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Chronic pain affects up to 60% of the population and not only impairs physical
function but also leads to multidimensional neurocognitive deficits, including
diminished attention, working memory impairment, and executive dysfunction.
Clinical studies indicate that chronic pain induces gray matter atrophy in key brain
regions, such as the prefrontal cortex and hippocampus, along with disrupted
functional connectivity and other pathological alterations. Despite extensive
research, the precise pathogenic mechanisms remain largely unclear, making
this a central focus of current investigations. In this review, we examine the
morphological and functional changes in these critical brain regions from an
anatomical perspective. By integrating cellular and molecular insights, we elucidate
the multi-level mechanisms underlying chronic pain-induced cognitive impairment.
Furthermore, we summarize current therapeutic strategies, including pharmacological
treatments, neuromodulation, and behavioral interventions, and discuss promising
directions for future research. By synthesizing recent advances, this review aims
to enhance understanding of the clinical manifestations and pathophysiology of
chronic pain, thereby informing the development of more effective diagnostic
and therapeutic approaches.

KEYWORDS

chronic pain, neuropathic pain, hippocampus, gut microbiota, learning and memory,
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1 Introduction

Chronic pain is a multifaceted condition encompassing neurological, psychological, and
social dimensions, and it has garnered increasing attention due to its association with cognitive
dysfunction. The International Association for the Study of Pain (IASP) defines chronic pain
as pain persisting or recurring for more than 3 months. It can manifest both as a symptom of
other diseases and as an independent pathological entity (Méntyselki et al., 2003; Verhaak
etal,, 1998). Epidemiological studies indicate that up to 60% of the global population, across
diverse age groups and socioeconomic backgrounds, is affected by chronic pain, resulting in
substantial healthcare costs and societal burdens (Elliott et al., 1999; Sadlon et al., 2023; Zhao
et al., 2023). Importantly, chronic pain frequently co-occurs with mood disorders, sleep

01 frontiersin.org


https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2025.1641903&domain=pdf&date_stamp=2025-10-21
https://www.frontiersin.org/articles/10.3389/fnins.2025.1641903/full
https://www.frontiersin.org/articles/10.3389/fnins.2025.1641903/full
https://www.frontiersin.org/articles/10.3389/fnins.2025.1641903/full
https://www.frontiersin.org/articles/10.3389/fnins.2025.1641903/full
https://www.frontiersin.org/articles/10.3389/fnins.2025.1641903/full
mailto:zhuzhaoqiong@zmu.edu.cn
https://doi.org/10.3389/fnins.2025.1641903
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2025.1641903

Gong et al.

disturbances, and cognitive impairments (Alotaibi et al., 2025).
Patients commonly exhibit anxiety and a spectrum of cognitive
deficits, including attentional impairments, reduced executive
function, and slowed information processing, with the severity of
cognitive decline positively correlating with pain intensity and
duration (Rong et al., 2021; Rader et al., 2025). These observations
underscore the urgent need to identify risk factors contributing to
cognitive decline in chronic pain, thereby enabling timely preventive
and interventional strategies.

Preclinical evidence consistently demonstrates that chronic pain
adversely affects cognitive function, although the precise mechanisms
remain incompletely understood (Viero et al., 2025; Liu et al., 2025).
Current research suggests that the pathophysiology of chronic pain-
related cognitive dysfunction is multidimensional, involving
alterations in neural plasticity, neuroinflammation, neurotransmitter
system imbalances, structural and functional brain changes, epigenetic
modifications, and gut-brain axis dysregulation (Han et al., 2024a; Pak
et al., 2024). Despite an increasing array of clinical interventions,
treatment remains challenging. Analgesics including opioids may
partially alleviate pain but often have limited efficacy in improving
cognitive function and may even exacerbate memory deficits by
impairing synaptic plasticity (Dick and Rashiq, 2007; Schiltenwolf
et al,, 2014). Non-pharmacological interventions are constrained by
individual variability and incomplete mechanistic targeting, while
emerging therapies aimed at glial cell modulation, epigenetic
regulation, and gut-brain axis restoration remain largely preclinical,
highlighting substantial translational barriers.

Clinically, cognitive dysfunction in chronic pain patients has
profound implications. Impaired attention, memory, and executive
function can hinder patients’ ability to accurately report symptoms,
adhere to treatment regimens, and engage in self-management
strategies, ultimately compromising pain control and rehabilitation
outcomes. These deficits also exacerbate emotional distress, reduce
social participation, and significantly diminish quality of life.
Moreover, cognitive impairment may alter patients’ responsiveness to
both pharmacological and non-pharmacological interventions,
thereby influencing prognosis. Despite its high prevalence and impact,
the interplay between chronic pain and cognition remains under-
recognized in routine clinical practice, and mechanistic insights are
fragmented across disciplines. This review aims to bridge these gaps
by integrating preclinical and clinical evidence, delineating convergent
biological pathways, and highlighting emerging therapeutic strategies
targeting the shared mechanisms of pain and cognitive decline. This
review comprehensively summarizes current progress in
understanding chronic pain-induced cognitive dysfunction, explores
potential therapeutic strategies and future research directions, and
provides a theoretical basis for clinical diagnosis, treatment, and
mechanistic investigations.

2 Cognitive dysfunction associated
with chronic pain: clinical research
2.1 Current status of clinical research

The comorbidity of cognitive dysfunction with chronic pain has

emerged as a critical focus in clinical research. Epidemiological studies
report chronic pain prevalence rates ranging from 11 to 60%
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(Miéntyselkd et al., 2003; Sadlon et al., 2023). Clinical and preclinical
evidence suggests that at least 50% of individuals with chronic pain
exhibit cognitive impairments (Cohen et al., 2021), with the incidence
of mild cognitive impairment (MCI) showing a dose-dependent
relationship with pain severity (Jorge et al., 2009). A systematic review
identified 53 tools used to assess cognitive function, 73.8% of which
were neuropsychological assessment scales; however, no instruments
are specifically tailored for patients with chronic pain (Ojeda et al.,
2016). The use of diverse assessment tools may yield heterogeneous
results, introducing systematic bias. Therefore, a unified cognitive
assessment framework is urgently needed to elucidate the relationship
between chronic pain and cognitive function.

Systematic reviews and meta-analyses consistently demonstrated
that chronic pain substantially increases the risk of cognitive decline
and dementia (Innes and Sambamoorthi, 2020; Yuan et al., 2023).
Longitudinal cohort studies indicate that chronic pain is associated
with accelerated cognitive deterioration and a higher likelihood of
developing dementia (Whitlock et al., 2017; Rong et al,, 2021). In
middle-aged and older populations across six low-income countries,
pain severity correlates with the incidence of MCI in a dose-dependent
manner (Smith et al, 2023). Trajectories of pain and activity
limitations are significantly linked to the rate of cognitive decline in
older adults (He et al., 2024). Multiple cross-sectional studies report
that chronic pain patients score significantly lower than healthy
controls in memory, attention, executive function, and information
processing speed (Oosterman et al., 2012; Higgins et al., 2018).
Persistent pain has been shown to accelerate cognitive decline over a
10-year period (Whitlock et al, 2017), and pain intensity is
significantly associated with cognitive dysfunction (Van der Leeuw
et al., 2018). Some studies suggest that each additional two-year
period of pain interference increases the risk of cognitive impairment
by 21% (Bell T. et al., 2022). A bidirectional Mendelian randomization
study confirmed a causal relationship between multi-site chronic pain
and cognitive dysfunction, with no evidence of a reverse association
(Guo et al,, 2023). Nonetheless, a limited number of studies report
divergent findings. High heterogeneity in study design, assessment
tools, and sample characteristics currently precludes the establishment
of a definitive causal link between chronic pain and cognitive decline
(Zhang X, et al., 2021; Sadlon et al.,, 2023). The role of sex in chronic
pain-related cognitive dysfunction remains debated (Segura-Jiménez
etal., 2016; Zhang et al., 2024). Some evidence suggests that women
may be particularly susceptible, potentially due to the modulatory
effects of sex hormones (Roth et al., 2005; ter Horst et al., 2012).
Estrogen, for instance, exerts neuroprotective effects by enhancing
hippocampal synaptic transmission and inhibiting microglial
activation, yet cyclical hormonal fluctuations may increase pain
sensitivity and compete for cognitive resources, providing a biological
basis for gender differences (Pozzi et al., 2006; Bartley and Fillingim,
2013). Further studies are needed to clarify phenotype-specific
mechanisms underlying sex differences.

In conclusion, despite heterogeneity in methodologies and
assessment tools, the majority of evidence supports a detrimental
impact of chronic pain on cognitive function. Future research should
aim to establish standardized diagnostic criteria for chronic pain and
a unified cognitive assessment system, integrating neuroimaging
techniques and biomarker analyses to clarify the underlying
pathophysiological mechanisms chronic

linking pain and

cognitive impairment.
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2.2 Clinical manifestations of cognitive
dysfunction induced by chronic pain

Clinical evidence indicates that acute pain may exert protective
effects, whereas chronic pain lacks such benefits and is consistently
associated with cognitive impairments. Chronic pain affects multiple
cognitive domains, including learning, memory, attention,
information processing speed, working memory, long-term memory,
and executive function (Phelps et al., 2021b; Phelps et al., 2021a; Zhou
etal,, 2022). Adolescents experiencing pain exhibit reduced cognitive
performance compared to healthy peers (Jastrowski Mano et al.,
2020), while older adults with chronic pain demonstrate more
pronounced cognitive decline (Murata et al., 2017; Chen J. et al,,
2023). These impairments are not uniform across pain conditions.
Based on the clinical studies summarized in Table 1, patients with
different types of chronic pain consistently exhibit cognitive deficits,
although the affected domains vary. Fibromyalgia is primarily
associated with deficits in divided attention (Moore et al., 2019),
whereas osteoarthritis, particularly chronic hip osteoarthritis, is
linked to domain-specific impairments involving short- and long-
term memory, attention, and executive function (Kazim et al., 2023).
Chronic low back pain is characterized by more widespread cognitive
impairments, including deficits in attention, working memory,
information processing speed, executive function, language, and
visuospatial abilities (Corti et al., 2021). Overall, attention and
executive dysfunction emerge as common features across multiple
pain types, while the extent and pattern of memory, language, and
visuospatial deficits differ depending on the underlying pain
condition, suggesting that specific pain phenotypes may be associated
with distinct cognitive impairment profiles.

2.2.1 Learning and long-term memory

Clinical studies have demonstrated that chronic pain elevates the
risk of memory impairments and is associated with multidimensional
deficits across cognitive domains (Innes and Sambamoorthi, 2020).
Cognitive dysfunction is significantly more prevalent in chronic pain
patients than in healthy populations, affecting attention, executive
function, and learning and memory. Among these, learning and
memory functions appear particularly susceptible to chronic pain,
with pain persistence correlating with accelerated memory decline
(Higgins et al., 2018).

Patients with fibromyalgia and osteoarthritis, two common
subtypes of chronic pain, perform worse on delayed recall and
working memory tasks compared to healthy controls (Apkarian et al.,
2011). Meta-analyses further reveal small to moderate deficits in long-
term memory among fibromyalgia patients relative to healthy adults
(Bell et al., 2018). Persistent moderate to severe pain exhibits a dose—
response relationship with subsequent memory decline (Rong et al.,
2021). Pain subtypes also demonstrate domain-specific cognitive
associations: osteoarthritis primarily affects visuospatial and executive
functions, whereas fibromyalgia predominantly impairs working
memory (Tiara and Fidiana, 2021). The severity and duration of pain
are key determinants of cognitive outcomes. Patients with moderate
to severe joint pain face a higher risk of memory decline than those
with mild pain, and each additional year of pain duration is associated
with progressive reductions in episodic memory scores (van der
Leeuw et al., 2018; Horgas et al., 2022). Longitudinal studies indicate
that individuals with persistent pain exceeding 6 months have a
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substantially increased risk of developing major memory impairments
over a 10-year period, independent of confounding factors such as age
and education (Whitlock et al., 2017). Collectively, these findings
indicate that chronic pain significantly impairs learning and long-term
memory, with pain intensity, subtype, and duration serving as critical
factors informing clinical intervention strategies.

2.2.2 Attention

Multiple clinical studies have confirmed a robust association
between chronic pain and attentional dysfunction. Chronic pain
impairs various aspects of attention, including sustained, selective, and
divided attention (Bell et al., 2018). Acute experimentally induced
pain and chronic pain affect attention differently: acute pain primarily
reduces accuracy in n-back and attention-switching tasks, whereas
chronic pain patients exhibit deficits in divided attention tasks (Moore
etal., 2019). Evidence indicates that chronic pain disrupts performance
on attention-demanding tasks (Higgins et al., 2018) and alters brain
activity associated with attentional processing (Pinheiro et al., 2016).
Clinically, many patients report difficulties concentrating, with some
experiencing persistent attention deficits (Legrain et al., 2009).
Impairments in attention may underlie the overall mild cognitive
impairment observed in chronic pain populations (Ferreira et al.,
2016). Prospective studies show that patients with knee osteoarthritis
experience declines in short-term memory and attention, with the
effects being more pronounced in those with chronic pain (Wen et al.,
2024). In specific domains, such as selective and sustained attention,
task performance efficiency is generally lower in chronic pain patients
compared to healthy controls (Arévalo-Martinez et al., 2024). Chronic
pain also impairs internal attention, thereby hindering creative
thinking, and significantly reduces performance in attention-
demanding tasks (Richards et al., 2018; Gubler et al, 2022).
Collectively, these findings suggest that chronic pain exacerbates
cognitive load by disrupting core attentional processes, such as
information filtering, sustained focus, and multitasking, ultimately
contributing to broader cognitive decline.

2.2.3 Executive function

Cognitive flexibility, a critical component of executive function, is
primarily mediated by the prefrontal cortex (PFC; Cowen et al., 2018).
Accumulating evidence indicates that patients with chronic pain often
exhibit mild to moderate impairments in executive function, with
deficits in this domain being particularly pronounced (Berryman et al.,
2014). In individuals with MCI, both executive function and memory
are compromised, suggesting that pain may accelerate cognitive decline
in this vulnerable population (Lautenbacher et al., 2021). Adolescents
suffering from chronic musculoskeletal pain also show poorer
executive function compared with age- and sex-matched healthy
controls (Jastrowski Mano et al., 2020). Moreover, chronic pain patients
receiving long-term opioid therapy demonstrate significant deficits in
cognitive flexibility, highlighting the combined impact of pain and
pharmacological treatment on executive function (Schiltenwolf et al.,
2014). Notably, the duration of pain emerges as the strongest predictor
of cognitive decline, with longer-lasting pain correlating with more
severe impairments in cognitive flexibility (Jongsma et al., 2011; Cowen
etal., 2018). Although overall cognitive dysfunction in chronic pain is
generally mild, deficits in specific domains such as executive function
are more prominent relative to healthy individuals (Richards et al.,
2018; Arévalo-Martinez et al., 2024). These observations are consistent
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TABLE 1 Clinical studies on cognitive impairment associated with chronic pain.

Pain type

Cognitive assessment
tool

Cognitive domain

Key findings on
chronic pain-cognition
association

10.3389/fnins.2025.1641903

Reference

Chronic low back pain

WAIS-III, TMT, SDMT, Stroop,
WCST, PMQ

Information processing
speed, Working memory,
Executive function, Short-

term memory

Chronic low back pain patients
exhibit impairments in working
memory, cognitive flexibility, and

information processing speed

(Ling et al., 2007; Schiltenwolf
et al., 2014; Baker et al., 2018)

Chronic pancreatitis pain

Integneuro test battery

Psychological performance,

Memory, Executive function

Patients with chronic pancreatitis
pain demonstrate reduced scores
across multiple cognitive domains,
with the most pronounced deficits
in psychological performance and

executive function

(Jongsma et al., 2011)

Non-cancer chronic pain

MoCA, Stroop

Information processing

speed, Attention

1. Patients with non-cancer
chronic pain exhibit mild
cognitive deficits.

2. Neuropsychological function in
chronic pain patients resembles

that of healthy controls.

(Ferreira et al., 2016)

Chronic pain

CASI, Stroop, WAIS, WCST,
SCWT, WAIS

Short-term memory,

Attention, Executive function

1. Patients with chronic pain and
osteoarthritis exhibit poorer
cognitive performance.

2. The pain group demonstrates
significantly impaired
performance in attention and
executive function compared to

controls

(Arévalo-Martinez et al., 2024;
Wen et al., 2024)

Chronic pain

Stroop, LNS, WTAR, CVLT,
EMQR, BAPM, RBANS, TMT

Memory, Attention, Executive

function

1. Chronic pain patients
significantly underperform healthy
controls in attention and executive
function.

2. Opioid-treated patients exhibit a
further reduction in attention
performance compared to non-

opioid users

(Richards et al., 2018; van der
Leeuw et al., 2018)

Chronic pain

MMSE, TMT, CERAD-Plus

Executive function, Memory

performance

Patients with chronic pain and
MCI exhibit significant cognitive

impairments

(Lautenbacher et al., 2021)

Chronic low back pain

WAIS-IV, HVLT, BNT, JLO,
HVOT

Executive function,
Attention, Working memory,

Language, Visuospatial ability

Patients with chronic low back
pain demonstrated significantly
poorer performance in attention,
working memory, language, and
visuospatial tasks compared to

healthy controls

(Corti et al., 2021)

Chronic hip osteoarthritis pain

MMSE, RBMT, TMT, F-A-S test

Short-term and long-term
memory, Attention, Executive

function

Chronic hip osteoarthritis pain is
associated with domain-specific

cognitive impairments

(Kazim et al., 2023)

Chronic musculoskeletal pain

TMT, DSST

Executive function,

Processing speed

Older adults with chronic
musculoskeletal pain exhibit
significantly impaired processing

speed

(Murata et al., 2017)
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TABLE 1 (Continued)

Pain type Cognitive assessment

tool

Cognitive domain

10.3389/fnins.2025.1641903

Key findings on Reference
chronic pain-cognition

association

Multisite chronic pain MoCA

Executive function, Attention

Patients with multisite chronic (Cardoso et al., 2021)
pain demonstrate poorer cognitive
performance in attention and
executive function compared to

controls

Fibromyalgia n-back task, attention-switching | Attention

task, divided attention task

Fibromyalgia patients show (Moore et al., 2019)
reduced performance in divided

attention tasks

TMT, Trail Making Test; WAIS, Wechsler Adult Intelligence Scale; PMQ, Prospective Memory Ques-tionnaire; CASI, Cognitive Abilities Screening Instrument; WCST, Wisconsin Card Sorting
Test; SCW'T, Stroop Color and Word Test; BRIEF-A, Behavior Rating Inventory of Executive Function-Adult Version; SDMT, Symbol Digit Modalities Test; Stroop, The Stroop Color and
Word Test; WTAR, Wechsler Test of Adult Reading; CVLT, California Verbal Learning Test; EMQR, Everyday Memory Questionnaire-Revised; LNS, Letter-Number Sequencing; BAPM, Brief
Assessment of Pro-spective Memory; RBANS, Repeatable Battery for the Assessment of Neuropsychological Status; CERAD-Plus, Consortium to Establish a Registry for Alzheimer’s
neuropsychologic battery; SCD, Subjective cognitive decline; BRFSS, Behavioral Risk Factor Surveillance System; HVLT, Hopkins Verbal Learning Test-Revised; BN'T, Boston Naming Test;
JLO, Judgment of Line Orientation; HVOT, Hooper Visual Organization Test; RBMT, Rivermead behavioral memory test; F-A-S test, Verbal fluency F-A-S test; DSST, Digit Symbol

Substitution Test.

with findings in chronic low back pain, where impairments in executive
function and working memory have also been reported (Baker et al.,
2018; Richards et al,, 2018; Corti et al., 2021). Collectively, current
evidence suggests a mild to moderate association between chronic pain
and executive function, underscoring the need for further studies to
elucidate underlying mechanisms and develop targeted intervention
strategies, including neuroimaging investigations.

2.2.4 Short-term memory

Chronic pain is frequently associated with deficits in working
memory, a core component of short-term memory, as well as other
cognitive domains. The bidirectional relationship between pain and
working memory impairment has been well documented (Higgins
etal., 2018; Procento et al., 2021). Clinical studies consistently show
that, compared with pain-free individuals, patients with chronic pain
not only perform worse on working memory tasks but also report
greater subjective deficits (Mazza et al., 2018; Rader et al., 2025).
Longitudinal research in older adults indicates that persistent pain
interference correlates with declines in overall cognitive function,
particularly in immediate and delayed memory (Bell T. et al., 2022).
Similarly, Ling et al. (2007) reported significant impairments in
prospective memory among patients with chronic back pain relative
to controls. Chronic low back pain and fibromyalgia patients also
exhibit lower performance on working memory and short-term
memory assessments compared with healthy populations (Bell et al.,
2018; Corti et al, 2021) Disease-specific analyses reveal that
individuals with hip osteoarthritis show notable reductions in short-
term memory on neuropsychological testing (Kazim et al., 2023).
Moreover, chronic pain patients undergoing long-term opioid therapy
demonstrate even greater working memory impairments, suggesting
that pharmacological factors may exacerbate cognitive deficits
(Schiltenwolf et al., 2014). Collectively, these findings indicate that
chronic pain exerts a substantial negative impact on short-term
memory function.

2.2.5 Information processing speed and mental
flexibility

Cognitive dysfunction in chronic pain patients is reflected in
standardized tests as slower reaction times and reduced information
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processing efficiency. Among cognitive domains, processing speed
appears particularly vulnerable to the effects of pain, often more so
than memory or reasoning (Bell T. R. et al., 2022). Studies demonstrate
that, relative to healthy controls, individuals with chronic pain exhibit
significant deficits in basic cognitive tasks, including visual attention,
graph processing speed, visual scanning, and number sequencing
(Schiltenwolf et al., 2014). Their information processing speed and
mental flexibility are also markedly impaired (Ferreira et al., 2016).
Prospective epidemiological evidence indicates that declines in
processing speed among chronic pain patients occur independently
of confounding factors such as age and education (Rouch et al,, 2021).
Cross-sectional analyses across different pain subtypes support these
findings: patients with chronic low back pain show significant
impairments in processing speed (Corti et al, 2021), whereas
individuals with fibromyalgia demonstrate reduced information
processing efficiency compared to healthy populations (Serrano et al.,
2022). Community-dwelling older adults with chronic musculoskeletal
pain similarly exhibit delayed processing speed (Murata et al., 2017).
Cognitive deficits in chronic pain are often accompanied by
impairments in delayed memory, problem-solving abilities, and
altered psychological states. Importantly, effective interventions
targeting pain can partially restore information processing efficiency
and overall cognitive function, likely by reducing central nervous
system (CNS) overload (Abd-Elsayed and Gyorfi, 2023). Collectively,
current clinical evidence consistently supports the association between
chronic pain and declines in neurocognitive performance, with core
impairments predominantly involving processing speed, attention,
and memory. These findings provide a theoretical basis for
implementing cognitive-protective strategies in pain management.

2.3 Potential pathogenic mechanisms

Neuroimaging studies have demonstrated that chronic pain can
induce both structural and functional remodeling in brain regions
critical for cognitive function. Notably, reductions in gray matter
volume within the medial prefrontal cortex (mPFC), dorsolateral
prefrontal cortex (DLPFC), and hippocampus constitute core
pathological substrates underlying cognitive impairments (Murata
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etal,, 2017; Tan et al., 2022). These alterations are negatively correlated
with both pain duration and advancing age, suggesting that chronic
pain may accelerate brain atrophy and promote pathological aging
processes (Geisser and Kratz, 2018). Large cohort analyses indicate
that patients with multi-site chronic pain exhibit greater hippocampal
volume reductions and faster cognitive decline compared to single-site
pain sufferers and healthy controls, highlighting the cumulative neural
damage associated with widespread pain (Zhao et al., 2023).
Subtype-specific analyses reveal heterogeneous patterns of brain
remodeling. Patients with fibromyalgia show significantly reduced
gray matter density in the cingulate gyrus, insula, and
parahippocampal gyrus, which positively correlates with disease
progression (Kuchinad et al., 2007). In contrast, chronic low back pain
and complex regional pain syndrome are associated with bilateral
hippocampal volume reduction, with hippocampus-amygdala gray
matter loss closely linked to the severity of cognitive dysfunction in
low back pain (Mutso et al., 2012; Zhou et al., 2022). Morphological
changes in the prefrontal-thalamic circuit are observed not only in
chronic tension-type headache patients (Apkarian et al., 2004;
Schmidt-Wilcke et al., 2005) but also in individuals with neuropathic
and non-neuropathic chronic back pain, underscoring the circuit’s
central role in the pain-cognition interaction (Apkarian et al., 2004).
Different pain types exhibit distinct patterns of structural brain
changes. Osteoarthritis and fibromyalgia predominantly affect the
PFEC and hippocampus (Kuchinad et al., 2007; Murata et al., 2017),
whereas chronic low back pain and phantom limb pain are
characterized by gray matter reductions in the thalamus and neocortex
(Apkarian et al., 2004; Ng et al., 2018). These structural abnormalities
likely disrupt default mode network function, impairing memory
encoding and information integration. In patients with mild cognitive
impairment (MCI), bilateral amygdala-hippocampal atrophy serves
as a core imaging marker and demonstrates accelerated hippocampal
volume loss relative to non-MCI populations (Driscoll et al., 2009;
Nickl-Jockschat et al., 2012). Systematic reviews further confirm that
approximately 75% of studies on chronic low back pain report
widespread gray matter volume reductions across multiple brain
regions, with thalamic and neocortical changes exacerbating
functional impairments by disrupting sensory—cognitive information
processing (Ng et al, 2018; Zhou et al, 2022). Collectively,
neuroimaging evidence supports a mechanistic link between chronic
pain and cognitive dysfunction via gray matter remodeling across
diverse brain regions. However, heterogeneity among studies and a
lack of longitudinal data limit clinical translation. Therefore,
integrating multimodal imaging with molecular biomarkers to
characterize the dynamic evolution of brain plasticity is essential for
advancing  mechanistic

understanding  and  informing

intervention strategies.
3 Cognitive dysfunction associated
with chronic pain: basic research
3.1 Basic research

The clinical evidence summarized in Table 1 indicates that chronic
pain-related cognitive dysfunction most consistently affects attention,

working memory, and episodic memory, with broader multi-domain
impairments observed in fibromyalgia compared to more selective
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deficits, such as attention or processing speed decline, in osteoarthritis
and chronic low back pain. These domain-specific patterns are echoed
in the preclinical data presented in Table 2, where neuropathic pain
models predominantly reproduce impairments in working memory,
spatial learning, and recognition memory; deficits largely attributable
to hippocampal and prefrontal cortex dysfunction. The convergence
of mechanisms between clinical and preclinical studies, particularly
synaptic  plasticity —impairment, neuroinflammation, and
neurotransmitter dysregulation, reinforces the translational validity of
these models and suggests that therapeutic strategies should prioritize
restoring hippocampal-cortical network integrity and modulating

neuroimmune activity.

3.1.1 Cognitive impairments in chronic pain
models

Across neuropathic pain models, hippocampal dysfunction
emerges as the most consistent neuropathological feature, with
structural alterations such as reduced dendritic complexity and spine
density, as well as synaptic plasticity impairments including deficits in
long-term potentiation (LTP; Wang et al., 2021; Hisaoka-Nakashima
et al., 2022b; Hisaoka-Nakashima et al., 2022a; Jiang et al., 2024).
Neuroinflammation is another recurring feature, characterized by
microglial and astrocytic activation, elevated proinflammatory
cytokines (e.g., IL-6, TNF-a), and subsequent neuronal apoptosis
(Palazzo et al., 2016; Cui et al.,, 2020). Epigenetic modifications, such
DNA
hypomethylation, along with neurotransmitter receptor changes (e.g.,
NMDA receptor subunit imbalance, GABAAR-a5 upregulation),
further contribute to cognitive deficits (Jang et al., 2021; Cai et al,,

as histone deacetylase overexpression and global

2022). Notably, chronic constriction injury (CCI) and spared nerve
injury (SNI) models in APP/PSI transgenic mice replicate both pain-
induced memory impairment and amyloid pathology (Gong et al.,
2017; Chen L. et al., 2023), offering unique value for studying the
comorbidity of chronic pain and neurodegenerative disease.
Common rodent models, including CCI, SNI, spinal nerve
ligation (SNL), partial sciatic nerve ligation (PSNL), and complete
Freund’s adjuvant (CFA) induction—have consistently demonstrated
significant cognitive impairment following neuropathic pain (Palazzo
et al, 2016; Wang et al., 2021; Hisaoka-Nakashima et al., 2022b;
Hisaoka-Nakashima et al., 2022a). Most studies have focused on
spatial learning, memory, and attention. In Morris water maze
(MWM) testing, SNI, SNL, and CCI animals exhibit clear spatial
learning and memory deficits (Du et al., 2021; Hua et al., 2022; Chen
L. etal, 2023). CCI mice show persistent pain and cognitive decline
21-28 days post-surgery in both MWM and fear conditioning tests
(FCT; Zhang Y. et al., 2023), along with reduced spontaneous
alternation rates in Y-maze and lower novel object recognition (NOR)
performance at 14-21 days (Zheng et al., 2023; Zhu et al., 2024).
Similarly, SNT rats spend less time exploring novel objects in NOR
tests, and SNI mice show reduced alternation behavior and impaired
object recognition within 1 month, with partial recovery after
12 months (Guida et al., 2022; Liu et al., 2024). PSNL models induce
progressive deficits from 2 weeks to 6 months, affecting both
alternation rates and NOR indices (Jang et al, 2021; Hisaoka-
Nakashima et al., 2022b; Hisaoka-Nakashima et al., 2022a). Long-
term, working, and short-term memory impairments are frequent
across species (Phelps et al., 2021b; Phelps et al., 2021a; Cai et al., 2022;
Xu et al., 2024), though some studies report no detectable changes
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TABLE 2 Cognitive function studies in mouse models of neuropathic pain.

Pain model

Animal

species

Behavioral
paradigm

Cognitive
domain

Brain region

10.3389/fnins.2025.1641903

Key findings

Reference

CCI

Adult male mice

MWM, FCT, Y-maze,
OFT

Learning and

memory

Hip, mPFC, ACC

1. CCI mice exhibited
persistent pain and
cognitive impairment from
postoperative days 21-28.
2. CCI-induced CHOP
upregulation impaired
synaptic plasticity and
neuronal activity,
contributing to chronic
pain-associated cognitive

deficits.

(Du et al., 2021; Zhang
G-FE etal, 2021; Liu
etal, 2022; Meng

et al, 2025; Jiang et al.,
2024)

SNL

Male Sprague-

Dawley rats

Morris Water Maze

Spatial learning,

Memory retention

Hip

1. SNL rats showed
impaired cognitive
function, which was
significantly ameliorated
by exendin-4 treatment.
2. SNL-induced chronic
pain activated microglia
and astrocytes in the
hippocampal dentate
gyrus, triggering
neuroinflammatory

cascades.

(Cui et al., 2020)

CFA

APP/PS1

transgenic mice

Morris Water Maze

Spatial learning,

Memory function

Hippocampal CA1
and CA3 regions

1. Chronic pain accelerated
the onset of spatial
learning and memory
deficits.

2. Neurotoxicity from
chronic pain-induced
NMDAR subunit
dysregulation directly
contributed to cognitive

impairment.

(Gong et al., 2017)

SNI

Adult male
Sprague-Dawley

rats

NOR, Y-maze

Recognition memory

Hip, mPFC

1. SNI rats displayed
reduced recognition
indices at 14 days post-
injury, indicating impaired
cognitive function. 2.
Increased hippocampal
acetylated a-tubulin levels
suppressed synaptic
plasticity, exacerbating

cognitive deficits.

(Palazzo et al., 2016;
You et al., 2018)

PSNL

Male ddy mice

NOR

Learning,

Recognition memory

Hip

1. PSNL mice exhibited
significant cognitive
impairment. 2. Reduced
dendritic length and
complexity in the
hippocampus correlated
with neuronal

degeneration.

(Hisaoka-Nakashima
et al., 2022b; Hisaoka-
Nakashima et al.,

2022a)
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TABLE 2 (Continued)

Pain model Animal

species

Behavioral
paradigm

Cognitive
domain

Brain region

10.3389/fnins.2025.1641903

Key findings

Reference

SNI Male C57BL/6

mice

Morris Water Maze,
OFT

Spatial learning and

memory

PFC

1. SNI-induced
neuropathic pain impaired
spatial memory in middle-
aged mice.

2. Gut microbiota
significantly influenced
cognitive function and

pain modulation.

(Hua et al., 2022)

CFA Wild-type and

knockout mice

FCT

Learning and

memory function

Cerebral cortex, Hip

1. Mice exhibited
hippocampal-independent
cognitive deficits.

2. Elevated IL-6 levels and
reduced PSD-95 expression
in the cerebral cortex
contributed to cognitive

impairment.

(Yang et al., 2014)

SNI 9-week-old
C57BL6 Narp—/—

transgenic mice

NOR, FCT

Learning and

memory

Hip; Cortex

1. SNI impaired cognitive
function in mice.

2. Downregulated NPTX2
expression in the
hippocampus and cortex

contributed to deficits.

(Wang et al., 2021)

SNI 3-month-old male

mice

Y-maze, NOR

Working memory,

Long-term memory

Hip

1. SNI impaired working
memory and reduced
long-term memory.

2. Hippocampal plasticity
alterations drove cognitive

deficits.

(Tyrtyshnaia et al,,
2021)

SNI 8-week-old male
C57BL/6 ] mice

Y-maze; NOR

Spatial memory,
Learning, Long-term

memory

PFC; Hip

1. Memory deficits
emerged at 1 month post-
SNI but normalized by

12 months.

2. Impaired LTP in the
prefrontal cortex-NAc core
pathway and upregulated
inflammation/apoptosis-
related genes were

observed.

(Guida et al., 2022)

SNI Adult male
Sprague-Dawley

rats, C57 mice

Eight-Arm Radial
Maze Test

Working memory,

Short-term memory

Hip

1. SNI impaired spatial
working memory and
short-term memory in
rodents.

2. TNF-q elevation
disrupted hippocampal
structure and function,

inducing memory deficits.

(Ren et al., 2011)
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TABLE 2 (Continued)

Pain model Animal

species

Behavioral
paradigm

Cognitive
domain

Brain region

10.3389/fnins.2025.1641903

Key findings

Reference

PSNL 7-week-old male

C57BL/6 ] mice

Y-maze, NOR

Working memory,

Recognition memory

PFC

1. PSNL induced working
and recognition memory
deficits at 6 months post-
surgery.

2. Reduced global DNA
methylation and
downregulated
methylation-related genes
in the PFC drove cognitive

impairment.

(Jang et al., 2021)

SNT Male and female
C57BL/6 ] mice

MWM, NOR, OLR

Spatial learning and
memory, Cognitive

deficits

NA

SNT-induced neuropathic
pain caused cognitive
deficits in male mice but

not females.

(You et al., 2018)

CCI 7-8-week-old
male C57BL/6 ]

mice

Y-maze, NOR, OFT

Spatial working
memory, Recognition

memory

mPFC, Hip

1. CCI impaired memory
function.

2. Hippocampal myelin
loss and reduced neuronal
activity were observed

post-CCL

(Zheng et al., 2023;
Zhu et al., 2024)

CCI 3-month-old male
C57Bl/6 mice

Y-maze, Passive

Avoidance Test

Working memory,

Long-term memory

Hip

1. Long-term memory
impairment and working
memory decline were
observed.

2. Hippocampal
neuroplasticity changes

correlated with deficits..

(Tyrtyshnaia and
Manzhulo, 2020)

SNL Male Sprague

Dawley rats

NOR

Short-term and long-

term memory

NA

SNL animals exhibited
memory deficits only

under high task difficulty.

(Phelps et al., 2021b;
Phelps et al., 2021a)

SNI 8-week-old
Sprague Dawley

rats

Y-maze, NOR

Working memory,
Learning and

memory function

Hip

1. Cognitive impairment
emerged at 22-24 days
post-SNIL.

2. CB2 receptors
modulated microglial
morphology/function via
the DUSP6/ERK/NF-«B
pathway.

(Xu et al., 2024)

SNI Male C57BL/6 ]
APP/PS1 mice

MWM

Spatial learning and

memory

Hip

1. APP/PS1 mice
developed severe spatial
learning/memory deficits
post-SNI.

2. CCL2/CCR2 signaling
suppressed hippocampal
neurogenesis, exacerbating

cognitive impairment.

(Chen J. et al., 2023)
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TABLE 2 (Continued)

Pain model

Animal

Behavioral

Cognitive

Brain region

10.3389/fnins.2025.1641903

Key findings

Reference

CCI

species

TLR3 KO mice,
C57BL/6 WT

male mice

paradigm

OFT, Y-maze, NOR,
MWM

domain

Working memory,
Recognition memory,

Spatial learning and

Hip

1. CCI induced cognitive
decline.

2. TLR3 activation

(Zhang X. et al., 2023)

memory

triggered
neuroinflammation,
apoptosis, and synaptic

plasticity deficits.

SNI Adult male Y-maze, NOR, OFT
Sprague-Dawley

rats (8-10 weeks)

Spatial memory;,

Working memory

Hip 1. SNT rats showed (Xiong et al., 2020)
significant cognitive
dysfunction.

2. Increased GABAARs-a5
expression attenuated
inhibitory synaptic
transmission, exacerbating

deficits.

SNI Male C57 BL/6 ]
(8 weeks)

FCT, OFT, NOR, OLT Learning and

memory function

Hip 1. SNI induced cognitive (Han et al., 2024c¢; Liu

dysfunction. etal., 2024)
2. Hippocampal
neuroinflammation,
microglial M1 polarization,

and synaptic loss were

observed.

PSNL Male ddy mice NOR, Y-maze

(5 weeks)

Recognition memory, | Hip

Spatial memory

1. PSNL mice showed (Hisaoka-Nakashima

cognitive impairment at et al,, 2022b; Hisaoka-
Nakashima et al.,

2022a)

2-4 weeks post-surgery.

2. Hippocampal microglial
activation and
neuroplasticity changes

drove deficits.

Hip, Hippocampal; NMDA, N-methyl-D-aspartic acid receptor (R) subunits; FMT, Fecal microbiota transplantation; eCB, endocannabinoid system; OFT, Open field test; OLR, Object location
recognition; APP/PS1, amyloid precursor protein/presenilin 1; OLT, Object location test; CPP, Conditioned Place Preference; LTP, long-term potentiation; HDAC, Histone Deacetylase.

within the first week (Zhang X. et al., 2023), suggesting that cognitive
impairment is closely linked to the chronicity of nociceptive processing.

3.1.2 Sex differences and hormonal regulation

Sex hormones exert profound modulatory effects on both
nociception and cognition, providing a plausible mechanistic basis for
the sex differences observed in chronic pain-related cognitive deficits.
Estrogen, in particular, enhances hippocampal-dependent learning
and memory by promoting dendritic spine formation, facilitating
long-term potentiation (LTP), and modulating glutamatergic and
cholinergic signaling (Ebner et al., 2015; Hara et al., 2015). It also
exerts potent anti-inflammatory effects in the central nervous system
(CNS), attenuating microglial activation and downregulating
proinflammatory cytokines such as TNF-a and IL-1p (Liu et al., 2017;
Fiore and Austin, 2018). These actions may protect female animals
from hippocampal and prefrontal cortical dysfunction during chronic
pain states. Progesterone similarly supports cognitive resilience by
promoting myelin repair, enhancing GABAergic inhibition, and
regulating neurosteroid synthesis, thereby reducing excitotoxicity
(Kummer et al., 2020).

In contrast, testosterone has been shown to influence both pain
sensitivity and cognitive performance in males, with declining

Frontiers in Neuroscience

levels associated with increased neuroinflammation, impaired
synaptic plasticity, and deficits in spatial memory (Shansky et al.,
2010; Han et al., 2024b). Androgen receptors in the hippocampus
and prefrontal cortex regulate gene expression related to
neurogenesis, axonal growth, and dopaminergic signaling, which
may underlie the male-specific vulnerability to chronic pain-
induced memory impairment (Cardoso-Cruz et al., 2019a).
Moreover, fluctuations in sex hormone levels, such as those
occurring across the estrous cycle, menopause, or andropause, can
dynamically alter the neural substrates of pain and cognition,
contributing to temporal variability in symptom severity (Cardoso-
Cruz et al.,, 2022).

At the molecular level, sex hormones modulate epigenetic
landscapes in pain- and cognition-related brain regions. Estrogen
receptor activation can induce histone acetylation at promoters of
synaptic plasticity genes, while testosterone depletion has been linked
to increased DNA methylation of genes involved in neurotrophic
signaling (Journée et al., 2023). These epigenetic effects may partly
explain the persistence or reversibility of cognitive deficits in chronic
pain conditions. Taken together, hormonal modulation represents a
critical axis for understanding sex-specific cognitive outcomes in
chronic pain, and future preclinical studies should incorporate
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hormone profiling and receptor-targeted interventions to better
translate findings to clinical populations.

3.1.3 Limitations of current models

Despite substantial progress, limitations remain. Different pain
models yield heterogeneous cognitive outcomes, limiting cross-study
comparability. Moreover, research has predominantly targeted spatial
and working memory, with less emphasis on executive function,
sustained attention, and other clinically relevant domains. Moving
forward, comprehensive behavioral batteries and multimodal
assessment strategies are essential to capture the full cognitive
spectrum of chronic pain in preclinical settings and to bridge the
translational gap between animal models and human pathology.

3.2 Involved potential mechanisms

In recent years, notable progress has been made in understanding
the mechanisms underlying cognitive dysfunction in chronic pain, yet
the processes by which chronic pain induces memory deficits remain
complex. These impairments involve multiple brain regions, neural
circuits, cell types, and molecular pathways, rather than being
attributable to a single factor (Moriarty et al., 2011). Despite advances,
current basic research remains limited in depth. Here, we integrate
recent findings to summarize the pathological mechanisms
contributing to chronic pain-related cognitive deficits (Figure 1).

3.2.1 Functional brain regions and interactive
mechanisms

Chronic pain may consume substantial cognitive resources,
thereby reducing the capacity to perform complex cognitive tasks
(Phelps et al., 2021b; Phelps et al., 2021a). Neurobiologically pain-
related cognitive dysfunction is associated with structural and

10.3389/fnins.2025.1641903

functional remodeling of distributed brain networks, with core
pathological changes occurring in the hippocampus, PFC, and
anterior cingulate cortex (ACC).

The hippocampus, critical for memory encoding and
consolidation, exhibits impaired synaptic plasticity and heightened
neuroinflammatory responses in neuropathic pain models. Reduced
neurogenesis in the dentate gyrus (DG) is directly linked to short-
term and recognition memory impairments (Kodama et al., 2011; Ren
etal, 2011), alongside abnormalities in long-term potentiation (LTP;
Kodama etal., 2007). Elevated hippocampal levels of pro-inflammatory
cytokines such as TNF-a, IL-1f, and MCP-1 exacerbate
neuroinflammation, further impairing cognition (Liu et al., 2017;
Fiore and Austin, 2018). Following sciatic nerve injury, increased
acetylated a-tubulin suggests that altered microtubule stability may
disrupt synaptic plasticity and contribute to learning and memory
deficits (You et al., 2018). Chronic inflammatory pain also induces
selective  hippocampal-independent memory  deficits  via
neuroinflammation and synaptic loss (Yang et al., 2014). Rather than
directly mediating nociception, the hippocampus may modulate pain-
related behaviors indirectly through cognitive resource allocation (Xu
etal., 2024).

The PEC, particularly the mPFC is central to executive functions,
decision-making, and attention. Neural injury can inactivate the
mPFC via glutamatergic synaptic inhibition, leading to decision-
making deficits (Ji et al., 2010; Kummer et al., 2020). Disruption of the
mPFC-dorsal hippocampus CA1 (mPFC-dCAl) circuit impairs
memory (Han et al, 2024a), while optogenetic inhibition of
glutamatergic neurons in the prelimbic cortex (PL)-mPFC pathway
reverses neuropathic pain-related working memory deficits by
restoring mPFC-dCA1 synchrony and local firing activity (Cardoso-
Cruz et al.,, 2019b). The PL-mPFC exerts its influence partly through
direct excitatory projections to the nucleus accumbens (NAcc) core
indirect modulation via  interconnected

and neurons

Neuronal structural changes
Microglia activation’M1 polarization
Astrocyle uctivation/Al transformution

GABAA
FCS A
Glutamate excitesy

» .

dysbiosis

FIGURE 1

Gut-Brain E

cognitive impairment

Activales microglia and astrocyles

Potential mechanisms of cognitive dysfunction associated with chronic pain. Amy, Amygdala; PAG, Periaqueductal gray; SCFA, Short-chain fatty acid;
FMT, Fecal microbiota transplantation; ECS, Endocannabinoid system; EpSCs, Excitatory postsynaptic currents; CP, Chronic pain.

Neuronal structural changes
Microglia activation’M1 polarization
Astrocyle activation/Al transformation

GABA 4
norepinephrine
glutamate excitation A
dopaminergic systenmy
BDNF
LTP ¥
EpSCs

Improving cognitive impairment

Inactivated microglia and astrocyles

A\ J
WY, N SCFA
FMT 4

Frontiers in Neuroscience

11

frontiersin.org


https://doi.org/10.3389/fnins.2025.1641903
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Gong et al.

(Domingo-Rodriguez et al., 2020). Selective inhibition of PL-mPFC
terminals projecting to the NAcc partially rescues spatial working
memory deficits and modifies PFC-striatal connectivity without
affecting nociceptive sensitivity (Cardoso-Cruz et al., 2022). These
findings suggest that chronic pain disrupts PFC network integration,
leading to impairments in recognition and spatial memory.

The ACC, a limbic structure integral to cognition, learning,
memory, and decision-making, exhibits neuronal hyperactivity in
chronic pain, characterized by increased spontaneous firing and an
imbalance between excitatory and inhibitory signaling (Cardoso-Cruz
et al, 2022). High-frequency stimulation of the ACC enhances
pyramidal neuron activity, indicating that an excitatory/inhibitory
(E/T) imbalance may reinforce maladaptive pain-related memory
consolidation (Cardoso-Cruz et al.,, 2022; Zhu et al., 2022). Restoring
oligodendrocyte myelination in the ACC can normalize network
activity and alleviate cognitive impairments (Hasan et al., 2023). These
findings underscore the need for detailed mapping of ACC subcircuits
and their maladaptive plasticity during chronic pain.

Chronic pain-induced cognitive dysfunction arises from multi-
regional interactions involving inflammatory mediator dysregulation
(Wang et al., 2021), glutamate~GABA imbalance (Zhu et al., 2022),
and synaptic plasticity abnormalities (Zhang X. et al., 2023). Persistent
nociceptive input disrupts the E/I balance within the mPFC and ACC,
impairing their normal processing capacity (Qi et al., 2022; Song et al.,
2024). Amygdala-driven mPFC dysfunction plays a key role in pain-
related cognitive impairments (Ji et al., 2010). Chronic visceral pain,
for instance, disrupts theta oscillatory synchrony between the
basolateral amygdala (BLA) and ACC, leading to executive deficits in
visceral hypersensitive rats (Cao et al., 2016). Neuropathic pain
reduces the excitability and synaptic efficiency of dorsal CAl
pyramidal neurons, decreasing glutamatergic input to the mPFC and
thereby exacerbating pain sensitivity and cognitive decline (Han et al.,
2024b). Additionally, the periaqueductal gray (PAG), a central hub for
descending pain modulation, receives cortical inputs mainly from the
anterior dorsal raphe (DR) and mPFC (Ong et al., 2019); dysfunction
in the PAG-DR circuit may also contribute to cognitive impairments
(Deng et al., 2023). These pain-induced behavioral changes are related
to structural and functional alterations in multiple brain regions (May,
2008). Collectively, structural and functional alterations within the
hippocampus, PFC, ACC, and interconnected regions form the neural
substrate for chronic pain-associated cognitive dysfunction. The
interplay between these regions, mediated by maladaptive
neuroinflammation, disrupted synaptic signaling, and network-level
dysregulation,  offers  multiple for

potential  targets

therapeutic intervention.

3.2.2 Molecular mechanisms of cognitive
dysfunctions related to chronic pain

3.2.2.1 Neurotransmitters and receptors

Cognitive dysfunction in chronic pain is closely associated with
disruption of the excitatory-inhibitory (E/I) balance, involving
GABAergic overactivation and glutamatergic hypofunction. GABA,
the principal inhibitory neurotransmitter in the CNS, is abnormally
elevated in the hippocampus and medial prefrontal cortex (mPFC) in
neuropathic pain models, suppressing neural circuit activity
(Medeiros et al., 2020; Tyrtyshnaia and Manzhulo, 2020). Neuropathic
increases «5-subunit, containing GABAA,

pain receptors
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(x5GABA,ARs) expression in parvalbumin- and somatostatin-
positive interneurons, enhancing inhibitory drive, disrupting synaptic
plasticity, and contributing to memory and learning deficits (Cai et al.,
2022). In the mPFC, elevated GABA levels and reduced D-aspartate
concentrations lead to network desynchronization, impairing working
memory (Ji et al., 2010; Medeiros et al., 2020). Glutamatergic
dysfunction is characterized by reduced N-methyl-D-aspartate
receptor (NMDAR) activity and weakened excitatory synaptic
(LTP) and
hippocampal-dependent memory formation (Pal, 2021). Neuropathic

transmission, impairing long-term potentiation
pain models demonstrate decreased hippocampal glutamatergic
transmission and LTP, highlighting the importance of glutamate
signaling in neuroplasticity and pain-cognition interactions (Xiong
et al., 2020).

Monoaminergic systems further modulate pain-related cognitive
deficits. Norepinephrine (NE) in the hippocampus supports spatial
memory through the locus coeruleus (LC)-hippocampal pathway,
while aberrant NE signaling in the PFC is associated with attentional
impairments (Suto et al., 2014; Mello-Carpes et al., 2016). Dopamine
regulates hippocampal synaptic activity and spatial memory retention,
with D,/D,
hippocampal connectivity (Cardoso-Cruz et al., 2014; Broussard et al.,

receptor expression influencing dorsal-ventral
2016). Serotonin (5-HT) alterations, including elevated hippocampal
5-HT, inhibit neurogenesis and contribute to cognitive decline (Song
et al., 2016; Kedziora et al.,, 2023). Collectively, dysregulation of
GABAergic, glutamatergic, and monoaminergic systems disrupts
synaptic plasticity and network synchrony, underpinning chronic

pain-associated cognitive dysfunction.

3.2.2.2 Brain-derived neurotrophic factor

Chronic pain disrupts brain-derived neurotrophic factor (BDNF)
signaling, contributing to cognitive dysfunction through multiple
neural circuit and molecular mechanisms. In the BLA, excessive
neuronal activation impairs PFC function via glutamatergic—
GABAergic interactions, leading to decision-making deficits (Ji et al.,
2010). In the APP/PS1 mouse model, chronic pain increases
expression of the NR2B subunit of N-methyl-D-aspartate receptors
(NMDARSs) in the hippocampal CA3 region, shifting the NR2B/NR2A
ratio toward neurotoxic signaling and thereby compromising synaptic
plasticity and memory performance (Gong et al, 2017). In CCI
models, elevated GABA and reduced glutamate and BDNF levels in
the hippocampal CAl region are associated with impairments in
spatial learning and memory (Saffarpour et al., 2017). More broadly,
neuropathic pain-induced reductions in hippocampal BDNF limit
synaptic efficacy, whereas activation of the cAMP response element-
binding protein (CREB)/BDNF pathway protects against pain-related
cognitive decline (Zhang et al., 2022). Environmental enrichment in
nerve-injured mice enhances long-term memory and synaptic
plasticity through BDNF-tropomyosin receptor kinase B (TrkB)
signaling (Wang et al., 2019). Similarly, stimulation of BDNF release
from the ventral tegmental area (VTA) to the dentate gyrus (DG)
restores hippocampal neurogenesis and reverses memory impairments
(Xia etal., 2020). These findings indicate that BDNF serves as a critical
mediator of synaptic plasticity and neurogenesis in chronic pain-
associated cognitive impairment. Targeting the BDNF/TrkB pathway
represents a promising therapeutic strategy, although the precise
molecular mechanisms and circuit-specific actions warrant
further elucidation.
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3.2.2.3 Endogenous cannabinoid system

The endogenous cannabinoid system (ECS) plays a key role in
CNS development and may modulate pain-cognition interactions,
thereby influencing the progression of neuropathic conditions in
chronic pain (Hua et al., 2022). The ECS is composed of cannabinoid
receptors (CBRs), endogenous ligands, and enzymes responsible for
ligand synthesis and degradation. Two major receptor subtypes have
been identified: CB1 receptors (CBIR) and CB2 receptors (CB2R).
CBIR, predominantly expressed in the CNS, is critically involved in
regulating pain perception, emotional processing, and cognitive
functions (Chiou et al., 2013; Zou and Kumar, 2018; Karimi-Haghighi
and Shaygan, 2025). Activation of CB1R enhances PFC output while
suppressing amygdala activity, thereby attenuating pain-related
emotional distress and reducing cognitive impairments (Karimi-
Haghighi and Shaygan, 2025). CB2R, although less abundant in the
CNS, exerts important modulatory effects on neuroinflammation;
activation of hippocampal CB2R can reverse microglial dysfunction
in chronic pain states (Xu et al., 2024). Restoration of endogenous
cannabinoid signaling also influences glutamatergic modulation:
activation of metabotropic glutamate receptor 5 (mGluR5) via ECS
signaling increases limbic system output, which in turn suppresses
pain behaviors (Kiritoshi et al., 2016). Through these multi-level
mechanisms, the ECS coordinates neural activity between key regions
such as the PFC, hippocampus, and amygdala, thereby regulating both
nociceptive and cognitive processes.

Collectively, these findings highlight the ECS as a critical
neuromodulatory network linking pain and cognition. Targeting
CBIR and CB2R pathways, as well as downstream glutamatergic and
neuroimmune signaling, represents a promising therapeutic approach
for alleviating chronic pain-associated cognitive dysfunction.

3.2.2.4 Gut-brain axis

The gut-brain axis represents a complex Dbidirectional
communication network between the gastrointestinal tract and CNS,
mediated through immune, neural, and endocrine pathways.
Dysregulation of this axis has been implicated in the pathogenesis of
chronic pain, neuroinflammation, and cognitive dysfunction via both
peripheral and central mechanisms (Lin et al., 2020). Gut microbiota
dysbiosis can disrupt intestinal barrier integrity, triggering systemic
inflammation and contributing to pain hypersensitivity and cognitive
impairments (Sampson and Mazmanian, 2015; Sun et al., 2019).
Experimental evidence indicates that depletion of gut microbiota
reduces oxidative stress and ameliorates mitochondrial dysfunction
in microglia; however, prolonged antibiotic intervention can
exacerbate microglial impairment. This occurs via decreased
production of short-chain fatty acids (SCFAs), which promotes
polarization toward the pro-inflammatory M1 phenotype and
downregulates hippocampal synaptic protein expression, ultimately
impairing spatial memory (Zhou F. et al., 2021; Magni et al., 2023).
SCFAs, key microbial metabolites, can cross the blood-brain barrier
and modulate neural function through epigenetic mechanisms. In
chronic postoperative pain models, SCFAs improve histone
acetylation and normalize synaptic transmission deficits in the
mPFC, hippocampal CAl, and central amygdala (CeA) via the
ACSS2-HDAC?2 signaling axis, thereby mitigating pain-associated
cognitive decline (Dalile et al., 2019; Li et al., 2022). Additionally, the
gut-brain axis influences neuroinflammation and neurodegeneration
by regulating astrocyte maturation and reactivity; the formation of
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reactive astrocytes represents a potential mechanism through which
gut microbiota modulates neuropathological processes (Magni et al.,
2023). Of note, interactions between gut microbiota and the
endogenous cannabinoid (eCB) system—termed the microbiota—
eCB axis—have emerged as critical modulators of both neuropathic
pain and associated cognitive deficits (Hua et al., 2022).
Collectively, these findings suggest that the gut-brain axis
contributes to the pathophysiology of chronic pain-related cognitive
dysfunction through multiple mechanisms, including microbial
metabolite signaling, immune modulation, epigenetic regulation, and
neuroglial interactions. Furthermore, the gut-brain axis does not
operate in isolation but interacts extensively with other
pathophysiological mechanisms. For instance, microbiota-driven
immune activation can amplify neuroinflammatory cascades, while
SCFA-mediated epigenetic regulation may converge with synaptic
plasticity alterations. Dysbiosis-induced astrocyte reactivity links
directly to glial-neuronal interactions that exacerbate both pain
hypersensitivity and cognitive decline. These multidirectional
connections underscore the integrative nature of chronic pain-related
cognitive dysfunction and support the need for schematic representation
linking the gut-brain axis, neuroinflammation, and cognitive deficits,
thereby providing a more cohesive framework for understanding and
targeting this complex pathology. Targeting gut microbiota composition

and function may thus represent a promising therapeutic approach.

3.2.2.5 Translational limitations and clinical significance
Despite extensive mechanistic insights from preclinical studies,
translating these findings into effective clinical interventions for
chronic pain-related cognitive dysfunction remains challenging. Most
evidence originates from rodent models (e.g., SNI, CCI, APP/PS1),
which cannot fully capture the complexity, heterogeneity, and
chronicity of human pain conditions. In addition, animal studies rarely
incorporate common comorbidities such as depression, anxiety, sleep
disturbances, or metabolic disorders, and often do not reflect
demographic variability including age, sex, and genetic background.
Methodological differences further complicate translation: cognitive
performance in animals is typically assessed via maze navigation, fear
conditioning, or operant tasks, whereas clinical studies rely on
standardized neuropsychological tests targeting specific domains.
Species-specific differences in pharmacokinetics, drug metabolism, and
dosing regimens also contribute to discrepancies in therapeutic efficacy.
Nevertheless, elucidating the molecular and circuit-level
mechanisms underlying pain-associated cognitive deficits holds
substantial clinical significance. Identification of key pathways may
guide biomarker development, predict cognitive vulnerability, and
inform individualized therapeutic strategies. Integrative translational
approaches, such as human neuroimaging, neuropsychological
assessment, multi-omics profiling, and gut microbiota analysis, are
essential to validate preclinical findings and bridge mechanistic insights
to clinical application. Such strategies can support the design of targeted
interventions, preventive measures, optimized pharmacological
treatments, and personalized cognitive rehabilitation protocols,
ultimately advancing precision medicine in chronic pain management.

3.2.3 Cellular mechanisms of cognitive
dysfunctions related to chronic pain

Cellular damage within the CNS constitutes a key pathological
substrate underlying chronic pain-associated cognitive dysfunction.
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Pain-related activation of neurons and glial cells in the PFC and
hippocampus promotes abnormal release of pro-inflammatory
mediators, disrupts synaptic plasticity, and contributes to behavioral
deficits (Mohammadi et al., 2020; Yao et al., 2024). Central to this
process is the phenotypic transformation of glial cells, particularly the
polarization of microglia toward the pro-inflammatory M1 phenotype
and the transformation of astrocytes into the neurotoxic A1 subtype.
These changes disrupt neuron-glia homeostasis and exacerbate
cognitive decline.

3.2.3.1 Neuroglial cells

Microglia, the resident immune cells of the CNS, exert a
bidirectional influence on pain-related cognitive dysfunction through
dynamic regulation of M1/M2 phenotypic states. Under physiological
conditions, microglia support cognitive function via synaptic pruning
and neurotransmitter homeostasis. Pathological activation drives M1
polarization, leading to the release of pro-inflammatory cytokines
such as TNF-a and IL-1p, which amplify neuroinflammation and
impair memory (Saffarpour et al., 2021; Han et al., 2024a). In the SNI
model, hippocampal M1 polarization correlates strongly with
cognitive deficits. Activation of liver X receptors (LXRs) suppresses
the M1 phenotype via the PI3K/AKT pathway, thereby attenuating
neuroinflammation and restoring synaptic plasticity (Han et al., 2022).

Microglial-astrocytic co-activation in the dentate gyrus (DG)
further amplifies the neuroinflammatory cascade, as demonstrated in
the SNL model (Cui et al., 2020). Overexpression of IL-1f in the
hippocampus severely impairs both contextual and spatial memory
(Hein et al., 2010), while excessive TNF-a release induces passive
avoidance deficits, inhibits long-term potentiation (LTP), and disrupts
hippocampal synaptic plasticity (Butler et al., 2004; Ren et al., 2011).
Similarly, IL-6 overproduction reduces LTP and triggers widespread
memory impairments (Tancredi et al., 2000). Inhibition of microglial
activation or blockade of high-mobility group box 1 (HMGBI1) release
can prevent chronic pain-induced cognitive decline (Hisaoka-
Nakashima et al., 2022b; Hisaoka-Nakashima et al., 2022a). Although
complete microglial depletion can reverse memory deficits (Ren et al.,
2011; Liu et al.,, 2017), therapeutic strategies that promote a shift
toward the neuroprotective M2 phenotype appear more promising
(Wang et al., 2022).

Astrocytes also undergo pathological remodeling during chronic
pain. In the PFC and hippocampus, astrocytes initially exhibit reactive
hyperplasia (Cui et al., 2020; Asgharpour-Masouleh et al., 2023), but
later progress to numerical reduction and atrophy due to sustained
neurotoxicity (Zhang Y. et al., 2023), a stage-dependent transformation
potentially linked to pain duration. Functionally, aberrant astrocytic
lactate metabolism reduces excitability of hippocampal CAl
pyramidal neurons, impairing spatial memory (Han et al., 2024).
Moreover, downregulation of aquaporin-4 (AQP4) disrupts
glymphatic clearance, accelerating neurodegeneration (Zhang Y. et al.,
2023). These findings underscore glial-mediated neuroinflammation
as a key target for mitigating pain-associated cognitive impairments.

3.2.3.2 Neurons

Chronic pain disrupts cognitive processes through multifaceted
impairments in hippocampal and PFC neuronal function, particularly
by altering synaptic plasticity. These changes involve dysregulation of
synaptic protein expression, dendritic morphology, and intracellular
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signaling pathways (Hisaoka-Nakashima et al., 2022b; Hisaoka-
Nakashima et al., 2022a; Meng et al., 2025). In neuropathic models,
hippocampal synaptic plasticity deficits contribute directly to
memory impairment (Mutso et al., 2012). Chronic pain reduces
postsynaptic density protein expression, diminishes glutamatergic
transmission, as evidenced by reduced NMDA/AMPA currents and
impaired excitatory postsynaptic currents, and selectively impairs
LTP without significantly affecting long-term depression (LTD;
Kodama et al., 2007; Xiong et al., 2020). The precise contribution of
LTP/LTD imbalance to neural circuit dysfunction remains to
be clarified.

Changes in synaptic plasticity, encompassing functional and
structural plasticity, are pivotal in memory formation (Yang et al.,
2009). Structurally, chronic pain reduces dendritic spine density,
dendritic complexity, axonal branching, and hippocampal
neurogenesis (Guida et al., 2022; Hisaoka-Nakashima et al., 2022b;
Hisaoka-Nakashima et al., 2022a). In the SNI model, hippocampal
neurons display shortened dendrites and reduced AMPA receptor
expression, correlating with spatial memory decline (Tyrtyshnaia and
Manzhulo, 2020). CCI similarly decreases dendritic spine density and
synapse-related protein levels, paralleling deficits in memory
performance (Tang et al., 2024). Reduced excitatory synapse numbers
and impaired neuronal plasticity further compromise network
information integration (Xiong et al., 2020). Neuroinflammation is a
major driver of these neuronal alterations. Persistent hippocampal
inflammation inhibits LTP formation, accelerates dendritic atrophy,
and promotes myelin loss through glial-derived inflammatory
mediators (Lecca et al., 2022; Zhu et al., 2024). Across multiple animal
models, sustained glial activation and cytokine overproduction
converge on the inhibition of neurogenesis and synaptic remodeling
(Mai et al,, 2021). In summary, chronic pain impairs cognition
through a complex interplay of neuroinflammatory processes and
structural-functional synaptic deficits, disrupting the dynamic

balance essential for memory and learning.

4 Interventional treatments

The clinical management of chronic pain traditionally relies on
pharmacological agents such as opioids, non-steroidal anti-
inflammatory drugs, and neuromodulators. While these medications
can achieve effective analgesia, they are often accompanied by adverse
effects, including an increased risk of cognitive impairment. Owing to
the limitations of conventional drug therapies, current research efforts
are increasingly focused on the development of targeted
pharmacological agents and the refinement of non-pharmacological
strategies. The overarching goal is to preserve analgesic efficacy while
minimizing cognitive side effects, thereby improving the safety and
effectiveness of long-term chronic pain management.

4.1 Clinical interventional treatments

4.1.1 Pharmacological interventions

Commonly prescribed analgesics for chronic pain exhibit
bidirectional effects on cognitive function. Agents such as gabapentin,
opioids, and N-methyl-D-aspartate receptor (NMDAR) antagonists
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have been reported to impair domains including memory, executive
function, and attention (Shem et al., 2018; Pask et al., 2020). The
cognitive impact of opioids remains controversial: while some studies
indicate potential cognitive improvement in patients with conditions
such as low back pain (Jamison et al., 2003; Tassain et al., 2003), the
preponderance of evidence associates chronic opioid therapy with
measurable cognitive deficits in this population (Kurita et al., 2015;
Richards et al., 2018). Specifically, morphine administration has been
shown to induce transient anterograde and retrograde memory
impairments (Kamboj et al., 2005), although no consistent correlation
has been established between cognitive decline and opioid dosage or
treatment duration (Sjogren et al., 2005). Similarly, repeated exposure
to NMDAR antagonists such as ketamine can lead to spatial memory
deficits, likely linked to reduced activation of the hippocampus and
parahippocampal gyrus (Morgan et al., 2014). While short-term
analgesia or relief from pain-related stress may indirectly enhance
cognitive performance (Wolrich et al., 2014; Ferreira et al., 2016),
prolonged use of these agents tends to exacerbate cognitive
impairment risk. To address this issue, future investigations should
systematically characterize the dose-response relationship by
considering the type of medication, its dosage, and treatment
duration. Such analyses are essential to clarify the causal association
between analgesic therapy and cognitive performance in chronic
pain patients.

4.1.2 Non-pharmacological treatments

4.1.2.1 Cognitive behavioral therapy

Cognitive Behavioral Therapy (CBT) is among the most
extensively validated psychological interventions for chronic pain
management. It ameliorates pain-related cognitive dysfunctions
via multidimensional mechanisms. Evidence indicates that CBT
attenuates the stress response in chronic pain patients by
modulating hypothalamic-pituitary-adrenal axis activity, thereby
mitigating the detrimental cognitive effects of neuroendocrine
dysregulation (Eller-Smith et al., 2018). Neuroimaging studies
further demonstrate that CBT can reverse gray matter volume loss
in the PFC and sensory cortices of chronic pain patients,
promoting the normalization of aberrant neural activity patterns
(Yoshino et al., 2018). In older populations, combining CBT with
structured physical exercise has been shown to significantly
reduce pain intensity, improve functional capacity, and attenuate
pain-related maladaptive cognition, although the benefits are
primarily observed in pain-related rather than generalized
cognitive outcomes (Cheng et al., 2022). Randomized controlled
trials have further confirmed that integrated CBT protocols
effectively reduce pain catastrophizing, enhance daily activity
performance, and improve overall health status (Lackner et al.,
2024; Lee et al.,, 2024). When implemented in conjunction with
other therapeutic modalities, CBT may enhance patient outcomes
by addressing both psychological and neurobiological contributors
to pain-related cognitive impairment.

4.1.2.2 Transcranial magnetic stimulation and transcranial
direct current stimulation

Transcranial Magnetic Stimulation (TMS) and Transcranial Direct
Current Stimulation (tDCS) are non-invasive neuromodulatory
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approaches that target the prefrontal-hippocampal circuitry,
representing promising strategies for the management of chronic
pain-associated cognitive deficits. Repetitive TMS (rTMS) can
reorganize dysfunctional neural networks and exert anti-
neuroinflammatory effects, while tDCS modulates cortical
excitability with polarity-specific effects—anodal stimulation lowers
neuronal firing thresholds, and cathodal stimulation raises them
(Bai et al., 2023; Moshfeghinia et al., 2023). Clinical evidence
suggests that anodal tDCS applied to the dorsolateral prefrontal
cortex (DLPFC) can enhance orienting and executive attention in
patients with fibromyalgia, potentially through long-term
potentiation (LTP) induction (Silva et al., 2017). In healthy
individuals, tDCS has demonstrated efficacy in improving attention,
learning, memory, and working memory (Coffman et al., 2014;
Carvalho et al., 2015). Transcranial random noise stimulation
(tRNS), which delivers stochastic alternating current patterns to
induce resonance-based neuronal synchronization, has been shown
to both alleviate fibromyalgia symptoms and enhance working
memory. Compared to conventional tDCS, tRNS exhibits broader
and more sustained effects (Curatolo et al., 2017). Target selection
is critical: DLPFC stimulation can concurrently ameliorate anxiety,
depression, and cognitive impairments, whereas primary motor
cortex stimulation primarily yields analgesic benefits (Curatolo
et al, 2017), From a therapeutic perspective, CBT promotes
psychological and cognitive reorganization through top-down
mechanisms, while TMS and tDCS facilitate bottom-up modulation
of synaptic plasticity and network connectivity. Together, these
complementary approaches provide a framework for precision
multimodal interventions targeting both psychological and
neurophysiological domains of chronic pain-related cognitive
dysfunction. A summary of clinical intervention treatments is
provided in Table 3.

4.2 Preclinical therapeutic interventions

4.2.1 Pharmacological interventions

Emerging therapeutic strategies for chronic pain-associated
cognitive dysfunction increasingly emphasize multi-target
approaches.  Pharmacological  interventions  targeting
neuroinflammation and neurotrophic regulation have shown
promising preclinical efficacy. For instance, infliximab can reverse
neuroinflammation and restore hippocampal neurogenesis,
thereby improving cognitive function (Yao et al., 2024). Curcumin
and its nanoformulations attenuate neuropathic pain and memory
deficits by reducing hippocampal IL-1f and TNF-a levels and
repairing synaptic ultrastructure (Zhang et al., 2018; Du et al,,
2021). Similarly, flurbiprofen ester and oral magnesium
levetiracetam inhibit neuroinflammatory responses, alleviating
both neuropathic pain and associated cognitive impairments
(Zhou X. et al,, 2021; Huang et al., 2022). Modulation of the
glutamatergic system represents another therapeutic avenue. The
NMDA

transmission and improves cognitive deficits (Palazzo et al., 2016),

receptor agonist d-aspartate restores glutamate
whereas the NMDA receptor antagonist memantine protects
spatial memory by preventing postoperative hippocampal LTP

impairment (Morel et al., 2013). Additionally, chloramphenicol
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TABLE 3 Clinical interventions for cognitive dysfunction associated with chronic pain.

Intervention Age (years) Pain type Cognitive outcomes Reference

Gabapentin 19-59 Spinal cord injury Significant decline in memory, (Shem et al., 2018)
executive function, and
attention

Morphine 652+122 Chronic low back pain and Memory impairment (Kamboj et al., 2005)

cancer pain

tDCS 18 ~ 65 Fibromyalgia Enhanced directed and (Silva et al., 2017)
executive attention performance

Exercise and cognitive behavioral >60 Multisite chronic pain Improved cognitive (Cheng et al., 2022)

therapy performance in chronic pain
patients

tRNS 26 ~ 67 Fibromyalgia Effective alleviation of cognitive = (Andrews et al., 2011)
deficits

CBT >18 chronic pain Potential improvement in pain (Taguchi et al., 2021; Lee et al.,
catastrophizing 2024)

promotes myelin regeneration, mitigating CCI-induced reductions
in neuronal activity and enhancing memory function (Zhu et al.,
2024). Synaptamide has also been shown to reverse dendritic
spine loss and restore LTP, thereby improving working memory
(Tyrtyshnaia et al., 2021). Epigenetic regulation offers further
potential. The methyl donor S-adenosylmethionine (SAM)
preserves DNA methylation in the prefrontal cortex, alleviating
cognitive decline (Grégoire et al., 2017), while SCFAs enhance
synaptic transmission through histone acetylation. Preclinical
evidence also supports the neuroprotective effects of anti-TNF-a,
anti-IL-1f, anti-IL-6 agents,
compounds (Lowe et al., 2021; Orti-Casan et al., 2022). Despite
these advances, clinical translation remains challenging due to

and endocannabinoid-like

limitations in pharmacodynamic stability, blood-brain barrier
permeability, and long-term safety. Future research should
integrate multi-omics approaches with cross-scale neuroimaging
to develop combination therapies that simultaneously target
neuroinflammation, synaptic plasticity, and epigenetic
modulation, ultimately achieving both pain alleviation and

cognitive protection.

4.2.2 Non-pharmacological interventions
Acupuncture has emerged as a promising non-pharmacological
strategy for alleviating chronic pain and associated cognitive deficits
following peripheral nerve injury, demonstrating multi-target
regulatory potential. Preclinical studies indicate that acupuncture can
restore epigenetic homeostasis by modulating DNA methylation in
the PFC. Specifically, it reverses chronic pain-induced methylation
abnormalities of genes such as Nr4al and Rasgrpl, and normalizes
global DNA methylation patterns in the PFC, periaqueductal gray,
hippocampus, and amygdala (Jang et al., 2021). Electroacupuncture
has been shown to enhance cognitive function via synergistic
mechanisms. Four weeks of continuous treatment significantly
increase mechanical pain thresholds, and hippocampal proteomic
analyses have identified molecular correlates underlying
improvements in neuropathic pain-associated cognitive deficits (Jang

etal, 2019; Gong et al., 2021).
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Collectively, these findings suggest that acupuncture can modulate
the “pain-neuroinflammation-cognitive impairment” axis through
dual mechanisms: epigenetic regulation and synaptic functional
remodeling. This evidence highlights acupuncture as a novel, multi-
target, non-pharmacological intervention for managing chronic pain
comorbidities. A summary of preclinical research on therapeutic
interventions is provided in Table 4.

5 Conclusion and future perspectives

Accumulating clinical and preclinical evidence strongly
indicates the detrimental effects of chronic pain on various
cognitive domains, including memory, attention, and executive
function. This review synthesizes the neurobiological mechanisms
underlying cognitive dysfunction associated with chronic pain. It
emphasizes the structural and functional remodeling in key brain
regions, such as the hippocampus and PFC, along with their
interconnected circuits. Cellular and molecular pathological
changes, including neuroinflammation, impairments in synaptic
plasticity, and epigenetic dysregulation, are identified as critical
factors contributing to cognitive decline. Current therapeutic
strategies, encompassing pharmacological agents and
neuromodulation techniques, are systematically evaluated,
highlighting their dual roles in alleviating pain and preserving
cognitive function.

Future research should focus on three key directions to
address existing knowledge gaps. First, elucidating the molecular
mechanisms, particularly the spatiotemporal dynamics of
epigenetic modifications such as DNA methylation and histone
acetylation, will clarify their roles in pain-related memory
impairment and inform targeted drug development. Second,
integrating neuromodulation techniques, including transcranial
stimulation and optogenetics, with microbiota-based therapies,
such as probiotics and short-chain fatty acid supplementation,
may synergistically enhance synaptic plasticity and neural

network resilience. Third, understanding pain subtype-specific
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TABLE 4 Preclinical interventions for cognitive dysfunction in chronic pain models.

Intervention

Animal

species

Pain type

Cognitive
impact

10.3389/fnins.2025.1641903

Mechanism of
action

Reference

Memantine Adult male Sprague- | Chronic neuropathic Alleviates spatial NMDAR antagonism (Morel et al., 2013)
Dawley rats pain memory deficits
Flurbiprofen axetil Adult Sprague- Inflammatory pain Improves mild cognitive | Reduces hippocampal (Huang et al., 2022)
Dawley rats impairment neuronal damage and pro-
inflammatory cytokine
release
Electroacupuncture Male Sprague— Chronic neuropathic Eliminates memory Modulates hippocampal (Gong et al,, 2021)
Dawley rats pain deficits inflammatory protein levels,
suppresses microglial M1
polarization, and reduces
neuroinflammation
MRI16-1 Male ddy mice Neuropathic pain Improves cognitive Prevents dendritic complexity | (Hisaoka-Nakashima
impairment loss and neuronal et al., 2022b; Hisaoka-
degeneration in the Nakashima et al., 2022a)
hippocampus
Curcumin Adult male Sprague Trigeminal neuropathic | Improves spatial Repairs hippocampal (Zhang et al., 2018)
Dawley rats pain learning and memory neuronal and synaptic
deficits damage
d-Asp Male 5-week-old Neuropathic pain Reduces cognitive Restores amino acid release (Palazzo et al., 2016)
CD1 mice impairment in the mPFC and rescues
postsynaptic protein
expression
(S)-ketamine Adult male Chronic neuropathic Ameliorates spatial Downregulates hippocampal | (Jiang et al., 2024)
C57BL/6 ] mice pain working memory HDAC?2, upregulates BDNF
deficits levels, and partially
normalizes gut microbiota
composition
Infliximab Adult male Sprague- | Neuropathic pain Attenuates spatial Inhibits hippocampal (Yao et al., 2024)
Dawley rats memory impairment astrocyte/microglial
activation, reduces pro-
inflammatory cytokines and
restores dentate gyrus
neurogenesis
Synaptamide 3-month-old male Neuropathic pain Improves working and Reverses dendritic spine (Tyrtyshnaia et al., 2021)
mice long-term memory density loss and suppresses
microglial activation
Acupuncture 7-week-old male Neuropathic pain Alleviates cognitive Modulates DNA methylation, | (Jang et al., 2019, 2021)
C57BL/6 ] mice dysfunction mitochondrial dysfunction-
related genes, and enhances
hippocampal NR2B/GluR1
expression and synaptic
plasticity
Metformin C57BL/6 ] wild-type | Neuropathic pain Reverses pain-induced Restores infralimbic (Shiers et al., 2018)
mice cognitive deficits parvalbumin loss
SAM Male CD1 mice Neuropathic pain Reverses cognitive Restores global DNA (Grégoire et al., 2017)
impairment methylation in the frontal
cortex
Resveratrol Adult male Sprague- | Trigeminal neuralgia Improves learning and Restores hippocampal (Saffarpour et al., 2017)
Dawley rats memory deficits ultrastructure and activates
the CREB/BDNF pathway
(Continued)
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TABLE 4 (Continued)

Intervention

Animal

species

Pain type

Cognitive
impact

10.3389/fnins.2025.1641903

Mechanism of
action

Reference

Cannabidiol Male Wistar rats Neuropathic pain Enhances cognitive Induces neuroplasticity via (Medeiros et al., 2024)
performance recruitment of the CA1-PrL
pathway
Duloxetine Male Sprague Dawley = Neuropathic pain Improves long-term Pain may occupy limited (Saffarpour et al., 2017)
rats memory deficits under cognitive resources, reducing
high task difficulty availability for non-pain-
related tasks
Curcumin Male Sprague Dawley = Neuropathic pain Improves memory Associated with enhanced (Du et al,, 2021)
rats deficits in CCI rats hippocampal neurogenesis
and synaptic plasticity
Nanocurcumin Male albino Wistar Neuropathic pain Improves spatial Linked to reduced (Saffarpour et al., 2021)
rats learning/memory hippocampal IL-1f and
deficits TNF-a levels
Clemastine Adult male Neuropathic pain Improves memory Promotes remyelination, (Zhu et al., 2024)
C57BL/6 ] mice deficits in CCI mice reverses myelin loss, and
normalizes neuronal activity

MR16-1, anti-mouse IL-6 receptor antibody; d-Asp, d-Aspartate; AIS, initial segment; SAM, S-adenosylmethionine; Res, Resveratrol; NR2B, N-Methyl-D-Aspartate Receptor Subunit 2B;

GluR1, Glutamate Receptor 1; CREB, cAMP Response Element-Binding.

mechanisms, especially distinguishing neuropathic from
inflammatory pain, is essential for developing personalized
treatment strategies. Addressing translational challenges, such as
optimizing blood-brain barrier penetration, ensuring long-term
safety, and validating multimodal biomarkers, will require
interdisciplinary collaboration. Advancements in these areas are
anticipated to transform chronic pain management, shifting the
focus from symptomatic relief to neuroprotective precision
medicine, ultimately reducing the global burden of pain-
cognition comorbidities.
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