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The expansion of large-scale neural recording capabilities has provided new 
opportunities to examine multi-scale cortical network activity at single neuron 
resolution. At the same time, the growing scale and complexity of these datasets 
introduce new conceptual and technical challenges beyond what can be addressed 
using traditional analysis techniques. Here, we present the Similarity Networks 
(SIMNETS) analysis framework: an efficient and scalable pipeline designed to 
embed simultaneously recorded neurons into low dimensional maps according to 
the intrinsic relationship between their spike trains, making it possible to identify 
and visualize groups of neurons performing similar computations. The critical 
innovation is the use of pairwise spike train similarity (SSIM) matrices to capture 
the intrinsic relationship between the spike trains emitted by a neuron at different 
points in time (i.e., different experimental conditions), reflecting how the neuron 
responds to time-varying internal and external drives and making it possible to 
easily compare the information processing properties across neuronal populations. 
We use three publicly available neural population test datasets from the visual, 
motor, and hippocampal CA1 brain regions to validate the SIMNETS framework 
and demonstrate how it can be used to identify putative subnetworks (i.e., clusters 
of neurons with similar computational properties). Our analysis pipeline includes 
a novel statistical test designed to evaluate the likelihood of detecting spurious 
neuron clusters to validate network structure results. The SIMNETS framework 
provides a way to rapidly examine the computational structure of neuronal networks 
at multiple scales based on the intrinsic structure of single unit spike trains.
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1 Introduction

The neural processes underpinning complex sensory, cognitive, 
and behavioral phenomena engage complex activation patterns 
across brain-wide networks (Fox et al., 2005; Greicius et al., 2003; 
Raichle et al., 2001; Sporns, 2013; Thomas Yeo et al., 2011). Within 
large-scale networks, smaller clusters of computationally 
interrelated neurons have been proposed to embody fundamental 
input–output processing modules (‘subnetworks’) responsible for 
perceptual integration, dexterous motor control, and memory 
storage or retrieval (Briggman et al., 2006; Harris, 2005; Truccolo 
et  al., 2010; Yuste, 2015; Zagha et  al., 2015). While recent 
technological advances have made it possible to record from ever 
larger neuronal populations at single neuron resolution (Buzsáki, 
2004; Chung et al., 2022; Donoghue, 2002; Maynard et al., 1997; 
Paulk et al., 2022; Steinmetz et al., 2021; Steinmetz et al., 2018), 
progress in understanding the computational organization of large 
networks has been hindered because of the lack of appropriate 
conceptual and technical frameworks that are mathematically 
principled; amenable to a range of statistical tools, flexible, scalable; 
and fast enough to work on large datasets (Brown et al., 2004; Gao 
and Ganguli, 2015; Paninski and Cunningham, 2018; Stevenson 
and Kording, 2011; Zador et al., 2022). Objectively identifying and 
characterizing subnetwork structure within and across brain areas 
would greatly simplify the process of tracking information flow 
within cortical circuits, modeling multi-scale neural dynamics, and 
understanding the general principles of neural information 
processing (Alivisatos et al., 2013; Kohn et al., 2020; Urai et al., 
2022; Yuste, 2015).

How can computational subnetworks be identified? In cortical 
areas where the tuning properties of individual neurons are well-
established, such as the primary visual (V1) and motor (M1) regions, 
the most straightforward approach to assessing computational inter-
relationships would be  to calculate tuning parameter similarities 
across neurons (Berman et  al., 1987; Georgopoulos et  al., 1982; 
Livingstone et al., 1996). However, simple parametric tuning models 
often fail to capture the temporal complexities of single neuron 
outputs and can perform poorly or even break down entirely under 
more ecologically or ethologically relevant experimental conditions 
(David et al., 2004; Hosman et al., 2021; Olshausen and Field, 2005; 
Pospisil and Bair, 2021). Moreover, classic single-neuron tuning 
function estimation techniques can miss or “average away” 
computationally-relevant features of individual spike trains 
(Churchland and Shenoy, 2007; Cunningham and Yu, 2014; Malik 
et al., 2011).

A variety of useful and important tools have been developed to 
study coordinated neuronal activity based on the underlying premise 
that similar spike patterns shared by a pair of neurons imply similar 
information processing properties (Abeles and Gat, 2001; Aertsen 
and Gerstein, 1985; Amarasingham et al., 2012; Gerstein et al., 1985; 
Gerstein and Michalski, 1981; Grün et al., 2002a; Kiani et al., 2015; 
Lopes-dos-Santos et  al., 2013). These methods group neurons 
according to the similarity of spiking statistics (e.g., coincident 
spiking or correlated spike rate fluctuation). However, the mechanistic 
origin and computational significance of these correlations have 
proven more complex than initially theorized and are not fully 
understood (Brody, 1999; Cole et al., 2016; de la Rocha et al., 2007; 
Friston, 2011; Roudi et al., 2015; Smith and Kohn, 2008; Soudry et al., 

2013). This approach has limited the utility and explanatory power of 
inter-neuronal correlations as a means for establishing the 
computational relatedness of neurons within a common feature 
space. These interpretational issues are further confounded by the 
significant statistical and computational challenges that come with 
implementing these methods at scale (Amarasingham et al., 2012; 
Brody, 1999; Cohen and Kohn, 2011; de la Rocha et al., 2007; Soudry 
et al., 2013).

Here, we present SIMNETS, an unsupervised relational analysis 
framework designed to generate low-dimensional neuron maps that 
quantify and support a multi-scale view of the computational 
similarity relations among individual neurons. For the purposes of 
our analysis, we  define computation as the mapping of a set of 
inputs to a set of outputs according to a given set of rules (Agüera 
y Arcas et al., 2003; Kanerva, 2009). Under these conditions, the 
computational equivalence of any two neural systems should not 
be sought solely in the actual pattern of their spiking outputs, but 
in the relations of their outputs to one another within each system 
(Kanerva, 2009; Shepard and Chipman, 1970). Based on this 
principle, SIMNETS compares neurons using the intrinsic relational 
structure of their firing patterns, represented by a spike train 
similarity (SSIM) matrix that captures the relative changes in 
activity across a set of predetermined time windows. In this way, 
each SSIM matrix can be considered to represent the “output space” 
of a neuron, which serves as a computational “fingerprint” within 
the context of a given dataset (Vargas-Irwin et  al., 2015a). By 
employing the single neuron SSIM matrix representation of 
individual neuron output spaces, we can efficiently quantify the 
computational relationships among all neuron pairs within a 
population of concurrently recorded single units using relatively 
straightforward techniques, such as vector correlation or regression. 
As we will demonstrate, this type of inter-neuronal 2nd-order spike 
train comparison—the Computational Similarity (CS) score—
becomes an effective means for identifying neurons that share 
computationally similar output spaces, even in cases where diverse 
encoding strategies are employed. For instance, consider two 
neurons responding to a specific subset of trials – one through 
elevated firing rates and the other through specific spike timing 
sequences. Despite distinct coding mechanisms, an appropriate 
similarity metric can capture the underlying congruency in trial-
dependent response modulation. This approach enables the 
assessment of more nuanced computational relationships among 
biophysically diverse neurons. In short, neurons that have the same 
pattern of change in their responses across trials (i.e., intrinsics 
spike train similarity structure) are considered to be performing 
similar computations. For very large neuron populations, we can 
simplify the population-level interpretation of the set of CS scores 
by projecting the high-dimensional CS matrix into a lower-
dimensional coordinate space, such that each point in this latent 
space represents a neuron and the distance between them 
corresponds to their degree of computational similarity. The 
geometric structure of the low-dimensional neuron embedding can 
greatly facilitate the identification of discrete clusters and gradients 
of functionally related neurons. As we will demonstrate, this general 
framework can efficiently scale to large numbers of trials and 
neurons, making the method particularly suited for examining 
large-scale neural recording datasets that were collected under 
ecologically or ethologically relevant experimental conditions.
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2 Methods

The flow chart presented in Figure 1 provides a general overview 
of the main steps used for analyzing neural ensemble data using the 
SIMNETS framework:

 (1) Selecting spike trains. Time series data representing the activity 
of N simultaneously recorded neurons (e.g., N spike time 
sequences) are split into S equal-duration time segments 
corresponding to experimentally relevant periods of interest.

 (2) Generating a Spike train Similarity (SSIM) matrix for each 
neuron. Use an appropriate metric (e.g., VP edit-distance; 
Victor and Purpura, 1996) to calculate the intrinsic pairwise 
similarities among each neuron’s set of S spike trains, resulting 
in a set of N SxS SSIM matrices.

 (3) Calculating the NxN Computational Similarity (CS) matrix. 
Calculate the pairwise similarities (e.g., Pearson’s correlation r) 
among all pairs of single neuron SSIM matrices. The resulting 
set of CS scores is represented as a NxN population CS matrix, 
where each entry depicts the similarities among the output 
space of a neuron pair and depicts the overall pattern of 
relationships among the neurons for the experiment.

 (4) Visualizing results using dimensionality reduction (DR). An 
appropriate DR method (t-distributed stochastic neighbor 
embedding [t-SNE], multidimensional scaling [MDS], etc.) can 
be applied to the SSIM matrices generated in step 2 to visualize 

the single neuron SSIM matrix as SSIM maps (example provided 
in Figure 2C) where each point represents an individual spike 
train, and the distance between them represents their relative 
similarity (Maaten and Hinton, 2008). This step makes it easier 
to interpret the neuron’s relationship to task variables (e.g., 
stimulus inputs, movement types, outlier trials) and ultimately 
their computational role within the context of higher-level 
network structures. Applying DR to the CS matrix generated in 
step 3 will produce a low-dimensional CS map, with each point 
corresponding to an individual neuron, and the distance between 
them corresponds to their relative computational similarity (i.e., 
the similarity between their respective SSIM matrices).

The CS map is the main output of the algorithm, capturing the 
computational organization of the ensemble in a latent space 
representation and serving as a starting point for further analysis 
aimed at identifying groups of neurons with similar computational 
properties. The following sections and figures describe specific steps 
(Figures 2, 3) and subsequent analysis (Figure 4) in more detail.

2.1 Representing single neuron output 
spaces using SSIM matrices

One of the key innovations of the SIMNETS framework consists 
of using single neuron SSIM matrices as a “computational fingerprint” 

FIGURE 1

Flow diagram of the SIMNETS analysis framework. See Methods section for details.
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to represent the intrinsic structure of the output space of individual 
neurons. This is accomplished by performing within-neuron measures 
of pairwise spike train similarity across all spike trains for each 
neuron, resulting in an SxS single neuron SSIM matrix for each of the 
N neurons (Figure  1 step  2; Figure  2B). Multiple approaches to 
estimate the similarity between pairs of spike trains have been 
proposed (Paiva et al., 2010) and could be used for this step. Here, 
we  use the spike train metric proposed by Victor and Purpura 
(Houghton and Victor, 2010; Victor and Purpura, 1997; Victor and 
Purpura, 1996; See Box 1 for description).

In the current work, each single neuron SSIM matrix represents 
the relationship (i.e., similarity) between all spike trains for a single 
neuron for the specific time windows selected for all simultaneously 
recorded neurons. Figure 2. presents three examples of SSIM matrices 
derived from the spike trains of simulated neuron responses (Linear 
Non-Linear Poisson functional model; Meyer et al., 2016). Entries 
equal to zero (black) in the matrices represent identical spike trains 
(zero VP cost), while higher values represent increasing differences 
between the spike trains. For ease of viewing, the rows/columns of 
the matrices have been sorted according to simulated experimental 

conditions. Note that a specific ordering of the spike trains is not 
required for the subsequent comparisons (and is only included for 
illustrative purposes). It can be useful to graphically illustrate the 
relationship between individual spike trains across the experiment 
captured by the single neuron SSIM matrices using dimensionality 
reduction (Figure 2B). Here, we use PCA-initialized tSNE (Maaten 
and Hinton, 2008): a combined unsupervised dimensionality 
reduction technique that aims to preserve the local neighborhood 
structure, via t-SNE, as well as information related to the global 
shape, via PCA-initialization (Kobak and Linderman, 2021; Lee et al., 
2015). The non-random PCA-initialization also ensures 
reproducibility across iterations (Kobak and Linderman, 2021). This 
mapping step is not necessary for the following steps of the SIMNETS 
analysis pipeline, but these maps can be  useful to visualize and 
compare the features coded in the population. For example, in 
Figure 2B, the single neuron SSIM maps illustrate the separation of 
orientation selectivity in simulated neuron n1, the spatial frequency 
selectivity in n2, and the combined spatial and orientation selectivity 
of n3 (See Supplementary Figure S1; supplementary material for 
additional discussion and examples). Changes in the shape of the 

FIGURE 2

Single neuron Spike train Similarity (SSIM) matrices capture the intrinsic structure of each neuron’s spike train output space (OS) without the need for 
extrinsic labels or tuning models. (A) Spike train raster plots for three computationally distinct LNP model V1 neurons (n1, n2, n3) during simulated 
receptive field stimulation (Meyer et al., 2016). Three visual stimulus (VS) conditions include a vertically oriented grating of low spatial frequency (SF; 
red, cond 1); a horizontally oriented, high SF grating (yellow, cond 2); and a horizontally orientated, low SF grating (blue, cond 3). Gray shaded region in 
the n1 raster plot highlights a similar pair of spike trains from VS condition 1 (S19–S20) and a similar pair from VS condition 2 (S21–S22) that will 
be highlighted in B. (B) Neuron n1 (top), n2 (middle), n3 (bottom) single neuron SSIM matrices depict the SxS pairwise similarities among a neuron’s 
spike trains (a within-neuron comparison). Similarities are described in terms of “cost-based” edit distance (grayscale color bar), where smaller distance 
values correspond to similar spike trains (black, lowest edit-cost), and increasingly large distance values are increasingly dissimilar spike train outputs 
(white, larger edit-cost). The orange square in the top row (n1 SSIM matrix) highlights the set of distance values for the example spike trains S19–S22 
[highlighted in (A)]. The magenta squares in the (bottom row; n3 single neuron SSIM matrix) highlight the matrix region that contains containing 
“within-condition” edit-distances (n3 cond-1, n3 cond-1) and “between-condition” distances (n3 cond-1, n3 cond-3). (C) Three single neuron SSIM 
maps, the low-dimensional projection of each neuron’s single neuron SSIM matrix [from (B)]. The intrinsic geometry of each neuron’s spike train 
output space provides a richer and intuitive representation of trial-by-trial single-neuron functional responses than standard parametric or statistical 
descriptions of single neuron responses (e.g., trial-averaged tuning curves).
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SSIM output space map may also indicate the influence of other 
variables which are not explicitly manipulated.

2.2 Computational similarity map: 
comparing single neuron output spaces

Each SSIM matrix characterizes the intrinsic geometry of the 
output space for a specific neuron. The next step of the algorithm 
compares these “computational fingerprints” across the full set of 
recorded neurons. This second-order comparison is made by 
correlating each pair of SSIM matrices (Figure 1, step 3; Figure 3). 
Here we use Pearson’s correlation (Figure 3A). Each correlation 
value is entered into a symmetrical (N x N) matrix (Figure 3B) 
representing the relationships across neurons, which we term the 
Computational Similarity (CS) matrix. Applying dimensionality 
reduction (here, PCA-initialized t-SNE; Maaten and Hinton, 2008) 
to the CS matrix creates a CS map (Figure 1, step 4; Figure 3C). 
Note that, while each colored point in a single neuron SSIM map 
represents an individual spike train (Figure 2C), each point in the 
CS map represents a neuron (Figure 3C). In the population CS 
maps, the distance between neurons is a relative measure of the 
similarity of computational fingerprints (the SSIM matrix). 
Therefore, neurons performing similar computations will tend to 
aggregate in clusters within the population CS map of neurons.

2.3 Identifying potential subnetworks: 
unsupervised cluster detection & validation 
procedure

After neurons are embedded in the CS map, the task of finding 
groups of neurons representing potential neuronal subnetworks can 
be  addressed using a wide variety of clustering algorithms. Here, 

we use the k-means clustering algorithm, an efficient centroid-based 
clustering method, however, other density-based, distribution-based, 
or hierarchical-clustering methods would also be appropriate. The 
k-means algorithm works by iteratively assigning neurons into the 
pre-specified number of k clusters until the optimal solution is 
reached. However, the challenge is to ensure that the clustering 
structures identified by the k-means algorithm reflect genuine clusters 
within the CS neuron map and not false discoveries. To address this 
issue, we combined the k-means algorithm with two different cluster 
validation techniques, a silhouette graphical analysis and our novel 
shuffle-based statistical test, which together help avoid false cluster 
discovery (Figure 4).

Silhouette analysis is a validation technique used to determine 
the most likely number of clusters in a dataset (Figure  4; 
Rousseeuw, 1987). A silhouette value represents the ratio of the 
between to within-cluster distances: a point within an ideal cluster 
will be close to members of the same cluster and far from points 
assigned to different clusters, resulting in a high silhouette value. 
Choosing the cluster number with the highest average silhouette 
value—the Silhouette Coefficient (SC) score—maximizes the 
separation between potential clusters (Figure  4C, red point). 
We use a novel shuffled-based resampling procedure to assess the 
statistical significance of the SC score to avoid false cluster 
discovery. The test relies on creating 1000’s of surrogate datasets 
through a shuffling or randomization procedure that is applied to 
the rows/columns of the single neuron SSIM matrices We use the 
matrix permutation technique used in the Mantel test, which was 
specifically designed to randomize pairwise distance matrices. 
This is accomplished by permuting both rows and columns 
together in order to preserve matrix symmetry. In this way, it is 
possible to produce a new distance matrix for each neuron where 
the relationship between the trials (i.e., which trials are most 
similar) is randomized. This procedure effectively destroys any 
dependencies among the neuron’s single neuron SSIM matrices 

FIGURE 3

The similarity between the output spaces (SSIM matrices) of all individual neurons is represented as a computational similarity (CS) matrix and low-
dimensional CS map. (A) The Computational Similarity matrix is calculated by correlating each pair of SSIM matrices, illustrated for three example 
neuron pairs. The regression line depicts the relationship among the VP distance values for each pair of neurons. The similarity of the top two matrices 
(n1 v n2) and the differences in the bottom two (n1 v n4) is captured in their respective Pearson correlation values. (B) Population CS matrix, 
highlighting the correlation values shown in A. (C) CS Map of neuron similarity across the population obtained by applying DR to the CS matrix. Each 
cluster in the CS map reflects a group of neurons with similar computational properties (i.e., a potential sub-network).
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and, consequently, the associated clusters with the CS neuron map 
(Figure 4B). The empirical SC score is only considered statistically 
meaningful if it falls outside a distribution of surrogate SC values 
calculated from the 1000’s of surrogate datasets created in this 
manner (Figure  4C, see blue dots; for further insights on 
conditional resampling; see Amarasingham et al., 2012; Schemper, 
1984). This unsupervised cluster detection and validation 
procedure supports the identification of statistically meaningful 
clusters of computationally similar neurons within the CS 
neuron maps.

3 Results

We apply the SIMNETS analysis framework to four different 
datasets. First, we apply the algorithm to a population of simulated 
neurons for which spike patterns were constructed to simulate three 
subnetworks encoding information using firing rates, precise spike 
timing, or a combination of the two (Figure  5). Next, we  apply 
SIMNETS analysis to three publicly available in-vivo experimental 
population recordings datasets from (1) macaque primary visual 
cortex (Kohn and Smith, 2016; Teeters and Sommer, 2009), (2) 

FIGURE 4

Novel shuffle-based silhouette analysis is used to detect and validate CS neuron clusters within an observed CS neuron map. The goal is to determine 
if an observed CS neuron map contains statistically meaningful neuron clusters. (A) Top: population CS matrix and map for an example simulated 
neuron population (same as Figure 3). Bottom: Two example single neuron SSIM matrices (n1 and n2) for a neuron pair with a high CS score 
(CS(r) = 0.65). (B) Top: Surrogate CS matrix and map generated using CS neuron scores obtained after independently randomizing spike train order in 
all single neuron SSIM matrices. Bottom: SSIM matrices for the neurons shown in A after shuffling display reduced CS scores. (C) The shuffling 
procedure is repeated many times (e.g.,10,000) to generate an empirical chance distribution of silhouette values and obtain acceptance bands. 
Shading denotes the 99% confidence interval of surrogate data, which serves as an acceptance band for the null hypothesis (see Amarasingham et al., 
2012; Schemper, 1984 for further discussion). The silhouette values of the original data (without shuffling) are overlaid in black. The highest silhouette 
value (highlighted in red) is used to select the optimal number of clusters. Clusters corresponding to the highest (Ksc = 4) are shown in the inset.
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macaque primary motor cortex (Rao and Donoghue, 2014), and (3) 
rat CA1 hippocampal region field (Pastalkova et al., 2015; Wang et al., 
2015) to illustrate the types of results the SIMNETS framework 
produces and how they may be  leveraged for further exploratory 
analyses and hypothesis testing (Figures 6–11; for algorithm inputs/
outputs for each dataset see: Supplementary Table S1). Finally, 
we highlight some of the positive attributes of the SIMNETS analysis 
framework and Toolbox that are particularly advantageous when 
analyzing large-scale neural recording data (Figure 12).

3.1 Simulated neuron population

We evaluated the performance of the SIMNETS algorithm using 
simulated neural data with known ground truth. This allowed us to 
verify that the algorithm clusters neurons with similar informational 
content even when they use different encoding schemes. We simulated 
a population of 180 neurons (N) composed of three computationally 
distinct subnetworks, SN1, SN2, and SN3 (Figure 5A). We generated 
an output structure for these subnetworks across three simulated 
experimental conditions (C1, C2, and C3). Each subnetwork emitted 
a similar “baseline pattern” for two of the conditions and a different 
pattern for a unique “preferred” condition (C1 for SN1, C2 for SN2, 
and C3 for SN3). Neurons from a common subnetwork were designed 
to encode similar information (i.e., respond differentially to one 
specific condition) using different encoding formats; for example, 20 
neurons in SN1 encoded condition A through a change in spike rates 
(rate-coding), another set of 20 neurons in the same subnetwork 
responded with a change in the timing of their spikes (temporal-
coding neurons), while the remaining neurons responded with 

changes in both spike rates and the spike time variations (mixed 
coding; e.g., Figure  5B). The other two subnetworks were also 
generated to include examples of rate coding, temporal coding, and 
mixed coding artificial neurons in the same proportions. We simulated 
30, one-second-long spike trains for each of the 180 artificial neurons, 
which included 10 repetitions of each condition (S = 30 spike trains 
per neuron; See Supplementary Table S1 for analysis summary).

SIMNETS can be used to quantify spike train similarity and explore 
single unit encoding properties across an experiment without assuming 
what coding schemes are relevant or what variables are generating spike 
train differences. It is also possible to examine the temporal accuracy of 
single unit spiking. To illustrate this point, the SIMNETS algorithm was 
applied using three different temporal accuracy values for the VP spike 
train similarity metric: a pure rate code (q = 0, i.e., no added cost for 
shifting spikes in time), 100 ms (q = 10), 5 ms (q = 200). The q parameter 
determines how sensitive the similarity metric is to differences in the 
timing of individual spikes, by setting an upper limit on how far spikes 
can be shifted in time (See Figure 5C, for three different single neuron 
SSIM matrices calculated using different q values). With a setting of 
q = 0, the simulated neurons operating with a rate-based encoding 
scheme and mixed coding neurons are grouped into three functionally 
distinct clusters in the CS map (Figure 5D, 2nd column), while temporal 
coding neurons form a single cluster at the center of the map (Figure 5D, 
3rdcolumn). As the value of q increases, the VP algorithm “cost” function 
becomes sensitive to differences in spike timing in addition to the total 
number of spikes (Victor and Purpura, 1996). SIMNETS correctly 
groups all neurons into three distinct clusters that reflect the ground-
truth functional ensemble assignments (Figure 5F). At the highest q 
value (Figure 5H), the CS map shows sub-groupings within each of the 
three ground-truth subnetworks that correspond to neuron’s encoding 
formats (Figure  5H, 3rd column); however, the optimal number of 
clusters remains in agreement with the ground-truth functional 
subnetwork assignments (Ksc = 3). By specifying a higher partition value 
for the k-means clustering step of the algorithm (e.g., k = 9), the 
sub-groupings within the detected clusters are defined by the coding 
properties of the neurons. For a demonstration of the interaction 
between the cluster number and the SIMNETS hyperparameters, 
perplexity and q, see Supplementary Figure S2.

To evaluate whether SIMNETS could successfully identify 
subnetworks, we  compared the distribution of Euclidean distance 
between individual neurons in the SIMNETS CS map for neuron pairs 
within and between the artificially generated (‘ground truth’) 
subnetworks (Figures  5E,G,I, histogram). The within-subnetwork 
similarity was significantly higher than between-subnetwork values in 
all cases (Mann–Whitney p < 0.001). For q values > 0, there was no 
overlap between the two distributions, indicating the complete separation 
of the artificially generated subnetworks. Our results demonstrate that 
the SIMNETS algorithm can accurately separate neurons according to 
their computational properties (the latent variables upon which they 
operate), even if they employ different coding schemes to represent 
information using spike rates or temporal patterns.

3.2 Application to empirical multi-neuronal 
recordings

We next applied SIMNETS to three distinct datasets of 
simultaneously-recorded, multiple single-unit recordings from three 

Box 1 Victor and Purpura edit-based spike train metric
This VP metric is one type of edit-distance measure to quantify the differences 

between pairs of spike trains. The method computes the total “cost” of 
transforming one spike train into another through a series of elementary 
operations (Victor, 2005; Victor and Purpura, 1996). These elementary 
operations include (1) inserting a spike, (2) deleting a spike, and (3) shifting a 
spike in time. Inserting or deleting a spike has a cost of c = 1 and shifting a single 
spike in time has a cost proportional to the amount of time that it is moved 
(c = qΔ t). The set of edits-steps associated with the minimum total edit-cost 
defines the shortest path or ‘distance’ (D) between two points (spike trains) in 
the neuron’s spike train metric-space. The q parameter, a measure of temporal 
precision of the comparison, influences the relative importance of spike count 
and spike time differences when assessing spike train similarities. When q = 0, 
the cost of shifting a spike to the desired location will always be cheaper than 
deleting and re-inserting a spike in a spike train. Thus, for D(q = 0), the 
minimum cost is simply the difference in the number of spikes between the spike 
trains (essentially a rate comparison). As the q value is increased beyond zero, 
spike timing begins to impact the cost of matching the spike trains. In this way, 
q controls the temporal resolution of the spike train comparison. In the context 
of the SIMNETS algorithm, a high q parameter will bias the algorithm toward 
grouping neurons based on information encoded over fine timescales, whereas 
a low q parameter will bias the algorithm toward grouping neurons based on the 
information encoded over coarse timescales; the temporal accuracy of the 
algorithm can be characterized as 1/q. The VP method has the advantage of 
operating directly on point process data (preserving the natural statistical nature 
of spike trains), allowing for comparisons between relatively long spike trains (on 
the order of seconds) while preserving details of millisecond scale spike timing, 
by changing the cost assigned to shifting spikes in time (q parameter in the VP 
algorithm, see supplemental methods for details). Additionally, a point-process 
metric space can capture non-linearities in the neuron’s output space (Aronov 
and Victor, 2004; Fernandez and Farell, 2009).
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different areas in two species: (1) nonhuman primate (NHP) primary 
visual cortex (V1) during visual stimulation (Kohn and Smith, 2016; 
Smith and Kohn, 2008), (2) NHP motor cortex (M1) neural recordings 
during a center-out reaching task (Rao and Donoghue, 2014), and (3) 
rat CA1 hippocampal region recordings during a left–right alternation 
maze task (Pastalkova et  al., 2015; Pastalkova et  al., 2008). These 
datasets were chosen because the functional roles of the neurons in 

these areas have been reasonably well-established and the information 
content of the single neuron and ensemble spiking patterns extensively 
described (Gur and Snodderly, 2007; Livingstone and Hubel, 1984; 
Rao and Donoghue, 2014; Smith and Kohn, 2008; Truccolo 
et al., 2008).

We note that these results are meant to illustrate the capabilities 
and utilities of the SIMNETS analysis pipeline and are not intended to 

FIGURE 5

SIMNETS analysis framework successfully organizes a population of simulated neurons utilizing heterogeneous spike train encoding schemes into 
ground-truth subnetworks. (A) Population representation of spike trains from a population of 180 simulated neurons with firing rate constructed 
according to three different coding schemes (rate, temporal, mixed); 10 spike trains for each of three conditions (C1–3) for an ensemble of N = 180 
simulated neurons. The neurons show a distinct pattern of spike rates across conditions, illustrating the different subnetwork groups. (B) Raster plot for 
one example neuron (n83) to illustrate a hybrid encoding scheme in which there is both rate change and different temporal structure in response to 
each of the conditions (C1-blue, C2-red, C3-yellow). (C) Three SSIM matrix representations for neuron #83, illustrating trial similarities organized 
according to stimulus blocks, illustrating the effect of q that emphasized firing rate (left; (1/q): infinite), coarse temporal (middle); 100 ms (coarse), and 
5 ms (fine) temporal differences in spike pattern on each train. Note that the coarse and fine temporal matrices best reveal this neuron’s condition-
dependent activity patterns, providing a quantifiable measure of similarity (distance) not readily available from the raster plot. (D,F,H) Population CS 
matrices for the population to identify subnetworks using pure rate codes (q = 0, no cost for shifting spikes in time), coarse temporal accuracy 
(1/q = 100 ms), or fine temporal accuracy (1/q = 5 ms). Neurons are colored according to clusters identified using k-means (left) or ground truth 
subnetwork designation (right). (E,G,I) Histograms showing normalized separation between neurons within each of the different SIMNETS maps for 
ground-truth “Intra-cluster” neuron pairs (light gray) and “Inter-cluster” pairs (dark grey).
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represent a full characterization of the role of any identified putative 
subnetworks. For a full analysis and interpretation, many more 
datasets (sessions/subjects) would be  required, as would various 
parameter sweeps to evaluate computational processes.

3.3 Macaque V1 neural population 
recordings during visual stimulation

We analyzed a dataset of 112 simultaneously recorded V1 neurons 
(recorded using a 96-channel “Utah” electrode array) during the 

presentation of drifting sinusoidal gratings in an anesthetized 
Macaque monkey (Kohn and Smith, 2016; Figure 6A). We extracted 
1 s of spiking data from the first 30 repetitions of each stimulus 
(S = 360), starting 0.28 s after stimulus onset (see Figure 6B for raster 
plots and single neuron SSIM matrices for two example neurons) to 
capture the neural stimulus response period (eliminating response 
delay). SIMNETS was applied to these NxS spike trains generated with 
a fixed temporal accuracy setting of 1/q = 50 ms. The resulting NxN 
CS neuron matrix is projected into a lower-dimensional CS space 
upon which further statistical and clustering analyses are performed 
(Figures 6D–F). An unsupervised k-means cluster analysis identified 

FIGURE 6

SIMNETS analysis framework captures known computational properties among a population of primate visual cortex neurons without the need for 
extrinsic labels or tuning models. (A) Normalized trial-averaged firing rates of a population of V1 neurons (N = 112, neurons) during the presentation of 
12 different drifting grating stimuli (S = 360 spike trains) for 1.28 s at six different orientations: 0, 60, 90, 120, 150 degrees, and two drift directions 
(rightward and leftward drift). Neurons are ordered along the y-axis according to peak firing rate for visualization purposes, only. (B) Two example 
single neuron raster plots (n34 and n79) and their corresponding SxS single neuron SSIM matrices for VP (q = 35). The colored line indicates the 
stimulus orientation and drift direction. (C) SIMNETS NxN CS map. (D–F) Low-dimensional (3xd) population CS map, with neurons labeled according 
to k-means cluster assignments (D), the neuron’s preferred stimulus orientation (E), and their orientation tuning strength (F). Example neurons, n34 and 
n79 (B), are indicated with arrows in (E). (G) Average silhouette score for the population CS map as a function of the number of clusters. Red circle 
indicates the SC at k = 3 (SC = 0.89; p < 0.0001; shuffled data). (H) Histogram showing the preferred orientation of the neurons within each of the 
three k-means CS neuron clusters from (D).
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3 clusters of related single neurons in the V1 CS map (Figures 6D,G; 
SC = 0.78, peak max average silhouette value), indicating that 
computational features did not fall along a functional continuum but 
instead were organized into three functionally distinct 
putative subnetworks.

To validate the performance of the SIMNETS algorithm, 
we examined the relationship between the structure of the CS map 
and the known tuning properties of V1 neurons. We used classic 
parametric tuning models to estimate the receptive field properties 
of all neurons and labeled the neurons in the CS neuron map 
according to their “preferred” stimulus orientation (Figure 6E) and 
tuning depth (Figure 6F). Each neuron’s preferred orientation was 
calculated by fitting a Gaussian distribution to the stimulus-
dependent firing rates and finding the orientation that maximizes the 
function over the range of orientations angles (θ = [0,180]) across 
both left and right drift directions. Tuning depth was calculated as 
the normalized difference between the peak and trough of the tuning 
function (See Supplementary methods). Again, we emphasize that 
the SIMNETS procedure is an entirely unsupervised approach and 
does not rely on any knowledge of the experimentally-induced 
neuron tuning functions to generate the CS map or to identify 
putative CS neuron clusters. We simply labeled each neuron with 
values obtained from its relationship to an experimental variable 
(here, grating direction) after the neurons were plotted in the 
SIMNETS CS map. A pairwise circular-linear correlation (rcl) 
statistical analysis revealed a strong positive correlation between 
neurons’ distance in the low-dimensional CS neuron map and the 
differences in their preferred orientation parameters (Pearson, 
rcl = 0.89). This relationship confirmed that neurons with similar 
preferred orientation were generally mapped near one another in the 
CS map (Figure 6E). The exception to this trend was observed for 
neurons with weaker tuning strengths (Figure 6F, brown points), 
which aggregated at the center of the CS neuron map. Overall, the 
distribution of the neurons’ preferred orientations corresponded well 
with the three observed clusters in the CS neuron space (Figure 6H). 
Collectively, these results confirm that the neurons’ sensitivity to the 
different stimulus orientations is a major contributor to the structure 
of V1 computational architecture. The CS map also reveals the 
presence of three computationally distinct groups of neurons within 
the context of this experimental paradigm.

The overall agreement between known V1 tuning features and the 
CS map generated using SIMNETS suggests that the algorithm will 
be able to identify computational architectures for neural systems 
where the tuning functions are not known a priori.

The DR techniques used to visualize the computational 
geometry representations of the single neuron SSIM maps 
(introduced in Figure 2) can be expanded to represent the combined 
output space of multiple neurons simultaneously, such as the CS 
neuron clusters (i.e., putative subnetworks) or the full neuron 
population. For multi-neuron SSIM maps, each point corresponds 
to the collective spiking pattern generated by all neurons within an 
ensemble (e.g., CS neuron cluster or full population) on a single 
trial, and the distance between points corresponds to the difference 
(spike train distance) in the neurons collective spike pattern across 
time. Here, we  use this approach to visualize the relationship 
between activity patterns for the full neuron ensemble (Figure 7B), 
the three CS neuron clusters (Figure  7C), and example single 
neurons from each of the three CS neuron clusters (Figure 7D). 

Standard single neuron plots (parametric tuning functions and 
rasters) were also included for comparison.

3.4 Macaque M1 neural population 
recordings center-out reaching task

As a second example, we applied the SIMNETS algorithm to a 
dataset of 103 M1 neurons recorded using a 96-channel electrode array 
in a macaque performing a planar, 8-direction arm reaching task (see 
Methods for more details). We extracted 1-s long spike trains (S = 114) 
from each neuron during all trials where the monkey successfully 
reached the cued target, starting 0.1 s before movement onset (Figure 8A; 
see Supplementary Table S1 for algorithm inputs and parameters). 
SIMNETS was applied to these NxS spike trains generated with a fixed 
temporal accuracy setting of 1/q = 50 ms. SIMNETS analysis revealed 
that the neurons were organized into three neuron clusters in the M1 CS 
map (Figures 8D,G, SC score = 0.71, M1 peak average silhouette).

To examine the relationship between these clusters and functional 
properties of the neurons, we characterized each neuron’s preferred 
reach direction (PD) angle and tuning depth (Figure 8F) in a similar 
manner to the V1 dataset. Each neuron’s PD was estimated by fitting 
a von Mises distribution to the firing rates as a function of direction 
(Supplementary Figure S3; Mardia and Zemroch, 1975) A circular-
linear correlation (rcl) analysis between the difference in PD and CS 
map distance between pairs of neurons revealed a significant positive 
relationship (Pearson, rcl = 0.92; p = 0.001), confirming that neurons 
with similar preferred directions tended to cluster together in the CS 
map, while neurons with dissimilar preferred directions were spatially 
distant (Figures 8D,E, right plot). After plotting the distribution of 
preferred reach direction, we again observed that the neuron tuning 
properties were similar across each of the three detected CS neuron 
clusters (Figure 8H).

SIMNETS analysis suggests that the computational properties of 
M1 neurons are not uniformly distributed along a functional 
continuum, as evidenced by the distinct CS neuron clusters identified 
in the population CS space. The separation between the CS neuron 
clusters is most apparent for CS neuron cluster 2 and cluster 3 
(Figure  8D, orange and yellow CS clusters), which mirrors the 
discontinuity in the distribution of preferred reach angles (Figure 8E). 
These results agree with previous findings, which support the 
hypothesis that the biomechanical constraints of the limb are reflected 
in an uneven distribution of preferred directions among motor 
cortical neurons (Lillicrap and Scott, 2013).

As with the V1 dataset, we used a multi-scale latent space analysis 
to visualize the relationship between spiking patterns across different 
scales within the CS map (Figure  9A), from the full ensemble 
(Figure 9B) to CS neuron clusters indicative of potential subnetworks 
(Figure  9C) and individual neurons functional properties 
(Figure  9D). Standard single neuron plots (parametric tuning 
functions and raster plots) are again included for comparison 
(Figure 9C). Each M1 neuron had a unique single neuron SSIM map 
that captured several computationally relevant features of the 
neurons’ spike train outputs (Figure 9C; SSIM matrices/maps for two 
example neurons). In contrast to the regular conical and circular 
parabolic shapes of the V1 single neuron SSIM spaces (Figure 7C), 
the M1 SSIM maps displayed more irregular and heterogenous global 
geometries (Figure 9D).
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3.5 SIMNETS subnetworks in a population 
of rat hippocampal CA1 neurons

Lastly, we assessed the CS structure of a population of hippocampal 
neurons using SIMNETS, a region that is both functionally and 
structurally quite different from the primary visual and motor 

neocortical areas examined above. We applied SIMNETS to a publicly 
available dataset of rat CA1 hippocampal neurons recorded using 
multi-site silicon probes in a rat performing a left/right-alternation 
navigation task in a “figure-8” maze (Pastalkova et  al., 2015; 
Figure  10A). All neurons with firing rates greater than 5 Hz were 
included in the analysis (N = 80/106 recorded neurons). The rat 

FIGURE 7

SIMNETS identifies clusters of primate V1 neurons with similar computational properties and displays the relationship between their activity patterns at 
multiple scales. (A) V1 SIMNETS CS neuron map: each point represents a neuron, and the distance between them reflects their computational 
similarity. Colors represent cluster assignment (c1–c3) obtained using k-means. The activity patterns for neurons highlighted with stars are shown in 
more detail on panel (D). (B) Population-level SSIM map. Each point corresponds to a single trial; pairwise distances between points correspond to the 
dissimilarity among the V1 population spiking pattern on those trials. Colors correspond to the drifting grating orientation (Or); light vs. dark hues 
correspond to right (Or <180°) or left drift direction (Or >180°). (C) Mesoscale SSIM maps generated using subsets of neurons corresponding to the 
clusters shown in panel (A). Note that the activity of each cluster of neurons reflects stimulus parameters in different ways, resulting in different SSIM 
map configurations. (D) Single unit SSIM maps, SSIM matrix, spike train raster plot, and parametric orientation tuning function (right drift direction in 
black, left in red) are shown for two example neurons from each of the three CS neuron clusters shown in panel A.
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performed 17 correct trials (T = 17, trials), taking an average of 4.3 s to 
reach the reward location at the end of the left or right arm of the maze. 
Spike trains used for the SIMNETS algorithm were obtained by 
extracting 1-s of spiking activity for each 80 mm increment of distance 
traveled by the rat (Figure 10B, left, example single neuron raster plots 
with S spike trains; see Supplementary methods). This resulted in a set 
of S = 442 spike trains (17 trials x 26 time-epochs) per neuron.

SIMNETS was applied to the set of SxN neurons, using the VP 
temporal sensitivity setting of q = 35 (Figures  10B,C; see 
Supplementary Table S1 for all algorithm inputs/outputs). After 
generating the low-dimensional CA1 population CS neuron map, 
we  characterized the organizing properties of the neuronal 
relationships using the unsupervised k-mean cluster detection/
validation procedure. This procedure identified Ksc = 5 statistically 
significant CS neuron clusters within the CA1 CS neuron map 
(SC = 0.70, peak max average silhouette value; Figure  10D), 
suggesting that the neurons are organized into five computationally 
distinct clusters of neurons. To verify this, we used two different 
classic functional characterization approaches to assign functional 
ids to the neurons within the SIMNETS CS map and assess their 
functional organization within the context of the CS neuron map 
(Supplementary Figure 10F). Specifically, we categorized the CA1 
neurons as having place cell-like activity (n = 60, place-cells, PCs) 
or lacking place cell-like activity (n = 20, non-place-cells, non-PCs) 
using an information-theoretic measure (Skaggs et al., 1992) and a 
spatial firing rate tuning functions (Figure  10B, example single 
neuron raster plots; see Supplementary methods for analysis 
details). As is reported in other studies, some of the neurons 
categorized as place-cells exhibited complex firing responses, such 
as multiple peak place-dependent firing responses 
(Supplementary Figure S3D, show example single neuron response 
functions). An examination of the physiological properties of the 
identified k-means neuron clusters revealed that one cluster was 
almost entirely (95%) composed of non-PCs (Figures  10E,F, 
K-means cluster c3, purple), while the other four k-means CS 
neuron clusters were entirely or almost entirely (>92%) composed 
of PC’s (Figures  10E,F). This indicated one of at least three 
possibilities: (1) the “non-PC CS cluster,” cluster c3 corresponded 
to a cluster of untuned, “uninformative” neurons, (2) that the 
individual neurons computed a common task-related signal that 
was unrelated to place-coding, or (3) that place-coding signals were 
only apparent at the level of the neuronal cluster rather than the 
individual neurons (Figure 10E, cluster c3). While a full exploration 
of these different possibilities is beyond the scope of this work, 
we do provide a demonstration of how the SIMNETS CS neuron 
maps may be used to visualize the relationship between spiking 
patterns across scales for hypothesis formation and testing 
(Figure 11).

Once again, we  used a multi-scale latent space analysis to 
visualize the relationship between spiking patterns across different 
scales within the CS map (Figure  11A), from the full ensemble 
(Figure 11B) to CS neuron clusters indicative of potential subnetworks 
(Figure  11C) and individual neurons functional properties 
(Figure 11D). As expected, the spatial layout of the task-space was 
reflected in the topology of the population-level SSIMS map 
(Figure  11B), while each cluster-level SSIMS maps captured the 
place-dependent modulation of the clusters spiking patterns as the 

rat traversed a specific region of the maze (Figure 11C). Surprisingly, 
the “non-PC neuron cluster,” (Figure 11C, cluster c3) did not appear 
to reflect a cluster of non-responsive or “uninformative” neurons; 
instead, it had a cylindrical shape that resulted from at least two 
dominant patterns of spike pattern modulation: a within-trial 
periodic spiking pattern in the x-y plane (Figure 11B, cluster c3, x-y 
viewing angle) and a location or distance-dependent variance along 
the z-axis (See Supplementary Figure S3C, for x-z viewing angle). 
This cylindrical shape was also observed in the single neuron SSIM 
maps of the neurons within cluster c3 (see Figure 11C, purple box/
stars, neurons c3-n7 and c3-n20), however, the distance-dependent 
x-z variance was less apparent at the single neuron level. Overall, this 
suggests that the activity of the non-PC neuron cluster, c3, displays 
dynamics that may reflect a different task variable that is in some way 
correlated with the rat’s performance on the task (e.g., head direction, 
speed profile along maze arms) or, alternatively, the intrinsic circuit 
dynamics (Pastalkova et al., 2008; Richard et al., 2013; Wang et al., 
2015). Latent spaces displaying 3-dimensional ring topology 
reflecting animal position and running direction encoding have been 
recently described in CA1 (Esparza et al., 2025). Further investigation 
of this phenomenon is outside of the scope of the present work but is 
an example of how SIMNETS may be  used to quickly uncover 
different types of functional relationships among neural 
representations that might not be  otherwise evident when using 
classic population and single unit analyses. These results highlight the 
advantages of applying SIMNETS to neural recordings where tuning 
properties or other coded variables are not readily apparent or 
unknown a priori.

3.6 Computational efficiency and analysis 
run-time

The SIMNETS framework can rapidly analyze large numbers of 
neurons using a standard personal computer (e.g., 6-Core Intel 
Core i7, 64GB of RAM). With the current Matlab® implementation 
(see included SIMNETS software package), the simulated neuron 
population (N = 180, S = 30) and Macaque M1 neuron population 
(N = 103, S = 360) were processed in less than 2 s. Larger datasets, 
such as the Macaque V1 neuron population (N = 112; S = 360) and 
rat hippocampal CA1 neuron population (N = 80, S = 442), take 
approximately 10 s to process. This is significantly faster than a 
typical cross-correlation-based functional connectivity analysis. For 
example, a dataset of 1,000 neurons can take an hour to processes 
with a standard cross-correlation analysis (Figure  12, blue line; 
utilzing Matlab® xcorr function), whereas our implementation of 
the SIMNETS algorithm takes only about a minute to process the 
same dataset (Figure 12, black line). The SIMNETS analysis is faster 
because it involves fewer spike train comparison operations 
(NxSxS) than the cross-correlations analysis (N2xSxS, across all 
time-lags), and the number of spike train comparisons per added 
neuron has a favorable linear scaling. If parallel or distributed 
computing resources are used to calculate the single neuron SSIM 
matrices, the execution time can be reduced even further to seconds 
or milliseconds. This would be especially useful for datasets with 
larger trial numbers (e.g., S > 1,000), which are more 
computationally intensive than datasets with larger neuron numbers.
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4 Discussion

Advances in multi-electrode recording technology have made it 
possible to record or image the activity of thousands of individual 
neurons simultaneously (Chung et al., 2022; Hsieh and Zheng, 2019; 
Paulk et al., 2022; Steinmetz et al., 2021; Vogt, 2019). The shift in focus 
from studying single neurons to population levels responses has 
brought about a new era of discovery, innovation, and collaboration 
(Buzsáki, 2004; Cunningham and Yu, 2014; Hurwitz et al., 2021; Kohn 
et  al., 2020; Paninski and Cunningham, 2018; Paulk et  al., 2022; 
Saxena and Cunningham, 2019; Urai et al., 2022); highlighting the 
need for new theoretical and analytical frameworks that can bridge 

the “representational gap” between neuron-level and population-
level computation.

With this problem in mind, we  devised SIMNETS, a novel 
relational analysis framework. SIMNETS was designed to generate 
low-dimensional maps of computational similarity across populations 
of simultaneously recorded neurons. The critical difference between 
SIMNETS and traditional functional connectivity measures is that 
we  assess similarities among the neurons’ intrinsic latent space 
geometries, rather than the similarities of the neurons’ response time 
course (e.g., correlation between firing rates). We emphasize that in 
contrast to neuronal functional connectivity analyses that measure 
time series correlations among the firing rates vectors or spiking 

FIGURE 8

SIMNETS CS neuron map captures known computational properties among a population of primate motor cortex neurons without the need for 
extrinsic labels or tuning models. (A) normalized trial-averaged firing rates for a population of simultaneously recorded M1 neurons (N = 103, neurons) 
as a function of reach direction for a planar, 8-directional reaching task. For visualization purposes, neurons were ordered along the y-axis according 
to their peak condition-dependent firing rates. Neurons are ordered along the y-axis according to peak firing rate for visualization purposes, only. 
(B) Two example single neuron raster plots (n29 and n83) and their corresponding single neuron SSIM matrices for a VP edit-distance setting of q = 15 
(i.e., 66 ms temporal precision). Colored line indicates the reach angle associated with each spike train. (C) SIMNETS NxN CS matrix. (D–F) Low-
dimensional population CS map, with neurons labeled according to k-means cluster assignments (D), the neuron’s preferred reach angle (E), and 
tuning strength (F). Example neurons, n29 and n83 (B), are indicated with arrows in (E). (G) Average silhouette score for the population CS map as a 
function of the number of clusters. Red circle indicates the SC at k = 3 (SC = 0.64; p < 0.0001; shuffled data). (H) Histogram showing the preferred 
reach angle of all neurons within each of the three k-means CS neuron clusters (shown in D).
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patterns between different neurons (Abeles and Gat, 2001; Aertsen 
and Gerstein, 1985; Gerstein and Michalski, 1981; Grün et al., 2002b; 
Humphries, 2011; Kiani et al., 2015; Stuart et al., 2002) SIMNETS 
only directly compares spike trains generated by the same neuron, 
i.e., self-similarity. We performed spike train comparisons using the 
VP metric, a point process edit distance measure that can be tested 
over a variety of temporal accuracy settings. By quantifying the 

similarity of a neuron’s spike train outputs across all trials (a within-
neuron 1st-order comparison), we generate a geometric representation 
of each neuron’s spike train output space, which we  use as a 
“computational fingerprint” which is captured in its spike train 
similarity matrix (Figure  2). This approach takes into account 
changes in spiking related to all the variables in the experiment 
(controlled, uncontrolled, and noise) in an unsupervised manner, 

FIGURE 9

SIMNETS identifies clusters of primate motor cortex neurons with similar computational properties and displays the relationship between their activity 
patterns at multiple scales. (A) M1 SIMNETS CS neuron map: each point represents a neuron, and the distance between them reflects their 
computational similarity. Colors represent cluster assignment (c1–c3) obtained using k-means. The activity patterns for neurons highlighted with stars 
are shown in more detail on panel D. (B) Population-level SSIM map. Each point corresponds to a single trial; pairwise distances between points 
correspond to the dissimilarity among the M1 population spiking pattern on those trials. Colors correspond to trial condition labels (movement 
direction). (C) Mesoscale SSIM maps generated using subsets of neurons corresponding to the clusters shown in panel A. Note that the activity of each 
cluster of neurons reflects stimulus parameters in different ways, resulting in different SSIM map configurations. (D) Single unit SSIM maps, SSIM matrix, 
spike train raster plot, and parametric directional tuning function are shown for two example neurons from each of the three CS neuron clusters 
shown in panel A.
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that is, without the use of trial labels or neuron functional labels 
(Kohn and Smith, 2016; Pastalkova et al., 2015; Rao and Donoghue, 
2014). SIMNETS projects the neuron population into a common 
coordinate space that captures the relationships between the neuron’s 
computational fingerprints. The distance between neurons in the CS 
space provides a quantifiable measure of computational similarity, 
and CS neuron clusters reveal potential subnetworks with distinct 
computational properties. We  used a dimensionality reduction 
method that aims to preserve both local and global structure (e.g., 
PCA initialized t-SNE; Maaten and Hinton, 2008; Kobak and 
Linderman, 2021; Lee et al., 2015). The structure of the CS maps can 
provide additional insight into the type of information that is being 
computed potential and subnetwork organization. SIMNETS could 
help resolve long debated issues as to whether classes of neurons that 
represent a unique set of features belong to a discrete computing 
module, or alternatively, whether there exists a functional gradient of 
computational properties.

We see the novelty of the SIMNETS framework as combining 
similarity metrics, dimensionality reduction and clustering to 

organize neurons into functional groups. The specific combination of 
algorithms chosen for the implementation of SIMNETS presented 
here were selected because they have been thoroughly validated (on 
an individual basis) through previous work. However, it is important 
to note that each of these steps can be accomplished using a variety 
of methods and could potentially benefit from recent developments 
in each of these areas. Other analysis pipelines could also benefit 
from employing SIMNETS as a preprocessing step. For example, 
applying DR techniques to examine the low dimensional latent spaces 
associated with clusters in the SIMNETS CS map provides another 
way to probe the potential computational properties of putative 
subnetworks (Figures 7, 9, 11). This strategy could take advantage of 
recent advances in DR methods that incorporate tensor analysis (slice 
TCA, Pellegrino et  al., 2024), ensemble dynamics (NoMAD, 
Karpowicz et al., 2025), or explicitly include task variables to enhance 
low dimensional representations (DAD, Dyer et al., 2017; CEBRA, 
Schneider et al., 2022).

Finally, the combination of a short processing time (< 1 min per 
1,000 neurons), a computational complexity that scales near-linearly 

FIGURE 10

SIMNETS analysis framework captures the known computational relationships among a population of Hippocampal CA1 neurons in an unsupervised 
manner. (A) Task description: “figure-8” maze showing rat’s position during left–right alternation task (top). Red and blue lines show the rat’s location 
during correct right and left trials (T = 17, trials), respectively. Gray lines show the rat’s location during reward and inter-trial interval periods. Below: 
normalized firing rates are shown for each neuron (N = 80, neurons) as a function of linearized distance on track (50 cm bins) during left and right trials 
(below). For visualization purposes, neurons were ordered according to the latency of their peak response along the track and according to their 
characterization as a non-place cell (non-P. C, N = 20, light blue) or a place cell (P. C.; N = 60, yellow). (B) Two example single neuron raster plots (n7 
and n20) showing S = 103 spike trains of 1-s duration (26 spike train segments per T trials) and their corresponding SxS single neuron SSIM matrices for 
VP [q = 35]. Colored line/dots indicate the rat’s location. (C) SIMNETS NxN CS matrix. (D) Average silhouette score for the population CS map as a 
function of the number of clusters. Red circle indicates the SC at k = 5 (SC = 70; p < 0.0001; shuffled data). (E,F) Low-dimensional (3xd) population CS 
map, with neurons labeled according to Ksc = 5 k-means cluster assignments (E), and the neuron’s place-cell like firing properties (F) (P. C., blue dots; 
non-P. C., grey dots).
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with the size of the neuron population (Figure  12), and ease of 
parallelization, makes SIMNETS an efficient tool for exploring very 
large-scale neuron populations with readily available hardware.

4.1 Algorithm validation

We tested and validated SIMNETS using simulated data with 
known ground truth as well as three different experimental neural 

recording test datasets to demonstrate the general applicability of the 
analysis framework across a range of coding schemes, neural systems 
(visual, motor, cognitive), behaviors (awake or anesthetized), and 
different species (rat and macaque). This included a demonstration of 
a novel shuffle-based statistical procedure based on the Mantel test for 
identifying non-spurious CS neuron clusters within a low-dimensional 
population CS neuron map.

Our analysis of simulated data with ground-truth subnetworks 
and known single neuron properties (i.e., encoded content and 

FIGURE 11

SIMNETS identifies clusters of hippocampal CA1 neurons with similar computational properties and displays the relationship between their activity 
patterns at multiple scales. (A) CA1 SIMNETS CS neuron map: each point represents a neuron, and the distance between them reflects their 
computational similarity. Colors represent cluster assignment (c1–c5) obtained using k-means. The activity patterns for neurons highlighted with stars 
are shown in more detail on panel D. (B) Population-level SSIM map. Each point corresponds to a single trial; pairwise distances between points 
correspond to the dissimilarity among the full CA1 population spiking pattern on those trials. Colors correspond to trial condition labels (movement 
direction). (C) Mesoscale SSIM maps generated using subsets of neurons corresponding to the clusters shown in panel A. Note that the activity of each 
cluster of neurons reflects stimulus parameters in different ways, resulting in different SSIM map configurations. (D) Single unit SSIM maps, SSIM matrix, 
spike train raster plot, and place fields are shown for two example neurons from three CS neuron clusters shown in panel A.
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encoding timescale) demonstrates the current implementation of the 
SIMNETS algorithm can capture a neuron’s local and global 
computational relationships, even under conditions where 
computationally similar neurons relied on very different encoding 
schemes (e.g., rate coding vs. fine temporal coding schemes). This 
agnosticism can be beneficial when analyzing neurons that generate 
highly heterogeneous spike train outputs because of differences in 
their internal machinery (e.g., inhibitory vs. excitatory neurons) yet 
still reflect task-relevant information (Churchland and Shenoy, 2007; 
Diba et al., 2014; Martina et al., 1998). We demonstrated how the VP 
metric temporal accuracy parameter (q) could be used to interrogate 
the effect of temporal resolution on the computational configuration 
of the neurons.

The application of SIMNETS to three publicly available multi-
neuron recording datasets validated the capabilities of the method in 
revealing known dominant feature representation in V1, M1, and CA1 
(orientation, direction, place, respectively) without imposing stimulus 
or movement-driven parametric tuning models a priori. Of note, the 
results show that the computational properties of neurons are not 
uniformly distributed, but instead are organized into apparent 
subnetworks (i.e., CS clusters in the low-dimensional CS map) that 
emphasize certain collections of feature representations. Our results 
also suggest that SIMNETS may be able to detect distinct subnetwork 
structures hypothesized to support ensemble place-coding or complex 
feature conjunctions (Buzsáki, 2019; Diba et al., 2014). Although it 
was beyond the scope of this report to demonstrate the functional or 
computational significance of the detected putative subnetworks, our 
results suggest that the detected clusters are physiologically 

meaningful; our subsequent unsupervised cluster validation statistical 
procedure further provided support to these findings. Finally, our 
choice of datasets allowed us to demonstrate that this method 
generalizes well to neural recordings from a variety of brain regions, 
including sensory areas (Kohn and Smith, 2016), motor areas 
(Rao and Donoghue, 2014), and memory/cognitive areas (Pastalkova 
et al., 2008); different species, including rat and non-human primate; 
and across different recording technologies including laminar silicone 
probes (Buzsáki, 2004) and fixed-dept multi-electrode arrays 
(Maynard et al., 1997).

Collectively, our results demonstrate that single neuron SSIM 
matrices provide a simple, scalable, and powerful format for 
characterizing the computational properties of neurons, as well as 
identifying computational similarities and differences between them. 
In addition, examining the arrangement of neurons in the CS maps 
may suggest novel coding schemes that are yet unexplored by 
experimenters, generating new hypotheses for future experiments.

4.2 Comparison to existing approaches

The SIMNETS analysis framework builds upon rich theoretical 
and mathematical literature spanning multiple domains and 
disciplines. Geometric and metric space representational models of 
similarity have a long history of application in the field of psychology 
where they have been used to model the perceptual relationships 
between sensory stimuli as latent or low-dimensional perceptual 
metric-space (Forstmann, 2011; Goldstone et al., 1991; Hyman, 1974; 
Shepard and Chipman, 1970; Shepard, 1987; Shepard, 1964; 
Thurstone, 2017; Tversky, 1977; Zenker and Gärdenfors, 2015). This 
approach has recently been adapted to study the intrinsic structure of 
neural representational spaces in visual, motor, and cognitive brain 
regions (for reviews, see; Edelman et  al., 1998; Haxby, 2012; 
Kriegeskorte et al., 2008; Kriegeskorte and Kievit, 2013; Lehky et al., 
2013). Several mathematical variations of this framework have been 
developed to study the information content of macroscale fMRI 
BOLD signals (Diedrichsen and Kriegeskorte, 2017; Haxby et  al., 
2001; Kriegeskorte and Bandettini, 2007), and both population-level 
and neuron-level spiking patterns (Houghton and Victor, 2010; Kiani 
et al., 2007; Vargas-Irwin et al., 2015a, 2015b; Victor and Purpura, 
1996). To the best of our knowledge, this is the first work that uses a 
measure of 2nd-order point-process similarity analysis to generate 
latent space embedding of a collection of individual neurons.

The concept of a low-dimensional embedding that captures the 
functional relationship between spiking neurons was introduced in 
the seminal papers by (Baker and Gerstein, 2000; Gerstein and 
Michalski, 1981) describing the use of “Gravitational Clustering” 
(Wright, 1977): a neuron clustering and visualization tool for 
identifying groups of neurons with synchronous spiking patterns. 
This method is based on an analogy of the physics of the 
gravitational forces governing the dynamics and interactions of 
macroscopic particles. It treats the N neurons as N particles moving 
within an N-dimensional space, where charges that influence the 
attractive and repulsive interactions between particles are dictated 
by the temporal dynamics of pairwise synchronous spiking activity 
between neurons. The result is a visualization of particle clusters 
(and their trajectories) that represent dynamically evolving 
assemblies of synchronously active neurons. More recent work by 

FIGURE 12

Computational run-time analysis for SIMNETS vs. cross-correlation 
algorithm. Log–Log plot showing SIMNETS algorithm (black lines) 
versus cross-correlation algorithm (XCORR, blue line) run-time as a 
function of neuron number (N = 10–100 k, neurons). Empirical data 
points (round) are the mean run-time across 15 iterations. 
Extrapolated data points (squares) were calculated from empirical 
data points for prohibitively large neuron population sizes 
(N = 10 k–100 k). Colored regions indicate whether the population 
size was analyzed in under 1 min (orange), 1 h, 1 week, or 1 year. 
Software was run through MATLAB on a standard personal 
computer: 6-Core Intel Core i7 processor, with 64GB of RAM. Cross-
correlation analysis relied on MATLAB’s xcorr function.

https://doi.org/10.3389/fnins.2025.1634652
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Vargas-Irwin et al. 10.3389/fnins.2025.1634652

Frontiers in Neuroscience 18 frontiersin.org

Kiani et al. (2015) involves the application of the dimensionality 
reduction techniques (i.e., multidimensional scaling) to pairwise 
measures of between-neuron spike rate covariations to detect 
natural functional modules in a population of pre-arcuate and 
motor cortex neurons (Kiani et al., 2015). Although the goal of this 
method is like that of SIMNETS—to the extent that it makes use of 
single-trial information to group neurons in an unsupervised 
manner—this approach is applied to binned spike rates and appears 
to capture the covariation information carried in the absolute firing 
rates of the neurons’ responses across trials (Kiani et al., 2015), 
rather than the information carried in the neurons’ intrinsic spike 
train relational geometry. However, our analysis of the synthetic 
neurons using temporal codes, as well as rat CA1 neurons 
demonstrate that SIMNETS can detect a broader range of 
meaningful information processing motifs that reflect both 
condition-independent and condition-dependent information 
carried in the fine temporal structure of spike train outputs.

Yang et al. (2019) identified functional groupings of artificial 
neurons in a neural network by applying t-SNE to activation-based 
measures of single neuron selectivity across 20 different tasks (i.e., 
task variance; Yang et  al., 2019). The method is similar to the 
SIMNETS method in that it projects neurons onto a CS map 
according to the similarity of measures of output variance. This 
method requires knowledge of trial labels within tasks to group 
neurons according to the similarities of their changes in selectivity 
across tasks. By contrast, SIMNETS does not require a priori 
knowledge about the similarities or differences of the information 
encoded on certain trials (i.e., trial labels), only that the trials are 
recorded simultaneously. This feature of SIMNETS is particularly 
valuable when trying to identify groups of functionally similar 
neurons in experiments with awake and freely moving animals, 
where the assumption of repeatable perceptual, cognitive, or 
behavioral states across trials is not always possible.

Several previous studies have used pairwise comparisons 
between the spike trains of different neurons to identify putative 
subnetworks or cell assemblies (Aertsen et al., 1989; De Blasi et al., 
2019; Gerstein et al., 1985; Grün et al., 2002a; Humphries, 2011; 
Roudi et al., 2015; Singer and Gray, 1995). As with the gravitational 
clustering method, these studies have operated under the working 
hypothesis that the detection of time-series spike time or rate 
correlations is a signature of a potential functional link (Cole et al., 
2016; Roudi et al., 2015; Singer and Gray, 1995; Ts’o et al., 1986). By 
contrast, SIMNETS identifies neurons with similar informational 
content even if they exhibit heterogeneous spike train outputs or 
utilize different encoding timescales (e.g., rate vs. precise spike 
timing). For the simulated neuron population, SIMNETS 
successfully identified clusters of the simulated neurons according 
to their ground-truth functional subnetworks and by increasing the 
sensitivity of the VP metric, the CS map was able to reveal further 
sub-groupings within the three identified functional CS clusters 
that highlighted subtle differences their output space geometries 
that corresponded to the different encoding timescale. This feature 
of SIMNETS could be particularly useful for determining if neurons 
encoded information across heterogenous timescales, e.g., fast vs. 
slow-timescale inhibitory neurons, or if they compute across a 
hierarchy of timescales (Cusinato et al., 2022; Fortenberry et al., 
2012; Gorchetchnikov and Grossberg, 2007; Honey et al., 2012). 

Additionally, this feature of SIMNETS enabled us to cluster 
physiologically and functionally distinct groups of neurons in the 
CA1 dataset (i.e., place-cells vs. non-place cells), which were not 
obvious when VP metric was insensitive to spike times (i.e., VP 
metric q = 0; data not shown).

Capturing the computational similarity between pairs of neurons 
in a more general way could be  accomplished using Information 
theoretic approaches (Shannon, 1997), which could include estimating 
the shared or mutual information between the output spike trains of 
different neurons. Other approaches focus on the asymmetry of the 
predictive power between variables at different lags, resulting in 
“directed” estimates of functional connectivity such as Granger 
Causality, Transfer Entropy, or the Directed Transfer Function 
(Granger, 1983; Ito et al., 2011; Ursino et al., 2020). These strategies are 
based on estimating joint probability distributions across the activity 
patterns of pairs of neurons. A similar approach can be applied to 
relationships between multiple neurons using Generalized Linear 
Models (Chen et  al., 2009; Truccolo et  al., 2005). The number of 
possible activity patterns is very large, so this type of calculation can 
be challenging even when relatively large amounts of data are available. 
Using large amounts of data presents additional problems for this 
approach because it assumes that relationships between neurons 
remain relatively constant across the time span used to fit the models. 
Hence, every additional neuron requires exponentially more data and 
computing power and analyzing hundreds to thousands of 
simultaneously recorded neurons becomes intractable.

4.3 Mitigating experimenter bias

A considerable amount of research in systems neuroscience has 
focused on identifying new classes of neurons based on their 
information-processing properties. The standard approach for many 
of these experiments involves recording single unit activity while a 
certain experimental variable of interest is manipulated (for example, 
providing systematic changes in stimulus features, or eliciting 
different behavioral responses; Meyer et al., 2016). Standard statistical 
tests (ANOVA, etc.) are then used to determine if each neuron 
displays significant changes in firing rate across the experimental 
conditions. The percentage of significant neurons is usually reported 
as a functionally distinct “class” of neurons sensitive to the variable 
of interest. It is common to exclude neurons that do not reach 
statistical significance or cannot be fit using a predetermined tuning 
model from further analysis. This approach is prone to both selection 
and confirmation bias, and ultimately produces “classes” of neurons 
identified based on arbitrary statistical thresholds imposed on what 
are likely continuous distributions of properties. The SIMNETS 
analysis framework is an unsupervised approach to determine if 
neurons are organized across a functional continuum or are 
organized into statistically separable functional classes, thereby 
mitigating the experimenter’s bias inherent in parametric neural 
discovery methods. The SIMNETS approach is different in that it 
seeks to organize the neurons into a low dimensional computational 
similarity (CS) map solely based on the intrinsic structure of their 
firing rates, without making any a priori assumptions about their 
tuning properties. This makes it possible to detect clusters of neurons 
with similar informational content and can also reveal gradients of 
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functional properties if they exist. This is not to say that experimental 
design does not play an important role: the informational content of 
neuronal spiking is still evaluated within the specific context of the 
recording. However, SIMNETS does not target specific dependent 
variables, but instead tries to map the full population of neurons onto 
a single unified CS map. It is therefore possible to identify ‘orphan’ 
clusters of neurons that display variations in their spiking related to 
uncontrolled variables. While assigning a function to an orphan 
cluster related to an uncontrolled variable may be challenging, it 
highlights the potential impact of additional variables in the neuronal 
population, and presents the opportunity to design additional 
experiments and potentially identify new classes of neurons. In 
addition to providing a principled way to determine if a consistent 
organization of information processing modules can be found across 
sessions and subjects, we believe that the ability to intuitively visualize 
relationships within networks of neurons will provide a unique 
perspective leading to new data-driven hypotheses and 
experimental refinement.

4.4 Limitations and considerations

Several important limitations of SIMNETS are worth noting. First, 
estimates of similarity using spike train metrics require that the time 
windows of interest be of equal length, making it difficult to compare 
neural responses with different time courses. This weakness is common 
to all trial-averaging models commonly used in the literature that 
we are aware of. It is important to note that the optimal length of the 
time window will depend on the specific experimental context and 
should be adjusted on a case-by-case basis, either based on previous 
work (as done here) or empirically. Using spike train similarity metrics 
makes it possible to use relatively long time windows without losing 
information encoded at fine temporal resolution. This feature makes it 
easier to adopt time windows that fully encompass behavioral events 
of interest.

Second, although the SIMNETS framework does not require a 
priori assumptions about the variables potentially encoded by neural 
activity, experimental design and data selection will still have a direct 
effect on the results obtained. For example, a set of neurons identified 
as a functional subnetwork could separate into smaller groups with 
different computational properties when additional task conditions 
are added to the analysis. Thus, the functional properties identified 
using SIMNETS are only valid within the context of the data examined 
and may not necessarily extrapolate to different experimental 
conditions. Ultimately, the computational space of the population is 
only as rich as the experimental design allows (Gao and Ganguli, 2015).

Third, SIMNETS does not provide a means to assess sources of 
variance. For example, subsets of neurons may exhibit systematic 
changes in spike train outputs through an experimental session, 
reward experience, timing, attention, or many other variables which 
can be  revealed by the neural data; however, it will be  up to the 
experimenter to identify their source. Nevertheless, SIMNETS can 
guide hypothesis generation for experiments that identify 
these influences.

Fourth, although peak silhouette values are indicative of the 
optimal number of clusters according to clustering statistics, they 
should be taken as a guideline and not an absolute measure of the 

number of subnetworks. The present study focused on a set of diverse 
recordings from various sources to highlight the performance of the 
SIMNETS algorithm for different types of data. An in-depth study of 
potential subnetwork structure using SIMNETS should include many 
similar datasets, ideally sampling multiple subjects and sessions to 
properly assess the number of clusters present across many CS maps 
before drawing conclusions regarding network architecture.

Fifth, it is possible that neuronal subnetworks are constantly 
re-arranged depending on changing external or internal signals, e.g., 
ethological demands, task demands, or task stages, or attentional 
levels. For example, a neuron could potentially exhibit rapid changes 
in its computational/functional interrelationships with other neurons 
during processing epochs that are shorter than the selected analysis 
time window. The current version of the SIMNETS algorithm was not 
designed to distinguish between rapidly changing sub-network 
memberships. However, applying the SIMNETS algorithm multiple 
times over different epochs can help with determining if different 
network configurations are engaged at different times.
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