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Background: Non-contrast CT (NCCT) is widely used imaging modality for 
acute stroke imaging but often fails to detect subtle early ischemic changes. 
Such underestimation can lead clinicians to overlook tissue-level information. 
This study aimed to develop and externally validate automated software for 
detecting ischemic lesions on NCCT and to assess its clinical feasibility in stroke 
patients undergoing endovascular thrombectomy.
Methods: In this retrospective, multicenter cohort study (May 2011–April 2024), 
a modified 3D U-Net model was trained using paired NCCT and diffusion-
weighted imaging (DWI) data from 2,214 patients with acute ischemic stroke. 
External validation was performed in 458 subjects. Clinical feasibility was 
assessed in 603 endovascular thrombectomy-treated patients with complete 
recanalization. Model outputs were compared against expert-annotated DWI 
lesions for sensitivity, specificity, and volumetric correlation. Clinical endpoints 
included follow-up DWI lesion volumes, hemorrhagic transformation, and 
3-month modified Rankin Scale outcomes.
Results: A total of 458 subjects were evaluated for external validation (mean 
age, 64 years ± 16; 265 men). The model achieved 75.3% sensitivity (95% 
CI, 70.9–79.9%) and 79.1% specificity (95% CI, 77.1–81.3%). In the feasibility 
cohort (n = 603; mean age, 69 years ± 13; 362 men), NCCT-derived lesion 
volumes correlated with follow-up DWI volumes (ρ = 0.60, p < 0.001). Lesions 
>50 mL were associated with reduced favorable outcomes (17.3% [26/150] 
vs. 54.2% [246/453], p < 0.001) and higher hemorrhagic transformation rates 
(66.0% [99/150] vs. 46.3% [210/453], p < 0.001). Radiomics features improved 
hemorrhagic transformation prediction beyond clinical variables alone (area 
under the receiver operating characteristic curve, 0.833 vs. 0.626; p = 0.003).
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Conclusion: The automated NCCT-based lesion detection model demonstrated 
reliable diagnostic performance and provided clinically relevant prognostic 
information in endovascular thrombectomy-treated stroke patients.
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Introduction

Non-contrast computed tomography (NCCT) is the most widely 
accessible imaging modality for acute stroke worldwide due to its 
accessibility and utility in rapidly ruling out hemorrhagic stroke (Kurz 
et al., 2016). However, hypodense changes indicative of acute ischemia 
can be subtle, leading to suboptimal sensitivity (van Horn et al., 2021). 
Although semiquantitative scores are routinely used to communicate 
the extent of ischemic changes, their inter-rater reliability varies 
considerably (Farzin et al., 2016). Likewise, manual segmentation of 
early ischemic changes on NCCT often yields low agreement 
(Christensen et al., 2023).

Despite these limitations, the initial NCCT scan contains useful 
tissue-level information such as extent and severity of ischemia, which 
has not been thoroughly utilized in clinical practice (Demeestere et al., 
2025). Greater emphasis on detecting and quantifying ischemic 
changes could guide treatment decisions, especially for time-sensitive 
interventions such as intravenous thrombolysis and endovascular 
treatment (EVT).

We aimed to develop an automated software model to detect acute 
ischemic lesions on NCCT. The model’s training and validation used 
concomitant diffusion-weighted imaging (DWI) with expert ratings 
as a reference standard, given DWI’s high sensitivity for acute 
infarction. We  further tested the software’s clinical feasibility in a 
separate cohort of patients with large vessel occlusion (LVO) 
undergoing EVT with complete recanalization, correlating 

NCCT-derived lesion volumes and radiomics features with subsequent 
DWI and clinical outcomes.

Methods

The study conformed to the Standards for Reporting of Diagnostic 
Accuracy Studies guidelines for diagnostic accuracy research (Cohen 
et al., 2016).

Acute ischemic lesion detection on NCCT: 
model development and validation

We retrospectively collected data from six stroke centers in South 
Korea between 2011 and 2015, including 2,398 ischemic stroke 
patients. Inclusion required adults with acute ischemic stroke who 
underwent NCCT and DWI within 3 h to minimize ischemic lesion 
evolution, while patients with poor image quality, structural brain 
abnormalities, or incomplete expert annotations were excluded 
(Figure  1A). Five expert neurologists each with over 10 years of 
clinical experience, manually annotated ischemic lesions visible on 
NCCT while referring to DWI / apparent diffusion coefficient images 
for confirmation. Experts’ annotation agreements were assessed using 
volumetric similarity indices and absolute volume difference, with 
ground truth defined by consensus of more than 2 experts. The labeled 

FIGURE 1

Flowchart for (A) the model development and validation dataset, and (B) the clinical feasibility testing dataset. NCCT, non-contrast CT; DWI, diffusion-
weighted imaging; EVT, endovascular thrombectomy; ACA, anterior cerebral artery; DICOM, Digital Imaging and Communications in Medicine; TICI, 
thrombolysis in cerebral infarction. Letters A through F denote participating centers; duplicate “F” entries indicate distinct lesion-positive and lesion-
negative datasets from the same center.
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2,398 ischemic stroke patients were randomly categorized into 2,214 
cases for training / internal validation cohort and 184 cases for 
external validation cohort with 274 non-stroke individuals.

A modified 3D U-Net was trained to detect hypoattenuated 
lesions on NCCT. Expert consensus masks served as ground truth, 
and any lesion <0.5 mL on either ground-truth or model’s prediction 
was excluded from the final performance analysis, based on the 
premise of NCCT’s limited spatial resolution. To enhance robustness, 
we employed an ensemble approach, combining four models trained 
with different Hounsfield Unit windowing presets. For inference, the 
model processes overlapping 3D patches from a patient’s NCCT scan, 
and the final segmentation is generated by averaging the pixel-wise 
probabilities from the ensemble outputs. A comprehensive description 
of the data preparation, model architecture, training parameters, and 
inference process is available in the Supplemental methods. Model 
performance was evaluated in the external validation cohort of 458 
subjects (184 ischemic stroke patients and 274 non-stroke individuals) 
without any overlap with the training cohort, yielding sensitivity, 
specificity, positive predictive value, negative predictive value, and 
volumetric agreement of Dice similarity coefficient.

Full details regarding patient selection, image preprocessing, 
model architecture, and evaluation metrics are available in 
Supplemental methods.

Automated ischemic lesion detection on 
NCCT: clinical feasibility testing

Patient selection
For the clinical feasibility assessment, we included 603 consecutive 

patients who underwent EVT for anterior-circulation LVO and 
achieved complete recanalization (Thrombolysis in Cerebral 
Infarction, TICI 3). These patients were retrospectively collected and 
analyzed from a multicenter prospective stroke registry of South 
Korea, the Clinical Research Collaboration for Stroke of Korea (Kim 
et al., 2015; Kim et al., 2024), and none of the subjects overlapped with 
those included for the model development, internal or external 
validation cohort. Patients were excluded if they had posterior or 
anterior cerebral artery occlusions, EVT or CT performed beyond 
24 h from onset, unavailable DICOM imaging, incomplete 
recanalization, pre-EVT TICI ≥2a, absence of NCCT before EVT, or 
missing TICI data (Figure 1B). All the patients had baseline NCCT 
and follow-up DWI scans. Individuals lacking key imaging data, had 
EVT beyond 24 h from onset, failing to achieve complete 
recanalization were excluded.

Imaging analysis
NCCT-based lesion volumes were derived via the automated 

lesion detection software model. The volume data was compared with 
those of (1) early post-EVT DWIs, (2) delayed post-EVT DWIs, and 
(3) baseline CTP before EVT. Early DWIs were defined as scans 
obtained within 24 h of NCCT, and delayed DWIs as those acquired 
between 24 and 168 h. Infarct volumes on DWIs were calculated using 
validated software (JLK-DWI, JLK Inc., Republic of Korea), with 
review by a vascular neurologist (W-S. R.) (Ryu et al., 2023). Baseline 
CTP-derived core volumes were obtained using a relative cerebral 
blood flow <30% threshold, using a validated software (JLK-CTP, JLK 
Inc., Republic of Korea) (Kim et  al., 2024; Kim et  al., 2024). 
Hemorrhagic transformation (HT) on follow-up NCCT, gradient echo 

MR, or susceptibility-weighted imaging was assessed based on the 
European Cooperative Acute Stroke Study II criteria (Hacke et al., 
1998). Radiomic features of the ischemic lesion were extracted from 
the NCCT lesions. Machine learning models were developed and 
validated with the radiomic features to predict HT and functional 
recovery. Detailed methodology is described in Supplemental methods.

Sensitivity analysis in patients with CT perfusion
A sensitivity analysis was conducted in a subgroup of patients who 

had both baseline NCCT and CTP imaging available. Ischemic core 
volumes were estimated separately from NCCT and CTP using the 
previously described automated methods. These volumes were then 
compared to early follow-up DWI infarct volumes using Spearman’s 
correlation. In addition, functional outcomes at 3 months were analyzed 
according to whether core volumes on NCCT or CTP exceeded 50 mL.

Statistical analysis

Baseline characteristics were compared using ANOVA or Kruskal-
Wallis test for continuous variables and chi-square test or Fisher exact 
test for categorical variables as appropriate. For external validation, 
volumetric similarity, Dice similarity coefficient, sensitivity, specificity, 
positive predictive value and negative predictive value of the final 
ensemble model were evaluated. Spearman’s correlation was used to 
compare among ischemic lesion volume on the baseline NCCT, 
ischemic core from CTP, and follow-up DWI, considering for skewed 
distribution of data.

Categorized ischemic core volumes on NCCT were analyzed for 
associations with 3-month outcomes and HT. The volume categories 
were pre-specified as <50 mL vs. ≥50 mL and a more granular 
stratification as 0–<5 mL, 5–<10 mL, 10–<20 mL, 20–<30 mL, 
30–<40 mL, 40–<50 mL, and ≥50-mL. A logistic regression model, 
adjusted for clinical covariates (age, sex, onset-to-NCCT scan time, 
NCCT-to-arterial access time, EVT procedure time, intravenous 
thrombolysis, previous stroke, coronary artery disease, hypertension, 
diabetes, hyperlipidemia, smoking, and atrial fibrillation) was used to 
evaluate the association between baseline NCCT core volume and 
clinical outcomes, with sensitivity analyses comparing volumes from 
ischemic lesion on NCCT and ischemic core from CTP. Detailed 
statistical analysis is presented in Supplemental methods.

Standard protocol approvals, registrations, 
and patient consents

Institutional Review Board at participating centers approved the 
retrospective analysis and waived additional informed consent 
requirements due to de-identified data (institutional review board 
approval # B-2102-667-106).

Results

Development and validation of automated 
acute ischemic lesion detection software

A total of 2,672 patients were included for training (n = 1,991), 
internal validation (n = 223), and external validation (n = 458) for 
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the development and validation of the automated ischemic lesion 
detection software (Figure 1A). The dataset included 2,398 patients 
with ischemic stroke and 274 patients (included in the external 
validation dataset for negative controls) who were suspected of 
stroke but had no stroke lesion on final MRI. The mean ages in the 
training, internal, and external validation groups were 69.0 ± 12.2, 
68.5 ± 12.1, and 64.1 ± 15.5 years, respectively (Supplementary  
Table S1). Within the external validation cohort, 89 patients (19.4%) 
had DWI lesions >0.5 mL, with a median annotated volume of 
5.76 mL (interquartile range, IQR: 1.96–20.0 mL). Expert volumetric 
correlations among the five raters ranged from 0.748 to 0.861, while 
the absolute volume differences between 2.20 and 6.09 mL 
(Supplementary Table S2).

For the external validation cohort of 458 individuals, the 
automated detection model demonstrated a sensitivity of 75.3% (95% 
CI: 70.9–79.9%), specificity of 79.1% (77.1–81.3%), a positive 
predictive value of 49.3% (95% CI: 45.4–53.2%), and a negative 
predictive value of 95.4% (95% CI: 94.3–96.7%). Notably, the software’s 
sensitivity improved with increasing lesion volumes, ranging from 
53.3% for volumes of 0.5–1 mL to 94.7% for volumes of >30 mL 
(Supplementary Table S3). The sensitivity was higher for cases with a 
single lesion (91.9%) than with multiple lesions (63.5%, 
Supplementary Table S4). The predicted lesion volumes demonstrated 
a robust correlation with the ground truth (Spearman’s ρ = 0.776, 
p < 0.001, Supplementary Figure S1).

Clinical feasibility testing of ischemic lesion 
detected from the automated software

A total of 603 patients were included to test the clinical feasibility of 
the software. In the cohort, the mean age was 71.5 (standard deviation 
12.8), and 56.4% were male (1B, Table 1). Median National Institutes of 
Health Stroke Scale score was 14 (IQR, 10–19). The median time from 
stroke onset to NCCT scan was 152 min (IQR 76–394).

Comparison of ischemic volume on 
non-contrast CT with diffusion weighted 
and CT perfusion imaging on the clinical 
feasibility testing dataset

In the feasibility cohort, the estimated ischemic core volume on 
NCCT demonstrated a significant correlation with infarct volume on 
follow-up DWI (Spearman’s ρ = 0.60, p < 0.001; Figure  2A). The 
ischemic core volume on CTP was also correlated with early DWI 
(ρ = 0.50, p < 0.001; Figure 2B). Overall, NCCT tended to underestimate 
early follow-up DWI lesion size, whereas CTP tended to overestimate it 
(Figure 2C).

In patients scanned within 180 min, both ischemic lesions on 
NCCT and CTP showed similar correlations with follow-up DWI 
(ρ = 0.50 vs. 0.51; p = 0.89; Supplementary Figure S2). Beyond 
180 min, however, NCCT demonstrated a stronger correlation with 
follow-up DWI than CTP (ρ = 0.74 vs. 0.55; p = 0.01; 
Supplementary Figure S3). Subgroup analyses by hourly increments 
further indicated that the correlation between NCCT lesion volumes 
and DWI infarct size increased over time, surpassing that of CTP after 
approximately 2 h (Supplementary Table S5). By contrast, when 
NCCT- and CTP- derived ischemic lesion volumes were compared 

TABLE 1  Characteristics of 603 subjects for clinical feasibility testing of 
the model.

Variables Values (total N = 603)

Age 71.5 ± 12.8

Male 340 (56.4%)

Initial NIHSS score 14 [10–19]

Pre-stroke functional independence 

(mRS ≤ 2)

546 (90.6%)

Hypertension 382 (63.4%)

Diabetes 164 (27.2%)

Hyperlipidemia 220 (36.5%)

Smoking 146 (24.2%)

Atrial fibrillation 327 (54.2%)

Stroke subtype

  Large artery atherosclerosis 96 (15.9%)

  Cardioembolism 350 (58.0%)

  Undetermined 118 (19.6%)

  Other determined 37 (6.1%)

  Intravenous thrombolysis 296 (49.1%)

Time indices

  Last known well to CT, min 152 (76–394)

  CT to puncture, min 71 (44–110)

  Procedure time, min 51 (33–75)

  CT to immediate DWI scan, min (n = 521) 99 (31–205)

  CT to delayed DWI scan, hr (n = 416) 82.1 (49.2–108.4)

Post-EVT infarct

 � Immediate post-EVT infarct volume 

(n = 521)

8.7 (2.1–33.1)

  Delayed post-EVT infarct volume (n = 416) 14.9 (5.3–59.8)

Vendor

  GE 47 (7.8%)

  Phillips 253 (42.0%)

  SIEMENS 280 (46.4%)

  Canon 22 (3.7%)

  Hitachi 1 (0.2%)

Kvp

  90 1 (0.2%)

  100 96 (15.9%)

  110 13 (2.2%)

  120 469 (77.8%)

  140 24 (4.0%)

Slice thickness

  ≤4 mm 112 (18.6%)

  4–<5 mm 4 (0.7%)

  5 mm 487 (80.8%)

Values are presented in means ± standard deviations, medians [interquartile ranges], or 
frequencies (percentages).
NIHSS, National Institutes of Health Stroke Scale; mRS, modified Rankin Scale; ICA, 
internal carotid artery; MCA, middle cerebral artery; ACA, anterior cerebral artery; PCA, 
posterior cerebral artery; CTP, computed tomography perfusion; EVT, endovascular 
treatment; TICI, Thrombolysis in cerebral infarction; DWI, diffusion-weighted image.
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against late follow-up DWI infarct volume, CTP–based ischemic core 
demonstrated a stronger correlation than the NCCT 
(Supplementary Figure S4).

Outcome prediction with ischemic volume 
on non-contrast CT

Only 17.3% of patients with ischemic lesions >50 mL on NCCT 
achieved favorable outcomes, whereas 54.2% of those with lesions 
≤50 mL showed favorable outcomes (Figure 3A). Of the patients 
with ischemic core lesions >50 mL on CTP, 35.7% showed a 
favorable outcome (Figure 3B). In the subgroup of patients with 
NCCT lesion volumes between 0 and 5 mL, more than 60% attained 
favorable outcomes (Supplementary Figure S5). A similar trend was 
observed for volumes up to 40 mL, beyond which the proportion of 
favorable outcomes declined considerably: only 20% of patients 
with lesions >40 mL showed favorable recovery. Multivariable 
analyses also demonstrated a stepwise relationship between larger 
NCCT lesion volumes and unfavorable outcomes (Supplementary  
Table S6), consistent with restricted spline curves (Supplementary  
Figure S6).

HT occurred in 66.0% of patients with NCCT lesion volumes 
>50 mL, versus 46.3% for those with ≤50 mL (AUC, 0.805, p = 0.04; 
Supplementary Figure S7A). Lesions exceeding 5 mL were also linked 
with a higher risk of HT than lesions of 0–5 mL 
(Supplementary Figure S7B). Parenchymal hemorrhage occurred in 
40% of patients with lesions >40 mL, a significantly greater proportion 
than in those with smaller lesions (p < 0.001). Representative cases are 
shown in Figure 4.

Radiomics features automatically extracted 
from the ischemic lesions

First-order radiomics features were extracted from the 
automatically segmented NCCT ischemic lesions. Energy measures 
showed increased upper range values and spread in groups with larger 
lesion volumes (Supplementary Figure S8). In those with larger lesion 

sizes, the maximum Hounsfield unit values were generally elevated, 
while the minimum Hounsfield unit values were shifted toward lower 
levels. Median Hounsfield unit values were also higher in larger 
lesions, accompanied by higher values in range and root mean 
squared. No clear patterns differentiated patients according to the time 
from symptom onset.

Outcome prediction with automatically 
extracted radiomics features

Among the extracted radiomics features, total energy provided the 
strongest predictive value for both favorable outcome and HT, with AUC 
of 0.694 (95% CI 0.649–0.737) and 0.812 (0.755–0.864), respectively. 
Total energy, energy, maximum, and range emerged as the most 
influential features in predicting both outcomes, performing comparably 
with the ischemic lesion volume on NCCT (Supplementary Table S7; 
Supplementary Figure S9). For predicting favorable functional recovery, 
a logistic regression model incorporating only clinical features worked 
the best than other models. Its performance was significantly better than 
the radiomics-based model (AUC of 0.782 vs. 0.591, p < 0.001). For 
predicting HT, a random forest model incorporating radiomics features 
performed the best and significantly outperformed the clinical model 
(AUC of 0.833 vs. 0.626, p = 0.003; Supplementary Table S8; 
Supplementary Figure S10).

Sensitivity analysis of the patients with CT 
perfusion

In a subgroup of 269 patients who had both NCCT and CTP at 
baseline, the Spearman’s ρ between ischemic core volume and early 
follow-up DWI infarct volume was 0.59 (95% CI, 0.49–0.67) for 
NCCT and 0.66 (95% CI, 0.58–0.73) for CTP, with no significant 
difference between them (p = 0.23; Supplementary Figure S11). 
Regarding functional recovery, however, only 23.8% (5 out of 21) of 
patients with NCCT-derived core volumes >50 mL achieved favorable 
outcomes, compared to 42.0% (21 out of 50) of those with CTP-derived 
cores >50 mL (Supplementary Figure S12).

FIGURE 2

Scatter plots with log-scale between (A) estimated ischemic core non-contrast CT and early follow-up diffusion-weighted imaging infarct volume, 
(B) ischemic core on CT perfusion and early follow-up diffusion-weighted imaging infarct volume, and (C) estimated ischemic core non-contrast CT 
and ischemic core on CT perfusion. NCCT, non-contrast CT; DWI, diffusion-weighted imaging; CTP, CT perfusion.
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Discussion

In this study, the authors (1) developed and extensively validated 
an automated model for detecting ischemic lesions on NCCT and (2) 
evaluated its clinical feasibility and the role of radiomics features on 
separate LVO patients who had complete recanalization through 
EVT. The automated model achieved 75.3% sensitivity and 79.1% 
specificity for ischemic lesion detection in an external validation set. 
In the feasibility cohort, NCCT lesion volumes showed a strong 
correlation with early follow-up DWI volumes and were inversely 
associated with favorable outcomes, outperforming ischemic core 
volume derived from CTP. Notably, radiomics-based models 
substantially improved the prediction of HT compared to clinical 
variables alone.

Although the NCCT is the most prevalent imaging modality for 
acute stroke care, its limited tissue contrast has historically constrained 
its sensitivity for early ischemic changes on visual evaluation 
(Lansberg et al., 2000; Gao et al., 2017). Our findings indicate that 
NCCT nevertheless harbors valuable prognostic information. 

Specifically, when lesions exceeded 50 mL on NCCT, only 17% of 
patients achieved good recovery after successful recanalization, 
whereas 36% of those with large infarcts on CTP. This observation 
suggests that NCCT may capture more definitive and irreversible 
tissue damage. Given the impracticality of manually quantifying lesion 
volume, an automated tool that rapidly quantifies ischemic lesion on 
NCCT could be highly advantageous.

Radiomics features extracted from NCCT provide additional 
microstructural insights that may not be  fully captured by 
conventional clinical assessments. In our study, radiomics-based 
models outperformed clinical-variable models in predicting HT, albeit 
they were less effective in prognosticating favorable functional 
recoveries. This discrepancy highlights that radiomics features capture 
distinct information from the ischemic lesions especially those 
predisposing to HT. These findings align with previous studies 
showing that NCCT-based radiomics outperforms clinical indicators 
alone for predicting HT (Chen et al., 2025; Heo et al., 2024).

It is well established that DWI can detect smaller or earlier stage 
infarct more reliably than NCCT (Mitomi et al., 2014; Kim and Roh, 

FIGURE 3

3-month modified Rankin Scale score stratified by estimated ischemic core on (A) non-contrast CT or (B) CT perfusion, ≥ 50 mL versus < 50 mL. 
NCCT, non-contrast CT; CTP, CT perfusion; rCBF, regional cerebral blood flow.

https://doi.org/10.3389/fnins.2025.1643479
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Heo et al.� 10.3389/fnins.2025.1643479

Frontiers in Neuroscience 07 frontiersin.org

2022). In our study, NCCT underestimated infarct volume, especially 
for small or multifocal lesions, although the correlation between 
NCCT lesion volume and DWI volume improved with increasing 
lesion size and time from onset. Notably, NCCT’s correlation with 
DWI infarct volume exceeded that of CTP after 2 h from symptom 
onset, but it was lower during the first 2 h, consistent with the dynamic 
and evolving nature of early ischemic changes. Sensitivity was also 
markedly higher in single-lesion cases than in those with multiple 
scattered lesions, reflecting the inherent challenges of visually 
detecting subtle or scattered ischemic lesions on NCCT.

The methodological rigor of our study represents a key strength. 
Ground-truth lesion masks were generated from a large, multicenter 
dataset of DWI-matched NCCT scans, and five experts independently 
annotated these images while referencing concomitant DWI and 
apparent diffusion coefficient sequences. By confining the interval 
between NCCT and DWI to a narrow window, we minimized ischemic 
lesion evolution and further improved annotation reliability. The use of 

consensus masks and volumetric metrics mitigated interobserver 
variability, facilitating a robust framework for model development and 
validation (Chen et al., 2025). Furthermore, our findings substantiate 
prior reports of “ghost cores” on CTP, whereas NCCT more consistently 
reflected consolidated infarction (Kim et al., 2024; Ospel et al., 2024). 
Our results imply that NCCT can offer reliable tissue-level insights, 
which, if enhanced through automated lesion detection and combined 
with vascular imaging, may enable more accurate individualized 
prognostication and treatment decision-making.

In clinical workflows, this model may aid clinicians in early triage 
decisions by rapidly identifying patients with moderate to large infarcts 
on NCCT. Integration into radiology platforms could support real-time 
estimation of infarct burden, guiding treatment decisions such as EVT 
candidacy or transfer planning. While commercial AI tools excel at 
workflow optimization via triage, our model serves a complementary 
role by providing deep, tissue-level prognostication from the initial 
NCCT. It delivers a quantitative ischemic volume that predicts functional 

FIGURE 4

Representative cases showing (A) a large infarct core (79.4 mL) identified on non-contrast CT and (B) subsequently developed parenchymal hematoma 
type II hemorrhagic transformation while in (C), a small infarct core (1.4 mL) did not result in hemorrhagic transformation (D) on delayed magnetic 
resonance imaging.
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outcome, while its integrated radiomic analysis significantly improves 
the prediction of hemorrhagic transformation over clinical models alone 
(AUC, 0.833 vs. 0.626). This capacity to extract advanced prognostic 
information from the most basic imaging modality enhances 
individualized decision-making, particularly in settings where advanced 
imaging is limited.

Our results should be interpreted with caution, and few limitations 
need to be kept in mind. Although validated in multiple cohorts, the 
study primarily included Korean patients, potentially limiting 
generalizability. Due to the limitations of NCCT, predictions for very 
small lesions may be imperfect, as reflected in the imperfect correlation 
among experts. Further, the clinical feasibility cohort was restricted to 
those with complete recanalization, which may not reflect outcomes in 
patients with partial or failed recanalization. Lastly, DWI volumes 
beyond the hyperacute window can be  influenced by evolving 
infarct dynamics.

In conclusion, this study presents a robust automated NCCT 
ischemic lesion detection model from a large, multicenter, expert-
annotated dataset. Our findings illustrate that NCCT-based lesion 
volumes and radiomics features carry substantial prognostic weight 
for functional recoveries and HT. By providing rapid, quantitative, and 
clinically relevant information, the automated detection software has 
the potential to improve acute stroke diagnosis and treatment 
decision-making, particularly in resource-limited environments 
(Singh et al., 2024).
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