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Developmental and Epileptic Encephalopathy (DEE) is a severe neurological condition 
characterized by epileptic seizures and cognitive developmental impairments. 
Mutations in the YWHAG gene, which encodes the 14-3-3γ protein, are implicated 
in DEE. Predominantly expressed in the brain, 14-3-3γ regulates various cellular 
processes, forming homodimers or heterodimers with other isoforms. It binds to 
phosphorylated sites on target proteins, influencing their activity, stability, or cellular 
localization. This review evaluates the association between YWHAG mutations and 
DEE, the mechanisms by which 14-3-3γ influences neuronal function, and potential 
therapeutic interventions. YWHAG mutations, often de novo, lead to a variety of 
epilepsy phenotypes, from febrile seizures to severe epileptic encephalopathies. 
Loss-of-function mutations disrupt neuronal homeostasis, contributing to epilepsies 
and cognitive dysfunction. Specific missense mutations in the 14-3-3γ, such as 
Arg132Cys, significantly impair the protein’s binding affinity and are associated with a 
severe DEE. These mutations impact the function and stability of 14-3-3γ, affecting 
its interaction with ion channels and proteins, thereby contributing to neuronal 
hyperexcitability and impaired development. Understanding the involvement of 
YWHAG in DEE can provide insights into targeted treatments that address both 
the epileptic and developmental components of the disorder.
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1 Introduction

Developmental and Epileptic Encephalopathies (DEEs) are a group of severe neurological 
disorders characterized by early-onset epilepsy, developmental delays, and often progressive 
cognitive and behavioral impairments. These disorders are highly heterogeneous, both 
clinically and genetically, presenting significant challenges for diagnosis and treatment 
(Guerrini et al., 2023). A key feature of DEEs is the disruption of normal brain development 
and function, often driven by mutations in genes critical for synaptic transmission, neuronal 
signaling, and network homeostasis (Guella et al., 2017). The 14-3-3 protein family plays a 
significant role in maintaining neuronal health, regulating synaptic city, and supporting 
cortical development (Foote and Zhou, 2012). Within this family, the dysfunction of 14-3-3γ 
isoform has emerged as a key factor in the pathophysiology of DEEs (Kanani et al., 2020). This 
review will explore the connection between 14-3-3γ and DEE, as well as the 
potential mechanisms.

The 14-3-3 proteins are a highly conserved family of regulatory molecules involved in a 
wide range of cellular processes, including cell cycle control, signal transduction, and apoptosis 
(Aitken et al., 1995; Shen et al., 2003). In the brain, these proteins are particularly abundant, 
supporting critical functions such as neuronal migration, axonal growth, synaptic 
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development, and plasticity (Ferl et al., 2002; Foote and Zhou, 2012). 
Among the seven isoforms of the 14-3-3 family, 14-3-3γ, encoded by 
the YWHAG gene, has been specifically implicated in 
neurodevelopment (Cho and Park, 2020; Huang et  al., 2022). 
Mutations or dysregulation of YWHAG have been associated with 
intellectual disabilities, autism spectrum disorders, and a spectrum of 
epilepsy phenotypes, including DEEs (Guella et al., 2017; Ye et al., 
2021; Yi et al., 2022). Despite growing evidence of its importance, the 
molecular mechanisms by which 14-3-3γ dysfunction contributes to 
DEEs remain poorly understood and further investigation is needed.

Recent studies using 14-3-3γ-deficient animal models have 
provided insights into its role in neurodevelopment and disease. For 
instance, these models have demonstrated the importance of 14-3-3γ 
in cortical development, synaptic plasticity, and maintaining 
excitatory-inhibitory balance in neural networks (Foote et al., 2015; 
Roy et al., 2021). Loss of 14-3-3 function has been shown to disrupt 
NMDA receptor localization and function (Qiao et al., 2014; Lee 
et  al., 2021), impair neuronal migration (Cornell and Toyo-oka, 
2017), and lead to behavioral phenotypes consistent with 
neuropsychiatric and epileptic disorders (Kim et al., 2019; Logue 
et al., 2024). Such findings demonstrate the potential of targeting 
14-3-3γ-related pathways for therapeutic development in DEEs and 
related conditions.

2 The 14-3-3γ isoform

2.1 Overview of 14-3-3 protein family

The 14-3-3 proteins are a highly conserved family of regulatory 
molecules expressed in all eukaryotes, playing critical roles in various 
cellular processes. The historical naming of the 14-3-3 proteins 
originates from their elution and migration patterns observed during 
DEAE-cellulose chromatography and starch gel electrophoresis. These 
proteins were identified in the 14th fraction of bovine brain 
homogenate on DEAE-cellulose and migrated to position 3.3 in the 
starch electrophoresis gel, giving rise to their name (Moore and 
McGregor, 1965; Moore, 1969).

In humans, the 14-3-3 protein family consists of seven isoforms, 
each encoded by a distinct gene: YWHAB/YWHAA (14-3-3β/14-
3-3α), YWHAG (14-3-3γ), YWHAE (14-3-3ε), YWHAH (14-3-3η), 
SFN or YWHAS (14-3-3σ), YWHAQ (14-3-3τ in humans, 14-3-3θ 
in mice), and YWHAZ/YWHAD (14-3-3ζ/14-3-3δ). Isoforms α and 
δ are the phosphorylated forms of β and ζ, respectively (Aitken et al., 
1995). These seven isoforms are evolutionarily conserved across 

mammalian species, including mice, which possess the same set of 
seven genes and the encoded proteins (Table 1).

The 14-3-3 proteins exist as either homo- or hetero-dimers 
(Chaudhri et  al., 2003). There are 28 possible 14-3-3 dimer 
combinations: 7 homodimers and 21 heterodimers. The relative 
abundance and types of dimers vary across cellular locations, tissues, 
and organs, and this diversity in dimerization influences their 
functional roles. Dimerization is critical for 14-3-3 function, as it 
stabilizes their structure and creates the proper conformation 
necessary for binding target proteins (Shen et  al., 2003). The 
functionality of these dimers depends on the specific isoforms 
involved, their interaction partners, and the cellular context.

2.2 Structural characteristics and 
isoform-specific features of the 14-3-3 
family

The seven isoforms of the 14-3-3 protein family share a high 
degree of structural similarity, yet each exhibits unique features that 
influence its specific functions within the cell. These differences 
include variations in expression patterns, binding partners, and 
structural stability (Gardino et al., 2006; Obsilova and Obsil, 2022). 
Sequence analyses reveal a homology range of 69–88% among the 
isoforms (Sengupta et al., 2020), with conserved regions forming the 
hallmark cup-shaped grove crucial for target protein interactions 
(Huang et al., 2022). This characteristic groove binds phosphoserine- 
or phosphothreonine-containing motifs on target proteins, facilitating 
their regulatory functions (Obsil and Obsilova, 2011). While the 
overall dimerization region is conserved across isoforms, subtle 
differences in amino acid sequences at inter-subunit contact regions 
can impact dimer stability. For example, the number of stabilizing salt 
bridges varies among homodimers, with one in 14-3-3ε, two in 
14-3-3γ and η, and three in 14-3-3β, ζ, σ, and τ (Gardino et al., 2006).

Each 14-3-3 monomer has nine α-helices arranged in an 
antiparallel fashion, forming an L-shaped structure (Ferl et al., 2002). 
Comparisons of crystal structures among human isoforms reveal 
consistent overall architecture, with minor differences in subunit 
angles, loop lengths, and α-helix lengths—most notably helices H3, 
H4, and their connecting loop (Yang et  al., 2006). Flexible loop 
regions, such as those connecting helices H3-H4 and H8-H9, often 
appear disordered in crystal structures, suggesting high adaptability 
in protein interactions (Obsilova and Obsil, 2022).

Key structural elements include the helices H3, H5, H7, and H9, 
which contribute to the formation of an amphipathic groove 

TABLE 1  The seven isoforms of 14-3-3 protein family—in humans and in mice.

Gene name (human) YWHAB or 
YWHAA

YWHAG YWHAE YWHAH YWHAS 
or SFN

YWHAQ YWHAZ or 
YWHAD

Gene name (mouse) Ywhab or Ywhaa Ywhag Ywhae Ywhah Ywhas or Sfn Ywhaq* Ywhaz or Ywhad

Protein isoform 14-3-3β (beta) or 14-3-3α 

(alpha) if phosphorylated

14-3-3γ 

(gamma)

14-3-3ε 

(epsilon)

14-3-3η 

(eta)

14-3-3σ 

(sigma)

14-3-3τ (tau) in 

humans or 14-3-3θ 

(theta) in mice*

14-3-3ζ (zeta) or 

14-3-3δ (delta) if 

phosphorylated

Salt bridges 3 2 1 2 3 3 3

Base pairs/amino acids (human) 3020/246 3705/247 2052/255 1751/246 1308/248 2196/245 5011/245

Base pairs/amino acids (mouse) 3013/246 3520/247 2100/255 1764/246 1613/248 2197/245 3288/245
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responsible for target peptide binding. Charged and polar amino acids 
dominate helices H3 and H5, while H7 and H9 are enriched with 
hydrophobic residues. This concave groove allows each monomer to 
bind one phosphopeptide, enabling a dimer to simultaneously interact 
with two phosphorylated sites (Ferl et al., 2002; Gogl et al., 2021).

The binding interactions follow two primary conserved motif 
sequences: RSX(pS/pT)XP (mode I) and RXPhiX(pS/pT)XP (mode 
II), which define the distinct patterns of 14-3-3 protein interactions 
with their targets (Coblitz et al., 2005).

2.3 The function of 14-3-3γ

The 14-3-3γ protein, encoded by YWHAG gene, is a crucial 
regulatory molecule involved in diverse cellular processes. Located on 
chromosome 7q11.23 in humans, YWHAG produces a protein 247 
amino acids in length, identical in size to its mouse ortholog encoded 
by the Ywhag gene on chromosome 5. Comparative analyses reveal an 
88.04% nucleotide sequence identity between the human and mouse 
genes, maintaining evolutionary conservation of 14-3-3γ across 
species. The 14-3-3γ forms either homo- or hetero-dimers with other 
14-3-3 isoforms, exhibiting preferential pairing with 14-3-3ε 
(Chaudhri et al., 2003; Huang et al., 2022).

A defining characteristic of 14-3-3γ is its ability to bind 
phosphorylated target molecules via a conserved ligand-binding 
groove, which is formed when two 14-3-3 subunits dimerize. This 
interaction influences various cellular functions, including regulating 
protein activity, stability, and localization. Through these interactions, 
14-3-3γ plays a central role in signal transduction, modulating 
pathways critical for cellular responses to environmental cues (Cho 
and Park, 2020). Additionally, it is implicated in cell cycle regulation, 
where it influences processes such as cell division and growth, and in 
apoptosis, where its interactions determine cellular survival or 
programmed cell death (Qian Chen and Cheung Hoi Yu, 2002).

14-3-3γ also contributes to cellular stress responses, enabling 
cells to adapt to environmental changes by modulating 

stress-responsive proteins. Notably, it interacts with key signaling 
molecules like RAF1 and protein kinase C, highlighting its 
involvement in complex signal transduction networks (Pagliuso et al., 
2016; Xu et al., 2021). These interactions are supported by evidence 
showing that 14-3-3γ exhibits the highest equilibrium binding affinity 
among the seven 14-3-3 isoforms, engaging with over 400 out of 547 
identified phosphopeptide-binding proteins (Gogl et al., 2021).

Functional diversity of 14-3-3γ is further demonstrated by a yeast 
two-hybrid study that identified 170 unique protein interactions. 
These proteins span various biological functions: 45% are involved in 
cellular communication and signal transduction, 15% in nucleic acid 
synthesis and processing, 10% in cellular organization, and smaller 
percentages in energy metabolism and other processes (Jin et al., 2004).

According to the STRING database curated by the Global Biodata 
Coalition and ELIXIR, the network illustrates predicted functional 
associations between the YWHAG gene and other genes based on 
co-expression, shared pathways, and experimental evidence, rather 
than direct physical, protein–protein interactions (Figure 1). These 
gene-level interactions, including those with other 14-3-3 isoforms 
(YWHAE, YWHAZ, YWHAH) and various signaling pathway 
components, reflect the broad role of YWHAG in maintaining 
cellular homeostasis.

2.4 The expression and localization of 
14-3-3γ

The 14-3-3 protein family constitutes approximately 1% of the 
total soluble proteins in the brain (Foote and Zhou, 2012), reflecting 
its significant role in neural function. Among them, 14-3-3γ is 
particularly abundant in the brain but is also expressed across various 
tissues, highlighting its versatile roles in neuronal development, 
synaptic activity, and cellular signaling. Although the precise 
contribution of 14-3-3γ to the total pool of 14-3-3 proteins is not well-
defined, its expression varies significantly among tissue types and 
cellular environments.

FIGURE 1

Functional interaction network of 14-3-3γ encoded by YWHAG. Network nodes are labeled with the name of the individual genes which encode the 
represented proteins. Protein interactions are represented by color coded lines, based on known and predicted interactions, as indicated by the legend. 
Source: https://stringdb.org/cgi/network?taskId=bMYGzw1kOtuv&sessionId=bMliKFIeKj5g. Screenshot image obtained from the STRING database 
(string-db.org). Licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0).
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The Human Protein Atlas (HPA) data shows the expression 
patterns of the 14-3-3γ transcripts across various tissues and brain 
regions. Its RNA expression levels are reported for 55 tissue types, 
with notably enhanced expression in the brain and skeletal muscle 
cells (Figure 2). In addition, normalized 14-3-3γ RNA expression 
levels (nTPM) are provided for 13 brain regions, showing the highest 
levels within the cerebral cortex region, with the postcentral gyrus 
subregion exhibiting the highest expression of 14-3-3γ (Figure 3).

In the brain, 14-3-3γ shows predominant expression in neurons 
at mRNA levels compared to other isoforms, which display more 
uniform distribution across different cell types (Watanabe et  al., 
1993). In regions such as the striatum and substantia nigra, neuronal 

localization of 14-3-3γ is concentrated in the soma, dendrites, and 
axons (Cho et al., 2023). Astrocytes in ischemic conditions also show 
heightened levels of 14-3-3γ, where its upregulation enhances 
astrocyte survival during ischemia and its depletion leads to increased 
astrocyte apoptosis (Chen et al., 2003, 2005). In oligodendrocytes, a 
deficiency in 14-3-3γ has been linked to demyelination and increased 
vulnerability to inflammatory insults (Cho and Park, 2020).

Beyond its brain-specific roles, 14-3-3γ exhibits diverse subcellular 
localization and interactions. While most 14-3-3 isoforms are found 
in the cytoplasm, intracellular organelles, and plasma membrane, 
14-3-3γ is primarily localized to the nucleus, where it forms distinct 
particles but avoids the nucleoli (Abdrabou et al., 2020). It has also 

FIGURE 2

RNA tissue specificity expression of 14-3-3γ. Normalized RNA expression levels (nTPM) shown for 55 tissue types. Color coding is based on tissue 
groups, each consisting of tissues with functional features in common. RNA tissue specificity expression is enhanced in brain (yellow bars) and skeletal 
muscle cells (brown bars). Source: https://www.proteinatlas.org/ENSG00000170027-YWHAG/tissue. Screenshot image obtained from the Human 
Protein Atlas (proteinatlas.org). Licensed under the Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).
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been detected in centrosomes, with its loss resulting in centrosome 
amplification, a phenomenon implicated in cellular instability 
(Mukhopadhyay et  al., 2016). The unique distribution of 14-3-3γ 
within the cell contributes to its regulation of various target proteins, 
influencing their activity, stability, and localization.

A recent study has shown that pathogenic YWHAG mutations 
cause nuclear relocalization of 14-3-3γ and impair its ability to bind 
phosphorylated targets, disrupting normal cytoplasmic signaling 
functions (Larasati et al., 2025). To address this, a high-throughput 
drug screening approach tested ~3,000 approved compounds for 
their ability to restore 14-3-3γ–phosphotarget interactions. While no 
definitive therapeutic was validated, in  vitro assays identified 

nafamostat as a potential candidate, highlighting the feasibility of 
small-molecule strategies to rescue 14-3-3γ function in YWHAG-
related disorders (Larasati et al., 2025).

3 Association of YWHAG mutation 
with DEE

3.1 DEE overview

Developmental and Epileptic Encephalopathy (DEE) represents a 
group of severe neurological disorders marked by early-onset epilepsy, 

FIGURE 3

Brain RNA expression of 14-3-3γ. (A) Normalized RNA expression levels (nTPM) shown for the 13 brain regions. Color coding is based on brain region. 
The bar shows the highest expression among the brain subregions included. HPA, Human Protein Atlas. (B) Normalized RNA expression levels (nTPM) 
shown for the Cerebral Cortex. The highest expression of 14-3-3γ within the Cerebral Cortex is in the Postcentral Gyrus. Source: https://www.
proteinatlas.org/ENSG00000170027-YWHAG/brain. Screenshot image obtained from the Human Protein Atlas (proteinatlas.org). Licensed under the 
Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).
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developmental delays, and cognitive impairments (Guella et al., 2017). 
The clinical features include severe epileptic seizures that begin early 
in life and developmental impairments that often worsen over time 
(Guerrini et al., 2023).

Epileptic activity in DEE may not directly cause developmental 
delays but frequently accelerates cognitive regression. Both 
developmental delay (DE) and epileptic encephalopathy (EE) stem from 
the same underlying developmental issues, compounding severity of the 
disorder. The DE component reflects delays arising from the 
fundamental developmental problem rather than seizure activity. In 
contrast, the EE component, characterized by frequent seizures and 
abnormal EEG patterns, exacerbates developmental challenges.

While controlling seizures may mitigate the impact of EE, it does 
not address the developmental delays caused by the initial insult 
(Figure 4). DEE is therefore more severe than many other forms of 
epilepsy, as it impacts brain function broadly, leading to developmental 
delays, intellectual disabilities, and behavioral challenges.

3.2 Genetic causes of DEE

DEE can arise from several genetic mutations that disrupt normal 
brain function. According to the National Institute of Health’s Genetic 
Testing Registry, DEE has been linked to 118 different genes, with this 
number continuing to grow as research advances. These mutations 
often target genes involved in ion channel function, neurotransmitter 
receptors, and synaptic proteins.

Many cases of DEE are associated with mutations in genes 
affecting ion channel functions. Various DEE disorders are named in 
the order their associated genes are discovered, starting from DEE1 
and continuing to latest DEE115. For example, sodium channel 
mutations such as SCN1A (DEE6A), SCN2A (DEE6B), and SCN8A 
(DEE13) have been linked to distinct DEE subtypes. Similarly, 
potassium channel mutations in KCNQ2 (DEE7) and KCNT1 
(DEE14), as well as calcium channel mutations like CACNA1A 

(DEE42), have been implicated in DEE pathophysiology. Mutations 
in neurotransmitter receptor genes, such as GABRA1 (DEE19), 
GABRB3 (DEE43), and GRIN2D (DEE46), also contribute to DEE, 
further highlighting the disorder’s molecular diversity. Additionally, 
mutations in genes associated with synaptic proteins and transcription 
factors, including STXBP1 (DEE4), CDKL5 (DEE2), and CHD2 
(DEE94), expand the genetic landscape of DEE.

Among these, the YWHAG gene was the 56th gene identified to 
be associated with DEE, leading to the DEE56 classification. Mutations 
in YWHAG, which encodes the 14-3-3γ protein, result in a spectrum 
of symptoms that can include seizures, developmental delays, and 
behavioral challenges. The specific features and severity of DEE56 vary 
among affected individuals, emphasizing the complexity of its clinical 
presentation (Epi4K Consortium and Epilepsy Phenome/Genome 
Project, 2013).

3.3 YWHAG mutation types and clinical 
phenotypic variability

Mutations in the YWHAG gene, which encodes the 14-3-3γ 
protein, disrupt its regulatory functions by impairing interaction with 
phosphorylated ligands. Most identified YWHAG mutations occur 
within the 14-3-3γ binding groove and are missense mutations, which 
introduce single amino acid substitutions that alter the structure and 
function of 14-3-3γ (Figure 5). The pathogenicity of these missense 
variants stems from their disruption of the positively charged binding 
groove, which normally stabilizes interactions with 
phosphorylated ligands.

Many YWHAG mutations associated with DEEs occur at primary 
interaction sites within the Arg132-Arg57-Tyr133 triad of the binding 
groove (Ye et  al., 2021). This structural motif is responsible for 
stabilizing the negatively charged phosphopeptides of target proteins 
through hydrogen bonding and electrostatic interactions (Yang et al., 
2006). Missense mutations affecting these key residues, such as 

FIGURE 4

Flowchart distinction between Developmental and Epileptic Components of DEE. Created in Biorender.
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Arg57Gly, Arg57Cys, Tyr133Ser, and Arg132Cys, alter the groove’s 
electrostatic properties and compromise its ability to interact with 
phosphorylated targets (Skjevik et al., 2014). Several other missense 
mutations, including Glu15Ala, Asp129Glu, Leu177Ile, and 
Asn178Asp., have been associated with developmental and epileptic 
encephalopathy (DEE). Additionally, mutations such as Glu15Ala 
impair dimerization, a key structural requirement for 14-3-3γ 
regulatory function (Valente et al., 2012). Other missense mutations, 
such as Lys50Gln, are linked to Autism Spectrum Disorder (ASD), 
while Lys125Glu has been implicated in Febrile Seizures (FS) and 
Myoclonic Seizures (MS) (Ye et al., 2021). More recently, Arg57His 
was identified as another YWHAG variant contributing to DEE 
(Gheorghita et al., 2023).

In contrast, truncating mutations, such as Arg42Ter, introduce a 
premature stop codon, leading to production of a shortened, 
nonfunctional protein incapable of dimerizing (Figure  6). These 
mutations, though less common, result in functional 
haploinsufficiency, as only one functional gene copy remains available 
for 14-3-3γ dimer formation. Individuals with truncating mutations 
typically exhibit milder phenotypes compared to those with missense 
mutations. Conversely, dominant-negative mutations, often seen in 
missense variants, produce mutant monomers that incorporate into 

dimers but impair their ability to regulate phosphorylated targets 
(Figure 6).

A comparison of two mutations, Arg42Ter (truncating) and 
Lys125Glu (missense), highlights their distinct clinical outcomes. 
Individuals with Arg42Ter present with relatively mild symptoms due 
to reduced 14-3-3γ protein levels, while those with Lys125Glu, which 
disrupts 14-3-3γ’s ability to bind target ligands, experience more 
severe neurological dysfunction (Ye et  al., 2021). However, both 
mutations have shown responsiveness to Valproate (VPA or valproic 
acid), an anticonvulsant or an antiepileptic drug (AED) used to 
manage various seizure disorders. This suggests that pharmacological 
treatments targeting downstream effects of YWHAG dysfunction may 
provide therapeutic benefit (Kanani et al., 2020).

A recent study analyzed 24 individuals with pathogenic or likely 
pathogenic YWHAG variants, including 21 new cases (Cetica et al., 
2024). Most patients had early-onset epilepsy within the first 2 years 
of life, with phenotypes ranging from generalized epilepsy to 
DEE. Intellectual disability (96%), behavioral disorders (75%), and 
other neurological features (54%) were common. Seizure control was 
achieved in just over half of the cohort. Missense variants in the 
ligand-binding domain were more frequently associated with DEE 
than truncating or other missense variants, suggesting a possible 

FIGURE 5

Binding of functional 14-3-3γ dimer to phosphorylated ligands and disruption by the YWHAG missense mutation. (A) Each functional subunit of the 
14-3-3γ dimer contains an Arg132-Arg57-Tyr133 sequence that creates a stabilized, positively charged groove. This groove binds to negatively charged 
phosphorylated ligands, facilitating the formation of a YWHAG complex. (B) The missense Arg132Cys mutation in the YWHAG gene replaces the 132nd 
amino acid, Arginine, with Cysteine. This alteration disrupts bond formation between the 14-3-3γ dimer and phosphorylated ligands, as the mutated 
14-3-3γ loses the stabilizing Arg132-Arg57-Tyr133 groove. Created in Biorender.
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FIGURE 6

Impact of heterozygous truncating and missense YWHAG mutations on 14-3-3γ dimer formation and function. (A) The wildtype YWHAG gene 
produces normal 14-3-3γ subunits, which assemble into functional 14-3-3γ dimers, able to bind phosphorylated ligands. (B) A truncating mutation 
produces non-functional mutant 14-3-3γ subunits that are shorter and smaller, which are unable to dimerize and to bind phosphorylated ligands. (C) A 
missense mutation produces non-functional mutant 14-3-3γ subunits that are the same size as the wildtype subunits, which are able to dimerize but 
unable to bind two phosphorylated ligands. WT, wildtype; MT, mutant. Source: Logue et al. (2024).
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dominant-negative effect. Arg57 and Arg132 were identified as 
recurrent mutational hotspots (Cetica et al., 2024).

Another recent study reported 12 new DEE56 cases and reviewed 
27 previously published cases with YWHAG mutations (Amato et al., 
2024). Early-onset febrile and afebrile seizures were common, along 
with varying degrees of psychomotor delay. Most individuals had mild 
intellectual disability, and some showed comorbid autism, ADHD, or 
movement disorders such as ataxia and tremor. VPA showed partial 
efficacy in several patients. The study also identified a novel in-frame 
deletion Asn212_Ser215del, expanding the genotypic spectrum 
(Amato et  al., 2024). Another novel variant, Arg125His, was also 
described, further broadening the known mutation types in YWHAG-
related disorders (Amato et  al., 2024). Lastly, an additional study 
further characterized the phenotypic spectrum of YWHAG-related 
epilepsy by analyzing 15 individuals from a Chinese cohort alongside 
40 previously published cases (Tan et al., 2025). The authors identified 
several novel YWHAG variants, including three frameshift mutations 
(Thr31Aspfs*5, Ile63Thrfs*3, Ser102Alafs*7), seven missense 
mutations (Arg132His, Arg132Gly, Tyr133Asn, Tyr133Cys, Ser180Tyr, 
Ala193Val, Glu207Lys), and one truncating nonsense variant 
(Trp233Ter). Seven of these variants were confirmed to be de novo. 
Overall, 86.7% of cases in the cohort carried de novo mutations, most 
of which were missense variants. Clinical presentations ranged from 
isolated febrile seizures to severe developmental delay and epileptic 
encephalopathy, with generalized tonic–clonic and myoclonic seizures 
being the most common. Seizure onset typically occurred within the 
first 2 years of life. Notably, disease severity correlated with the 
location of the variant within the YWHAG gene; mutations within the 
highly conserved triad domain, particularly Arg132 and Tyr133, were 
associated with more severe phenotypes, whereas variants outside this 
region tended to produce milder clinical outcomes (Tan et al., 2025).

Taken together, these findings suggest emerging genotype–
phenotype correlations in YWHAG-related disorders. Variants located 
within the Arg132-Arg57-Tyr133 triad, especially Arg132His, 
Arg132Cys, Arg132Gly, Arg57Cys, and Tyr133Ser, are frequently 
associated with severe DEE phenotypes, such as early-onset seizures, 
poor AED response, and significant Developmental Delay or 
intellectual disability. In contrast, truncating mutations like Arg42Ter 
or variants outside the triad, like Lys50Gln, Ser180Tyr, Ala193Val, and 
Glu207Lys are more likely to present with milder clinical features such 
as febrile seizures or ASD. Novel mutations such as Asn212_Ser215del 
and Arg125His further expand the genetic and phenotypic landscape 
of this disorder (Amato et  al., 2024). Differences in AED 
responsiveness, including favorable responses to VPA, ethosuximide, 
or combination therapies, may guide personalized treatment strategies 
based on the specific mutation.

3.4 De novo YWHAG mutations

Of the 25 reported YWHAG variants listed in Table 2, 18 have 
been confirmed as de novo, three as inherited (Arg42Ter, 
Thr31Aspfs5*, Ile63Thrfs3*), and two variants (Arg57His and 
Arg132Cys) have been reported as occurring either de novo or 
inherited, depending on the case. Inheritance status remains unknown 
for two variants (Arg125His and Asn212_Ser215del) due to lack of 
parental testing or published data (Guella et al., 2017; Ye et al., 2021; 
Amato et al., 2024; Tan et al., 2025). The exact clinical proportion of 

de novo versus inherited YWHAG mutation cases is unknown, 
although recent cohort data suggest that the vast majority, up to 86.7%, 
are de novo, as reported in a study of 15 individuals with YWHAG-
related epilepsy (Tan et al., 2025). De novo mutations originate during 
gametogenesis or early embryonic development. They are absent from 
the DNA of either parent and instead emerge either in one of the germ 
line cells (sperm or egg) or in a somatic cell immediately after 
fertilization. Consequently, affected individuals carry one healthy copy 
of the gene and one mutated variant. If the mutation arises in the 
parental germ line or early in embryogenesis, it typically affects all 
cells. Mutations occurring later in development may be confined to 
specific tissues (Tian et  al., 2021). While the YWHAG mutations 
responsible for neurological disorders are predominantly considered 
germline events, further research is required to distinguish between 
germline and somatic mutations in this context.

Despite being spontaneous, de novo mutations can have hereditary 
implications. If the mutation occurs in the germline, it can be passed 
on to future generations, becoming part of the individual’s genetic 
legacy. In the case of YWHAG mutations, these genetic alterations are 
generally assumed to occur during gametogenesis, making them 
germline in nature (Acuna-Hidalgo et  al., 2015). However, the 
possibility of somatic mutations remains, depending on the timing 
and location of the mutation. Documented YWHAG variants exhibit 
a spectrum of impacts on individuals, with severity ranging widely. 
These mutations highlight the complexity of YWHAG’s role in brain 
function and emphasize the need for further research to improve 
diagnostic and therapeutic approaches for YWHAG-related conditions.

4 Potential mechanisms of mutated 
14-3-3γ in DEE

4.1 Potential cause of EE and DE at 
different levels of nervous system

Epileptic encephalopathy (EE) and developmental encephalopathy 
(DE) may arise from distinct disruptions in brain function at multiple 
levels: neuronal, synaptic, and network (Table 3). The 14-3-3γ protein, 
plays a significant role in neuronal signaling, synaptic function, and 
neurodevelopment. Mutations in the YWHAG gene disrupt the 
structure and function of 14-3-3γ, potentially contributing to the 
pathogenesis of DEE by altering these processes (Komoike et al., 2010; 
Kim et al., 2019).

At the neuronal level, 14-3-3γ is involved in regulating ion 
channels that maintain neuronal excitability. Mutated 14-3-3γ could 
result in impaired ion channel function, which may lead to neuronal 
hyperexcitability and increase the likelihood of spontaneous action 
potentials and seizure activity (Roy et al., 2021; Logue et al., 2024). 
Disrupted ion channel regulation may also interfere with neuronal 
maturation and synaptic development, contributing to the 
developmental delays (Komoike et al., 2010; Foote et al., 2015).

At the synaptic level, 14-3-3γ modulates synaptic plasticity, 
neurotransmitter release, and receptor trafficking. Mutated 14-3-3γ 
could lead to dysregulated glutamate and GABA signaling, disrupting 
the balance between excitatory and inhibitory signals (Qiao et al., 
2014; Wen et al., 2022). This disruption may promote epileptiform 
activity and interfere with synaptic pruning, contributing to abnormal 
neural circuit formation (Guella et al., 2017; Feng et al., 2022). Such 
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TABLE 2  Characteristics of YWHAG mutations.

YWHAG 
variant

Inheritance Clinical phenotype AED response References

Missense mutations

Glu15Ala De novo EE, GE, FS, SE, Hypotonia, VPA

DVP

Guella et al. (2017), Ye et al. (2021), Yi et al. (2022), and 

Tan et al. (2025)

Lys50Gln De novo ASD Unknown Guella et al. (2017) and Ye et al. (2021)

Arg57Cys De novo DEE, MS, FLE, Focal, GTCS, MAE, MA, 

Abs, Atyp Abs, ES, Ataxia, Tremor, 

Clumsiness, ASD, ADHD

VPA, ACTH, CBZ, CLB, 

ESM, LEV, LTG, OXC, TPM

Kanani et al. (2020), Ye et al. (2021), Yi et al. (2022), 

Cetica et al. (2024), and Tan et al. (2025)

Arg57Gly De novo DEE, MAE, GTCS, Focal, MA, Atyp Abs, 

Abs, ASD

CLB, ESM, LEV Kanani et al. (2020), Ye et al. (2021), Yi et al. (2022), and 

Tan et al. (2025)

Arg57His De novo or 

Inherited

DEE, GTCS, FS, Afeb, Atyp Abs, Abs, 

Ataxia, Clumsiness, ASD, ADHD

VPA, CBZ, CBD, CLB, 

ESM, LTG, STP

Sedláčková et al. (2021), Yi et al. (2022), Cetica et al. 

(2024), and Tan et al. (2025)

Arg125His Unknown FS, Abs Unknown Amato et al. (2024)

Lys125Glu De novo GE, FS, Afeb, MS VPA Ye et al. (2021) and Tan et al. (2025)

Asp129Glu De novo DEE, MS, MAE, MA, LGS, GTCS, Atyp 

Abs, Ataxia, Tremor

VPA, CBZ, CLZ, LEV, LTG, 

PYR, TPM

Epi4K Consortium and Epilepsy Phenome/Genome 

Project (2013), Guella et al. (2017), Ye et al. (2021), and 

Tan et al. (2025)

Arg132Cys De novo or 

inherited

DEE, GTCS, MS, MAE, MA, Focal, Abs, 

Atyp Abs, ES, Ataxia, Tremor, Hypotonia, 

Clumsiness, ASD, ADHD, GE

VPA, BVC, CBD, CBZ, CLB, 

CLZ, DVP, ESM, LCM, LEV, 

LTG, PB, PMP, STP, TPM

Guella et al. (2017), Minardi et al. (2020), Kanani et al. 

(2020), Ye et al. (2021), Yi et al. (2022), Iodice et al. 

(2022), Cetica et al. (2024), and Tan et al. (2025)

Arg132Gly De novo DEE, MAE, GTCS, MS, MA, Ataxia, 

Clumsiness, Tremor, ASD

VPA, CLZ, ESM, LEV Cetica et al. (2024) and Tan et al. (2025)

Arg132His De novo DEE, GTCS, MS, MAE, MA, Abs, Atyp 

Abs, Ataxia, Clumsiness, Tremor, ASD, 

ADHD

VPA, CBD, CBZ, CLB, CLZ, 

ESM, HC, LEV, STP, TPM

Brunet et al. (2021), Cetica et al. (2024), and Tan et al. 

(2025)

Tyr133Asn De novo GTCS LEV Tan et al. (2025)

Tyr133Cys De novo DEE, IESS, ES ACTH, VGB Tan et al. (2025)

Tyr133Ser De novo DEE, GTCS Unknown Guella et al. (2017), Kanani et al. (2020), Ye et al. (2021), 

and Tan et al. (2025)

Leu177Ile De novo EE Unknown Kanani et al. (2020), Ye et al. (2021), Yi et al. (2022), and 

Tan et al. (2025)

Asn178Asp De novo EE, Atyp Abs, ASD ESM, LTG Kanani et al. (2020), Ye et al. (2021), and Tan et al. (2025)

Ser180Tyr De novo MEI, MS, GTCS, Ataxia VPA, LEV, TPM Yi et al. (2022) and Tan et al. (2025)

Ala193Val De novo DEE, GTCS, Abs VPA Cetica et al. (2024) and Tan et al. (2025)

Glu207Lys De novo DEE, GTCS, MS, Abs VPA, CBZ, LEV, ZNS Stern et al. (2021), Yi et al. (2022), Cetica et al. (2024), 

and Tan et al. (2025)

Frameshift mutations

Thr31Aspfs*5 Inherited GE, GTCS, ASD VPA, LEV Cetica et al. (2024) and Tan et al. (2025)

Ile63Thrfs*3 Inherited GE, Abs, ADHD VPA, ESM, LTG Cetica et al. (2024) and Tan et al. (2025)

Ser102Alafs*7 De novo GE, Abs, Focal, MS, ADHD VPA, LTG Iodice et al. (2022), Amato et al. (2024), and Tan et al. (2025)

Nonsense truncating mutations

Arg42Ter Inherited GE, GTCS, FS, Afeb, MS VPA Ye et al. (2021), Iodice et al. (2022), and Tan et al. (2025)

Trp233Ter De novo GE VPA, OXC Cetica et al. (2024) and Tan et al. (2025)

In-frame deletion mutations

Asn212_

Ser215del

Unknown SE, DE, GTCS, Dyskinesia, ASD VPA, CLZ Amato et al. (2024)

ADHD, Attention Deficit/Hyperactivity Disorder; Afeb, Afebrile Seizures; ASD, Autism Spectrum Disorder; Atyp Abs, Atypical Absences; Abs, Absence Seizures; DE, Developmental 
Encephalopathy; DEE, Developmental and Epileptic Encephalopathy; EE, Epileptic Encephalopathy; ES, Epileptic Spasms; FLE, Frontal Lobe Epilepsy; Focal, Focal Seizures; FS, Febrile Seizures; GE, 
Generalized Epilepsy; GTCS, Generalized Tonic–Clonic Seizures; ID, Intellectual Disability; IESS, Infantile Epileptic Spasms Syndrome; LGS, Lennox–Gastaut Syndrome; MA, Myoclonic Absences; 
MAE, Myoclonic-Atonic Epilepsy; MEI, Myoclonic Epilepsy of Infancy; MS, Myoclonic Seizures; SE, Status Epilepticus; ACTH, Adrenocorticotropic Hormone; BVC, Brivaracetam; CBD, 
Cannabidiol; CBZ, Carbamazepine; CLB, Clobazam; CLZ, Clonazepam; DVP, Divalproex Sodium; ESM, Ethosuximide; HC, Hydrocortisone; LCM, Lacosamide; LEV, Levetiracetam; LTG, 
Lamotrigine; OXC, Oxcarbazepine; PB, Phenobarbital; PMP, Perampanel; PYR, Pyridoxine; STP, Stiripentol; TPM, Topiramate; VGB, Vigabatrin; VPA, Valproic Acid; ZNS, Zonisamide.
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alterations in synaptic function are linked to cognitive deficits and 
learning and memory impairments (Foote et al., 2015).

At the network level, 14-3-3γ regulates neuronal differentiation, 
migration, and circuit activity. Mutations in 14-3-3γ can disrupt 
network synchronization, leading to abnormal firing patterns that 
promote seizure propagation (Cornell et al., 2016; Roy et al., 2021). 
Impaired long-range connectivity may further affect cognition, motor 
coordination, and sensory processing, contributing to the 
neurodevelopmental deficits (Guella et  al., 2017). Cortical 
disorganization from 14-3-3γ dysfunction may contribute to 
developmental delays and cognitive impairments (Sehgal et al., 2014; 
Wachi et al., 2016).

The following sections of this paper will further elaborate on the 
impact of YWHAG mutation at the neuronal level by examining 
intrinsic excitability ion channel dysfunction, at the synaptic level by 
analyzing synaptic transmission and plasticity, and at the network 
level by investigating circuit connectivity and neuronal migration.

4.2 Neuronal hyperexcitability in 14-3-3 
FKO mouse model

To investigate the functions of 14-3-3 protein family in the 
nervous system, our lab developed the 14-3-3 functional knockout 
(FKO) mouse model. These mice express YFP-fused difopein, a 
dimeric fourteen-three-three (14-3-3) peptide inhibitor that disrupts 
14-3-3 interactions by antagonizing it is binding with endogenous 
partners, under the neuron-specific Thy-1 promoter (Qiao et  al., 
2014). Difopein-expressing neurons appear fluorescent under 
microscopy, distinguishing them from wild-type (WT) neurons 
(Figure 7A). Since difopein inhibits all 14-3-3 isoforms, this model 
provides a tool to study how 14-3-3 proteins contribute to neuronal 
excitability, synaptic function, and behavior.

Neuronal hyperexcitability, defined by excessive action potential 
firing, is a defining characteristic of EE. The 14-3-3 proteins modulate 
cellular excitability, and loss of 14-3-3 leads to impacts intrinsic 
excitability (Foote and Zhou, 2012). In the FKO mouse model, 
electrophysiological recordings confirmed persistently higher 
spontaneous action potential firing in hippocampal CA1 pyramidal 
FKO neurons compared to hippocampal WT neurons; this increased 
excitability persisted even in the presence of excitatory and inhibitory 
synaptic blockers, indicating that the hyperexcitability arises from 
intrinsic cellular mechanisms rather than synaptic input 
(Figures 7B,C) (Logue et al., 2024).

In a different mouse model, Ywhag knockdown in the anterodorsal 
(AD) thalamus induced neuronal hyperexcitability, decreased the 
action potential threshold and abnormal firing activity; chemogenetic 
normalization of excitability restored physiological firing patterns, 
highlighting the link between 14-3-3γ dysfunction and neuronal 
excitability (Roy et al., 2021).

While the FKO model demonstrates that pan-14-3-3 inhibition 
can cause neuronal hyperexcitability, it does not isolate the specific 
contribution of 14-3-3γ or replicate the effect of specific missense 
mutations. The difopein construct disrupts all isoforms of 14-3-3, 
limiting its ability to model isoform-specific DEE mechanisms or 
genotype–phenotype relationships observed in DEE56. To model the 
effects of a missense mutation more precisely, efforts have been made 
to generate isogenic iPSC-derived neural cultures engineered via 
CRISPR to carry the Arg132Cys mutation. This model is being used 
in our lab to assess intrinsic excitability in 2D cortical neurons and 
network activity in 3D forebrain organoids. This approach enables 
direct comparison between the functional impact of the Arg132Cys 
variant and complete 14-3-3γ loss, while also allowing investigation 
of cell-type–specific effects relevant to YWHAG-associated pathology.

4.3 14-3-3γ deficiency in ion channel 
dysregulation

Neuronal hyperexcitability in the 14-3-3 FKO mouse model is 
linked to disruptions in specific ion channels, such as voltage-gated 
calcium channels (VGCCs), NMDA receptors (NMDARs), and 
inward-rectifying potassium channel (KIR2.2). A rightward shift in 
calcium currents of VGCCs (Logue et al., 2024), downregulation of 
NMDARs, (Qiao et al., 2014), and a reduction in KIR2.2 currents (Roy 
et al., 2021) are all significant alterations observed in the 14-3-3 FKO 
mouse model, contributing to neural hyperexcitability and disrupted 
burst-firing patterns. These ion channel modifications have been 
linked to the altered synaptic plasticity and behavioral deficits 
observed in FKO mice (Zhang et al., 2022).

14-3-3 proteins, including the 14-3-3γ isoform, regulate ion 
channels through phosphorylation-dependent binding, modulating 
channel gating, conformation, and trafficking. Many ion channels 
contain phosphorylation sites that enable 14-3-3 interactions, 
influencing their localization and function. For example, 14-3-3γ 
stabilizes KIR2.2 expression and activity, and its loss in Ywhag 
knockdown mice leads to decreased KIR2.2 currents, which impairs 
potassium frow and leads to membrane depolarization, thereby 
increasing neuronal excitability (Roy et al., 2021). These changes may 
contribute to EE, where hyperexcitability predisposes neurons to 
pathological firing patterns. Additionally, chemogenetic targeted viral 
restoration of ion channel function in a Ywhag knockdown model 
reversed neuronal hyperexcitability (Roy et al., 2021).

14-3-3γ likely regulates additional ion channels involved in 
neuronal excitability. For example, VGCC disruption affects calcium-
activated potassium channels by reducing calcium influx, impairing 
their activation and leading to deficient potassium outflow during 
afterhyperpolarization, which results in increased neuronal excitability 
in CA1 pyramidal cells (Lancaster and Adams, 1986). 14-3-3γ also 
interacts with numerous other intracellular proteins, including 170 
identified 14-3-3-associated targets that regulate ion channel activity 
and receptor trafficking (Jin et al., 2004). Separate studies have also 

TABLE 3  Seizure origins at different levels of nervous system and 
associated dysfunctions at each level.

Level within nervous 
system where seizure 
originates:

Potential underlying 
impairments or causes at 
each level:

Neuron/Cellular Dysfunctional ion channels; neuronal 

hyperexcitability.

Synapse Imbalance of excitatory vs. inhibitory 

neurotransmitters.

Network/Circuit Atypical synchronization patterns; 

dysregulated gene expression; disordered 

neuronal morphology and lamination.
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identified the role of 14-3-3 proteins in transmembrane receptor 
trafficking (Cho and Park, 2020).

Additionally, studies show that 14-3-3γ enhances the surface 
expression of ANO1, a calcium-activated chloride channel; silencing 
ANO1 inhibits glioblastoma cell migration and invasion (Lee et al., 
2016). In hippocampal astrocytes, 14-3-3γ exclusively binds to Best1, 
a calcium-activated anion channel, enhancing its surface expression 
and promoting glutamate release; silencing 14-3-3γ reduces Best1 
expression (Oh et  al., 2017). Additionally, 14-3-3γ interacts with 
TRPM4 channels, increasing their plasma membrane expression, 
whereas silencing reduces TRPM4 expression, affecting glutamate-
induced cell death (Cho et al., 2014).

4.4 14-3-3γ regulation of excitatory and 
inhibitory neurotransmission in epilepsy

Glutamate, the primary excitatory neurotransmitter, activates 
NMDARs, mediating calcium influx and regulating neuronal 
excitability. Excessive glutamate overstimulates NMDARs, leading to 
hyperexcitability and seizures. Abnormal glutamate signaling is a key 
factor in epilepsy pathophysiology, with elevated extracellular 

glutamate levels commonly observed in both animal models and 
human patients, especially in cases of temporal lobe epilepsy (Guella 
et al., 2017). Chronic glutamate excess alters synaptic plasticity and 
network function, particularly in hippocampal circuits involved in 
temporal lobe epilepsy (Barker-Haliski and White, 2015). Increased 
extracellular glutamate in the brain, as well as a reduction in GABA 
concentrations, can result in excitotoxicity, seizures, and cell death 
(Sarlo and Holton, 2021).

14-3-3 proteins, including 14-3-3γ, regulate NMDAR function. In 
14-3-3 FKO mice, reduced synaptic NMDAR expression correlates 
with impairments in associative learning, memory, and synaptic 
plasticity within hippocampus (Qiao et  al., 2014). Behavioral 
assessments, such as Y-maze spontaneous alternation, further confirm 
deficits in spatial working memory in FKO mice (Foote et al., 2015). 
Molecular studies demonstrate NMDAR hypofunctionality, including 
reduced GluN1 and GluN2A levels in hippocampal postsynaptic 
densities, a decreased NMDA/AMPA receptor ratio, and diminished 
NMDAR-mediated excitatory postsynaptic currents in hippocampal 
neurons (Qiao et al., 2014). In vitro, inhibiting 14-3-3 in with difopein 
in primary glutamatergic cortical and hippocampal neurons disrupts 
NMDAR localization and reduces surface expression of GluN1, 
GluN2A, and GluN2B subunits, thereby highlighting 14-3-3 role in 

FIGURE 7

14-3-3 FKO hippocampal CA1 neurons fire more APs than WT neurons in the presence and absence of synaptic blockers. (A) Hippocampal slice 
images captured using phase contrast and fluorescence microscopy show 14-3-3 FKO neurons (left) identified by their YFP fluorescence, indicating 
difopein expression. (B) Traces of spontaneous AP firing in 14-3-3 FKO and WT neurons under whole-cell configuration, before and after synaptic 
blocker application. (C) Group data showing a higher AP firing rate for 14-3-3 FKO cells (n = 9 before blockers, 6 after blockers) than WT cells (n = 9 
before blockers, 8 after blockers). AP, Action Potential; FKO, Functional Knockout; WT, Wildtype; CA1, one of four hippocampal subfields that make up 
hippocampus structure. Source: Figure 1 from Logue et al. (2024). Created in Biorender.
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receptor assembly, trafficking, and postsynaptic membrane insertion 
(Lee et al., 2021).

The YWHAG gene and 14-3-3γ protein are implicated in epilepsy-
associated pathways, potentially interacting with glutamate 
metabolism genes (Epi4K Consortium and Epilepsy Phenome/
Genome Project, 2013). Mutations in key regulators of glutamate 
signaling, SLC1A2, GRIN2A, and GRIN2B are linked to onset of EE 
(Feng et al., 2022). Although 14-3-3γ’s precise role in these pathways 
requires further study, its involvement in protein–protein interactions 
and signaling cascades suggests indirect contributions.

Additionally, GABA, the primary inhibitory neurotransmitter, 
activates GABA type A receptors (GABAARs), mediating chloride 
influx and reducing neuronal excitability. Reduced GABA signaling 
weakens inhibition, increasing hyperexcitability and seizure risk. A 
study demonstrated that in rats, 14-3-3 proteins stabilize interactions 
with HAP1, which regulates GABAAR surface expression and 
inhibitory synaptic transmission; disrupting the 14-3-3γ/HAP1 
complex weakens GABAAR signaling, thereby increasing neuronal 
excitability and seizure susceptibility (Wen et al., 2022).

4.5 14-3-3γ dysregulation in neuronal 
migration and epilepsy

Neuronal migration is essential for proper brain development, and 
disruptions in 14-3-3γ function can impair this process, contributing 
to cortical malformations associated with epilepsy (Cornell and Toyo-
oka, 2017). Loss of 14-3-3γ disrupts cell–cell adhesion and trafficking 
of plakoglobin, a desmosomal protein, to the cell border, therefore 
compromising neuronal positioning and connectivity (Sehgal et al., 
2014). 14-3-3γ also interacts with cytoplasmic linker proteins 
(CLASPs) to regulate cytoskeletal dynamics, including microtubules 
and actin filament organization, which are critical for neuronal 
migration (Jin et al., 2004). These interactions are essential for guiding 
neurons to their target locations, and any imbalance in 14-3-3γ levels 
can disrupt normal migration. Dysregulation of 14-3-3γ can prevent 
neurons from reaching their proper locations, impairing cortical 
connectivity and leading to abnormal network synchronization, 
factors closely associated with epilepsy (Guella et al., 2017). Neuronal 
migration during cortical development is modulated by the paracrine 
actions of glutamate and GABA neurotransmitters, which influence 
balance of excitatory and inhibitory signals (Luhmann et al., 2015); 
the imbalance can contribute to the onset of EE.

Any deviations in 14-3-3γ expression, whether through depletion 
or overexpression, can impair neuronal positioning and contribute to 
cortical malformations. Mouse models with decreased levels of 
14-3-3γ due to genetic ablation cause delayed migration of pyramidal 
neurons in the cerebral cortex (Wachi et  al., 2016). Conversely, 
overexpression of 14-3-3γ similarly disrupts migration patterns 
(Cornell et al., 2016). Thusly, that both reduced and excessive 14-3-3γ 
expression impair pyramidal neuron migration, highlighting the need 
for balanced 14-3-3γ expression to maintain proper cortical 
development and organization. Loss of 14-3-3γ also delays pyramidal 
neuron migration in the cerebral cortex, highlighting its role in 
cortical development (Mizuno et al., 2007).

Loss of 14-3-3γ contributes to neuronal migration deficits (Wachi 
et  al., 2016) and to network imbalances that exacerbate epilepsy 
severity (Guella et al., 2017). 14-3-3γ dysregulation is implicated in 

epilepsy, from mild forms such as ME and FS to severe cases like EE 
(Komoike et al., 2010). In rat models, acute seizures induced by kainic 
acid reduce hippocampal 14-3-3γ levels; however, no significant 
14-3-3γ alterations have been observed in the hippocampus of human 
patients with chronic epilepsy, suggesting differences between acute 
and chronic stages or species-specific variations (Schindler et al., 2006).

Recent studies have demonstrated that homozygous knockout of 
14-3-3γ in mice results in lethality before postnatal day 21, underscoring 
its essential role in early neurodevelopment (Cho et  al., 2023). 
Heterozygous Ywhag knockout leads to motor coordination deficits and 
altered dopaminergic signaling, further supporting the involvement of 
14-3-3γ in critical developmental pathways (Cho et al., 2023). Although 
the precise mechanisms underlying the lethality remain unclear, these 
findings suggest that 14-3-3γ is required not only for neuronal migration 
but also for broader processes such as cortical organization, synaptic 
maturation, and survival signaling during early brain development.

4.6 Behavioral and developmental impacts 
of 14-3-3γ dysregulation

Studies on 14-3-3 FKO mice have shown significant behavioral 
deficits, including social withdrawal, impaired associative learning 
and memory, and novelty-induced hyperlocomotion—symptoms 
resembling schizophrenia (Foote et al., 2015). These deficits are linked 
to altered neurotransmission, reduced dendritic complexity, and 
decreased spine density in forebrain excitatory neurons. Our lab has 
demonstrated that these structural changes likely result from impaired 
14-3-3 regulation of phosphorylated cofilin, a key protein in actin 
cytoskeletal dynamics (Foote et al., 2015).

In Ywhag knockdown mouse model, 14-3-3γ deficiency resulted in 
neuronal hyperexcitability and impaired contextual fear conditioning 
memory, thereby linking between 14-3-3γ dysfunction and cognitive 
deficits; however, a chemogenetic viral approach to normalize neuronal 
excitability resulted in behavioral restoration (Roy et  al., 2021). 
Mutations or dysregulation of the YWHAG gene disrupt essential 
developmental processes. Homozygous 14-3-3γ knockout mice are 
prenatally lethal, while heterozygous mice exhibit developmental delays, 
hyperactivity, anxiety-like and depressive-like behaviors, and heightened 
stress sensitivity (Kim et al., 2019). Zebrafish lacking 14-3-3γ show 
delayed brain development and reduced brain size, underscoring its 
importance in early neural formation (Komoike et al., 2010).

4.7 14-3-3γ dysregulation in 
neurodevelopmental, psychiatric, and 
neurodegenerative disorders

Expression and role of 14-3-3γ varies across development, aging, 
and brain regions, with potential implications for neurodevelopmental 
and neurodegenerative disorders. In individuals with Down 
syndrome, 14-3-3γ levels were reduced in the fetal cortex (Peyrl et al., 
2002) but elevated in elderly individuals (Fountoulakis et al., 1999). In 
individuals with Alzheimer’s Disease, 14-3-3γ levels were elevated in 
the cortex overall (Fountoulakis et al., 1999) but specifically decreased 
in the frontal cortex (Gu et al., 2020).

Dysregulation of 14-3-3γ is associated with multiple 
neurodevelopmental disorders. Loss of 14-3-3γ function disrupts 
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cortical development and connectivity, contributing to cognitive 
deficits in Autism Spectrum Disorder (ASD) (Guella et al., 2017). 
Chromosomal abnormalities, such as deletion or duplication at the 
7q11.23 locus, where the ywhag gene is located in mice, are associated 
with Williams-Beuren syndrome—a disorder marked by 
developmental delays, intellectual disabilities, and epilepsy (Kim 
et al., 2019). Additionally, our lab has shown that 14-3-3 inhibition 
in the brain leads to NMDAR deficits, which may contribute to 
schizophrenia-related synaptic alterations and behavioral 
abnormalities (Foote et al., 2015).

14-3-3γ is also implicated in neurodegenerative diseases. Increased 
14-3-3γ expression correlates with cognitive decline, including dementia, 
and motor dysfunction such as muscle stiffness and involuntary 
movements in Creutzfeldt-Jakob disease (Wiltfang et  al., 1999). In 
Parkinson’s Disease (PD), aged 14-3-3γ-deficient heterozygous knockout 
mice exhibit reduced dopamine levels, altered dopamine metabolism, 
changes in protein phosphorylation, and PD-like symptoms, including 
impaired motor coordination and nest-building deficits, suggesting a 
role for 14-3-3γ in PD pathophysiology (Cho et al., 2023).

5 Conclusion

The 14-3-3γ protein, encoded by the YWHAG gene, plays an 
important role in maintaining neuronal function and homeostasis 
(Foote and Zhou, 2012; Cho and Park, 2020). Clinical evidence 
suggests mutated 14-3-3γ diminishes its functionality, potentially 
leading to pathogenesis of DEE, a severe neurodevelopmental 
disorder characterized by early-onset epilepsy, cognitive 
impairments, and developmental delays (Guella et  al., 2017; 
Kanani et al., 2020). Mutations in YWHAG, particularly de novo 
missense variants, disrupt the regulatory functions of 14-3-3γ, 
leading to diverse epilepsy phenotypes and significant 
neurodevelopmental challenges (Ye et al., 2021; Gheorghita et al., 
2023; Yi et al., 2022).

The 14-3-3γ exerts its functions through phosphorylation-
dependent interactions with target proteins, regulating their stability, 
activity, and localization (Obsil and Obsilova, 2011; Gogl et al., 2021). 
These interactions are required for neuronal excitability, synaptic 
plasticity, and cortical development (Qiao et al., 2014; Foote et al., 
2015). Mutations, such as the well-characterized Arg132Cys variant, 
impair 14-3-3γ’s binding groove, destabilizing its molecular partners, 
and disrupting ion channel regulation, NMDA receptor trafficking, 
and cytoskeletal dynamics (Valente et al., 2012; Skjevik et al., 2014). 
These disruptions often result in neural hyperexcitability, impaired 
neuronal migration, and cortical malformations, aligning with the 
clinical manifestations observed in YWHAG mutation carriers (Wachi 
et al., 2016; Guella et al., 2017).

Animal and cellular models provide compelling insights into the 
role of 14-3-3γ in neurodevelopment. FKO mice reveal 
hyperexcitability and altered firing patterns due to dysregulated ion 
channels, such as KIR2.2 and calcium-activated potassium channels 
(Roy et  al., 2021; Logue et  al., 2024). Additionally, these models 
demonstrate deficits in synaptic plasticity, reduced NMDA/AMPA 
receptor ratios, and diminished excitatory postsynaptic currents (Qiao 
et al., 2014; Lee et al., 2021). Behavioral studies in FKO mice further 
emphasize the translational relevance of 14-3-3γ dysfunction, 
showcasing phenotypes resembling human neurodevelopmental and 

psychiatric disorders, such as social withdrawal, hyperlocomotion, 
and cognitive impairments (Foote et al., 2015; Kim et al., 2019).

The clinical variability of YWHAG-related DEE is influenced by 
the nature and location of mutations. Missense mutations affecting the 
conserved Arg132-Arg57-Tyr133 triad result in severe dysfunction 
(Skjevik et al., 2014; Ye et al., 2021), whereas truncating mutations 
produce milder phenotypes due to haploinsufficiency (Kanani et al., 
2020). These genotype–phenotype correlations provide valuable 
insights into the molecular mechanisms of DEE56, indicating that 
14-3-3γ maintains a complex role in neurological disorders.

Despite significant progress, gaps remain in understanding 
molecular mechanisms by which YWHAG mutations contribute to 
DEE. Current therapeutic approaches, such as anticonvulsants like 
valproate, provide symptomatic relief but fail to address the underlying 
pathology (Kanani et al., 2020). Future research should clarify the 
molecular interactions and signaling pathways regulated by 14-3-3γ 
in DEE. Improved modeling using patient-derived organoids and 
advanced electrophysiological tools will help identify how YWHAG 
mutations disrupt neuronal function.

Preclinical studies have shown that chemogenetic restoration of 
excitability can reverse behavioral and electrophysiological deficits 
caused by 14-3-3γ dysfunction (Roy et  al., 2021), supporting the 
potential of targeted therapies such as small-molecule modulators or 
gene-editing strategies. Pathogenic YWHAG mutations also impair 
14-3-3γ localization and phosphotarget binding, and a recent high-
throughput screen identified nafamostat as a potential small-molecule 
compound to partially restore these interactions (Larasati et al., 2025), 
supporting the therapeutic potential of pharmacological rescue 
strategies for 14-3-3γ dysfunction.

Recent advances in small-molecule drug discovery have expanded 
the therapeutic potential of targeting 14-3-3 protein–protein 
interactions (PPIs). These modulators fall into two main categories: 
inhibitors, which disrupt pathological 14-3-3 interactions, and 
stabilizers, which enhance weakened interactions, such as those 
caused by YWHAG mutations that impair phosphotarget binding. 
Stabilizers like Epibestatin, Pyrrolidone1, and compound 21 have 
been identified through high-throughput screening, in silico docking, 
and structure-based drug design, and show efficacy in restoring 
14-3-3/client engagement in various biological contexts (Stevers 
et al., 2018).

Another study employed a structure-guided fragment-linking 
approach to generate molecular glues that reinforce 14-3-3 interactions 
with phosphopeptides (Visser et al., 2023). Although their initial proof-
of-concept targeted an estrogen receptor–derived peptide, the binding 
interface of the highly conserved 14-3-3 phosphopeptide groove, is 
shared across all isoforms, including 14-3-3γ. This strategy presents a 
blueprint for designing small molecules capable of stabilizing disrupted 
interactions caused by pathogenic YWHAG variants.

Continued investigation of 14-3-3γ expression across developmental 
stages, brain regions, and disease states will be essential to refine our 
understanding of its role in neuronal health and DEE pathogenesis and 
to advance precision therapies for YWHAG-related DEE.
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