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Objective: This study aimed to develop a multi-omics nomogram that combines 
clinical parameters, radiomics, and deep transfer learning (DTL) features of 
hyperattenuated imaging markers (HIM) from computed tomography scans 
immediately following mechanical thrombectomy (MT) to predict functional 
outcomes at discharge.

Methods: This study enrolled 246 patients with HIM who underwent MT. Patients 
were randomly assigned to a training cohort (n = 197, 80%) and a validation 
cohort (n = 49, 20%), with an additional internal prospective test cohort (n = 57). 
A total of 1,834 radiomics features and 25,088 DTL features were extracted 
from HIM images. Feature selection was conducted using analysis of variance 
(ANOVA), Pearson’s correlation, principal component analysis (PCA), and least 
absolute shrinkage and selection operator (LASSO) regression. A support 
vector machine (SVM)-based nomogram integrating clinical, radiomics, and 
DTL features was developed to predict functional outcomes at discharge. Its 
performance was evaluated based on accuracy, sensitivity, specificity, receiver 
operating characteristic (ROC) curve and area under the curve (AUC) analysis, 
decision curve analysis (DCA), and the DeLong test.

Results: The nomogram achieved AUCs of 0.995 (95% CI: 0.989–1.000) in 
training, 0.959 (95% CI: 0.910–1.000) in validation, and 0.894 (95% CI: 0.807–
0.981) in test cohorts. Our nomogram significantly outperformed clinical, 
radiomics, and DTL models, as well as physician assessments (senior physicians: 
0.693, p = 0.001; junior physicians: 0.600, p < 0.001).

Conclusion: This multi-omics nomogram, integrating HIM-derived, clinical, 
radiomic, and DTL features, accurately predicts post-MT discharge outcomes, 
enabling early identification of high-risk patients and optimizing management 
to improve prognosis.
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1 Introduction

The widespread adoption of mechanical thrombectomy (MT) has 
significantly improved vessel recanalization rates in patients with 
acute large vessel occlusive stroke. Nevertheless, despite these 
advancements, more than 50% of patients continue to experience 
moderate-to-severe disability, as indicated by a modified Rankin Scale 
(mRS) score greater than 2 at 90 days postoperatively (Morsi et al., 
2024). Obtaining reliable 90-day mRS data from stroke survivors is 
challenging, requiring substantial medical resources and often leading 
to delays that may hinder timely rehabilitation. Early identification of 
high-risk individuals and targeted interventions are essential for 
optimizing rehabilitation resource allocation and improving long-
term outcomes (Li et  al., 2024; Taleb et  al., 2023). Traditional 
prognostic models, such as the MT-DRAGON and ASTRAL scores, 
rely primarily on preoperative clinical and imaging parameters and 
use linear regression methods, which are insufficient for capturing the 
complex and dynamic biological changes after MT (Cooray et al., 
2016). Moreover, many studies focus on 90-day outcome assessments 
while overlooking the predictive value of discharge outcomes. Clinical 
evidence shows a strong correlation between discharge status and 
90-day prognosis, with patients who have poor discharge outcomes 
being highly likely to experience unfavorable long-term outcomes, 
underscoring the importance of early intervention (Cooray et  al., 
2016; ElHabr et al., 2021; Karamchandani et al., 2021; Chen et al., 
2022). Therefore, there is an urgent need for a predictive tool that can 
identify patients at risk of poor discharge outcomes, enabling timely 
interventions to improve long-term prognoses.

Hyperattenuating imaging markers (HIM) have become a focal 
point in prognostic modeling (Dong et  al., 2024). Non-contrast 
computed tomography (NCCT) performed immediately after 
mechanical thrombectomy detects HIM in 31 to 84% of cases (Lummel 
et al., 2014). These hyperdense findings typically indicate blood–brain 
barrier disruption, most often due to contrast extravasation and, less 
commonly, post-procedural hemorrhage (Hu et  al., 2025). Several 
studies have identified HIM as a key predictor of increased mortality 
and poor outcomes following MT, highlighting its value as a prognostic 
marker (Chen et al., 2019; Jiang et al., 2021). Integrating HIM-based 
predictive models with artificial intelligence (AI) enhances the 
prediction of post-thrombectomy complications by analyzing complex 
imaging patterns and multidimensional data, improving accuracy and 
sensitivity beyond traditional methods (Hu et al., 2024; Song et al., 
2025). This approach provides a more robust framework for clinical 
decision-making, translating imaging insights into actionable strategies.

Artificial intelligence, including both deep transfer learning 
(DTL) and radiomics, has emerged as a promising tool for predicting 
outcomes in stroke patients following MT, offering high precision and 
the potential to enhance diagnostic and therapeutic strategies. Deep 
learning facilitates multi-level feature extraction directly from raw 
imaging data, demonstrating significant predictive capabilities (Liu 
Y. et  al., 2023). Similarly, radiomics has garnered attention for its 
ability to analyze imaging features and predict functional outcomes 
post-MT (Heo et  al., 2019). While both approaches have robust 
strengths, their comparative performance depends on the context, 
with neither consistently outperforming the other (Liu W. et al., 2023). 
The present study aims to integrate DTL, radiomics, and clinical 
features, combining the strengths of multiple models to achieve more 
accurate predictions of discharge outcomes in stroke patients 

post-MT. This integrated approach seeks to optimize resource 
allocation, enable early personalized interventions, and improve 
rehabilitation planning, ultimately enhancing long-term prognosis.

2 Methods

2.1 Ethical approval of the study protocol

This study was approved by the Ethics Committee (Approval 
Number: K2024139). During the prospective phase, the model was 
deployed without any clinical interventions or changes to standard 
care. After the prospective period, data were retrieved from the 
research database, along with our model’s predictions, for downstream 
analysis. All clinical investigations were conducted under the 
principles outlined in the Declaration of Helsinki.

2.2 Patient selection and study design

We retrospectively reviewed patients diagnosed with acute 
ischemic stroke due to intracranial large vessel occlusion (LVO) who 
underwent endovascular MT between June 2016 and December 2023. 
The indications and contraindications for MT and thrombolysis were 
based on the most current guidelines available at the time of treatment. 
General clinical characteristics, laboratory findings, clinical 
presentations, and imaging data were collected. Inclusion criteria were 
as follows: (1) patients underwent head NCCT post-MT; (2) initial 
postoperative NCCT was performed within 1 h after MT; (3) HIM, 
defined as hyperattenuation in the brain parenchyma or subarachnoid 
space, were detected on the initial post-MT NCCT. Exclusion criteria 
included: (1) incomplete mRS score at discharge; (2) unsuccessful MT, 
such as guidewire failure to reach the occlusion site or angiography 
confirming vessel recanalization; (3) absence of HIM; (4) imaging 
artifacts compromising HIM assessment; (5) administration of 
iodinated contrast before preoperative CT. A flowchart of the study 
population is presented in Figure 1.

2.3 Imaging

Initial postoperative non-enhanced head CT scans were acquired 
within 1 h post-thrombectomy using either a 64-row spiral CT 
scanner (Somatom® Definition AS, Siemens Healthineers, Forchheim, 
Germany) or a 62-row spiral scanner (Optima® CT620, GE Medical 
Systems, Milwaukee, WI, USA). Scanning parameters were as follows: 
axial mode, tube voltage of 120 kV, tube current of 250–300 mAs, 
coverage from the skull base to the cranial vertex, a section thickness 
of 5 mm, and reconstruction with a standard algorithm. Two 
neuroradiologists with over 10 years of experience and blinded to the 
clinical data independently evaluated imaging data in randomized 
order. Any discrepancies were resolved through consensus discussion.

The workflow and global analysis pipeline for the classification 
model are illustrated in Figure 2. HIM was manually delineated on 
each CT image, and the region of interest (ROI) encompassing the 
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HIM was extracted for input into the predictive model. To ensure the 
reliability and reproducibility of radiomics features, 30 lesions were 
randomly selected, and intra-class correlation coefficients (ICC) were 
used to assess inter- and intra-observer agreement in feature extraction. 
Reader A performed ROI segmentation twice, with a 1-month interval, 
to evaluate intra-observer agreement. Reader B segmented the 30 
lesions once, and the extracted radiomics features were used to assess 
inter-observer agreement. Features with ICC > 0.75 were deemed 
reliable and retained for model construction, resulting in 1,725 features 

with excellent agreement (ICC > 0.75). Additionally, segmentation 
consistency was quantified using the Dice similarity coefficient (DSC), 
yielding a mean DSC of 0.954, indicating high agreement between the 
two neuroradiologists. DTL and radiomics features were extracted 
separately: DTL features were derived from the largest cross-sectional 
ROI, while radiomics features were computed from the entire ROI 
volume. Feature selection was conducted sequentially using analysis of 
variance (ANOVA), Pearson’s correlation coefficient, and the least 
absolute shrinkage and selection operator (LASSO).

FIGURE 1

The patient selection flowchart.

FIGURE 2

The overall framework of the proposed model. ROI, region of interest; LASSO, least absolute shrinkage and selection operator; SVM, support vector 
machine; Grad Cam, Gradient-weighted Class Activation Mapping; AUC, area under curve.
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2.4 Data collection

In this study, 303 patients were enrolled from June 2016 to 
December 2023. Of these, 246 patients treated between June 2016 and 
January 2023 were allocated to model training and validation: 197 
(80%) were randomly assigned to the training cohort, and 49 (20%) 
to the validation cohort. An additional 57 patients from February 2023 
to December 2023 were included in the internal test cohort. Functional 
outcomes at discharge were evaluated using the mRS (range: 0–6), 
with unfavorable outcomes defined as mRS scores of 4–6, extracted 
from medical records by trained clinicians. Discrepancies were 
resolved through consultation.

By reviewing patient charts and procedure notes, we gathered the 
following clinical indicators and surgical details: age, sex, 
hyperlipidemia, hypertension, diabetes mellitus, coronary artery 
disease, atrial fibrillation, history of prior stroke, history of alcohol 
consumption or smoking, baseline National Institutes of Health Stroke 
Scale (NIHSS) scores, length of hospital stay, pre-stroke mRS scores, 
admission mRS scores, thrombolysis status, stent implantation, 
modified Thrombolysis in Cerebral Infarction (mTICI) scores, use of 
aspiration catheters, and number of thrombectomy attempts. Imaging 
metrics, including the Alberta Stroke Program Early CT Score 
(ASPECTS) for anterior and posterior circulation, subarachnoid HIM, 
HUmax values, and other relevant parameters, were determined 
through consensus between two neuroradiologists, each with over 
5 years of experience and blinded to the patients’ clinical information.

2.5 Feature extraction and selection

Radiomic features were extracted from HIM on NCCT using an 
in-house feature analysis program based on Pyradiomics1. To 
eliminate any potential variations in CT images obtained using 
different CT scanners, NCCT images were reconstructed using a voxel 
size of 1 × 1 × 1 mm3 and gray-scale discretization. A total of 1,834 
radiomic features were computed, covering shape, first-order statistics, 
gray-level co-occurrence matrix, gray-level run-length matrix, gray-
level size zone matrix, neighboring gray-tone difference matrix, gray-
level dependence matrix, and wavelet features.

DTL features were extracted using five models: VGG19_bn, 
Inception v3, ResNet50, VGG16, and ResNet152. Among these, 
we selected the model with the highest predictive performance for 
this study, based on its superior area under the curve (AUC) value. 
Pre-trained on large-scale datasets, the selected model was fine-
tuned using the maximum cross-sectional HIM ROI. Data 
augmentation techniques, including RandomResizedCrop and 
RandomHorizontalFlip, were applied to improve generalization. 
Features from the ‘avgpool’ layer generated 25,088 DTL features, 
which were then reduced to 303 using principal component analysis 
(PCA). Radiomics features were extracted and evaluated using five 
machine learning models: SVM, KNN, Random Forest, XGBoost, 
and LightGBM. Among these, SVM performed best, achieving an 

1 http://pyradiomics.readthedocs.io

AUC of 0.609. As a result, a clinical-radiomics-DTL nomogram was 
constructed using SVM. Clinical, radiomics, and DTL features were 
standardized to have a mean of 0 and a variance of 1. Feature selection 
was performed using ANOVA, Pearson’s correlation coefficient, PCA, 
and LASSO to enhance the models’ generalization ability and reduce 
overfitting. For the clinical, radiomics, and DTL models, ANOVA, 
Pearson’s correlation coefficient, and LASSO were applied sequentially 
to complete feature selection. PCA, ANOVA, Pearson’s correlation 
coefficient, and LASSO were used sequentially for the combined model.

2.6 Development of the clinical signature

To develop the clinical model, we first performed univariate logistic 
regression analysis to identify clinical variables significantly associated 
with the outcome. Variables with a p-value less than 0.05 were considered 
candidate predictors. These selected features were then used to construct 
the clinical model using a support vector machine (SVM) algorithm, 
implemented in Python (version 3.11.13). Model performance was 
evaluated in the training and test cohorts using receiver operating 
characteristic (ROC) curves and corresponding AUC values.

2.7 Model development and validation

A nomogram integrating clinical, radiomics, and DTL features was 
developed, alongside separate clinical, radiomics, and DTL models for 
comparison. Model performance was assessed using sensitivity, 
specificity, receiver operating characteristic (ROC) curves, and 
AUC. Five-fold cross-validation, combined with grid search, was 
employed to optimize the hyperparameters of the SVM model. The 
training cohort data were divided into five folds, yielding five prediction 
models. For each model, sensitivity, specificity, and AUC were 
computed. The fold with the median AUC was selected as the 
representative split. Feature engineering was strictly limited to the 
training data in each fold to prevent data leakage and ensure unbiased 
evaluation. Models were trained and evaluated on the training, 
validation, and test cohorts. The Shapley Additive Explanations (SHAP) 
method was used to visualize and quantify each feature’s contribution 
to model predictions. Calibration curves were generated to assess the 
agreement between predicted probabilities and observed outcomes in 
the test cohort. The DeLong test was applied to compare ROC curve 
performance across models, and decision curve analysis (DCA) was 
performed to evaluate the clinical utility of the predictive models.

2.8 Implementation and hardware

The network architecture was implemented using Python and the 
PyTorch library. The DTL model was trained with the stochastic 
gradient descent algorithm as the optimizer, using a learning rate of 
0.001, a mini-batch size of 8, and a binary cross-entropy loss function. 
Batch normalization was applied after each convolution layer to 
accelerate convergence and reduce overfitting. The network was 
trained for 50 epochs.
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2.9 Sensitivity analysis of nomogram 
performance using 90-day mRS outcomes

To assess the consistency and robustness of the nomogram in 
predicting longer-term outcomes, a sensitivity analysis was conducted 
in the test cohort using 90-day mRS scores as the outcome measure. 
Patients with 90-day mRS scores of 3–6 were classified as having 
unfavorable outcomes.

2.10 Statistical analysis and performance 
evaluation

Statistical analyses were performed using SPSS software (version 
27.0, IBM). Continuous variables are reported as means with 
standard deviations, and categorical variables as frequencies and 
percentages. The Kruskal–Wallis test was used to compare age, 
hospital stay duration, baseline NIHSS score, discharge NIHSS 
score, admission mRS score, and ASPECTS. Other categorical 
variables were analyzed using the chi-square test or Fisher’s exact 
test, as appropriate. Feature extraction, selection, and model 
construction were conducted using Python (version 3.11.13). Model 
performance was evaluated by calculating the AUC. Calibration 
curves were generated to assess agreement between predicted 
probabilities and observed outcomes in the test cohort. The DeLong 
test compared performance differences between ROC curves of 
different models, and DCA evaluated the clinical utility of the 
prediction models. A p-value < 0.05 was considered statistically 
significant for all tests.

3 Results

3.1 Cohort and clinical characteristics

The study included a training cohort of 197 patients, a validation 
cohort of 49 patients, and a test cohort of 57 patients. Clinical feature 
selection was performed using ANOVA, Pearson correlation, and 
LASSO. Table  1 details the patient characteristics. Unfavorable 
discharge outcomes, defined as mRS 4–6, were observed in 185 of 303 
patients. Significant differences among cohorts were identified in 
hyperlipidemia (p = 0.010), coronary artery disease (p = 0.040), 
thrombolysis (p = 0.005), stent type, (p = 0.001), and aspiration 
catheter use (p < 0.001). A nomogram incorporating clinical, 
radiomics, and DTL features was developed (Figure 3). To derive the 
DTL features, we evaluated five convolutional neural network models: 
VGG19_bn, Inception v3, ResNet50, VGG16, and ResNet152. Among 
these, VGG19_bn demonstrated the highest performance 
(AUC = 0.674) and was selected for this study.

3.2 Performance of models in the training 
cohort

In the training cohort, the nomogram demonstrated superior 
performance with an AUC of 0.995 (95% CI: 0.989–1.000), a sensitivity 

of 0.969, and a specificity of 0.986. The clinical model achieved an 
AUC of 0.924 (95% CI: 0.889–0.960), while the radiomics model and 
DTL model yielded AUCs of 0.792 (95% CI: 0.723–0.860) and 0.675 
(95% CI: 0.600–0.751), respectively (Figure 4A).

3.3 Performance of models in the 
validation cohort

In the validation cohort, the nomogram maintained high 
performance with an AUC of 0.959 (95% CI: 0.910–1.000), a sensitivity 
of 0.903, and a specificity of 0.889. The clinical model achieved an 
AUC of 0.737 (95% CI: 0.597–0.876), while the radiomics model and 
DTL model yielded AUCs of 0.609 (95% CI: 0.431–0.788) and 0.674 
(95% CI: 0.517–0.831), respectively (Figure 4B).

3.4 Performance of 5-fold cross-validation

Five independent validation results were obtained, as shown in 
Table  2. The fold with the median AUC (0.959) was selected to 
represent a typical data split for model training and evaluation.

3.5 Performance of models in the test 
cohort

In the test cohort, our nomogram achieved an AUC of 0.894 (95% 
CI: 0.807–0.981), outperforming the clinical model (AUC 0.792, 95% 
CI: 0.674–0.910), the radiomics model (AUC 0.542, 95% CI: 0.386–
0.698), and the DTL model (AUC 0.533, 95% CI: 0.378–0.689) 
(Figure 4C). DCA further revealed that all models improved outcome 
predictions compared to no-model scenarios, with the nomogram 
providing the most significant clinical benefit (Figure 5A). To evaluate 
the models’ effectiveness, the DeLong test was performed (Figure 5B). 
The findings indicated that the AUC of the nomogram was markedly 
superior to that of the radiomics model (p < 0.001) and the DTL 
model (p < 0.001) within the testing cohort. Moreover, the nomogram 
displayed a trend toward enhanced performance relative to the clinical 
model (p = 0.079), though this difference fell short of statistical 
significance. To assess the agreement between predicted and observed 
outcomes for the nomogram, calibration curves were generated 
(Figure 5C).

3.6 Enhancing model interpretability using 
SHAP values

Figure  6 presents a SHAP bar plot, ranking features by their 
contribution to the model’s output in descending order, and a SHAP 
beeswarm plot, illustrating the impact and distribution of each feature 
on model predictions. The magnitude of SHAP values indicates the 
strength of each feature’s influence on individual predictions.
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3.7 Sensitivity analysis using 90-day mRS 
outcomes

We performed a sensitivity analysis in the test cohort using 
90-day mRS scores as the outcome measure, despite one patient being 
lost to follow-up at 90 days. The nomogram achieved an AUC of 
0.854, suggesting good discriminatory ability for predicting long-
term functional disability.

3.8 Clinically actionable threshold and risk 
stratification

To enhance the nomogram’s clinical utility, a probability threshold 
of 0.760 was established by maximizing the Youden Index (0.645) in 
the test cohort. At this cutoff, the model achieved a sensitivity of 0.778, 
specificity of 0.867, positive predictive value (PPV) of 0.840, and 
negative predictive value (NPV) of 0.812, striking an optimal balance 

TABLE 1 Characteristics of patients in the train, validation and test cohort.

Feature name Training
n = 197

Validation
n = 49

Test
n = 57

p-value

Age (year), mean±SD 66.64 ± 14.58 69.27 ± 12.80 65.84 ± 16.30 0.448

Men, n (%) 129 (65.48) 29 (59.18) 36 (63.15) 0.705

Atrial fibrillation, n (%) 80 (40.60) 18 (36.73) 24 (42.10) 0.842

Hypertension, n (%) 110 (55.83) 36 (73.46) 35 (61.40) 0.076

Hyperlipidemia, n (%) 14 (7.10) 6 (12.24) 12 (21.05) 0.010*

Diabetes Mellitus, n (%) 33 (16.75) 10 (20.40) 9 (15.78) 0.794

Coronary artery disease, n (%) 22 (11.16) 11 (22.44) 4 (7.01) 0.040*

Drinking, n (%) 43 (21.82) 11 (22.44) 10 (17.54) 0.760

Smoking, n (%) 43 (21.82) 13 (26.53) 12 (21.05) 0.750

Thrombolysis, n (%) 76 (38.57) 19 (38.77) 9 (15.78) 0.005*

Pre-stroke mRS ≤ 2, n (%) 194 (98.47) 49 (100.00) 57 (100.00) 0.444

Prior stroke, n (%) 28 (14.21) 8 (16.32) 9 (15.78) 0.911

Baseline NIHSS, median (Q1, Q3) 16 (12–21) 15 (12–20) 16 (10–20) 0.750

ASPECTS, median (Q1, Q3) 9 (8–10) 9 (8–10) 9 (8–10) 0.422

HUmax≥90, n (%) 56 (28.42) 15 (30.61) 18 (31.57) 0.880

Anterior Circulation, n (%) 184 (93.40) 44 (89.79) 54 (94.73) 0.579

sHIM, n (%) 76 (38.57) 17 (34.69) 20 (35.08) 0.819

mTICI more than 2b, n (%) 176 (89.34) 44 (89.79) 53 (92.98) 0.718

Stent Type, n (%) 0.001*

  Solitaire 116 (58.88) 24 (48.97) 36 (63.15)

  Trevo 30 (15.22) 12 (24.48) 0 (0.00)

  Solitaire+Trevo 34 (17.25) 5 (10.20) 19 (33.33)

  Others 16 (8.12) 8 (16.32) 2 (3.50)

Pass number, median (Q1, Q3) 1 (1–2) 2 (1–3) 1 (0–2) 0.313

Aspiration catheter, n (%) 63 (31.97) 20 (40.81) 47 (82.45) 0.000*

Stent implantation, n (%) 38 (19.28) 11 (22.44) 7 (12.28) 0.358

LOS, median (Q1, Q3) 10 (7–19) 12 (7–16) 11 (7–16) 0.985

HT, n (%) 136 (69.03) 38 (77.55) 36 (63.15) 0.275

mRS at admission, n (%) 0.567

  0 1 (0.51) 0 (0.00) 0 (0.00)

  1 1 (0.51) 0 (0.00) 1 (1.75)

  2 5 (2.54) 0 (0.00) 0 (0.00)

  3 12 (6.09) 4 (8.16) 4 (7.02)

  4 36 (18.27) 6 (12.24) 11 (19.30)

  5 142 (72.08) 39 (79.59) 41 (71.93)

SD, standard deviation; NIHSS, National Institutes of Health Stroke Scale; ASPECTS, Alberta Stroke Program Early Computed Tomography Score; Q1, first quartile; Q3, third quartile; HU, 
Hounsfield; sHIM, subarachnoid hyperattenuated imaging markers; mTICI, modified thrombolysis in cerebral infarction; LOS, length of stay; mRS, modified Rankin Scale; HT, hemorrhagic 
transformation. *represents p < 0.05.
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FIGURE 3

A nomogram integrating radiomic features, deep learning algorithms, and clinical parameters was developed to predict the risk of unfavorable 
discharge outcomes.

FIGURE 4

ROC curves for all models across the training (A), validation (B), and test (C) cohorts. ROC, receiver operating characteristic.

TABLE 2 Performance metrics from 5-fold cross-validation.

Fold AUC 95% CI Sensitivity Specificity

1 0.943 0.8835–1.0000 0.833 0.950

2 0.956 0.9064–1.0000 0.806 1.000

3 0.959 0.9096–1.0000 0.903 0.889

4 0.966 0.9193–1.0000 0.848 1.000

5 0.972 0.9351–1.0000 0.833 1.000

AUC, Area Under the Curve; CI, Confidence Interval.
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between false positives and false negatives. The positive likelihood 
ratio (PLR) of 5.85 and negative likelihood ratio (NLR) of 0.26 
demonstrate robust risk stratification.

3.9 Performance comparison of nomogram 
and physicians

Figure  7 illustrates the ROC curves for the nomogram and 
physicians. The nomogram achieves an AUC of 0.894, outperforming 
both the senior physician (0.693) and the junior physician (0.600). In 
comparison to the senior physician, the nomogram demonstrates 
superior accuracy (83% vs. 53%), specificity (83% vs. 80%), and 
sensitivity (82% vs. 62%). Similarly, when compared to the junior 
physician, the nomogram exhibits greater accuracy (83% vs. 53%), 
specificity (83% vs. 64%), and sensitivity (82% vs. 56%).

4 Discussion

Herein, we extracted radiomics and DTL features from HIM on 
post-thrombectomy NCCT, integrated them with clinical data, and 
developed a nomogram to predict discharge prognosis. Importantly, 
our nomogram achieved an AUC of 0.894 in a prospective test cohort, 
surpassing single-modality models and demonstrating its superior 
predictive performance for discharge outcomes.

We defined an unfavorable discharge outcome as an mRS score of 
4–6. Several studies have previously employed the mRS at discharge 
as a prognostic tool for assessing early outcomes following ischemic 
or hemorrhagic stroke treatment, with some establishing an mRS 
score greater than 3 as the threshold for an unfavorable prognosis 
(Hallevi et al., 2009; Shi et al., 2018; Zhao et al., 2023). Among the 
clinical variables in our nomogram, the baseline NIHSS score was the 
most influential predictor of discharge prognosis following MT, 

FIGURE 5

The DCA curves (A), DeLong test results (B), and calibration curves (C) for all models in the test cohort. (A) DCA curves of different models in the test 
cohort. The y-axis represents the net benefit, and the x-axis represents the threshold probability. DCA, Decision Curve Analysis. (B) A significant 
difference between models was determined by the DeLong test (p < 0.05). (C). Calibration curves for models in the test cohort. The x-axis represents 
predicted probabilities of unfavorable outcomes, and the y-axis represents observed probabilities.

FIGURE 6

SHAP values for interpreting the combined model. (A) Bar plot illustrating the relative contributions of features to the model’s output. The top-ranked 
feature, “Baseline NIHSS” exhibits the greatest predictive power, significantly outperforming lower-ranked features. (B) Beeswarm plot depicting SHAP 
values for model features. Positive SHAP values indicate a higher predicted risk of unfavorable outcome, while negative values correspond to a lower 
risk. NIHSS, National Institutes of Health Stroke Scale; DTL, deep transfer learning; LHH, low-high-high-pass filtered image; GLSZM, gray level size zone 
matrix; GLCM, gray-level co-occurrence matrix; HLH, high-low–high filtered image.
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consistent with prior findings (Zhang et al., 2025). Baseline NIHSS 
scores, which measure stroke severity, reliably predict outcomes in 
large vessel occlusion, with higher scores indicating greater 
neurological deficits and worse prognosis (Li et al., 2018). Although 
the nomogram demonstrated stronger predictive performance than 
the clinical model in the test cohort, the difference in AUC between 
the two was not statistically significant (p = 0.079). The relatively 
strong performance of the clinical model alone may be attributed to 
its inclusion of the most influential predictor—baseline NIHSS—
which captures a substantial amount of prognostic information and 
thereby enhances its predictive accuracy.

Our model not only incorporates clinical indicators but also 
integrates deep learning and radiomics models to form a robust 
predictive framework. Deep learning models have demonstrated 
strong performance in prognostic prediction. Nishi and Dipros 
previously utilized the convolutional neural network (CNN) and 3D 
DenseNet121 deep learning models to predict functional outcomes 
3 months after MT, achieving an AUC of 0.81 (Nishi et  al., 2020; 
Diprose et al., 2025). In contrast, our study leveraged HIM features 
extracted from post-thrombectomy CT scans. These CT images, 
acquired 1 hour after the procedure, effectively capture reperfusion 
injury while minimizing the confounding influence of preoperative 
variability (Bai and Lyden, 2015). Moreover, our model demonstrates 
superior predictive performance compared to previous approaches. 
Here, we employed the VGG19_BN model, leveraging its stacked 
3 × 3 convolutional kernels to deepen the network and enhance 
feature extraction capabilities. The batch normalization in 

VGG19_BN effectively reduces internal covariate shift, accelerates 
training, and stabilizes gradient flow, thereby improving prognostic 
accuracy (Han et al., 2024). Radiomics, widely applied in predicting 
stroke discharge outcomes, provides quantitative insights through 
feature extraction and has shown considerable promise in forecasting 
prognosis after thrombectomy. Evidence suggests that models 
integrating deep learning and radiomics significantly outperform 
standalone deep learning approaches due to their superior image 
feature extraction capabilities (Liu W. et  al., 2023). Thus, our 
nomogram, which unifies clinical, deep learning, and radiomics 
features, establishes a robust predictive framework that enhances 
accuracy and supports personalized treatment strategies.

We acknowledge that the discharge mRS, while valuable for early 
prognostication, may not fully capture long-term functional outcomes. 
To explore the relationship between discharge status and 90-day 
prognosis, we  conducted a sensitivity analysis using 90-day mRS 
scores as the endpoint in the test cohort. Despite the shift to a longer-
term outcome measure, the model maintained robust discriminative 
ability (AUC = 0.854), confirming its stability and generalizability. 
This finding suggests a potential link between an unfavorable 
discharge outcome (mRS > 3) and an unfavorable 90-day prognosis 
(mRS > 2), indicating that clinicians could leverage this early marker 
to identify high-risk patients and implement targeted interventions to 
improve long-term outcomes.

To demonstrate the clinical utility of the nomogram, we identified 
a probability threshold of 0.760 that effectively stratifies patients by 
their risk of poor functional outcome at discharge (Figure 8). Patients 

FIGURE 7

ROC curves comparing predictive performance among the nomogram, a senior physician, and a junior physician.
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with predicted probabilities above 0.760 warrant intensified 
neurological monitoring and early, personalized rehabilitation to 
mitigate secondary decline and improve recovery, while those below 
this threshold may receive standard post-thrombectomy care, 
optimizing resource allocation.

We evaluated the predictive performance of our nomogram for 
discharge outcomes against that of senior and junior physicians. Using 
their extensive experience and deep familiarity with critical indicators, 
senior physicians surpassed junior physicians in performance but faced 
challenges in handling high-dimensional data or discerning subtle 
patterns, areas in which the model excelled. This highlights the potential 
of integrating machine learning models with clinical expertise to 
enhance prognostic accuracy and decision-making (Rajpurkar et al., 
2017). This multi-omics model effectively captures complex biological 
and imaging patterns by incorporating DTL-derived imaging features, 
traditional radiomics, and clinical variables, offering objectivity and 
consistency that surpasses human capability (Choi et al., 2023). The 
nomogram could serve as a reliable decision-support tool in the future, 
enhancing clinical precision by integrating real-time patient data with 
physician expertise, particularly benefiting junior physicians and time-
sensitive scenarios.

Nonetheless, the present study has several limitations. Firstly, it 
was conducted at a single center using two scanners with standardized 
protocols, which minimizes intra-institutional variability but may limit 
generalizability to diverse clinical settings. Variations in scanner 
vendors, acquisition protocols, and patient populations across 
institutions could impact feature robustness and model performance. 
To address this, we plan prospective multicenter studies with diverse 
imaging sources and populations to evaluate model transferability and 
clinical utility in future. Secondly, the small sample size may reduce 
statistical power and external validity, particularly in the prospective 
test cohort. Thirdly, while discharge outcomes are closely related to 
90-day prognosis, this association is not absolute and requires further 

validation. Finally, while manual lesion segmentation by experienced 
neuroradiologists ensures rigor, it introduces subjectivity and 
variability, particularly for poorly defined lesions, potentially biasing 
our results. To address this, future research should explore automated 
segmentation techniques to enhance reproducibility and reduce 
variability. Therefore, future multicenter studies with larger, more 
diverse cohorts and automated feature extraction are warranted to 
address these limitations and further validate our model’s clinical utility.

5 Conclusion

In conclusion, our study introduces a robust predictive model that 
effectively integrates radiomics, deep learning, and clinical data to 
predict patient outcomes following thrombectomy. The high predictive 
accuracy of our nomogram makes it a promising clinical decision-
making tool, with the potential to enhance patient prognosis and 
improve personalized treatment strategies.
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