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Ataxia–telangiectasia (A–T) is a rare, autosomal recessive, multisystem disorder 

caused by mutations in the Ataxia–Telangiectasia Mutated (ATM) gene and 

is characterized by a devastating and progressive neurological pathology. 

The cellular and molecular changes driving the neurological abnormalities 

associated with A-T are not well understood. Here, we applied our proprietary 

Nuclear Enriched Transcript Sort sequencing (NETSseq) platform to investigate 

changes in cell type composition and gene expression in human cerebellar 

post-mortem tissue from A-T and control donors. We found dysregulation 

in neurotransmitter signaling in granule neurons, potentially underlying the 

impaired motor coordination in A-T. Astrocytes and microglia have evidence of 

accelerated aging, with astrocytes being characterized by neurotoxic signatures, 

while microglia showed activation of DNA damage response pathways. 

Compared to single-nuclei technologies, NETSseq provided a more robust 

detection of genes with low abundance, a higher cell type specific expression 

pattern, and significantly lower levels of cross-contamination. These findings 

highlight the importance of NETSseq as a resource for investigating mechanisms 

and biological processes associated with disease, providing high-sensitivity, cell-

specific insights to advance targeted therapies for neurodegenerative diseases. 

KEYWORDS 

ataxia telangiectasia, NETSseq, neurodegeneration, inflammation, aging, ATR pathway, 
microglia, astrocyte 

Introduction 

Ataxia–telangiectasia (A–T) is a rare, autosomal recessive, multisystem disorder caused 
by mutations in the Ataxia–Telangiectasia Mutated (ATM) gene. A-T is characterized by a 
devastating and progressive neurological pathology. The first symptoms manifest in the 
early years of life as ataxia and loss of motor coordination, and later in life with oculomotor 
apraxia, dysarthria, choreoathetosis, drooling and diÿculties swallowing. Loss of ATM 
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protein function leads to a range of symptoms, including 
susceptibility to neoplasia, immunodeficiency resulting in 
sinopulmonary infections, and extreme sensitivity to ionizing 
radiation. Individuals with A-T are usually wheelchair-bound by 
their teenage years and the disease is often fatal in the second or 
third decade of life. 

Ataxia–Telangiectasia Mutated is a member of the 
serine/threonine protein kinase family (Paull, 2015) that has 
homology with a family of phosphatidyl inositol 3 kinase-related 
kinases (PIKKs), a group of high molecular mass eukaryotic 
proteins found in all cells. ATM protein is primarily activated 
by double stranded breaks (DSBs) in DNA and regulates the 
cellular response to DNA damage, including DNA repair 
mechanisms, replication checkpoints, and other metabolic 
changes. Accumulating DNA damage can cause cells to exit the cell 
cycle and become senescent or undergo programmed cell death 
to restrict the propagation of mutational events (Blackford and 
Jackson, 2017). Although ATM is central to this signaling cascade, 
there is a highly coordinated series of molecular events involving 
several other key factors which converge when the cell detects DNA 
damage. Interestingly many of these factors are also substrates of 
and thus regulated by ATM (Yan et al., 2014). ATM has also been 
shown to play diverse roles in cellular metabolism, mitochondrial 
redox sensing, regulation of antioxidant capacity, and potentially 
autophagy and lysosomal traÿcking (Lee and Paull, 2020; Stagni 
et al., 2021). 

Despite decades of research on ATM (Savitsky et al., 1995) and 
its role in responding to DNA damage (Banin et al., 1998; Canman 
et al., 1998), less is known about how ATM might function in 
dierent cellular contexts, and whether these diering functions 
might account for the pleiotropic symptoms seen in A-T patients. 
One of the earliest symptoms of A-T is ataxia, or the impairment of 
motor coordination, which results from progressive degeneration 
of the cerebellum likely resulting from a progressive loss of 
both Purkinje and granule neurons (Vinters et al., 1985). While 
numerous potential mediators of this neurodegeneration have been 
proposed, the precise cause is likely to be a complex interaction 
between diverse cellular mechanisms that impact overall neuronal 
health and survival. This may include not just the deficient response 
to DNA damage, but also impaired glial support, mitochondrial 
dysfunction, altered oxidative stress and inflammatory responses 
(Rothblum-Oviatt et al., 2016), all ultimately leading to deficits in 
neuronal and synaptic function. Since there is currently no cure 
for A-T and no therapeutics that alter the disease progression, 
treatments are limited to partial symptomatic relief. For this reason, 
decoding the cell type specific response to DNA-damage-induced 
cellular pathology is vital for developing a cohesive biological 
strategy in the pursuit of new therapeutic interventions. 

To obtain deep, cell type specific transcription profiles from 
the cerebellum of patients with A-T and control donors, we 
used Nuclear Enriched Transcript Sort sequencing (NETSseq) (Xu 
et al., 2018), which combines fluorescent activated nuclei sorting 
(FANS) to purify nuclei from cell types of interest with RNA-seq 
to generate genome-wide transcriptional profiles. Using NETSseq, 
we generated 318 RNA-seq samples (248 control and 70 A-T), 
covering eight distinct cerebellar cell types – granule, basket, Golgi 
and Purkinje neurons, as well as astrocyte, microglia, mature 
oligodendrocyte, and oligodendrocyte precursor (OPC) glial cell 
types. Compared to single cell technology, NETSseq oers more 
robust detection of genes with low expression and better captures 

dierential expression across cell types and disease. We found that 
disease-associated gene expression changes were remarkably cell 
type specific, oering novel insights into the diering mechanisms 
within these cell types that contribute to neurodegeneration and 
motor dysfunction in A-T. 

Results 

NETSseq: isolation of cell type specific 
nuclei 

Cerebellar post-mortem tissue samples from 15 donors with 
a clinical diagnosis of A-T and 56 control donors were used in 
these analyses. The A-T cohort comprised five female (8–31 years 
old) and ten male (8–32 years old) donors with neuropathological 
findings consistent with the disease. Control donors (27 males aged 
8–93 years and 29 females aged 17–96) were selected for having 
no known CNS disease and having died from a non-CNS related 
etiology. Post-mortem intervals ranged from 2 to 21 h for A-T 
donors and 5–79 h for controls donors. Donor information is 
summarized in Supplementary Table 1. 

To better understand the cell type specific molecular changes 
that occur in A-T, we extended the NETSseq cell type purification 
method from Xu et al. (2018) to isolate additional cell types 
from post-mortem human cerebellar tissue (Figure 1A). Using a 
combination of cell type specific antibodies, we developed FANS 
gating strategies to isolate specific populations of nuclei and 
determine the relative abundance of each cell type (Figure 1B 
and Supplementary Table 2). Using a refined antibody panel, 
we were able to isolate nuclei from an additional three key 
cerebellar cell types – microglia, Golgi and Purkinje neurons, in 
addition to the five cell types isolated in the previous publication 
(granule, basket, astrocyte, oligodendrocyte and OPCs). To isolate 
the four neuronal cell types, we used antibodies against the 
splicing factor NeuN/RBFOX3, the ER resident membrane protein 
Inositol 1,4,5-Triphosphate Receptor Type 1 (ITPR1), and the 
transcription factor Forkhead Box K2 (FOXK2). Combining ITPR1 
and FOXK2 labeling into a single channel and plotting this against 
NeuN in a dierent channel, enabled eÿcient detection of pure 
populations of nuclei from granule and basket neurons, along with 
those from exceedingly rare Golgi (0.1%) and Purkinje (0.01%) 
neurons. The complete sorting strategy for Purkinje neurons 
is summarized in Supplementary Figure 1D. We also isolated 
oligodendrocytes and OPCs based on dierential positive labeling 
of oligodendrocyte transcription factor 2 (OLIG2), and astrocytes 
based on positive labeling of Glutamate Aspartate Transporter 
(GLAST/EAAT1/SLC1A3). Finally, we confirmed that labeling 
against interferon regulatory factor 8 (IRF8), which we previously 
used to isolate cortical microglia (Ossola et al., 2023), is also 
eective for isolating cerebellar microglia. 

Deep expression profiling of the human 
cerebellum 

RNA-seq was used to generate nuclear gene expression profiles 
for each population of nuclei separated by FANS. The number 
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FIGURE 1 

(A) Schematic flow of our Nuclear Enriched Transcript Sort sequencing (NETSseq) pipeline and summary barplot of the number of donors for each 
cell type analyzed in this study. (B) Representative FACS plots showing populations of stained nuclei and the gating strategy. Antibodies used are 
noted against the axes of the plots. Gates for relevant populations are highlighted and the cell types are annotated. (C) Distribution of fraction of 
similarities across cell types indicates clean populations. Fractions were computed using the DeconRNAseq R package. (D) Principal component 
analysis of the cerebellum cell types, computed using the top 500 variable genes, shows tight and clean clusters. (E–G) Violin plots showing the 
expression in both NETSseq and pseudobulked snRNA-seq data sets of cell type specific genes calculated from the NETSseq results. The specific 
genes were identified in the NETSseq cohort after filtering for (E) high expressed genes (>66% of expression quantile), (F) medium expressed genes 
(33%–66% of expression quantile) and (G) low expressed genes (<33% of expression quantile). 
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of nuclei collected per donor varied by cell type from a mean 
of 1,096 for Purkinje neurons to 90,720 for granule neurons. 
From each sorted nuclei population, we subsequently generated 
deep RNA-seq libraries (median reads >16 million after adapter 
trimming, Supplementary Table 1). To validate the identity and 
purity of nuclei obtained from each sorting strategy, we evaluated 
the expression of known markers for each cell type (Supplementary 
Figure 1A) and performed a deconvolution analysis (Figure 1C). 
This involved assembly of a reference signature for each cell 
type; then, for each sample, we estimate the fraction of similarity 
against all the cell types in the assembled reference. Consistent 
with previous findings (Xu et al., 2018) each cell type exhibited 
a specific expression pattern of marker genes, indicating that 
negligible contamination was present between cell types. 

Next, we used two unbiased methods, hierarchical clustering 
(HC, Supplementary Figure 1B) and principal component analysis 
(PCA, Figure 1D), to visualize the similarities and dierences 
across samples. With both methods, we observed a high level of 
similarity for samples from the same cell type and clear separation 
of samples from dierent cell types. Using these methods, we can 
also observe similarities between basket and Golgi cells, which 
are two subtypes of GABAergic interneurons. Cell type specific 
expression of key cell type specific marker genes was confirmed 
using in situ hybridization (ISH) analysis in human donor tissue 
(Supplementary Figure 1C). These results indicate that NETSseq 
can purify and profile distinct cell types with high accuracy and low 
levels of cross contamination. 

NETSseq technology provides enhanced 
capability for detecting low expressed 
cell type specific genes 

Single-nuclei analysis provides superior resolution and the 
capacity to delineate cellular heterogeneity compared to bulk 
analysis; however, it faces limitations in detecting genes with 
low expression profiles. To assess the detection thresholds 
and sensitivity of our NETSseq platform against single-cell 
technologies, we performed a comparative analysis, directly 
comparing our findings with those of Lai et al. (2024), which 
generated a snRNA-seq dataset from the cerebellum of control and 
A-T donors. First, we identified cell type specific genes in both 
datasets and categorized them based on expression quantiles (low: 
<33%, medium: 33%–66%, high: >66%). We generated expression 
distribution plots (Figures 1E–G, Supplementary Figure 3A, and 
Supplementary Table 3) and heatmaps (Supplementary Figures 2A– 
D) for these genes across all examined cell types in both datasets. 
In all snRNA-seq expression tertiles, computed using the specific 
genes generated by NETSseq, we noted the presence of granule 
neuron markers in the single cell data for the non-granule cell types. 
This may be due to the presence of ambient RNA (Caglayan et al., 
2022; Gautier et al., 2023) originating from the high number of 
granule neurons, which comprise ∼70%–90% of total cells. This 
contamination was also found when the expression of snRNA-
seq-derived specific genes were plotted across all cell types in the 
snRNA-seq study (Supplementary Figure 3A). Moreover, for the 
lower tertiles, the distribution of gene expression for the specific 
genes in each cell type in the single-cell cohort is significantly 
skewed toward zero, indicating limited sensitivity in detecting 

these genes (Figure 1G). In contrast, when we examined the 
specific genes identified in each expression tertile in the single-
cell cohort, we observed no loss of signal in the NETSseq dataset 
(Supplementary Figure 2C); this suggested that NETSseq did not 
face such limitations and was able to detect the majority of the 
specific genes. 

To determine whether the NETSseq gating strategy for each 
cell type accurately isolated the target cell type, we performed a 
topological analysis using UMAP generated from the snRNA-seq 
data, by comparing the overlap between the snRNA-seq assigned 
cell types and the snRNA-seq derived expression of the top cell 
type markers identified from NETSseq data (within the highest 
expression quantile). The analysis revealed a complete overlap 
between the specific markers and the regions covered by individual 
cell types, confirming that the correct populations were sorted, 
without contamination from other cell types (Supplementary 
Figure 3B). Furthermore, this analysis demonstrated that the 
sorted populations for each cell type capture the entire cell 
type population, without any biases for any subpopulations. 
The only exception is cerebellar astrocytes, which can be split 
into three regionally, morphologically, and molecularly distinct 
subpopulations i.e., specialized Bergmann glia (BG), which are 
intimately connected to the Purkinje cell bodies, granule layer 
and white matter astrocytes. snRNA-seq data from Lai et al. 
(2024) subdivided astrocytes into two subgroups i.e., BG and 
other astrocytes. Comparison of expression profiles shows that 
our sorted astrocytes contain both BG and other astrocytes 
(Figures 1E–G, Supplementary Figure 2C). Finally, the cell type– 
specific genes identified by NETSseq in Golgi and basket cells 
also delineate distinct regions in the density plot, suggesting that 
these markers successfully resolve previously unrecognized cellular 
subpopulations. 

Cerebellar cell type composition in 
control donors 

Histological studies have shown a progressive loss of Purkinje 
neurons and to a lesser degree, granule neurons in A-T patients 
(Crawford, 1998; Rothblum-Oviatt et al., 2016; Sahama et al., 2014). 
However, less information is available regarding the proportions 
of other cerebellar cell types and how these change with disease 
progression. To address these questions, we used various methods 
to characterize the typical cell type composition of the cerebellum, 
and to examine how cell type proportions change in disease. 

First, we analyzed the flow cytometry profiles obtained 
during nuclei sorting to quantify the relative proportion of each 
cell type population (Supplementary Table 2). Consistent with 
previous stereology studies (Andersen et al., 1992; Korbo and 
Andersen, 1995), we found that granule neurons accounted for 
81%–93% of the cells in cerebellum, whereas Purkinje neurons 
are extraordinarily rare, comprising 0.001%–0.027% of the cells. 
Due to the abundance of granule neurons, we found that cell 
types such as astrocytes and mature oligodendrocytes, which are 
normally abundant in other brain regions, are relatively rare in the 
cerebellum, comprising only 2.2% and 1.3% of cells, respectively. 
To complement this analysis, we estimated cell type proportions 
using global gene expression deconvolution (Figure 2A). Briefly, for 
each cerebellar sample we performed RNA-seq on unsorted nuclei, 
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which could then be deconvoluted using reference signatures 
from each constituent cell type, to obtain cell type proportions 
of the dierent cell types. The deconvolution analysis yielded 
similar results to those from the flow analysis, showing granule 
neurons as the predominant cell type at 70%, while Purkinje 
neurons were the least common at 0.7%. Both methods have 
technical limitations: flow analysis, limited by the eÿciency of 
antibody labeling, likely underestimates cell type proportions, while 
deconvolution, biased by nuclear size and RNA content, tends to 
underestimate the proportions of cell types with smaller nuclei 
(such as granule neurons and glia) and overestimate those with 
larger nuclei (Purkinje, Golgi, basket neurons). Importantly, the 
two methods provide relatively consistent proportions and align 
with cell type proportions determined using stereology (Andersen 
et al., 1992; Korbo and Andersen, 1995) and single nuclei RNA-seq 
methods (Lai et al., 2024; Figure 2A, Supplementary Figure 3C). 

Changes in cerebellar cell type 
proportions in A-T 

Next, we aimed to identify changes in cell type proportions 
in A-T. Given the imbalance of cell type proportions in the 
cerebellum, where most cell types skew toward zero, we employed a 
modified deconvolution approach which more accurately captures 
dierences between two conditions. Here, rather than conducting 
a global deconvolution, where an unsorted sample is split into all 
constituent cell types and the proportion of these cell types must 
add up to 1, we used a comparative deconvolution approach. This 
method assesses a single cell type at a time, making it more useful 
for measuring changes across conditions rather than absolute cell 
type proportions. 

The density distribution of the relative abundance for each 
cell type shows the change of cell composition between A-T 
versus controls (Figure 2B). We detected a significant (t-test with 
Benjamini-Hochberg correction for multiple comparison) loss of 
Purkinje neurons, with a decrease of 1.85-fold, which aligns with 
the typical cerebellar degeneration seen in ataxia (Xia et al., 2013). 
This degeneration contributes to the impaired motor coordination 
and balance deficits experienced by aected individuals. We also 
observed a significant loss of granule neurons with a reduction of 
1.35-fold (Figure 2B, Supplementary Figure 3C), highlighting the 
extensive neuronal loss within the cerebellum. This loss of granule 
neurons further exacerbates the dysfunction of cerebellar circuits, 
leading to the pronounced clinical symptoms of ataxia. Consistent 
with more general neuronal loss, we also observed a decrease of 
Golgi and basket neuronal cell types with a reduction of 1.52-
fold and 1.45-fold, respectively. Additionally, our analysis revealed 
a 1.35-fold increase in OPCs and a 2-fold increase in ODCs, 
(Figure 2B, Supplementary Figure 3C), suggesting a compensatory 
response to ongoing myelin damage (Tse et al., 2018). Astrocytes 
and microglia show a 1.37- and 1.44-fold increase, respectively, in 
cell numbers. 

We further confirmed the decrease in granule neurons and 
increase in mature oligodendrocyte numbers using flow analysis. 
Because the fluorescence profiles for these two cell types were 
distinct and well separated from other populations in both control 
and A-T donors, we could confidently quantify their proportions 
across a subset of donors. This analysis showed that almost half 

of the granule neuron population degenerate in A-T, decreasing 
from around 90% in control to 55% in A-T donors. In contrast, 
oligodendrocytes increase in relative proportion by approximately 
4-fold, from 1.5% in control donors to 6% in A-T donors 
(Supplementary Figure 3D and Supplementary Table 4). 

Histopathological evaluation of neuron 
loss and glial activation in A-T cerebellum 

On a subset of cerebellar cortical tissue samples, we performed 
histopathological analysis to evaluate gross neuropathological 
features in control and A-T donors (Figures 2C–H). In this 
analysis, we used antibodies against ITPR1 and FOXK2 to label 
Purkinje neurons (Figures 2C, D), RBFOX3 to label granule 
neurons (Figure 2E), IBA1 for microglia (Figure 2F), GFAP 
for astrocytes (Figure 2G), and OLIG2 for oligodendrocytes 
and OPCs (Figure 2H). In control Purkinje neurons, FOXK2 
is normally localized to the nucleus, while ITPR1 labels the 
cell body, including dendritic arborizations. Qualitative analysis 
in A-T donors showed a clear reduction in Purkinje neuron 
number (Figures 2C, D), while surviving Purkinje neurons have 
features characteristic of neurodegeneration, including disturbed 
morphology and ectopic appearance of dendrites in the molecular 
layer (Figure 2C). Importantly, although Purkinje neurons in A-T 
donors are reduced in numbers, they can still be reliably labeled 
using antibodies against both ITPR1 and FOXK2. Qualitative 
analysis of glial cell markers in A-T donors showed more abundant 
IBA1 microglia labeling (Figure 2F, Supplementary Figure 3E), 
more abundant and more intense GFAP labeling in astrocytes 
(Figure 2G, Supplementary Figure 3E) and more abundant OLIG2 
oligodendrocyte lineage labeling, particularly in the white matter 
(Figure 2H). 

Finally, for granule neurons, we performed quantitative 
analysis using tissue sections from three control and four 
A-T donors. We observed a 70% decrease in granule neuron 
numbers in A-T donors, which is consistent with the comparative 
deconvolution analysis and FACS result (Supplementary 
Figure 3E). Overall, the histology results support the finding 
that neuronal cell types decrease, while glial cell types increase 
in the disease. Furthermore, the increased expression of GFAP 
suggests increased astrocyte activation in A-T donors. 

Distinct cell type specific gene 
expression signatures in NETSseq 
samples 

We conducted a comparative analysis of gene expression values 
to assess the similarities between our cohort and the single-cell 
cohort, by computing the pairwise correlation across each cell type 
(Figure 3A). Interestingly, we observed a strong overall correlation 
between the gene expression signatures of corresponding cell types 
across the two cohorts (Figure 3A); however, we detected granule 
neuron contamination in all cell types in the snRNA-seq dataset 
(Figure 3B). Moreover, our expressed genes demonstrate greater 
specificity to individual cell types compared to those in the single-
cell cohort (Figure 3B). 
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FIGURE 2 

(A) Stacked bar plot showing cell type proportions computed using the snRNA-seq and NETSseq datasets. (B) Relative fraction of similarity between 
A-T and control donors across the examined cell types. The fractions represent the similarity of unsorted samples, stratified by disease condition, to 
reference signatures constructed for each cell type. Each reference signature comprises the expression profile of the target cell type and the 
average expression of all remaining cell types (Control N = 100; A-T N = 25, pairwise t-test with BH correction, **p ≤ 0.01, ***p ≤ 0.001). 
(C) Photomicrographs (20×) showing representative patterns of ITPR1. Arrows show cytoplasm and dendrites of Purkinje cells, asterisk indicates 
Granule cells. (D) FOXK2 immunoreactivity in one healthy control (donor MD_5669) and one A-T (MD_5902) donor. Arrows indicate Purkinje neuron 
nuclei. (E) RBFOX3 staining in granule neurons from both donors, expression was not observed in Purkinje cells (40×). (F–H) IHC showing glial cell 
markers in sections of cerebellar cortex from one healthy control donor (MD_5751), and one A-T case (MD_5902). Top row shows sections 
extending from the molecular layer through the granule cell layer and into the white matter (scale bar is 250 µm). Bottom row shows details of the 
white matter (scale bar is 50 µm). Antibodies for IBA1 identify microglial cells (F), GFAP for astrocytes (G) and OLIG2 for ODCs and OPCs (H). Relative 
to control tissues, glia were more numerous in A-T donor sections. 

We next performed dierential gene expression analysis 
comparing A-T and control samples across all cell types 
(Supplementary Figure 4 and Supplementary Table 5). The 

presence of technical variance was accounted for and corrected 

in the DESeq model using surrogate variables (Supplementary 

Figure 4). Moreover, we evaluated if any correlation existed 

between the number of nuclei collected and the transcriptomic 

signal and found no significant correlation between these two 
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FIGURE 3 

(A) Gene expression correlation analysis across cell type between the NETSseq and snRNA-seq cohorts and (B) within each cohort. (C) Line plot 
showing the frequency of significant differentially expressed (between A-T and control samples) genes across cell types in the NETSseq cohort and 
(D) single nuclei cohort. For each plot we highlighted the percentage of specific differentially expressed genes in each cell type. (E) GSEA results for 
the upregulated differentially expressed genes between A-T and control in granule cells. (F) GSEA results for the downregulated differentially 
expressed genes between A-T and control in granule cells. (G) Distribution of glutamate metabolite levels, estimated with Metabolic Flux Analysis 
using the scFEA R package (see methods), in granule neurons. The significance was derived using the scFEA R package, the y axis represents the 
normalized amount of estimated glutamate (a.u.: arbitrary unit) (H) Expression boxplot derived from the NETSseq cohort shows a significant 
downregulation of the SLC1A6 transporter; the significance was computed using the DEseq R package (Control = 20, A-T = 12, p.adj < 0.05). 

variables (Supplementary Figure 4). To validate our findings, we 

compared our results with those reported in the snRNA-seq study 

by Lai et al. (2024) (Supplementary Table 6). Intriguingly, in our 

cohort, we observed that a higher proportion of dierentially 

expressed genes are cell type specific (Figure 3C). In contrast, this 
trend is not uniformly observed in the study of Lai et al. (2024), 
particularly in granule neurons where dierentially expressed 

genes overlap more extensively with those from other cell types 
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(Figure 3D). These results highlight the ability of NETSseq 
to resolve these cell type specific, disease-associated expression 
changes, particularly for granule cells (Figure 3C), where the 
dierences in the snRNA-seq data are likely obscured by ambient 
RNA contamination across all cell types (Figure 3D). 

Granule neuron dysfunction and 
neurotransmission imbalances 

In the cerebellar cortex, mossy fibers (MF) initiate a cascade 
where they stimulate granule neurons, which subsequently activate 
Purkinje neurons. Together, these signals are essential for motor 
coordination (Lee et al., 2023), and disruptions in Purkinje neurons 
are known to lead to motor impairments such as ataxia. In their 
study, Lee et al. (2023) emphasized the critical role of granule 
neurons in motor function by showing that the integrity of MF-
induced signaling and consistent firing of Purkinje neurons relies 
on granule neuron function. Lai et al. (2024) observed a significant 
loss of granule neurons in A-T; however, challenges in single-
cell technology prevented the detection of dierentially expressed 
genes. Our NETSseq platform can overcome those limitations and 
better elucidate the role of granule neurons in the cerebellum of 
A-T donors. GSEA analysis performed with the upregulated genes 
in granule neurons in A-T vs. control donors, highlighted the gene 
set “Release of cytochrome C from mitochondria.” This process 
is crucial for apoptosis regulation and is influenced by interferon 
gamma (IFN-γ), a “response to interferon gamma” gene set was 
also significantly enriched (Figure 3E). We also noted a significant 
downregulation of BCL2, an anti-apoptotic protein, in A-T donors, 
suggesting compromised regulation of apoptosis (Supplementary 
Table 5). Downregulation of synaptic vesicle transport in cerebellar 
granule neurons may disrupt neurotransmitter release, impairing 
excitability of Purkinje neurons and interneurons (Van Der Heijden 
et al., 2024). Consistent with this observation, processes associated 
with neurotransmitter release and vesicle docking were markedly 
enriched among downregulated genes in A-T granule neurons, 
indicating potential disruptions in synaptic function associated 
with motor coordination mechanisms (Figure 3F). Metabolic 
flux analysis computed using NETSseq gene expression values 
aggregated across entire pathways, suggested that granule neurons 
in A-T donors may have lower glutamate levels (Figure 3G), 
likely impairing synaptic transmission within the cerebellum and 
contributing to functional deficits. Specifically, we noticed a 
significant downregulation of the glutamate transporter SLC1A6 
(Figure 3H), which is crucial for the clearance of glutamate 
from the synaptic cleft following synaptic release. By taking up 
glutamate into the cells, SLC1A6 helps maintain low extracellular 
glutamate concentrations, preventing excitotoxicity and ensuring 
precise synaptic signaling. Pathways associated with glutamate 
receptor signaling are also downregulated in Purkinje neurons 
of A-T donors, indicating a broader disruption of glutamatergic 
transmission throughout the cerebellum. The reduced glutamate 
receptor signaling in Purkinje neurons likely impairs neuronal 
function and exacerbates motor coordination deficits since these 
neurons play a central role in controlling cerebellar output 
(Supplementary Figure 4). Taken together, the changes in glutamate 
levels and the dysregulated synaptic transmission processes may 

indicate a broader disruption in the balance / control between 
excitatory and inhibitory signaling. This dysregulation, together 
with the loss of granule neurons could impair the integrated timing 
and coordination of motor commands. These findings suggest 
that disruptions in glutamate neurotransmission contribute to 
the motor dysfunction observed in A-T, highlighting potential 
therapeutic targets for future studies. 

Expression changes in astrocytes are 
consistent with elevated neurotoxic 
activation and inflammation in A-T 

“Reactive astrocytes” refers to astrocytes that are undergoing 
morphological, molecular and functional remodeling in response 
to adverse microenvironmental changes and pathological stimuli. 
Astrocyte activation is implicated in the pathogenesis of multiple 
neurodegenerative diseases. Extensive changes were observed 
in our NETSseq derived astrocyte A-T datasets. Three mouse 
astrocyte activation gene expression signatures have previously 
been reported, corresponding to a common “PAN” activation 
profile, an “A1” neurotoxic activation profile and an “A2” 
neuroprotective profile (Liddelow et al., 2017). Expression analysis 
indicated that the “A1” neurotoxic and common “PAN” gene 
signatures are significantly upregulated in A-T donors, compared 
to controls (p-value < 0.005) (Figure 4A), while the A2 signature 
was not significantly dierent. In addition to the genes specified 
in the A1 gene set, release of complement components is also 
characteristic of the A1 activation state and is postulated to 
drive synapse degeneration (Liddelow et al., 2017). Our data 
shows that several activators of complement components are 
significantly upregulated in A-T donors compared to healthy 
controls (Figure 4B). Conversely, most complement inhibitors have 
higher expression in controls, further supporting the hypothesis 
of an overall activation (Supplementary Figure 4). Interestingly, 
CFI, a complement inhibitor, is significantly upregulated in A-T 
donors, possibly as a compensatory mechanism in response to the 
excessive complement activation (Davies and Spires-Jones, 2018). 
While there are nuances and complexities related to astrocyte 
subset identification, function, and nomenclature of activation 
(Patani et al., 2023; Qian et al., 2023), the findings mentioned above 
suggest an overall increased activation state in astrocytes in A-T. 
This heightened state may lead to an elevated neuroinflammatory 
response and burden, potentially contributing to the ongoing 
pathophysiology of the disease. 

Astrocytes show extensive evidence of 
synaptic remodeling and loss of 
neurotransmitter signaling function 

An important function of astrocytes in the healthy brain is to 
support synapse function, including uptake of neurotransmitters 
and release of trophic factors essential for neuronal survival and 
communication. As astrocytes become more reactive, they lose 
their capacity to support synapses and normal neuronal function 
(Brandebura et al., 2023). Given that A-T is a neurodegenerative 
disease, we were particularly interested in exploring how genes 
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FIGURE 4 

(A) Heatmap showing the expression of genes associated with A1, A2 and PAN signatures in A-T and control donors. For each signature, the 
expression values of individual genes in control or A-T donors were aggregated in a boxplot and the significance was computed using a pairwise 
t-test statistic with BH correction, **p ≤ 0.01. (B) Expression of activators of the complement component in control or A-T donors in astrocyte 
samples. The significance was computed using a pairwise t-test statistic with BH correction, **p ≤ 0.01, ***p ≤ 0.001. (C) Manually curated network 
of the most significant biological process enriched for the upregulated or (D) downregulated genes in Astrocytes. (E) Distribution of the gene set 
scores for signatures associated with changes in neurodegenerative disease in human AD (Mathys et al., 2019), PD (Smajić et al., 2022) and a mouse 
ALS model (Liu et al., 2020) tested against expression changes observed in A-T or control astrocyte samples. P, t-test, corrected for multiple 
comparison; , log2 fold change in score. Gene sets are separated into up-regulated and down-regulated sets according to fold change in the 
source publication. (F) Scatter plot between PC1 dimension computed with the significant age-related genes in astrocytes, and donor age. Linear 
regression analysis was split for disease condition. (G) Expression distribution of A1 associated markers (C3, FBLN5 and AMIGO2) in younger control 
donors (<30yo), older control donors (>30yo) and A-T donors in astrocytes. The significance was computed using a pairwise t-test statistic with BH 
correction. (H) Expression distribution of PAN associated markers (GFAP, CP and CD44) in younger control donors (<30yo), older control donors 
(>30yo) and A-T donors in astrocytes. The significance was computed using a pairwise t-test statistic with BH correction. (I) GSEA computed on the 
upregulated genes identified in A-T vs. control analysis or using age as a variable of interest; gene sets are found in Supplementary Table 9. 

involved in glial support of synaptic function were altered. To 

address this, we performed GSEA on the genes that were either 

upregulated or downregulated in astrocytes from donors with 

A-T. We then conducted a network analysis to identify and 

group together similar biological processes. Our findings revealed 

that upregulated genes in A-T astrocytes were predominantly 
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associated with inflammatory processes, consistent with our 
earlier observation of an increased neurotoxic and activated 
glial signature. This suggests that in A-T, astrocytes may be 
shifting toward a more reactive and potentially harmful state 
(Figure 4C and Supplementary Table 7). Downregulated genes 
were involved in synaptic function and neuronal interaction 
(Figure 4D and Supplementary Table 7) indicating a very 
extensive disease driven remodeling and synaptic reorganization 
in the cerebella of donors with A-T. In addition, genes 
critical for maintaining the structural integrity of the astrocyte-
synapse interaction, as well as those involved in monitoring 
the activity of adjacent synapses (such as neurotransmitter 
receptors, ion channels and transporters) were significantly 
downregulated. This downregulation extends to receptors for 
the primary neurotransmitters in the cerebellum, i.e., glutamate 
and GABA, both of which play essential roles in maintaining 
normal cerebellar function. The marked reduction in the 
expression of these receptors (Supplementary Figure 5) indicates 
a significant impact of A-T on synaptic communication. The 
typical profile for our cerebellar astrocytes suggests a considerable 
similarity to that of Bergmann glia. These are highly specialized 
cerebellar astrocyte populations which have a close and highly 
interconnected interaction with Purkinje neurons, controlling 
and supporting the synaptic function of these rare neurons 
(De Zeeuw and Hoogland, 2015). Thus, the observed deficits 
seen in their function could be much more significant in the 
cerebellum and long term have a greater impact on the disease 
progression. 

Astrocyte changes overlap with those 
seen in other neurodegenerative diseases 

Astrocyte specific expression profiles from post-mortem tissue 
from patients with Alzheimer’s disease (AD) have previously 
been published. Mathys et al. (2019), used snRNA-seq to 
examine prefrontal cortex cell types including astrocytes. Although 
changes were observed, no explicit connection was made to 
A1 activation. We employed the “Gene Set Score” method of 
Srinivasan et al. (2020) to compare astrocyte changes in one 
published AD data set, an ALS SOD1 mouse model (Liu et al., 
2020) and a human Parkinson’s disease (PD) data set (Smaji´ c
et al., 2022) with those changes observed in A-T. These results 
(Figure 4E) show a consistent directional correlation of astrocyte 
genes seen in A-T with the astrocyte gene sets derived from 
the Mathys AD studies. Additionally, the PD study showed a 
correlation between its upregulated genes and the changes seen in 
A-T. 

Our NETSseq data revealed a striking down-regulation of 
synaptic transmission genes in A-T associated astrocytes. GSEA 
analysis showed that this downregulation is also observed 
for key genes in the Mathys et al. (2019) AD data set 
(Supplementary Figure 5). This suggests that down-regulation of 
synaptic transmission genes is a common feature of activated 
astrocytes regardless of brain region or disease. Ongoing astrocytic 
dysfunction in regulating synaptic function may therefore be a 
phenomenon found across neurodegenerative diseases rather than 
being specific to A-T. 

Enrichment analysis reveals accelerated 
aging-related astrocytic changes in A-T 

Given the size and spread of age across the current cohort of 
control donors is relatively large, we were able to investigate the 
impact of normal aging on cerebellar gene changes and compare 
these findings with those from the A-T donors. PCA analysis 
of the most dierentially expressed genes revealed that PC1 is 
associated with age in control donors. Interestingly, the subjects 
with A-T align with much older control donors, suggesting an 
accelerated aging phenomenon (Figure 4F). To better understand 
how A-T donors compare with age-matched controls, we analyzed 
the expression of A1-associated genes in younger and older control 
groups and A-T donors (Figure 4G). Interestingly, some markers 
showed similar expression levels between the two control groups 
but were upregulated in A-T donors, suggesting that neurotoxicity 
is more pronounced in the disease than in normal aging. In 
contrast, PAN markers such as GFAP, CD44, and CP were highly 
expressed in older controls compared to younger donors but 
showed an even greater elevation in expression in A-T donors 
(Figure 4H), indicating an enhanced or accelerated activation 
signature of PAN-associated markers in A-T. 

To further explore the changes occurring in donors with 
A-T and with aging, we performed enrichment analysis on the 
upregulated dierentially expressed genes in both conditions 
(Supplementary Tables 5, 8). A consistent and significant 
enrichment of gene sets associated with changes in AD or associated 
with cognitive decline was observed (e.g., Mathys et al., 2019 -
Astrocyte AD vs. non-AD (up); Mostafavi et al., 2018 - ROSMAP-
Clin AD enriched; Mostafavi et al., 2018- ROSMAP- Cognitive 
decline (UP)) in both aging and A-T. However, specific enrichment 
for gene sets associated with inflammation and astrocytic activation 
was seen in A-T only (Figure 4I and Supplementary Table 9), further 
suggesting that the conversion to a more toxic astrocytic phenotype 
may be part of the normal aging process, but which is significantly 
accelerated as a consequence of the ATM mutated protein in A-T. 

Microglial A-T changes suggest an 
accelerated aging phenotype 

Lai et al. (2024) showed that activated microglia in the A-T 
cerebellum exhibit transcriptomic signatures resembling those seen 
in aging and neurodegeneration-associated microglia. However, 
they performed their analysis comparatively. Our microglia cohort 
consists of control donors with age ranges between 8 and 93 years 
old. Therefore, an assessment of the gene expression patterns 
associated with age were compared within the A-T dataset. 
PCA, based on the most variable genes identified through age 
regression analysis, demonstrated a significant correlation with age 
progression. Interestingly, donors with A-T are positioned at a 
similar level to older control donors (Figure 5A) suggesting that 
the microglial gene expression profiles seen in the A-T cerebellum 
mirrors the aging process but in much younger donors with A-T. 
This may suggest that the ATM mutation is accelerating the aging 
phenotype of microglia in A-T, contributing to an accelerated 
neurodegenerative disease process. 
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FIGURE 5 

(A) Scatter plot between PC1 dimension and age, computed with the significant age-related differentially expressed genes in microglia. Linear 
regression analysis was split by disease condition. (B) Distribution of gene set scores for cluster signatures identified in Sun et al. (2023) 
(C) Expression distribution of ATM gene in control donors across examined cell types. (D) Manually curated pathway network enriched with the 
genes upregulated in Microglia and (E) heatmap of the significant differentially expressed genes (from D). (F) Normalized expression of A-T donors 
(over means of controls) of the GSEA leading-edge genes from “Activation of ATR in response to replication stress” indicates an increase in A-T 
donors, specifically in microglia. 

Inflammatory signatures in A-T: 
implications for neurodegenerative 
pathways 

Sun et al. (2023) identified 12 microglia clusters associated 
with distinct biological functions. Using gene set scoring to analyze 
our A-T microglia samples, we see that the homeostatic and 

surveillance functions, MG00 and MG01, are impaired in A-T (p-
values of 0.093 and 0.019, respectively); among the inflammation 

pathways, MG02 is the most elevated (Figure 5B). The homeostatic 

microglial cluster is crucial for maintaining normal brain function, 
while the surveillance cluster monitors and responds to the brain 

microenvironment for signs of cellular damage or infection. The 

downregulation of these clusters in A-T suggests a compromised 
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ability of microglia to perform their normal essential homeostatic 
roles, potentially as a consequence of chronic inflammation and 
ongoing cellular stress which are hallmark features of A-T and 
other neurodegenerative conditions, such as AD. Interestingly 
the MG10 inflammation cluster was previously associated with 
changes in early AD, while the MG02 inflammation cluster was 
linked to late AD changes (Sun et al., 2023). Overall, our A-T 
microglia signature reflects changes seen in late AD indicating a 
more advanced inflammatory state in A-T brains. Taking these 
microglial observations, together with the astrocyte inflammatory 
signaling changes, these findings reflect the importance of glial 
cell dysfunction in the pathophysiology of A-T, pointing toward 
disrupted immune surveillance and altered inflammatory responses 
across cell types as contributing factors to A-T disease progression. 

DNA damage response in A-T microglia: 
enrichment of ATR regulation highlights 
ATM pathological significance 

A-T is characterized by defects in the ATM protein kinase 
(Lai et al., 2024), which plays a central role in DNA damage 
response pathways. ATM is expressed at significantly higher levels 
in control donor microglia compared to the other cerebellar 
cell types examined here suggesting that microglia may be more 
aected by deficient ATM than other cell types (Figure 5C). This is 
likely attributable, at least in part, to the ability of adult microglia 
to proliferate as part of their normal homeostatic physiological 
condition and exacerbated during pathology-induced stimulation 
(Askew et al., 2017). 

Consistent with this hypothesis, the most upregulated pathway, 
as determined by the most overexpressed genes in A-T, is the 
Reactome gene set “Activation of ATR in response to replication 
stress” (Figure 5D and Supplementary Table 7). Within this group, 
genes involved in cell cycle checkpoint and DNA replication are 
consistently upregulated, including CHEK1 (Figure 5E), a positive 
regulator of cell cycle arrest. This potential adaptive response 
aligns with the importance of ATR signaling in preserving genomic 
integrity under conditions of increased replication stress. This 
process is likely to be specific to glial cell types and particularly 
microglia during periods of elevated inflammation and cellular 
damage. Expression analysis of the leading-edge genes identified in 
the GSEA results associated with ATR response show a microglia-
specific upregulation of these genes relative to other cell types 
(Figure 5F). 

Among the 12 microglial clusters, MG11 was the most 
significant and dierentially regulated between donors with A-T 
and control donors (Figure 5B). This gene set was associated 
with antiviral response, thus suggesting similarities in activation 
mechanisms needed for viral-induced responses and A-T microglia 
activation. It is known that cytosolic viral DNA induces type 1 
interferon as a defense mechanism (Nakad and Schumacher, 2016). 
It has been argued previously that DNA damage or inhibited 
DNA repair can lead to nuclear DNA being transported into 
the cytoplasm leading to a “sterile inflammation response” and 
the induction of interferons (Nakad and Schumacher, 2016). In 
support of this, genes in the KEGG pathway “Cytosolic DNA 
Sensing,” which involves the detection of cytosolic DNA by immune 

receptors and triggers an antiviral response through the production 
of type I interferons and cytokines, are specifically expressed in 
microglia compared to other cerebellar cell types (Supplementary 
Figure 5) (Kanehisa et al., 2025). 

Collectively, these findings indicate that microglial pathways 
are significantly changed in A-T, and these disruptions may play a 
crucial role in driving aberrant neuroinflammation and progressive 
neurodegeneration (Lai et al., 2024; Song et al., 2019). 

Discussion 

The comprehensive analysis of cerebellar post-mortem tissues 
from donors with A-T and control donors presented here has 
provided significant insights into the cell type specific changes 
occurring in A-T. Furthermore, the NETSseq platform achieved 
high-resolution nuclear RNA sequencing that outperformed single-
nuclei RNA sequencing in detecting low-expressed and cell type 
specific genes and minimized cross-contamination among cell 
types. This enabled the identification of distinct gene expression 
patterns and changes in A-T, revealing significant disruptions to 
neuronal and glial cell function. Using deconvolution approaches 
we were able to accurately estimate the changes in cell type 
proportions from unsorted samples, with the same or higher 
precision than snRNA-seq studies. 

We identified a significant loss of cerebellar granule and 
Purkinje neurons; the neuronal loss, coupled with changes in 
neurotransmitter signaling and synaptic function, highlights the 
disrupted motor coordination in A-T. Furthermore, our findings 
suggest a compensatory mechanism that increases ODC and OPC 
populations, possibly in response to ongoing myelin damage. 
However, it is clear from these data that glial subtypes likely have 
a significant role in this impaired neurotransmission and ongoing 
neurodegeneration and may even be a key trigger point. In addition 
to playing a significant role in shaping synaptic neurotransmission, 
cerebellar function and likely dysfunction, astrocytes together with 
microglia are also modulating ongoing inflammatory processes 
across multiple cell types, which may be driving or at least 
contributing to the progression of the disease process. 

Astrocytes are widely recognized for their role in supporting 
neurons; they maintain homeostasis by regulating extracellular 
potassium concentrations and by removing neurotransmitters 
released at synapses, as well as controlling energy supply 
by regulating blood flow and providing lactate to neurons 
(Stogsdill et al., 2023). Moreover, neuron-astrocyte interactions 
and particularly the intimate interactions between astrocytic 
projections and synapses, in which astrocytes enwrap the pre-
and post-synaptic neuronal elements, contribute to and regulate 
synaptic transmission (Stogsdill et al., 2023). This has been 
reported to be of particular importance for the BG-Purkinje neuron 
interactions within the cerebellum (De Zeeuw and Hoogland, 
2015) suggesting that the dysfunctions observed here may be 
more impactful in this particular brain structure, rendering 
the cerebellum more sensitive to disruption. In preclinical 
species these interactions have been shown to be involved 
in regulating behavioral function (Lyon and Allen, 2022) and 
complex information processing such as in cognition and memory 
processing (Kol et al., 2020; Santello et al., 2019). Thus, many of the 
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changes found in astrocytes (and neurons) may be contributing to 
a general impairment in synaptic function and support, leading to 
disrupted cerebellar signaling and neuronal communication. Our 
data further suggest that the neurotoxic and PAN signatures exhibit 
distinct expression patterns in astrocytes, with the neurotoxic 
signature more upregulated in A-T donors and changes in the 
PAN signature suggesting an accelerated aging phenomena in the 
cerebellum of A-T individuals. 

Interestingly many of these glial functions also appear altered 
in other neurodegenerative disorders such as AD as well as normal 
aging; thus, the ATM mutation may be accelerating processes such 
as neuroinflammation in A-T. The microglia specific expression 
of the ATM gene and clear disruptions in the ATR pathway 
suggest that this cell type may be a central mediator of ongoing 
neuroinflammation. However, parallel changes in inflammatory 
markers in astrocytes and neurons indicate a complex interplay 
between cell types leading to aberrant inflammatory processes and 
the progressive loss of key neuronal networks. Further research is 
needed to fully understand these pathways, but these observations 
provide important insights into the pathophysiology of A-T. 

While NETSseq enables high-resolution profiling of known 
cell types, it has certain limitations. It may not detect novel cell 
types that arise under specific pathological conditions or lack 
well-established surface markers for isolation. However, this study 
provides a comprehensive cell type specific overview of gene 
expression and cellular composition in A-T cerebellum. NETSseq 
and these datasets provide a comprehensive high-resolution, 
cell type specific transcriptomic reference that can advance 
targeted investigation of disease mechanisms and therapeutic 
discovery in A-T. 

Materials and methods 

Human tissue 

All human tissue donations used in this study were fully 
consented for research. Tissue was stored and data managed 
in compliance with the UK Human Tissue Act, with local 
Research Ethics Committee approval obtained from the Health 
Research Authority and in accordance with the World Medical 
Associations Declaration of Helsinki for medical research. Tissue 
was obtained from the NIH Neurobiobank at the University 
of Maryland, Baltimore, MD, Queen Square Brain Bank (The 
Queen Square Brain Bank is supported by the Reta Lila Weston 
Institute of Neurological Studies, UCL Queen Square Institute of 
Neurology), The Netherlands Brain Bank (Netherlands Institute for 
Neuroscience, Amsterdam); all material was collected from donors 
for or from whom a written informed consent for a brain autopsy 
and the use of the material and clinical information for research 
purposes had been obtained. 

Tissue preparation 

Snap frozen cerebellar tissue samples were dissected on a brass 
plate, over dry ice. Tissue blocks for FFPE processing were first fixed 
in formalin at room temperature, the excess formalin drained and 

washed in water. Using an automated tissue processor (TP1020, 
Leica) the tissue was passed through a rising concentration of 
ethanol (70%, 80%, 95% and 100% twice for 1 h), then HistoChoice 
(twice for 1 h), before being immersed in Paraplast Plus (twice for 
1 h). Tissues were placed in molds, embedded in paraÿn using 
a Paraÿn Embedding Station (EG1150H, Leica), left to set on a 
cool plate (EG1150C, Leica), and were removed from the mold 
and stored at room temperature until required for sectioning. FFPE 
sections were cut from blocks at a thickness of 4 µm on a rotary 
microtome (Leica RM2255; 535 blades). Sections were floated in a 
water bath to flatten, before mounting on microscope slides. Slides 
were dried on a hotplate at 40◦C for 4 h. 

Frozen blocks were sectioned at a thickness of 10 µm in a 
freezing cryostat (Leica CM1850; MX35 blades), before mounting 
on microscope slides and stored at −80◦C. 

Immunohistochemistry 

Sections were fixed in 4% paraformaldehyde/phosphate 
buered saline (PBS) for 10 min, washed, blocked for non-
specific protein binding and endogenous peroxidase activity and 
then incubated with antibodies for 20 min at room temperature. 
Following primary incubation, sections were washed and incubated 
with horseradish peroxidase (HRP)-conjugated secondary 
antibodies (20 min, room temperature), washed again and then 
incubated with chromogen (10 min, room temperature). Sections 
were counterstained using hematoxylin, dehydrated through an 
ascending ethanol series, cleared and cover-slipped under Xylene. 

Sections were evaluated using brightfield microscopy (Zeiss 
Axiophot) and IHC staining patterns were compared with negative 
control incubations (non-immune rabbit immunoglobulin G) 
performed under identical conditions on adjacent sections. 

In situ hybridization 

RNAscope R  2.5 HD Assay (ACDBio) was carried out according 
to the manufacturer’s instructions, against the probes listed in 
Supplementary Table 10, on cerebellum tissue from healthy donors. 
A GFAP probe was included as a positive assay control. Frozen 
sections were fixed with pre-chilled 4% paraformaldehyde for 
15 min at room temperature and passed through a series of rising 
ethanol gradients (50%, 70% and 100% twice for 5 min each), then 
left at room temperature for 5 min to fully dehydrate. Sections 
were treated with hydrogen peroxide for 10 min, before washing in 
diethylpyrocarbonate-treated water for 5 min. Pre-warmed probes 
were applied for 2 h at 40◦C, within a humidity-controlled chamber 
(HybEZ oven, ACD Bio). Following the incubation with probes, 
slides were washed twice in wash buer (WB, ACDBio) for 2 min, 
at room temperature. 

Signal amplification and detection reagents (RNAscope R  2.5 
HD Detection Reagents-RED, ACDBio) were applied sequentially. 
Sections were incubated in AMP 1, AMP 2, AMP 3, and AMP 4 for 
30, 15, 30 and 15 min, respectively, at 40◦C, with 2 × 2 min WB 
washes in between. AMP 5, and AMP 6 reagents were applied for 
30 and 15 min, respectively, at room temperature, with 2 × 2 min 
WB washes in between. Chromagen FAST RED was then applied 
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for 10 min, at room temperature, before washing in WB twice 
for 2 min. The sections were counterstained with 50% Gill’s 
hematoxylin I (Pioneer Research Chemicals) for 30 s at room 
temperature, rinsed, and dried for 15 min at 60◦C, before applying 
a coverslip with VectaMount (Vector Laboratories). 

Quantitative histopathology 

Sections immunohistochemically stained using a polyclonal 
antibody to RBFOX3 were digitally scanned (Hamamatsu 
Nanozoomer). Three neuroanatomically-matched fields of view 
were selected from three normal donors and four donors with 
A-T. Image processing and analysis was carried out using Image J 
(Ver.1.51 National Institutes of Health). Positively stained nuclei 
were accurately segmented according to both color and staining 
intensity and automatically counted. Adjustments based on the 
average size of positive nuclei were made for aggregates. 

Nuclei preparation 

Nuclei isolation protocols described fully in previous 
publications (Xu et al., 2018), were miniaturized to enable a 
more eÿcient and higher throughput method to process larger 
donor numbers. 

To isolate nuclei, cerebellar frozen tissues were thawed 
on ice for a minimum of 30 min and transferred to 1 mL 
of homogenization medium (0.25 M sucrose, 150 mM KCl, 
5 mM MgCl2, 20 mM Tricine pH 7.8, 0.15 mM spermine, 
0.5 mM spermidine, EDTA-free protease inhibitor cocktail, 1 mM 
DTT, 20 U/mL Superase-In RNase inhibitor, 40 U/mL RNasin 
ribonuclease inhibitor). Using a 2 mL glass Dounce tissue grinder 
set, samples were homogenized by 30 strokes of a large clearance 
pestle A (0.003–0.005 in.) followed by 30 strokes of small clearance 
pestle B (0.005 – 0.0025 in.). Homogenate was adjusted to 1.92 mL 
of homogenization medium and supplemented with 1.78 mL 
of a 50% iodixanol solution (50% Iodixanol/Optiprep, 150 mM 
KCl, 5 mM MgCl2, 20 mM Tricine pH 7.8, 0.15 mM spermine, 
0.5 mM spermidine, EDTA-free protease inhibitor cocktail, 1 mM 
DTT, 20 U/mL Superase-In RNase inhibitor, 40 U/mL RNasin 
ribonuclease inhibitor), and laid on a 27% iodixanol cushion. 
Nuclei were pelleted by centrifugation for 25 min, 10,000 rcf, 4◦C 
in an Eppendorf 5427 R centrifuge, FA-45-12-17 rotor. The nuclear 
pellet was resuspended in homogenization buer. 

Nuclei labeling and sorting 

After isolation, resuspended nuclei were fixed with 1% 
formaldehyde for 8 min at room temperature, and then quenched 
with 0.125 M glycine for 5 min. Nuclei were pelleted at 1000 rcf, 
4 min, 4◦C in a FA-45-30-11 rotor, and then washed once with 
homogenization buer and once with Wash Buer (PBS, 0.05% 
TritonX-100, 50 ng/mL BSA, 1 mM DTT, 10 U/µL Superase-In 
RNase Inhibitor). Nuclei were blocked with Block Buer (Wash 
buer with an additional 50 ng/mL BSA) for 30 min, incubated 
with primary/fluorescently conjugated antibody for 1 h, and then 

washed three times with Wash Buer with spins in between washes 
as described above. Nuclei were then incubated in secondary 
antibody for 30 min and washed three times with Wash Buer. All 
incubation steps were performed at room temperature. Primary, 
secondary and conjugated antibodies were diluted in Block Buer. 

Primary/conjugated antibodies 
Antibody concentrations were either validated previously (Xu 

et al., 2018) or determined by evaluation of antibodies in validation 
tissue by flow cytometry (Supplementary Table 10). 

Secondary antibodies 
Secondary antibodies were prepared according to 

manufacturer’s instructions (Jackson ImmunoResearch) for 
extended storage and rehydration by adding an equal volume of 
glycerol (final concentration of 50%) and used at a 1:250 dilution 
(Supplementary Table 10). 

Flow cytometry 

Prior to flow cytometry, nuclei were co-stained with DAPI to 
0.01 mg/mL final concentration. Nuclei were analyzed and sorted 
using a BD FACSAria Fusion (BD Biosciences, San Jose, CA, USA) 
flow cytometer using the 355 nm, 488 nm, 561 nm, and 640 nm 
lasers. All samples were first gated using an FSC/SSC gate to 
exclude debris, followed by a single nuclei DAPI gate to exclude 
aggregated nuclei. Analysis was performed using FACSDiva (BD) 
or FlowJo software. To reduce RNA degradation all nuclei samples 
were sorted at 4◦C and stored at −80◦C, before being processed 
for RNA extraction. 

Two dierent antibody panels were used to isolate cell 
types. RBFOX3, FOXK2, ITPR1, OLIG2 and IRF8 were 
used to sort Purkinje cells, basket cells, granule cells, Golgi 
cells, oligodendrocytes, oligodendrocyte precursor cells and 
microglia. RBFOX3, SLC1A3, OLIG2 and IRF8 were used to 
sort oligodendrocytes, oligodendrocyte precursor cells, microglia 
and astrocytes. For an exhaustive list of antibodies used refer 
to Supplementary Table 10. The Mann–Whitney U test was 
used to check for significant dierences in percentage cell-type 
composition between control and AT samples for astrocytes, 
oligodendrocytes and oligodendrocyte precursors. Linear 
regression was used to rule out age as an explanatory variable. 

RNA extraction and library builds 

RNA extractions from sorted nuclei were carried out with 
FFPE RNA Purification kits (Norgen: Product # 25300) using the 
manufacturer’s protocol from Step 2 (Lysate Preparation) with the 
following modifications: The On-column DNA removal Protocol 
was omitted. RNA binding and Column Wash centrifuge steps were 
carried out at 1,789 × g for 2 min, followed by 1,789 × g for 5 min 
to dry the resin. Elution was carried out in two steps, with 25 µL 
Elution Solution A added to each column followed by a 1 min 
room temperature incubation and centrifugation at 200 × g for 
2 min, then a further 15 µL Elution Solution A was added to each 
column with centrifugation at 1,789 × g for 5 min. For samples 
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containing > 2,000 nuclei, the final 30 µL elution was split into 
two 15 µL aliquots. Purified RNA was vacuum dried in a CentriVap 
Benchtop Vacuum Concentrator (Labconco) for 40 min (or until 
no liquid was visible) at 4◦C and either used directly for library 
preparation or stored at −20◦C. 

Sequencing library generation was carried out using the Trio 
RNA-Seq, Human rRNA Library Preparation Kit (Tecan: Product 
# 0506-A01) using the manufacturer’s protocol with the following 
modifications: Lyophilized RNA was resuspended in 12.5 µL 
DNAse mix and incubated at 37◦C for 30 min followed by 60◦C for 
5 min and 4◦C hold. Library amplification I was carried out as 72◦C 
2 min/95◦C 2 min/2 × (95◦C 30 s/ 60◦C 60 s)/6 × (95◦C 30 s/ 65◦C 
60 s)/65◦C 5 min/4◦C hold. Library Amplification II was carried 
out as 95◦C 2 min/2 × (95◦C 30 s/ 60◦C 60 s)/6 × (95◦C 30 s/ 65◦C 
60 s)/65◦C 5 min/4◦C hold. Final libraries eluted in 30 µL DNA 
Resuspension Buer (DR1) were checked on Agilent Bioanalyzer 
DNA 1000 chips, then measured on a Nanodrop 8000. 32 sample 
pools (normalized to 500 ng/sample then diluted to 5 ng/µL) were 
sent for sequencing on an Illumina NextSeq High Output platform. 

Bioinformatics analysis 

FastQC1 was used for initial quality control. Adapter trimming 
was performed with Cutadapt v1.12 (Martin, 2011). Reads were 
aligned to the hg38 human genome build (NCBI primary analysis 
set) using STAR aligner (Dobin et al., 2013) v2.5.2b with splice 
junction files generated from Gencode release 27 and RefSeq 
GRCh38.p10. Post-alignment quality control was performed by 
examination of the STAR alignment metrics, Picard tools v2.8.2 
(CollectRNASeqMetrics)2 and RSeQC v2.6.4 (tin.py) (Wang et al., 
2012). Expression quantitation was performed with htseq-count 
v0.6.1p1 (Anders et al., 2015) using a custom annotation file based 
on RefSeq where both exonic and intronic reads are counted for 
each gene. 

The read counts table from each sample was imported into 
RStudio (R version 4.0.5) running under Red Hat Enterprise Linux 
8. Using edgeR (Robinson et al., 2010), the read counts were 
normalized into Counts Per Million (TPM), log transformed, and 
batch corrected. For each individual cell type, we removed technical 
variance associated with batch eect using the sva R package 
(Leek et al., 2012). Briefly, the sva R package provides detection 
of unwanted variation in high-dimensional data. This unwanted 
variation, often caused by batch eects, technical artifacts, or 
unknown confounding factors, can obscure the true biological 
signals of interest. We incorporated relevant surrogate variables in 
the dierential analysis models; the models aim to assess dierences 
due to the disease condition (or any variable of interest such as 
age), while accounting for covariates or potential confounders. 
Dierentially expressed genes were identified using the DESseq R 
package (Love et al., 2014). 

Hierarchal clustering analysis was performed using the 
pheatmap R package (Kolde, 2018). Principal component analysis 
was performed using the pcaMethods R package (Stacklies et al., 
2007). Metabolic flux analysis was computed using the scFEA R 

1 http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ 

2 https://broadinstitute.github.io/picard/ 

package (Alghamdi et al., 2021). Briefly, scFEA is a tool designed 
to infer metabolic activity based on gene expression data. It 
works by modeling the flux of metabolites through predefined 
metabolic modules, which represent groups of reactions within 
metabolic pathways. Using transcriptomic data as input, scFEA 
predicts the activity of these modules by integrating gene expression 
levels with a flux balance analysis framework. This allows for 
the estimation of pathway activity across the samples, providing 
insights into cellular metabolism and its variation across dierent 
conditions. Cell type specific genes were identified using the 
specificity index algorithm previously described in Xu et al. 
(2018) and Dougherty et al. (2010). log2(TPM) values were 
used as gene expression input and ranks were averaged across 
1,000 iterations. The sequencing data generated in this study is 
publicly available at the GEO repository under accession number 
GSE282079. 

Quantification of cell type proportions 

To quantify cell type proportions in the unsorted populations 
we performed a deconvolution analysis using the deconRNAseq 
R package (Gong and Szustakowski, 2013). deconRNAseq works 
by leveraging reference expression profiles, which are known RNA 
expression levels of dierent cell types, to analyze the mixed 
tissue sample’s RNA sequencing data. It uses these profiles to 
construct a mathematical model that deconvolutes the mixture, 
identifying the contribution of each cell type. The algorithm 
optimizes the fit between the observed mixed sample data and 
a linear combination of the reference profiles, thereby estimating 
the proportion of each cell type present in the sample. We 
assembled the reference dataset using our sorted, cell type 
specific, RNA-seq expression profiles. This method enabled us 
to estimate the relative abundances of each cell type in the 
unsorted samples. For the comparative deconvolution analysis, we 
first created a reference panel for each cell type. Each reference 
panel consisted of two expression signatures: one representing the 
target cell population and the second representing the average 
gene expression of all other cell types. This resulted in nine 
distinct signature datasets, each corresponding to a dierent 
cell type in comparison to the rest. Next, we compared the 
gene expression profiles of the unsorted samples against each of 
these reference signatures. For each comparison, we quantified 
the fraction of similarity between the unsorted sample and a 
given target cell type, relative to the expression of all other 
cell types. This approach allows us to assess the proportion 
of similarity between the unsorted samples and individual cell 
types, providing a more accurate means of identifying changes 
in the proportion of specific cell types between experimental 
conditions. 

Gene set enrichment analysis (GSEA) and 
gene set scores 

Gene Set Enrichment Analysis (GSEA) was performed using 
the method described by Subramanian et al. (2005) on gene sets 
generated from the Molecular Signatures Database (MSigDB) v6.2 
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against a ranked list of genes derived from the DESeq2 analysis 
results. Pre-ranked gene lists (.rnk files) were created from the 
DESeq2 Wald statistic, low expressed genes with baseMean less 
than 10 were filtered out to reduce noise. 

Microglial state marker genes were harvested from Sun et al. 
(2023) as is. For each state, labeled MG0∼MG12, genes significantly 
upregulated (adjusted P-value < 0.05) and with a minimum 
fraction of cells expressing the gene of 0.25 were used to build the 
gene sets for GSEA. 

Similarly, we harvested disease-related and cell type specific 
gene sets from several relevant publications. These gene sets 
represent up- or down-regulation with respect to key Alzheimer’s 
disease traits. We extracted significantly dierentially expressed 
genes (adjusted P-value < 0.05) and subdivided them based on the 
direction of their fold changes. 

To compare changes between gene expression profiles we 
generated with other changes seen in other neurodegenerative 
diseases or models we used the gene set score method described 
in Srinivasan et al. (2020). 
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SUPPLEMENTARY FIGURE 1 

(A) Heatmap of cell type specific genes in each cerebellum cell type 
(markers from Lai et al., 2024). (B) Dendrogram of cerebellar cell types in 
our study computed with all the expressed genes (scaled expression of all 
genes and Ward2 clustering were used). (C) In situ hybridization (ISH) 
showing characteristic cell type specific identity marker genes chosen from 
NETSseq data in different cell types of the cerebellum. Labelled cells appear 
distinct in their expected locations. Sections show the molecular layer at 
the top, granule cell layer beneath and the Purkinje layer at the transition. 
(D) Representative example of the gating strategy for Purkinje nuclei in 
human cerebellar tissue. First, single nuclei (purple gate) are identified by 
DAPI. Single nuclei are visualized by ITPR1-FOXK2 vs NeuN, where the 
I/F++N+ (ITPR1/FOXK2++, NeuN+) population is identified (red gate). To 
further exclude contamination from smaller and less complex cell types, 
the I/F++N+ population is refined using FSC-A and SSC-A to give the 
I/F++N+SC++ population (green gate) which is the targeted Purkinje 
nuclei. Due to the very low abundance of Purkinje nuclei, ITPR1-FOXK2 
positive aggregates (orange gate) were resorted, following the same gating 
strategy as described. This process of re-sorting aggregates can be 
repeated multiple times and all I/F++N+SC++ populations pooled to 
increase total nuclei number for downstream sequencing. 

SUPPLEMENTARY FIGURE 2 

(A) Heatmap of NETSseq gene expression for cell type specific genes 
identified from the NETSseq cohort. Heatmaps were split by gene 
expression quantiles (high: >66%, medium: 33%–66%; low: <33% of 
expression quantile) and clustered by cell type. The Y axis shows the cell 
type origin of the genes. The X axis shows the samples grouped by cell 
type. The specific signal was stable across the different expression 
thresholds. (B) Heatmap of snRNA-seq gene expression pseudo-bulked by 
donors for cell type specific genes identified from the NETSseq dataset, 
organized as above. The specificity signal was disrupted and lost for lower 
expressed genes. The black rectangle highlights granule contamination 
across different cell types, as expression of granule specific genes was 
found in all cell types in the snRNA-seq dataset. (C) Heatmap of NETSseq 
gene expression for cell type specific genes identified from the snRNA-seq 
cohort, organized as above. The specificity signal was consistent across the 
different expression thresholds, indicating that the NETSseq platform 

doesn’t suffer from the same detection limits. (D) Heatmap of snRNA-seq 
gene expression pseudo-bulked by donors for cell type specific genes 
identified from the snRNA-seq cohort, organized as above. The square 
highlights granule contamination across different cell types even when the 
specific genes were identified using the snRNA-seq cohort. 

SUPPLEMENTARY FIGURE 3 

(A) Violin plot for the most expressed and cell type specific genes identified 
in the snRNA-seq cohort and their expression across the different cell types 
in the snRNA-seq dataset. Each panel shows one set of cell type specific 
genes (identified in the panel heading) expressed across all eight cell types. 
The granule panel highlights the level of granule contamination across the 
different cell types in the snRNA-seq dataset. (B) Density plot of UMAP 
dimensions 1 and 2, for the single nuclei dataset colored by the assigned 
cell types identified in the snRNA-seq study. The black density represents 
the expression density of the cell type specific marker identified in NETSseq 
dataset for the most expressed genes. The expression density overlaps 
entirely with the assigned cell types, indicating that the gating strategy used 
in our NETSseq platform isolated the correct population of cells and not 
subtypes. Black arrows indicate the expression density for the relevant cell 
type-specific genes. (C) Absolute fraction of similarity for each unsorted 
sample, colored by disease condition. (D) Quantification of granule and 
ODC populations from flow cytometry profiles. (E) Quantitative image 
analysis of neurons and glia markers in cerebellar tissue sections. 

SUPPLEMENTARY FIGURE 4 

(A) Volcano plot depicting the differentially expressed genes between A-T 
and control donors across cell types, colored dots show the significant up 
or downregulated genes with the relative annotation (−log10p.adj > 1 and 
baseMean > 10). (B) Schematic representation of the pipeline used to 
compute differentially expressed genes. (C) Scatter plot showing the 
number of nuclei and the library size for each sequenced sample in our 
cohort. (D) Top 10 up and downregulated enriched gene ontology 
processes found in Purkinje neurons (p-value < 0.01). (E) Inhibitors of 
complement components and their expression in A-T and control samples 
in astrocytes. 

SUPPLEMENTARY FIGURE 5 

(A) Expression plot of neurotransmitters and receptors in A-T and control 
astrocytes. (B) Gene set score for the genes in top 5 BP from the Mathys 
AD-down gene set from Figure 4E (regulation of synaptic transmission 
glutamatergic, neuron-neuron synaptic transmission, presynaptic process 
involved in synaptic transmission, regulation of postsynaptic membrane 
potential and gamma aminobutyric acid signaling pathway). (C) KEGG 
pathway “Cytosolic DNA sensing”. Genes are colored by z-score value in 
microglia computed across all examined cell types (red indicates genes 
more expressed in microglia compared to other cell types). 
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