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Introduction: Studies suggest that serotonin (5-HT) plays an important role
in alcohol use disorder (AUD). While several receptor subtypes modulate the
role of 5-HT in AUD, evidence suggests that 5-HT,, and 5-HT,c receptors
may be directly involved in alcohol drinking due to their interaction with the
mesolimbic dopaminergic system. The aim of the present study was to investigate
the effects of 5-HT,, and 5-HT,c antagonists, alone or in combination, on the
acquisition and expression (i.e., return to alcohol drinking after a period of
abstinence/treatment) of voluntary alcohol drinking in male mice.

Methods: Animals had intermittent access to alcohol (10% v/v) in a two-
bottle choice procedure for 30 days (acquisition), and were then submitted to
alcohol re-exposure sessions after periods of abstinence. Vehicle, the 5-HT;,
receptor antagonist M100907 (M100, 1 mg/kg) and/or the 5-HT,c receptor
antagonist SB242084 (SB, 1 mg/kg) were administered either prior to acquisition
(Experiment 1) or during the abstinence period preceding re-exposure sessions
(Experiment 2). During re-exposure tests, animals were submitted to the same
conditions as during acquisition, with no treatments prior to those sessions.

Results: Our findings show that combined treatment with 5-HT,, and 5-HT,c
antagonists, but not treatment with the antagonists separately, reduced alcohol
drinking and preference when administered immediately before acquisition
(Experiment 1). Combined treatment with 5-HT,, and 5-HT,c antagonists after the
establishment of voluntary alcohol drinking did not alter the expression of drinking
behavior (Experiment 2). On the other hand, while post-acquisition treatment
with a 5-HT,, antagonist alone decreased alcohol intake and preference during
re-exposure, co-administration of a 5-HT,c antagonist blocked these effects.

Discussion: Our findings suggest that 5-HT,, and 5-HT,c receptors differentially
modulate the acquisition and expression of voluntary alcohol drinking in mice.
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1 Introduction

Alcohol use disorder (AUD) continues to be a public health concern
worldwide (The Lancet Gastroenterology Hepatology, 2024), with
treatment options being only partially effective and relapse rates
remaining high (Kurihara et al., 2023). While the field of AUD has made
significant progress in understanding the neurobiological mechanisms
underlying alcohol use (Koob and Volkow, 2010), the lack of broadly
effective medications for AUD emphasizes the need for further studies
investigating novel mechanisms that mediate alcohol use.

Accumulating evidence suggests that serotonin (5-HT) receptors,
particularly the 5-HT,, and 5-HT,c subtypes, play key roles in
modulating alcohol use and AUD (Marcinkiewcz, 2015). 5-HT,,
receptors are highly expressed in glutamatergic and dopaminergic
neurons within the mesolimbic system (Howell and Cunningham, 2015).
Activation of 5-HT,, receptors can increase dopamine release in the
nucleus accumbens and, consequently, enhance the abuse-related effects
of alcohol (Alex and Pehek, 2007; Miiller and Homberg, 2015). On the
other hand, studies also show that 5-HT,, receptor agonists can decrease
alcohol drinking in rodents (Berquist and Fantegrossi, 2021; De Maurel
etal, 1999), an effect that also has been reported after treatment with
5-HT,, receptor antagonists (Ding et al., 2009). 5-HT,¢ receptors, in
contrast, generally exert an inhibitory effect on dopamine release due to
their localization in GABAergic interneurons that mediate dopaminergic
activity in the mesolimbic system (Howell and Cunningham, 2015).
Accordingly; activation of 5-HT) receptors can reduce alcohol drinking
by decreasing the activity of dopaminergic signaling (Di Matteo et al.,
2008; Cunningham and Anastasio, 2014). However, intra-accumbal
administration of a 5-HT, receptor antagonist also suppressed voluntary
alcohol-drinking behavior in mice (Yoshimoto et al., 2012).

Together, these findings suggest that the specific roles of 5-HT,,
and 5-HT, receptors in alcohol drinking remain unclear. While
studies have investigated the role of serotonin 5-HT,, and 5-HT,¢
receptors in the behavioral effects of alcohol (Marcinkiewcz, 2015),
several findings show contradictory results and the majority of these
studies investigated the effects of 5-HT,, and 5-HT) receptor agonists
(Castle and Flanigan, 2024), emphasizing the need for further studies
elucidating the serotonergic mechanisms underlying alcohol drinking,
particularly with antagonist approaches. In the present study,
we sought to investigate not only the role of these receptors on
voluntary alcohol drinking separately, but also whether interactions
exist between these serotonergic mechanisms. By investigating their
effects on both the acquisition and expression (i.e., return to alcohol
drinking after a period of abstinence/treatment) of alcohol drinking,
our goal was to identify whether specific 5-HT,, and 5-HT, receptor
mechanisms are involved in one or more phases of the alcohol
drinking cycle. Understanding the interplay between these receptors
could help inform the neurobiological mechanisms underlying alcohol
use and the development of serotonergic pharmacotherapies for AUD.

2 Materials and methods

2.1 Animals

Three-month-old Swiss male mice from our own colony were
used. Animals weighing 35-40 g were group-housed (10 per cage) for
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most of the study, except during self-administration sessions, during
which animals were single-housed for 15 h every other day. When in
groups, animals were housed in polypropylene cages (32 x 42 x 18 cm)
under controlled temperature (22-23°C) and light/dark cycle (12 h
light, 12 h dark; lights on at 06 h 40). Food and water were available
ad libitum throughout the experiments. Animals were maintained
according to the National Institutes of Health Guide for the Care and
Use of Laboratory Animals (8th Edition, revised 2011) and in
accordance with the Brazilian Law for Procedures for Animal
Scientific Use (#11794/2008). The Institutional Animal Care and Use
Committee of UESC approved the experimental procedures.

2.2 Drugs

The 5-HT,, receptor antagonist M100907 (M100) and the 5-HT,¢
receptor antagonist SB242084 (SB) were synthesized at the Drug Design
and Synthesis Section, National Institute on Drug Abuse and National
Institute on Alcohol Abuse and Alcoholism at the National Institutes of
Health (Bethesda, MD, United States). M100 and SB (both 1 mg/kg,
0.1 mg/mL) were dissolved in sterile saline (0.9%) and administered in
the form of a suspension due to solubility constraints, as noted in previous
publications (Ansah et al., 2011; Knapp et al., 2004). M100, SB and their
vehicle (Veh, saline) were administered intraperitoneally (i.p.). Alcohol
95% (Merck®) was diluted in water at a 10% water/volume drinking
solution. The doses of M100 and SB were chosen based on studies
showing significant reductions in alcohol-related behaviors at the dose of
1 mg/kg (Serra et al., 2022; Ko and Hwa, 2023).

2.3 Two-bottle choice alcohol drinking

Mice were given the opportunity to drink 10% alcohol using an
intermittent access, two-bottle choice procedure. This protocol is
based on previous studies showing that chronic intermittent access to
alcohol is critical for escalation of drinking using a two-bottle choice
procedure (Griffin III et al., 2009; Carrara-Nascimento et al., 2017).
These protocols also include forced abstinence/treatment periods
followed by re-exposure to alcohol drinking to mimic the chronic
episodic nature of alcohol use in humans (Carrara-Nascimento et al.,
2017). This protocol has been in place in our laboratory for several
years for studying voluntary drinking of alcohol (Serra et al., 2022)
and other drugs (Jovita-Farias et al., 2023; Kisaki et al., 2024).

The protocol was divided into 3 phases: acquisition,
abstinence/treatment and re-exposure. For all phases, when
animals were not in the individual drinking cages, animals
remained group-housed in their home cages. Food was available
ad libitum during all sessions. Experimental protocols are
described in the next section.

For all experiments, consumption from each bottle (water or
alcohol) was measured at the end of each session. Bottles were refilled
with fresh water or fresh alcohol solutions before each session. Bottle
sides were switched at every session. Each bottle of water or alcohol
was weighed on a precision scale before and after the session to
determine the consumption of water/alcohol. Animals were also
weighed daily. To ensure data were not affected by liquid loss due to
bottle leaks or evaporation, two bottles were left in an empty cage for
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1 week, during which time liquid loss was measured and found to
be less than 0.1 mL/day. After obtaining the final weight of each
alcohol bottle, alcohol consumption in g/kg was calculated for each
session using the following formula:

Alcohol consumption in g / kg =[Amount of alcohol
consumed (g) xalcohol concentration of solution xalcohol
density]\[animal weight ( g) /1,000].

To calculate each animal’s preference for the alcohol bottle
compared to the water bottle, the following formula was used:

Preference =[Amount of alcohol consumed( )
g

g)/
total consumption (water +alcohol solution ) (g)]x100.

2.4 Experimental design

2.4.1 Experiment 1: effects of 5-HT,, and 5-HT,c
receptor antagonists on the acquisition of
alcohol drinking

Figure 1 illustrates the experimental design for Experiment 1.
Every other day (odd days) for 30 days, 41 animals were housed

10.3389/fnins.2025.1639344

individually in polypropylene boxes (30 x 19 x 13 cm) for 15h
(17 h00-08 h00) and given access to two bottles, one containing 10 mL
of water and the other containing 10 mL of 10% alcohol solution.
Thirty minutes before being placed in the individual boxes, animals
were treated with Veh + Veh (N = 11), M100 + Veh (N =9), Veh + SB
(N = 10) or M100 + SB (N = 11).

Animals were then submitted to 2 abstinence periods, each
followed by an alcohol re-exposure phase (Rl and R2). During
abstinence days, animals were left undisturbed in their home-cages.
The first abstinence period lasted 14 days and the second lasted 7 days.
At the end of each abstinence period, animals were submitted to an
alcohol re-exposure phase, being individually placed in the two-bottle
choice cage with access to one bottle of water and one bottle of 10%
alcohol solution, similarly to the acquisition phase. Each re-exposure
phase lasted 6 days, with animals being re-exposed to alcohol every
other day (total of 3 re-exposure sessions).

2.4.2 Experiment 2: effects of 5-HT,, and 5-HT
receptor antagonists on the expression of
alcohol drinking

Figure 2 Illustrates the experimental design for experiment 2.
Every other day (odd days) for 15 days, 60 animals were housed
individually in polypropylene boxes (30 x 19 x 13 cm) for 15h

=
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Experimental design for Experiment 1. Animals were submitted to the alcohol two-bottle choice procedure acquisition phase, during which they were
exposed to individual cages with access to two bottles, one of water and one of 10% alcohol solution, for 15 h, every other day. During acquisition,
animals were treated with vehicle (Veh, i.p.), the 5-HT,, antagonist M100907 (M100, 1 mg/kg, i.p.) and/or the 5-HT,c antagonist SB242084 (SB, 1 mg/kg,
i.p.). After acquisition, animals were submitted to two abstinence phases, each followed by a re-exposure phase, during which animals were again
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Experimental design for Experiment 2. Animals were submitted to the alcohol two-bottle choice procedure acquisition phase, during which they were
exposed to individual cages with access to two bottles, one of water and one of 10% alcohol solution, for 15 h, every other day. At the end of the
acquisition phase, animals were randomly assigned to 4 groups, being treated with vehicle (Veh, i.p.), the 5-HT,, antagonist M100907 (M100, 1 mg/kg,
i.p.) and/or the 5-HT,c antagonist SB242084 (SB, 1 mg/kg, i.p.) during the treatment phases. Each treatment phase was followed by a re-exposure

(17 h00-08 h00) and given access to two bottles, one containing
10 mL of water and the other containing 10 mL of 10% alcohol
solution. At the end of 15 days, the average alcohol intake between all
animals was 1.57 g/kg, and 18 animals that did not reach 1.5 g/kg of
alcohol intake were then excluded from the study. The remaining (42)
animals with alcohol intake > 1.5 g/kg were maintained in the study
and continued to be submitted to the acquisition protocol for another
15 days (total of 15 acquisition sessions over the course of 30 days,
with sessions happening every other day). The 42 animals were
distributed evenly and randomly across experimental groups, with the
exception of the co-administration group (M100 + SB), in which only
7 animals were included due to constraints related to drug availability.

Animals were then submitted to 3 treatment periods, each followed
by 3 alcohol re-exposure sessions. During the first treatment period,
animals were treated every 3days with Veh+ Veh (N=12),
M100 + Veh (N =12), Veh + SB (N =11) or M100 + SB (N =7) for a
period of 15 days (total of 5 treatment sessions). Thirty minutes after
treatments, animals were individually placed in the two-bottle choice
cage with access to 2 bottles of water. Forty-eight hours after the last
treatment session, animals were submitted to the first alcohol
re-exposure session (R1), being individually placed in the self-
administration cage with access to one bottle of water and one bottle
of 10% alcohol solution, similarly to the acquisition phase. Re-exposure
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sessions happened every other day for 6 days (total of 3 re-exposure
sessions) before the next treatment phase. The 2 subsequent treatment
phases followed the same protocol described for the first treatment
phase, except they were shorter: 9 days each, with treatments every
3 days (3 treatments total per treatment phase). Each treatment phase
was also followed by a 6-day re-exposure phase (R2 and R3), with
re-exposure tests taking place every other day (3 re-exposures each).

2.5 Statistical analysis

Power analyses were conducted using Cohen’s d-statistic and
GPower software based on our published findings using a similar
experimental design (Serra et al., 2022; Kisaki et al., 2024). Based on
these estimates, for a mixed factor ANOVA with drug treatment as the
between-subjects factor, an effect size (f) of 0.50 is expected with
sample sizes of N = 7 ([1-B] = 0.95, nonsphericity correction [¢] = 1.0).
When possible, we have increased the sample size in case of attrition.
All variables were checked for normality (Shapiro-Wilk test) and
homogeneity of variances (Levene’s test). Data for the acquisition
phase were grouped by 6-day periods (3 sessions/period), and data for
the re-exposure test were also grouped as the 3 re-exposure sessions
for each re-exposure phase. Statistical analyses were performed using
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analysis of variance (ANOVA), with or without repeated measures
(RM), and sphericity was assumed for all RM tests. Within- and
between-subject factors are defined for each analysis in the results
section. Multiple comparisons were performed using Bonferroni post
hoc tests. Analyses and graphic representations were performed using
GraphPad Prism (v. 10.4.2). A probability of p < 0.05 was considered
a statistically significant difference.

3 Results

3.1 Experiment 1: effects of 5-HT,, and
5-HT,c receptor antagonists on the
acquisition of alcohol drinking

A two-way ANOVA of the total alcohol intake in g/kg across the
experimental phases (Figure 3A) with time (all time-points) as

10.3389/fnins.2025.1639344

within-subject factor and treatment as between-subject factors
showed a significant interaction between time and treatment [F(18,
222) =2.20; p < 0.01]. Bonferroni’s post hoc analysis showed that
animals treated with the combination of M100 + SB drank less
alcohol compared to the control (Veh-Veh) group during D7-D12,
D13-D18, D25-D30 and during both re-exposure tests (R1 and R2)
(p < 0.05 s). While neither drug alone decreased alcohol drinking
during acquisition, treatment with M100 significantly decreased
alcohol drinking compared to control during the second
re-exposure test (p < 0.05). A two-way ANOVA of total water intake
across the experimental phases with time (all time-points) as
within-subject factor and treatment as between-subject factors also
showed a significant treatment effect [F (6, 228) = 2.39; p < 0.05],
with post hoc tests showing that water intake was significantly
increased in animals treated with the combination of M100 + SB
compared to the control (Veh-Veh) group during the same time-
points when alcohol intake was decreased (p < 0.05s, data not

Mean Alcohol Intake (g/kg)

Acquisition

FIGURE 3

;E: 104 O Veh-Veh
) {1 M100-Veh
L g- < Veh-SB
..g 3+ M100-SB
5 6
<
o
L
< 44
<
©
(<]}
= 29
0 ] I ) L] I i b 1 1
PP <& &
o\ o«& \%’ \g’ ‘bO
Q Q Q
: 1} :
Acquisition Re-exposures
B
Veh-Veh
M100-Veh
Veh-SB
M100-SB

Re-exposures

Mean alcohol intake (g/kg) during the acquisition of two-bottle choice alcohol self-administration and during alcohol re-exposures. Animals were
treated before acquisition sessions with vehicle (Veh-Veh, N = 11), the 5-HT,, antagonist M100907 (M100-Veh, 1 mg/kg, i.p., N = 9), the 5-HT ¢
antagonist SB242084 (Veh-SB, 1 mg/kg, i.p., N = 10), or with a combination of M100907 and SB242084 (M100-SB, both 1 mg/kg, i.p., N = 11).

(A) Alcohol intake over time, in which each time-point is an average of 3 sessions within the same phase (i.e., 3 acquisition sessions or 3 re-exposure
sessions) during the 30-day intermittent access acquisition phase or the 2 re-exposure phases (R1 and R2, each preceded by an abstinence period);
filled symbols represent p < 0.05 vs. control (Veh-Veh). (B) Mean alcohol intake (g/kg) across all days of each phase of the procedure (acquisition vs.
re-exposure); *p < 0.05 vs. control (Veh-Veh). Data are shown as mean + SEM.
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shown), suggesting a shift in overall consumption from alcohol to
water. These findings were also reflected in our analysis averaging
alcohol intake (g/kg) across all days of each phase of the procedure
(acquisition vs. re-exposure, Figure 3B). A two-way ANOVA with
MI100 treatment and SB treatment as between-subject factors
showed a significant interaction between treatments during
acquisition [F(1, 206) = 12.62; p < 0.001], with Bonferroni post hoc
tests showing that treatment with the combination of M100 + SB
significantly decreased alcohol intake during acquisition compared
to control (p < 0.05). A similar two-way ANOVA for the re-exposure
phase showed only a significant effect of M100 treatment [F(1,
80) =20.47; p < 0.0001], but no effect of SB alone [F(1, 80) = 3.49;
p=0.06] or interaction between treatments [F(1, 80)=1.05;
p = 0.30]. Both the group treated with M100 alone and the group
treated with the combination of M100 + SB showed decreased

10.3389/fnins.2025.1639344

alcohol drinking during re-exposure compared to control
(Bonferroni’s test, p < 0.05).

A two-way ANOVA of the preference for the alcohol bottle (%)
across the experimental phases (Figure 4A) with time (all time-
points) as within-subject factor and treatment as between-subject
factors showed a significant effect of treatment [F(3, 37) = 8.00;
p <0.001], but no effect of time [F(6, 222) = 1.91; p = 0.07] or
interaction time and treatment [F(18, 222) = 1.027; p = 0.43]. The
control group showed a preference (greater than 50%) for the
alcohol bottle during both the acquisition and the re-exposure
phases. Bonferroni’s post hoc analysis showed that animals treated
with the combination of M100 + SB showed decreased alcohol
preference compared to controls at all time-points during
acquisition and re-exposure (p < 0.05s). In fact, animals treated
with the drug combination did not show alcohol preference (>50%)

100+
T O Veh-Veh
< 804 _ _
g o—0—5p—0—=0 <> Veh-SB
c
S g0 1+ M100-Veh
2 ++ M100-SB
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S 404
<
o
K
< 204
0 T T T T — T T
) D Q N >
P Y DL
\ «O 'bO g& 6&
RANER N R R,
Q Q Q
1 1 1 1
I 1 1 1
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(Grouped)
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< 100~
o Hm Veh-Veh
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5 80 B M100-Veh
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o
) _
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o
L
< 20+
S
o 0
= Acquisition  Re-exposures
FIGURE 4
Preference (%) for the alcohol bottle during the acquisition of two-bottle choice alcohol self-administration and during alcohol re-exposures. Animals
were treated before acquisition sessions with vehicle (Veh-Veh, N = 11), the 5-HT,, antagonist M100907 (M100-Veh, 1 mg/kg, i.p., N = 9), the 5-HT,c
antagonist SB242084 (Veh-SB, 1 mg/kg, i.p., N = 10), or with a combination of M100907 and SB242084 (M100-SB, both 1 mg/kg, i.p., N = 11)
(A) Alcohol preference over time, in which each time-point is an average of 3 sessions within the same phase (i.e., 3 acquisition sessions or 3 re-
exposure sessions) during the 30-day intermittent access acquisition phase or the 2 re-exposure phases (R1 and R2, each preceded by an abstinence
period); filled symbols represent p < 0.05 vs. control (Veh-Veh). (B) Mean alcohol preference across all days of each phase of the procedure (acquisition
vs. re-exposure); Data are shown as mean + SEM
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at any time-point in the study. Similar results were observed in our
analysis averaging alcohol preference (%) across all days of each
phase of the procedure (acquisition vs. re-exposure, Figure 4B). A
two-way ANOVA with M100 treatment and SB treatment as
between-subject factors showed a significant interaction between
treatments during acquisition [F(1, 200) = 4.52; p < 0.05], with
Bonferroni post hoc tests showing that treatment with the
combination of M100 + SB significantly decreased alcohol intake
during acquisition compared to control (p < 0.05). A similar
two-way ANOVA for the re-exposure phase showed a significant
effect of M100 treatment [F(1, 80) = 12.08; p < 0.001] and of SB
treatment [F(1, 80) = 8.47; p < 0.01], but no interaction between
treatments [F(1, 80) = 0.01; p = 0.94]. Only the group treated with
the combination of M100 + SB showed significantly lower alcohol
preference during re-exposure compared to control (Bonferroni’s
test, p < 0.05).

10.3389/fnins.2025.1639344

3.2 Experiment 2: effects of 5-HT,, and
5-HT,c receptor antagonists on the
expression of alcohol drinking

Because all groups were submitted to the same experimental
conditions during the acquisition phase of Experiment 2, we grouped
the acquisition phase data for graphical representation. To confirm
lack of group differences before beginning of treatments, a two-way
ANOVA of the acquisition phase with time (all time-points) as within-
subject factor and group as between-subject factors showed no
significant effects of time [F(4, 172) = 0.18; p = 0.94], group [F(3,
43) = 1.6; p = 0.18] or time vs. group interactions [F(12, 172) = 1.11;
p = 0.34] for alcohol intake (g/kg). A two-way ANOVA of the total
alcohol intake in g/kg across the re-exposure tests (Figure 5A) with
time (R1, R2, and R3) as within-subject factor and treatment as
between-subject factors showed a significant effect of treatment [F(3,
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were then treated during intervals before each re-exposure phase (R1, R2, and R3) with vehicle (Veh-Veh, N = 12), the 5-HT,, antagonist M100907
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42) =2.70; p < 0.05], but no effect of time [F(2, 84) = 0.28; p = 0.75] or
interaction between the factors [F (6, 84) = 0.39; p = 0.87]. Bonferroni’s
post hoc analysis showed that animals treated with M100 alone showed
decreased alcohol intake during all three re-exposure phases
compared to the control (Veh-Veh) group (p < 0.05 s). SB alone or a
combination treatment with M100 + SB had no significant effects on
alcohol drinking (p > 0.05). A two-way ANOVA of the total water
intake across the re-exposure tests with time (R1, R2, and R3) as
within-subject factor and treatment as between-subject factors showed
a significant effect of treatment [F(3, 42) = 3.42; p < 0.05], with post
hoc tests showing that water intake was significantly increased in
animals treated with M100 alone compared to the control (Veh-Veh)
group during the same time-points when alcohol intake was decreased
(p < 0.05 s, data not shown), suggesting a shift in overall consumption
from alcohol to water. Interestingly, in our analysis averaging alcohol
intake (g/kg) across all days of each phase of re-exposure phase
(Figure 5B), a two-way ANOVA with M100 treatment and SB

10.3389/fnins.2025.1639344

treatment as between-subject factors showed a significant interaction
between treatments during re-exposure [F(1, 135) = 5.44; p < 0.05].
Bonferroni post hoc tests showed that only treatment with M100
significantly decreased alcohol intake compared to control (p < 0.05).

All groups showed a preference (>50%) for the alcohol bottle at all
stages of the acquisition phase. To confirm lack of group differences
before beginning of treatments, a two-way ANOVA of the acquisition
phase with time (all time-points) as within-subject factor and group
as between-subject factors showed no significant effects of time [F(4,
172) = 0.06; p = 0.99], group [F(3, 43) = 4.37; p = 0.09] or time vs.
group interactions [F(12, 172) = 1.22; p = 0.27] for alcohol preference
(%). A two-way ANOVA of the alcohol preference across the
re-exposure tests (Figure 6A) with time (R1, R2, and R3) as within-
subject factor and treatment as between-subject factors showed a
significant effect of treatment [F(3, 41) = 2.53; p < 0.05], but no effect
of time [F(2, 82) = 0.43; p = 0.64] or interaction between the factors
[F(6, 82) = 0.82; p = 0.55]. Bonferroni’s post hoc analysis showed that
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FIGURE 6
Preference (%) for the alcohol bottle during the acquisition of two-bottle choice alcohol self-administration and during alcohol re-exposures. Because
all groups were submitted to the same experimental conditions during acquisition, acquisition phase data were grouped for graphical representation.
Animals were then treated during intervals before each re-exposure phase phase (R1, R2, and R3) with vehicle (Veh-Veh, N = 12), the 5-HT. antagonist
M100907 (M100-Veh, 1 mg/kg, i.p., N = 12), the 5-HT,c antagonist SB242084 (Veh-SB, 1 mg/kg, i.p., N = 11), or with a combination of M100907 and
SB242084 (M100-SB, both 1 mg/kg, i.p.. N = 7). (A) Alcohol preference over time, in which each time-point is an average of 3 sessions within the same
phase (i.e., 3 acquisition sessions or 3 re-exposure sessions) during the 30-day intermittent access acquisition phase or the 3 re-exposure phases (R1,
R2, and R3, each preceded by an abstinence period); filled symbols represent p < 0.05 vs. control (Veh-Veh). (B) Mean alcohol preference across all
days of each phase of the procedure (acquisition vs. re-exposure); *p < 0.05 vs. control (Veh-Veh). Data are shown as mean + SEM.
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animals treated with M 100 alone showed decreased alcohol preference
during re-exposure test R1 compared to the control group (p < 0.05).
No significant effects were seen for the other re-exposure tests, and SB
alone or a combination treatment with M100 + SB had no significant
effects on alcohol preference (p > 0.05). In our analysis averaging
alcohol preference (%) across all days of the re-exposure phase
(Figure 6B), a two-way ANOVA with M100 treatment and SB
treatment as between-subject factors showed no significant effects of
either treatment (MI100: [F(1, 122)=0.72; p=0.39]; SB: [F(1,
122) =8.31; p=0.060]) or interaction between treatments [F(1,
122) = 1.33; p = 0.25].

4 Discussion

Our findings show that neither 5-HT,, nor 5-HT,¢ antagonism
was sufficient to reduce alcohol drinking when administered
immediately before the acquisition phase of the two-bottle choice
procedure. However, combined treatment with the two serotonin
receptor antagonists significantly decreased alcohol intake and
preference, suggesting an additive or synergistic interaction between
the two receptors on voluntary alcohol drinking. These effects resulted
in decreased alcohol intake and preference after treatment
discontinuation (re-exposure phase). Interestingly, combined
treatment with 5-HT,, and 5-HT, antagonists after the establishment
(acquisition) of voluntary alcohol drinking did not alter the expression
(re-exposure) of drinking behavior. In fact, while post-acquisition
treatment with a 5-HT,, antagonist alone decreased alcohol intake
and preference during re-exposure, co-administration of a 5-HT,¢
antagonist blocked these effects.

Our findings showing that co-administration of a 5-HT,c
antagonist blocked the effects of a 5-HT,, antagonist on alcohol-
related behaviors are in agreement with the proposed oppositional
control of 5-HT,, and 5-HT,c receptor ligands over the addiction-
related effects of drugs (Howell and Cunningham, 2015). Because of
the regional distribution of those receptors in the brain, they exert
opposing effects on the dopaminergic mesolimbic system (Bortolozzi
et al., 2005; Manvich et al., 2012a,b; Murnane et al., 2013; Berro et al.,
2017; Valencia-Torres et al., 2017). The ventral tegmental area (VTA)
consists of dopaminergic neurons that project to both the nucleus
accumbens and the prefrontal cortex (PFC). The PFC consists of
pyramidal glutamatergic neurons that project to the nucleus
accumbens and the VTA. Both VTA and PFC neurons are locally
GABAergic VTA
dopaminergic neurons and PFC glutamatergic neurons predominantly

regulated by interneurons. Importantly,
express 5-HT,, receptors, and blockade of those receptors would
be expected to decrease VTA dopamine neurotransmission
(Bortolozzi et al., 2005). On the other hand, VTA and PFC GABAergic
interneurons predominantly express 5-HT, receptors. Blockade of
5-HT,c receptors would be expected to decrease the activity of
GABAergic interneurons, disinhibiting VTA and PFC excitatory
neurons (Howell and Cunningham, 2015) and, ultimately, offsetting
5-HT,,
dopamine activity. In agreement, our findings elucidate previous

receptor antagonism-induced decreased mesolimbic
studies showing that nonselective 5-HT,,4/,¢ receptor antagonists, such
as ritanserin, failed to alter alcohol preference after the establishment
of alcohol drinking in rats (Myers and Lankford, 1993; Rammsayer
and Vogel, 1994).
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The contrasting effects observed with the combination of 5-HT,,
and 5-HT,c antagonists before acquisition vs. re-exposure suggest
that different serotonergic mechanisms may mediate initial vs. long-
term alcohol drinking. This is further corroborated by the mixed
results reported on alcohol drinking after treatment with nonselective
5-HT,4/,c receptor antagonists. In general, 5-HT, antagonists seem
to significantly decrease alcohol intake when administered during
early alcohol drinking (e.g., 7 days of alcohol drinking before
antagonist treatment; Panocka and Massi, 1992), while having no
effects when administered after more than 2 weeks of daily alcohol
intake (Myers and Lankford, 1993; Myers et al., 1993). Importantly,
studies also suggest that the effects of non-selective 5-HT, receptor
antagonists on alcohol drinking are dependent on increased synaptic
availability of 5-HT in the nucleus accumbens (Yoshimoto et al.,
2012). Given the evidence showing that nucleus accumbens
serotonin levels are increased after acute alcohol administration
(Yoshimoto et al., 1992) yet decreased after chronic alcohol drinking
(McBride et al., 1995; Thielen et al., 2004), it is plausible that changes
in serotonin and serotonin receptor availability mediate the effects
of 5-HT,,/,c receptor antagonists on acute vs. chronic alcohol
drinking, as seen in the present study. While studies have shown that
chronic alcohol exposure leads to increased expression of 5-HT,¢
receptors in the nucleus accumbens, much less is known regarding
changes in 5-HT,, receptor expression after chronic alcohol use,
emphasizing the need for further studies to determine specific brain
regions and cell types that are important for mediating the effects of
5-HT,, and 5-HT,c compounds on alcohol drinking (Castle and
Flanigan, 2024).

Of note, while treatment with the 5-HT,, antagonist alone did not
alter acquisition of alcohol drinking, it decreased alcohol drinking
during re-exposure both when it was administered before and after
acquisition. Those findings further suggest that 5-HT,,-mediated
serotonin neurotransmission is important for the expression of the
alcohol drinking. In agreement, 5-HT,, agonists have been shown to
potentiate alcohol-induced excitation of dopamine neurons in the
mesolimbic system (Brodie et al., 1995), while a 5-HT,, receptor
antagonist attenuated operant alcohol self-administration in rats
(Ding et al., 2009).

Together, our findings suggest that that 5-HT,, and 5-HT,c
receptors differentially modulate the acquisition and expression of
voluntary alcohol drinking in mice. Specifically, administration of a
5-HT,, receptor antagonist decreased the expression of alcohol
drinking and preference regardless of the timing of this intervention.
While the 5-HT), receptor antagonist did not have significant effects
on its own, it did modulate the effects of the 5-HT,, receptor
antagonist, enhancing them when administered during early alcohol
drinking (acquisition) and reversing them when administered after
long-term alcohol intake (after acquisition). These findings further
empbhasize the importance of 5-HT, receptor in modulating acute and
chronic alcohol drinking, and also suggest that 5-HT,, and 5-HT,¢
receptor antagonists may be promising therapeutic agents for the
treatment of alcohol use disorder. The clinical translation of 5-HT,
receptor antagonists for the treatment of alcohol use disorder has been
limited to date (for review, see Castle and Flanigan, 2024). Importantly,
studies have shown that the nonselective 5-HT,,,c receptor antagonist
ritanserin did not alter mood, sleep quality, vigilance states or social
functioning in individuals with alcohol use disorder (Wiesbeck et al.,
2000), suggesting limited side effects of combination serotonergic
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strategies in this population. However, the efficacy of serotonergic
compounds for the treatment of alcohol use disorder warrants further
clinical investigation. Of note, an important limitation of the present
study is the use of male mice only. Future studies are needed to
investigate whether similar effects would be observed in females,
particularly considering that sex differences have been reported for
both alcohol drinking and brain serotonin systems, although evidence
for sex differences in 5-HT,, and 5-HT, receptor expression is scarce
(Castle and Flanigan, 2024).
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