELU function.

Through the LEA block, we obtain the edge attention features
for the first and second layers, denoted f 1

edge ∈ R
C×D×H×W and

f 2
edge ∈ R

2C× D
2 × H

2 × W
2 , respectively. These features are then inputted

into the feature fusion block, where they are combined with the
backbone network to achieve better segmentation performance.

2.2.1.2 Multi-strategy feature fusion block
Multi-strategy feature fusion (MFF) block is shown in Figure 4.

Our backbone network undergoes four downsampling and four
upsampling operations. The upsampling features are now denoted
as f i

d, with the last upsampling result denoted as f 1
d and the

penultimate upsampling result as f 2
d . Each MFF block accepts two

inputs: f i
d and f i

edge, employing different fusion strategies at different
decoder layers to maximize the use of edge information of the
injury obtained from the LEA block. Define the output features of
MFF block as f i

mff .
In MFF (1), the inputs are processed as shown in Equation 4.

Mi = f i
d − up(d(gs(f i

d))) ,

f 1
mff = σ (M1) × f 1

edge ,
(4)

where Mi represents the high-frequency information obtained
from the decoded feature f i

d and it is designed to further suppress
noise in the output of the LEA block. In MFF (2), the inputs are
processed as shown in Equation 5.

I = σ (Cov(f 2
edge) ,

f 2
mff = σ (M2) × (f 2

edge + Cov(d(f 1
edge)) × I) .

(5)

We employ distinct fusion strategies in MFF block. The
encoded features contain rich texture information in the shallow
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FIGURE 4

The architecture of multi-strategy feature fusion (MFF) block. (a) MFF(1); (b) MFF(2).

layers, and as the network deepens, it increasingly focuses
on complex high-level features and abstract representations.
Similarly, in the Laplacian pyramid, with the increasing number of
sampling iterations, the detail information in the feature maps is
progressively lost.

Therefore, during the feature fusion phase, the edge
information rich feature f 1

edge undergoes a 2× downsampling
and is fed into the subsequent layer for further processing. The
purpose of this operation is to make full use of the edge information
from the shallow layers of the network and to minimize the loss of
information. Finally, the fused feature f i

mff from the encoding layer
ith is added to f i

d for decoding.

2.2.2 Loss function
We employ a combination of Dice lossLDice and Cross-Entropy

loss LCE at the training stage of our network. It can be defined as
follows in Equation 6.

L =
D∑

i=1

wi
dice ∗ LDice(f i

DS, f i) + wi
ce ∗ LCE(f i

DS, f i) , (6)

where D denotes the total number of layers, as we use deep
supervision in our network. wi

dice and wi
ce are the weights of LDice

and LCE at the ith decoding layer. f i
DS is predicted feature map at the

ith decoding layer. f i is Ground Truth (GT) at the ith layer.

2.2.3 Evaluation metrics
To quantitatively compare our method with others, we employ

five evaluation metrics.
Dice Coefficient (DC) is used to measure the overlap between

the predicted segmentation and the ground truth. To assess
individual performance, we set the DC thresholds at 0.0 and 0.22.
A DC score greater than 0.0, the so-called “one voxel overlap,”
has been used in other FCD detection studies (David et al., 2021;
Spitzer et al., 2022; Gill et al., 2021), and a higher threshold of
0.22 has been shown to be effective in reproducing the precise
positioning performance of expert raters (Walger et al., 2024).
Precision (Pre) represents the proportion of samples that are
actually positive among those predicted as positive by the model
and reflects the accuracy of the positive predictions of the model.
Recall (Rec) indicates the proportion of actual positive samples
that are correctly predicted as positive by the model and reflects
the model’s coverage ability in the positive class. Intersection over
Union (IoU) is used to measure the degree of overlap between the
result of the segmentation and the ground truth. They are defined
as Equation 7.

DC(G, P) = 2 ∗ |G ∩ P|
|G| ∪ |P| = 2 ∗ G · P

G2 + P2 ,

Pre = TP
TP + FP

,

Rec = TP
TP + FN

, (7)
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IoU = G ∩ P
G ∪ P

,

Detection = Nd

Na
∗ 100% ,

where G and P denote the GT and the predicted results of the
model, respectively. TP refers to the number of true positive voxels,
FP refers to the number of false positive voxels and FN denotes the
false negative voxels. Nd refers to the number of individuals with a
dice value higher than the threshold of 0.0 or 0.22, while Na denotes
the total number of individuals. The higher the above metrics, the
better the model performance.

Hausdorff Distance (HD) is a measure of similarity or
difference between two sets of points, especially the edge difference
between two shapes. HD95 uses a 95% quantile and is more robust,
while HD is susceptible to outliers. A lower value HD95 indicates a
higher degree of similarity and less difference between the two sets
of points. HD95 is defined as Equation 8.

HD95(G, P) = max{d95(G, P), d95(P, G)} (8)

Our experiment uses a five-fold cross-validation, so the above
metrics are averaged.

2.2.4 Comparison models
We included a variety of comparison models, namely:

UNETR++ (Shaker et al., 2024), CoTr (Xie et al., 2021),
nnFormer (Zhou et al., 2023), Res-Unet (Diakogiannis et al.,
2020), and nnUNet. UNETR++, nnFormer, and CoTr represent
successful integrations of CNNs and transformers. These hybrid
frameworks leverage the transformer’s strong long-sequence
modeling capabilities to compensate for CNN’s limited receptive
field and weak long-range dependencies. They have excellent
performance in medical data sets such as brain tumors and organ
segmentation. Both Res-Unet and nnUNet are pure CNN-based
architectures. Res-Unet introduces residual connections in the
encoder-decoder, effectively alleviating the problem of vanishing
gradients and making it suitable for small-sample medical
image segmentation. nnUNet is an automated medical image
segmentation framework. It has achieved excellent performance
in multiple medical segmentation challenges and exhibits strong
generalization performance. By including pure CNNs models and
hybrid models, we can better demonstrate the advantages of our
proposed method in the results.

3 Results

3.1 Implementation details

Our method was implemented on Python 3.9.12 and Pytorch
2.1.1. Experiments were deployed based on the MedNeXt
framework, using five-fold cross-validation and the data
preprocessing operations built into the MedNeXt framework
to perform format conversion, cropping, resampling, and
standardization on the data, resulting in a data size of 128 × 128
× 128 with a voxel size of 1mm × 1mm × 1mm. The model
training batch size was 2, the initial learning rate was 10-3 and the

maximum epoch was 100. Frame size configuration was M, kernel
size was 3, λ was 0.5 and the optimizer was AdamW.

For all comparison models, the training batch size, patch size
and maximum epoch were the same as those of MedNeXt. The
initial learning rate was 10-2 and the optimizer was SGD.

3.2 Results on open and private datasets

First, we use five indicators to evaluate the predictions
of various models, showing the overall and subtype results,
respectively. Secondly, we compared the prediction results of
different models in terms of individual detection rate and
slice (axial, sagittal, and coronal) detection rate, enabling a
comprehensive analysis of the results. Finally, we present and
discuss the 16 negative cases in the Private Dataset separately.

Open dataset result: As listed in Table 2, compared to
MedNeXet_M3, our method improved the DC metric by 2.40%.
LEM-UNet also achieved 2.00% of the DC score over the
MedNeXet_L3 which used more convolutional layers. Compared
with other CNN-based models, LEM-UNet showed significant
improvements in these five metrics. Among transformer-based
models, our model exhibited a substantial advantage, with a 5.80%
increase in the DC metric over the comparatively high-performing
CoTr model. The results indicated that nnFormer and UNETR++
performed poorly in this dataset, struggling to capture the details
and characteristic edge of the FCD lesions. In terms of the ability to
identify positive class samples, our model excelled, with a notably
improved ability to capture FCD lesions details after integrating
LEA blocks.

Private dataset result: As shown in Table 2, all networks
achieved a higher DC score compared to the Open dataset. One
reason is that each case in this dataset comprised three modalities
of raw data (T1, FLAIR, and FDG-PET), providing the base
network with a sufficient amount of rich information. However,
our network still demonstrated commendable performance, with
a 2.90% improvement in DC metrics over MedNeXt_M3. In
terms of the ability to identify positive class samples, our network
remained more prominent compared to other networks, with a
2.90% increase in Rec over MedNeXt_M3. Secondly, compared
to transformer-based networks, LEM-UNet still demonstrated
significant advantages, particularly in terms of predictive precision,
indicating that our network is more capable of focusing on the
subtle details of the lesions.

Classification results: In LEM-UNet, the segmentation
performance according to histopathology and seizure-free state
is shown in Table 3. In the Private Dataset, the DC score for 13
subjects with FCD type I reached 0.655, whereas for 23 subjects
with the other MCDs, the DC score was 0.620.

Detection result: We analyzed the detection rate results of
different models. Table 4 showed the results of the detection rate
at the individual and slice level, respectively. LEM-UNet still
demonstrated superior performance. One of the major challenges
in FCD lesion detection is the occurrence of false-positive clusters
that do not have any overlap with the ground truth. Table 5
showed the statistical results on the individual level, which
counts the false-positive, true positive, false negative, and ground
truth clusters, respectively. All predicted results were subjected
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TABLE 2 Performance metrics for different methods on Open and Private datasets.

Dataset Open dataset

Methods DC↑ Pre↑ Rec↑ IoU↑ HD95↓
UNETR++ 0.367 ± 0.316 0.472 ± 0.406 0.362 ± 0.331 0.271 ± 0.247 28.189 ± 33.847

CoTr 0.394 ± 0.318 0.466 ± 0.382 0.397 ± 0.319 0.291 ± 0.244 33.997 ± 39.651

nnFormer 0.343 ± 0.275 0.398 ± 0.345 0.376 ± 0.312 0.241 ± 0.207 59.206 ± 40.810

Res-Unet 0.416 ± 0.310 0.528 ± 0.387 0.403 ± 0.324 0.310 ± 0.249 20.451 ± 26.830

nnUNet 0.403 ± 0.316 0.524 ± 0.390 0.384 ± 0.328 0.300 ± 0.253 22.318 ± 29.766

MedNeXt_L3 0.432 ± 0.312 0.522 ± 0.384 0.444 ± 0.338 0.325 ± 0.254 17.525 ± 27.450

MedNeXt_M3 0.428 ± 0.316 0.543 ± 0.391 0.418 ± 0.333 0.323 ± 0.255 20.490 ± 26.986

LEM-UNet(our) 0.452 ± 0.310 0.546 ± 0.384 0.447 ± 0.338 0.346 ± 0.263 16.749 ± 26.830

Dataset Private Dataset

UNETR++ 0.549 ± 0.269 0.569 ± 0.309 0.621 ± 0.299 0.432 ± 0.238 27.138 ± 21.695

CoTr 0.534 ± 0.246 0.569 ± 0.303 0.590 ± 0.281 0.399 ± 0.209 27.935 ± 22.156

nnFormer 0.512 ± 0.237 0.497 ± 0.286 0.651 ± 0.261 0.376 ± 0.204 35.113 ± 24.957

Res-Unet 0.556 ± 0.238 0.560 ± 0.286 0.604 ± 0.268 0.419 ± 0.212 26.513 ± 20.968

nnUNet 0.560 ± 0.252 0.584 ± 0.291 0.616 ± 0.275 0.428 ± 0.227 25.846 ± 21.736

MedNeXt_L3 0.579 ± 0.239 0.624 ± 0.288 0.631 ± 0.274 0.444 ± 0.221 24.851 ± 20.782

MedNeXt_M3 0.568 ± 0.250 0.616 ± 0.294 0.630 ± 0.277 0.436 ± 0.230 24.535 ± 19.920

LEM-UNet(our) 0.597 ± 0.230 0.626 ± 0.278 0.659 ± 0.253 0.460 ± 0.217 22.763 ± 18.263

An upward arrow (↑) indicates that a higher value for the metric corresponds to better model performance, while a downward arrow (↓) signifies that a lower value indicates better performance.
Bold values indicate the best performance value for each metric.

TABLE 3 Segmentation performance based on pathology and seizure
freedom in Open and Private dataset.

DC↑ Rec↑ DC>0.0
(n)

Patients
(n)

Private Dataset

FCD I 0.655 ± 0.203 0.704 ± 0.236 13 13

FCD IIA 0.605 ± 0.247 0.680 ± 0.233 31 31

FCD IIB 0.555 ± 0.239 0.650 ± 0.281 51 52

FCD IIIB 0.806 0.742 1 1

MCD 0.620 ± 0.217 0.591 ± 0.247 23 23

Other 0.677 ± 0.117 0.789 ± 0.057 5 5

Seizure freedom

Seizure-free 0.600 ± 0.233 0.669 ± 0.250 117 118

Not
seizure-free

0.554 ± 0.158 0.444 ± 0.207 7 7

Open Dataset

FCD IIA 0.357 ± 0.349 0.306 ± 0.319 9 15

FCD IIB 0.578 ± 0.254 0.554 ± 0.282 27 31

NA 0.375 ± 0.339 0.410 ± 0.377 21 32

Seizure freedom

Seizure-free 0.538 ± 0.293 0.491 ± 0.296 29 34

Not
seizure-free

0.380 ± 0.323 0.362 ± 0.329 5 8

NA 0.386 ± 0.338 0.424 ± 0.383 23 36

“Other” includes TSC, Gliosis, and MOGHE pathologies.

to the same connected component post-processing procedure.
If retaining only the largest connected component did not
yield an improvement in the DC score, the original predictions
were preserved, and no non-largest connected components were
removed. Independent connected components were identified
using the standard 3D 26-connectivity criterion. The results
demonstrate that our method exhibits strong performance in
identifying true positive clusters, achieving the fewest false-positive
clusters on the Open Dataset. In contrast, nnFormer predicted a
relatively larger number of false-positive clusters on both datasets.

MRI-negative result: We included a discussion on MRI-
negative patients. Table 6 displayed the results of different models
on 16 MRI-negative patients from Private Dataset. These 16
patients appeared positive on PET. Most models experienced
varying degrees of performance degradation on these difficult-
to-identify MRI-negative patients. For example, the nnUNet’s
DC score dropped by 6.00%, and the Res-Unet’s DC score
dropped by 2.00%. However, the hybrid transformer architecture
model appeared relatively stable. Our method showed only a
slight performance degradation and fully identified all 16 MRI-
negative patients.

3.3 Visualization comparison and
discussion

The visualization results of two datasets are illustrated in
Figure 5. The first two rows display the visualization results on
the Private Dataset, while the last two rows show the visualization
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TABLE 4 Comparison of individual detection rates and average detection rates across the three directional slices between LEM-UNet and other models
across two Datasets.

Individual Slice

Dataset Open Dataset Private Dataset Open Dataset Private Dataset

Methods DC>0.0 DC>0.22 DC>0.0 DC>0.22 DC>0.0 DC>0.22 DC>0.0 DC>0.22

UNETR++ 64.10 58.97 92.80 87.20 51.97 47.44 76.67 69.62

CoTr 73.08 64.10 92.80 84.80 58.49 51.82 76.25 69.04

nnFormer 70.51 62.82 97.60 85.60 55.41 50.25 81.15 70.91

Res-Unet 71.79 66.67 96.00 88.00 58.27 52.15 78.58 70.76

nnUNet 70.51 62.82 96.80 85.60 55.41 50.08 78.90 70.93

MedNeXt_L3 73.08 67.95 97.60 91.20 61.06 56.18 78.63 71.88

MedNeXt_M3 71.79 66.67 96.80 88.80 58.97 53.22 78.32 71.03

LEM-UNet(our) 73.08 67.95 99.20 89.60 61.45 56.78 81.22 74.16

Bold values indicate the best performance value for each metric.

TABLE 5 Comparisons of the number of ground GT lesions, TP lesions, FP
lesions, and FN lesions among models different on two Datasets.

TP
lesions

FP
lesions

FN
lesions

GT
lesions

Private Dataset

UNETR++ 116 42 9 125

CoTr 116 9 9 125

nnFormer 122 101 3 125

Res-Unet 123 31 2 125

nnUNet 121 34 4 125

MedNeXt_L3 122 23 3 125

MedNeXt_M3 121 57 4 125

LEM-UNet(our) 124 17 1 125

Open Dataset

UNETR++ 50 45 28 78

CoTr 57 78 21 78

nnFormer 55 109 23 78

Res-Unet 56 30 22 78

nnUNet 55 37 23 78

MedNeXt_L3 57 23 21 78

MedNeXt_M3 56 20 22 78

LEM-UNet(our) 57 13 21 78

TP, true positive; FP, false-positive; FN, false negative; GT, ground truth. Bold values indicate
the best performance value for each metric.

results on the Open Dataset. The ground truth is set to white, while
the model’s predicted results are set to red and superimposed upon
the ground truth for comparison. We observe that transformer-
based models exhibit a significantly lower ability to capture positive
samples in this task compared to CNN-based models. They struggle
to correctly identify FCD lesions with blurred edges and subtle

features, even resulting in missed detections, as seen in the CoTr
prediction results. By comparing all visualized outcomes, LEM-
UNet demonstrates superior performance in capturing the lesion
details. Furthermore, our network, by enhancing the focus on edge
information, becomes more sensitive to lesion edges, increasing
the number of true positive identifications while reducing the
likelihood of false positives.

The heat map shown in Figure 6 further illustrates the network
focus when processing features. In the LEA block, it has a stronger
focus on the edges of the lesion, with a color gradient from blue to
red indicating low to high intensity.

3.4 Ablation study

In this section, we underscore the significance of each proposed
block by conducting a series of ablation studies. Before proceeding
with the ablation experiments, a brief discussion will be held on the
initialization value of the learnable parameter λ. The experiments
will be conducted on the Private Dataset, and the results are shown
in Table 7.

Performance is evaluated based on three metrics: DC, Pre,
and Rec. It is observed that when λ = 0.5, the model exhibited
superior comprehensive performance, with a higher Pre and DC
score compared to when λ = 0.3 or λ = 0.7. Next, we proceed
with the deployment of ablation studies. Within the context of the
LEM-UNet framework, the LEA and MFF blocks are of paramount
importance. Given that one of the inputs to the MFF block is the
output of the LEA block, this paper evaluates the segmentation
outcomes when the MFF and LEA blocks are sequentially removed,
in order to validate the performance of each block. We conduct
these assessments on the MedNeXt_M3 baseline with a parameter
setting of λ = 0.5, using the Private Dataset, and present the results,
as detailed in Table 8.

In LEM-UNet, the incorporation of the edge attention module
improves model capabilities but also introduces additional resource
overhead. We conducted a comprehensive comparison of the
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TABLE 6 The evaluation results of MRI-negative patients on different models.

Methods DC↑ Pre↑ Rec↑ IoU↑ HD95↓ DC>0.0 FP lesions

UNETR++ 0.551 ± 0.244 0.586 ± 0.301 0.602 ± 0.272 0.415 ± 0.221 32.477 ± 30.586 15 18

CoTr 0.533 ± 0.224 0.559 ± 0.280 0.605 ± 0.298 0.388 ± 0.179 33.176 ± 26.552 15 2

nnFormer 0.507 ± 0.210 0.529 ± 0.301 0.633 ± 0.211 0.363 ± 0.176 42.413 ± 30.991 16 34

Res-Unet 0.536 ± 0.235 0.572 ± 0.276 0.563 ± 0.287 0.394 ± 0.186 35.872 ± 31.909 14 5

nnUNet 0.500 ± 0.224 0.540 ± 0.289 0.549 ± 0.290 0.360 ± 0.192 35.380 ± 24.813 16 11

MedNeXt_L3 0.555 ± 0.248 0.594 ± 0.288 0.594 ± 0.284 0.419 ± 0.224 32.904 ± 31.399 16 10

MedNeXt_M3 0.560 ± 0.196 0.613 ± 0.254 0.607 ± 0.233 0.413 ± 0.192 33.912 ± 30.913 16 12

LEM-UNet(our) 0.591 ± 0.199 0.673 ± 0.267 0.613 ± 0.236 0.445 ± 0.193 27.542 ± 26.472 16 3

Bold values indicate the best performance value for each metric.

FIGURE 5

Visualization comparison on Open and Private Datasets (Private Dataset: first two rows, Open Dataset: last two rows). (a) The T1 image, (b) ground
truth, (c–j) illustrated the visualization results of LEM-UNet(ours), MedNeXt_M3, MedNeXt_L3, nnUNet, UNETR++, Res-Unet, CoTr, and
nnFormer separately.

parameter counts and computational complexity between LEM-
UNet and other models, as shown in Table 9. Compared to
the baseline model MedNeXt_M3, LEM-UNet exhibits higher
computational complexity but achieves superior segmentation
performance. Our approach strikes a better balance between
computational resource utilization and performance enhancement.

4 Discussion

The segmentation of FCD lesions is highly complex, as their
characteristics vary across different imaging modalities and are
often characterized by blurred edge, posing significant challenges
to the segmentation task. The success of FCD lesion resection
surgery heavily depends on the precision of the resection area.
Therefore, we propose integrating edge enhancement methods

into convolutional networks, aiming to improve segmentation
performance by enhancing high-frequency edge information of
lesions, thereby providing a reliable reference for the clinical
diagnosis of FCD lesions.

From the experimental results, LEM-UNet demonstrates
superior performance, outperforming comparison models across
multiple key metrics, as shown in Table 2. Furthermore, our
method exhibits significant advantages in individual and slice
detection rates, achieving 99.20% and 81.22% (DC > 0.0) on
the Private Dataset, respectively. Based on visualization of feature
maps, the LEA block demonstrates the ability to capture high-
frequency edge information of lesions, as illustrated in Figure 6,
although these edge cues are not entirely closed. According to
the ablation study, the integration of the Laplacian pyramid
with CBAM effectively enhances the network’s focus on high-
frequency edge information of FCD lesions, which is one of the key
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FIGURE 6

Heatmap visualization of the output in LEA and MFF blocks. Each row represents a case (a–c) from Open Dataset. The first column displays the
patient’s T1 image, the second column shows the patient’s FLAIR image, the third column shows the output of the first LEA block: f1

edge, the fourth

column presents the output of the last MFF block: f1
mff , the fifth column displays the predict result, and the last column depicts the GT that are set

to red.

TABLE 7 λ initialization in LEM-UNet on Private Dataset.

λ DC↑ Pre↑ Rec↑
0.7 0.589 0.631 0.635

0.5 0.597 0.626 0.659

0.3 0.591 0.634 0.637

Bold values indicate the best performance value for each metric.

TABLE 8 Ablation study of proposed blocks for LEM-UNet on Private
Dataset.

Baseline LEA block MFF block DC↑
� 0.568

� � 0.588

� � � 0.597

factors contributing to the improved segmentation performance
of LEM-UNet.

Deep learning-based methods have demonstrated promising
performance in FCD lesion segmentation tasks (e.g., Thomas
et al., 2020; Zhang X. et al., 2024; Niyas et al., 2021). However,
compared to the excellent segmentation results in other tasks,
such as brain tumor segmentation and polyp segmentation, there

TABLE 9 Comparison of computational complexity for different models
on Private Dataset.

Method Parameters (M) GFLOPs DC↑
UNETR++ 42.64 72.52 0.549

CoTr 41.91 689.97 0.534

nnFormer 37.67 63.68 0.512

Res-Unet 12.08 678.97 0.556

nnUNet 31.20 482.69 0.560

MedNeXt_L3 61.78 500.00 0.579

MedNeXt_M3 17.54 254.44 0.568

LEM-UNet (our) 17.66 336.83 0.597

is still under-segmentation, which may be closely related to
the complexity of FCD lesions. Previous approaches primarily
focused on feature fusion and enhancement, contributing to
addressing segmentation challenges such as semantic gaps, spatial
information loss, and limited receptive fields. However, they
often overlooked edge features that are particularly meaningful
for segmentation tasks. To address this, we introduced the
Laplacian pyramid to process lesion edges, leveraging the
characteristics of FCD lesions to reduce the false positive rate
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in segmentation results. By incorporating edge analysis tailored
to FCD lesion features, LEM-UNet maximizes the capture of
morphological characteristics of lesion edges while focusing on
deep abstract features, which is a key advantage of our method over
existing algorithms.

Nevertheless, the proposed method still suffers from the
inherent limitations of deep learning frameworks, such as
its dependence on the accuracy of training data annotations.
Additionally, the small dataset size restricts the model’s
generalizability and robustness. We performed five-fold cross-
validation on both Open and Private Datasets and conducted
a series of optimization experiments. However, due to the
limited availability of FCD data, our method did not use scan
data from another center as an independent test set to test the
model performance, which is another limitation. Future work
will integrate multi-center data to comprehensively enhance the
model’s generalization capability.

5 Conclusion

In this study, we introduce LEM-UNet, an advanced framework
for 3D FCD lesions segmentation in multimodal medical images,
fortified by the innovative LEA and MFF blocks. We designed
the LEA block, which uses a 3D Laplacian pyramid to capture
shallow edge information in images, combined with the CBAM
to achieve precise localization from global information to local
lesion information, further guiding the network to focus on lesion
edges and detailed information. Additionally, we designed the MFF
block, which combines high-frequency edge features with advanced
prediction features, overcoming semantic differences between
feature maps while further eliminating redundant information. We
deploy these designed modules in the MedNeXt_M3 framework,
and the results evaluated through five metrics demonstrate
that our method provides competitive performance, with overall
metrics superior to other SOTA methods. This emphasizes the
effectiveness of our proposed framework in the field of medical
image segmentation.
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