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Introduction: Audiovisual (AV) perception is a fundamental modality for environmental 
cognition and social communication, involving complex, non-linear multisensory 
processing of large-scale neuronal activity modulated by attention. However, 
precise characterization of the underlying AV processing dynamics remains elusive.

Methods: We designed an AV semantic discrimination task to acquire 
electroencephalogram (EEG) data under attended and unattended conditions. 
To temporally resolve the neural processing stages, we developed an EEG 
microstate-based analysis method. This involved segmenting the EEG into 
functional sub-stages by applying hierarchical clustering to global field 
power-peak topographic maps. The optimal number of microstate classes 
was determined using the Krzanowski-Lai criterion and Global Explained 
Variance evaluation. We analyzed filtered EEG data across frequency bands to 
quantify microstate attributes (e.g., duration, occurrence, coverage, transition 
probabilities), deriving comprehensive time-frequency features. These features 
were then used to classify processing states with multiple machine learning 
models.

Results: Distinct, temporally continuous microstate sequences were identified 
characterizing attended versus unattended AV processing. The analysis of 
microstate attributes yielded time-frequency features that achieved high 
classification accuracy: 97.8% for distinguishing attended vs. unattended states 
and 98.6% for discriminating unimodal (auditory or visual) versus multimodal 
(AV) processing across the employed machine learning models.

Discussion: Our EEG microstate-based method effectively characterizes 
the spatio-temporal dynamics of AV processing. Furthermore, it provides 
neurophysiologically interpretable explanations for the highly accurate 
classification outcomes, offering significant insights into the neural mechanisms 
underlying attended and unattended multisensory integration.
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1 Introduction

One of the fundamental scientific issues in the new era of artificial 
intelligence is the brain-like cognition of multisensory data, among 
which the machine understanding of images and sounds is a crucial 
component (Khaleghi et  al., 2013). Although the information 
processing capabilities of computers have improved rapidly, their 
structure and methods of information processing differ significantly 
from those of the human brain, resulting in significant differences in 
cognitive abilities compared to the human brain (Khaleghi et al., 2013).

Vision and hearing are the primary means through which humans 
acquire external information. Studying the neural mechanisms 
underlying human audiovisual (AV) information processing and 
analyzing the associated brain activity characteristics can provide a 
theoretical foundation for developing advanced brain-inspired 
cognitive algorithms. Such algorithms, designed based on neural 
principles, hold the potential to significantly enhance computers’ 
perception and understanding of the real world. However, research on 
task-state EEG microstates, especially in AV integration, remains 
preliminary, and their spatiotemporal dynamics have not yet been 
systematically elucidated. Current studies predominantly employ 
resting-state microstate classification methods to analyze task-state 
data – an approach that may lead to feature extraction biases, as task-
state EEG involves the coordinated activation of specific neural 
circuits, whose microstate characteristics may differ significantly from 
resting-state patterns (Liu et al., 2020; D’Croz-Baron et al., 2021). 
Further, the microstate sequences involved in AV integration may 
contain superimposed elements such as attentional modulation and 
multisensory fusion, which existing methods struggle to interpret 
effectively. This limitation in feature interpretability prevents 
researchers from precisely mapping specific microstates to different 
processing stages of AV integration, thereby hindering research 
progress in parsing multisensory information integration mechanisms 
at the level of neural oscillations (Kaiser et al., 2021).

When humans perceive the external environment, information 
received simultaneously through two sensory channels from the same 
spatial location is often perceived as originating from the same object 
or event, making that object easier to detect compared to unimodal 
sensory input (Starke et al., 2017; Li et al., 2017). The brain effectively 
merges information from AV sensory channels into a unified, 
coherent, and robust perceptual process, known as AV integration 
(Starke et al., 2017; Keil and Senkowski, 2018). Researchers utilize 
EEG technology, which offers high temporal resolution and 
non-invasive advantages, to study the neural processes underlying the 
processing of AV information by the brain. By analyzing the timing of 
event-related potentials (ERPs) induced by AV stimuli, the temporal 
progression of the processing of such information by the brain can 
be described. Currently, the AV integration process is conventionally 
partitioned into early perceptual and late cognitive processing stages. 
For example, ERP components observed around 40 ms post-stimulus 
are classified as early perceptual processing (Molholm et al., 2002), 
whereas those detected at 420–580 ms are associated with late 
cognitive processing (Molholm et al., 2002). However, many ERP 
components identified in studies cannot be simply categorized into 
either of these two stages based on timing alone. For instance, Talsma 
and Woldorff, using grating patterns and pure tone pulses as AV 
stimuli, identified ERP components occurring around 190 ms, 250 ms, 
and 350–450 ms after stimulus presentation (Talsma and Woldorff, 

2005). Since the division between early and late stages is relative and 
lacks a clear boundary, these ERP components cannot be directly 
classified into either stage (Botelho et  al., 2023; Sala et  al., 2025). 
Recent studies emphasize that ERP temporal windows are not strictly 
fixed but dynamically modulated by task demands and cognitive 
contexts, leading to overlapping or ambiguous component 
classifications (Botelho et al., 2023).

The EEG studies reveal that, during both early and late stages, the 
topographic neural maps of AV information processing continuously 
evolve over time. These topographic maps represent the distribution 
of scalp electric fields, which are closely related to the processing of 
cognitive tasks by the brain. In other words, the information 
processing by the brain can be described as a series of alternating, 
finite types of scalp electric field distributions, known as microstates 
(Liu et al., 2020; Schiller et al., 2020; Ricci et al., 2020). Microstates are 
transient representations of the global functional states of the brain, 
associated with large-scale neural synchronization, and their 
characteristics reflect the neural activity patterns underlying the 
processing of current cognitive tasks by the brain (Liu et al., 2020). 
Microstates are defined by the topological structure of the multi-
channel electrode recordings from the scalp, remaining stable for a 
period before rapidly transitioning to other microstates (Schiller et al., 
2020; Ricci et al., 2020).

Combining EEG studies on AV information processing, the 
electrical activity of the brain during such processing can also 
be described as a sequence of alternating microstates. Microstates with 
identical characteristics represent the same brain activity state during 
AV integration. Therefore, the same type of microstate can represent 
a sub-stage of AV processing, allowing the activity of the brain during 
AV information processing to be divided into multiple distinct stages. 
However, current EEG microstate research primarily focuses on the 
resting state of the brain, where the study participants receive no 
external stimuli or tasks and remain in a relaxed state with eyes open 
or closed (Michel et al., 2024). Resting-state EEG microstate studies 
can explore the differences in brain activity between neurological 
patients and healthy individuals, providing clinical insights into the 
neural mechanisms of diseases. Resting-state EEG microstates are 
generally considered to consist of four types, each representing 
different cognitive states of the brain (Koenig and Lehmann, 1996). 
Unlike resting-state EEG microstates, the microstates associated with 
different cognitive tasks are inherently different. Therefore, it is 
inappropriate to simply apply the four canonical resting-state 
microstate classes to define task-state EEG activity during AV 
information processing. Consequently, determining the number of 
EEG microstates during the processing of AV information tasks by the 
brain remains a challenge.

Further, the processing of AV information by the brain is an 
extremely complex process, constantly influenced by attention 
mechanisms (Starke et al., 2017; Li et al., 2017). At every moment, the 
brain receives a vast amount of information from the surrounding 
environment through different sensory channels. Attention 
mechanisms enable the brain to continuously make selections from 
this overwhelming influx of information, influencing the processing 
of cognitive tasks. ERP studies by Talsma and Woldorff (2005) 
demonstrate that attention plays a crucial role in AV processing, 
modulating the processing of AV information as early as approximately 
80 ms after stimulus presentation. Tang et  al. (2016) proposed an 
interactive model of attention and AV integration, suggesting that 
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attention can effectively enhance AV integration. Other studies have 
argued that even in the absence of attention mechanisms, incoming 
information is still processed by the brain, but the processing 
mechanisms differ from those when attention is engaged (Xi et al., 
2020a,b; Fairhall and Macaluso, 2009; Talsma and Woldorff, 2005; Li 
et al., 2010).

The influence of attention on AV information processing is 
complex, and to date, distinguishing between brain activities under 
attended and unattended conditions remains challenging. Since EEG 
signals record the electrical activity generated by large-scale 
oscillations of neuronal populations in the brain, they contain not only 
temporal information but also rich frequency-domain features. 
Similar challenges in decoding perceptive neural responses are 
observed in visual EEG analysis. For instance (Rehman et al., 2024), 
highlighted that the non-stationarity of EEG signals and high noise 
levels severely limit classification accuracy in rapid-event visual tasks, 
achieving only 33.17% accuracy for 40 object classes despite advanced 
deep learning fusion techniques. Neural oscillations in different 
frequency bands are closely related to the cognitive states of the brain, 
which carry distinct “meanings” and “functions.” (Keil and Senkowski, 
2018; Ren et al., 2020; Wang et al., 2018). For example, the oscillatory 
responses in the delta, theta, alpha, and beta bands are involved in 
sensory processing and play roles in different stages and regions (Keil 
and Senkowski, 2018). Delta band oscillations are associated with 
attentional-selective and processing-attended task-relevant events 
(Clayton et al., 2015). The theta band is predominantly implicated in 
cognitive control and short-term memory in AV integration (Keil and 
Senkowski, 2018; Ren et al., 2020) and plays an important role in 
bimodal AV stimulus processing (Ren et al., 2020). The alpha band is 

primarily associated with sensory-information maintenance, cognitive 
control, and distractor suppression (Bonnefond and Jensen, 2012), 
while the beta band activity is associated with decision-making and 
motor responses for a current task (Wang et al., 2018). Given the 
proposition of Kopell et al. (2000) that particular frequency bands of 
cortical oscillations differentially participate in various cognitive 
functions, we  hypothesized that EEG microstates of different 
frequency bands are associated with various cognitive functions in the 
AV processing underlying attention modulation.

In this study, we designed a semantic discrimination experiment 
involving AV stimuli to acquire EEG data from the brain, processing 
AV information under both attended (where participants actively 
directed attention to stimuli) and unattended (where participants 
ignored stimuli) conditions (Figure 1). Attended processing engages 
top-down cognitive control for enhanced sensory integration, while 
unattended processing relies on automatic bottom-up mechanisms 
with reduced contextual modulation (Tang et  al., 2016; Xi et  al., 
2020a,b). After preprocessing, we performed hierarchical clustering 
on the global field power (GFP) peak topographic maps of the EEG 
data and proposed a Krzanowski-Lai Global Explained Variance (KL_
GEV)-based evaluation as an optimal clustering evaluation method. 
The KL_GEV method integrates the advantages of the KL criterion 
and GEV, serving as an effective approach for selecting the optimal 
cluster number in task-state EEG microstate analysis. Its core principle 
involves identifying the point of diminishing marginal returns in GEV 
improvement as the cluster number increases to determine the 
optimal solution. We  ultimately obtained microstates for AV 
information processing under both attended and unattended 
conditions. Since the same type of microstate represents the same 

FIGURE 1

Schematic of the experimental design in left sessions and right sessions.
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brain activity state, we used the results of microstate clustering to 
divide the AV information processing into six sub-stages under 
attended conditions and four sub-stages under unattended conditions. 
We also calculated and analyzed the properties of these microstates 
(Duration, Occurrence, Coverage, and Transition Probability) for 
attended and unattended conditions, exploring the modulation 
mechanism of attention to AV processing. Additionally, by filtering 
the EEG data, we computed the microstates and their properties for 
AV information processing in the delta, theta, alpha, and beta 
frequency bands, ultimately obtaining time-frequency domain 
features for AV information processing under both conditions. 
We  validated these features using multiple classifiers, achieving a 
classification accuracy of up to 97.8% in distinguishing between 
attended and unattended AV processing. Using the same method, 
we extracted time-frequency features for AV brain activities separately 
and classified unimodal visual, unimodal auditory, and AV brain 
activities, achieving an accuracy of 98.6%. These results demonstrate 
that the time-frequency domain features obtained through this 
method effectively characterize AV information processing activity of 
the brain. The main contributions of this study are as follows:

 (1) We have proposed a KL_GEV-based evaluation method for 
determining the optimal number of clusters in EEG microstates 
during AV information processing. By integrating the KL 
criterion with the GEV metric, this method achieves accurate 
discrimination of the optimal number of microstate clusters for 
AV EEG data. Compared to traditional optimal clustering 
evaluation methods, this approach demonstrates superior 
performance in terms of the Calinski-Harabasz (CH) index 
and silhouette coefficient, providing a reliable quantitative basis 
for clustering microstates in AV information processing.

 (2) We have proposed a method for dividing sub-stages of AV 
information processing based on EEG microstates. By 
leveraging the clustering results of AV microstates, this method 
uses the time periods of the same microstate category to 
represent a sub-stage of AV information processing. 
Consequently, the AV information processing under attended 
conditions is divided into six sub-stages, while under 
unattended conditions, it is divided into four sub-stages. This 
microstate-based division of EEG sub-stages takes into account 
changes in the cognitive states of the brain, providing a higher-
resolution temporal window and offering a new perspective for 
a deeper understanding of the mechanisms employed by the 
brain in processing AV information.

 (3) We have proposed a method for calculating time-frequency 
domain features of brain activity during AV information 
processing by computing microstate properties across multiple 
frequency bands. We  calculated the duration, occurrence 
frequency, coverage, and transition probability of microstates 
under both attended and unattended conditions for unfiltered 
EEG data, as well as delta, theta, alpha, and beta frequency 
bands. By comparing and analyzing the differences in these 
microstate properties under attended and unattended 
conditions, we explored the modulation role of attention in AV 
information processing. Using these microstate properties as 
time-frequency domain features to characterize brain activity 
during AV information processing, we  validated their 
effectiveness through classification experiments on multiple 

machine learning models, including support vector machine 
(SVM) and Random Forest models, achieving high 
classification accuracy. The method for calculating time-
frequency domain features in our study effectively characterizes 
brain activity during AV information processing and provides 
interpretability for the classification results of machine learning 
models from the perspective of neural mechanisms of 
information processing.

2 Materials and methods

2.1 Participants

This study recruited healthy participants aged between 16 and 
30 years from Changchun University of Science and Technology, 
China. The study protocol was reviewed and approved by the Ethics 
Committee of Changchun University of Science and Technology 
(Ethical Approval Number: 201705024). The following inclusion 
criteria were employed for this study: normal vision and hearing, or 
corrected to normal standards (e.g., wearing glasses or hearing aids); 
at least a middle school level of education; habitual use of the right 
hand for most daily tasks; availability of time and willingness to 
comply with the study requirements. The exclusion criteria were as 
follows: individuals under guardianship or residing in care institutions; 
those taking psychiatric medications or with a history of mental 
illness; individuals with brain diseases or conditions affecting normal 
brain function; those who have previously participated in 
similar experiments.

A total of 23 eligible healthy participants (n = 23; five men and 17 
women; age range: 16–26 years, mean age 22 years; education range: 
14–18 years, mean education 15.57 ± 1.56 years) were selected to 
participate in the experimental study. All participants were right-
handed, had normal or corrected-to-normal vision and hearing, and 
completed the experiments without withdrawal. All eligible 
participants were invited to the International Joint Research Center 
for Brain Information and Intelligent Science in Jilin Province to 
understand the experimental procedures and sign a written informed 
consent form for the experiments.

2.2 Stimuli and experiments

The experiments were conducted in a dimly lit, soundproof room 
shielded from electronic devices. Participants sat in a comfortable 
chair with their head position fixed using a chin rest. After receiving 
instructions from the experimenter about the task, participants 
completed several practice trials. Once each participant had achieved 
an accuracy rate exceeding 80%, they were considered to have 
understood the task. During the formal experiment, each participant 
performed eight experimental blocks, with each block consisting of 20 
auditory (A) stimuli, 20 visual (V) stimuli, and 20 AV stimuli. Among 
these, four blocks required attending to the left while ignoring the 
right (termed left-attended blocks), and the remaining four blocks 
required attending to the right while ignoring the left (termed right-
attended blocks). The left-attended and right-attended blocks were 
conducted in alternated fashion, with participants taking five-minute 
breaks between each pair of blocks. V stimuli were presented to the 
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left or right of the central fixation point on the display monitor, 
approximately 6° from the fixation point, with a presentation duration 
of 300 ms. The distance between the central fixation point and the 
participant’s eyes was 80 cm. A stimuli were delivered through 
speakers positioned on both sides of the display, lasting 400 ms. For 
AV stimuli, auditory and visual components started simultaneously 
with spatial congruency—that is, both presented either on the left or 
right side, lasting 400 ms. The inter-stimulus interval varied randomly 
between 750 ms and 1,250 ms (Figure 1).

In the stimulus presentation, stimuli containing images and/or 
sounds of living objects were considered standard stimuli, while 
stimuli containing images and/or sounds of non-living objects were 
considered target stimuli. The frequency of A, V, and AV target 
stimuli was 20%. Each type of stimulus [2 (standard and target) × 3 
(A, V, and AV)] appeared in a pseudo-random sequence with equal 
probability. The stimuli were presented on either the left or right 
side of the participant with equal probability, following a pseudo-
random sequence. The purpose of using a pseudo-random 
sequence to control the presentation order of A, V, and AV stimuli 
is to prevent participants from anticipating stimuli due to 
perceivable patterns. If a fully random sequence were used, the 
same type of stimulus might appear consecutively multiple times. 
Therefore, we  predetermined the stimulus order to ensure the 
overall sequence appears irregular to participants. This design 
prevents participant anticipation from introducing bias while 
maintaining experimental randomness. Participants were 
instructed to minimize blinking and body movements to avoid 
artifacts caused by head motion. They were asked to focus their 
gaze on the fixation point at the center of the screen, implicitly 
attending to the stimuli presented on one side while ignoring those 
on the other side. When hearing and/or seeing a stimulus of a 
living object, participants were required to press the left button 
quickly and accurately; when hearing and/or seeing a stimulus of a 
non-living object, they were to press the right button quickly 
and accurately.

Each participant was required to complete eight blocks of 
experiments. Among these, four blocks required attention to the left 
side while ignoring the right side, referred to as the left-side blocks; 
the remaining four blocks required attention to the right side while 
ignoring the left side, referred to as the right-side blocks. The left-
side and right-side blocks were alternated, and participants were 
given a 5-min rest between each pair of experimental blocks.

2.3 EEG data acquisition and preprocessing

In this study, the SynAmps 2 system was used to record EEG 
signals through a 64-channel electrode cap following the international 
10–20 system. The AFz electrode served as the ground, and the left 
mastoid was used as the reference electrode. Horizontal eye 
movements were recorded via an electrooculogram (EOG) and 
employing a pair of electrodes placed on the outer sides of the left and 
right eyes. Vertical eye movements and blinks were recorded by a pair 
of electrodes placed approximately 1 cm above and below the left eye. 
The EEG and EOG signals were amplified and filtered using an analog 
bandpass filter with a range of 0.01 to 100 Hz. During data acquisition, 
the impedance was maintained below 5 kΩ. The raw signals were 
digitized at a sampling rate of 1,000 Hz and stored for offline analysis.

EEGLAB software was used for preprocessing and analyzing the 
EEG data. The EEG was digitally filtered offline with a 0–30 Hz 
band-pass. Eye movement artifacts were corrected using 
independent component analysis. Independent components 
corresponding to artifact sources and brain activity were separated 
through a manual procedure. The EEG data were manually screened 
for residual artifacts and then recomputed to a mean reference. 
Subsequently, the individual EEG data related to AV stimuli were 
segmented into epochs, using a time window from −200 ms to 
+800 ms relative to the AV stimulus onset times. This epoch 
duration was selected to capture both pre-stimulus baseline activity 
(−200 to 0 ms) and post-stimulus neural responses spanning early 
sensory processing (e.g., P1/N1 components within 40–200 ms) to 
late cognitive stages (e.g., N400/P3 components up to 420–800 ms). 
A baseline correction was performed using the time window from 
−200 ms to 0 ms before stimulus onset. Trials with voltage 
exceeding ±100 μV at any electrode location (excluding EOG 
electrodes) were excluded from the analysis. Responses related to 
false alarms were also removed.

2.4 Division of sub-stages in AV information 
processing based on EEG microstates

We constructed microstates for the processing of AV information 
by the brain under both attended and unattended conditions based on 
raw EEG data. The sub-stages of AV information processing were then 
divided according to the microstate clustering results. The process of 
dividing sub-stages in AV information processing based on EEG 
microstates is illustrated in Figure 2.

First, the global field power (GFP) of the AV EEG data was 
calculated. The topographic maps at the local peak points of the GFP 
were computed based on the potential values of each electrode. These 
topographic maps were then subjected to hierarchical clustering to 
select the optimal number of microstate clusters. Finally, the AV 
processing stages were divided into multiple sub-stages based on the 
microstate clustering results.

2.4.1 Analysis methods for AV EEG microstates
Global field power, as a reference-independent measurement 

metric, was used to evaluate the overall electrical activity of brain 
topographic maps. Since local maxima of the GFP curve typically 
correspond to stable topological configurations and high signal-to-
noise ratios, this study first calculated GFP values at each time point 
within 0–800 ms and selected scalp potential maps corresponding to 
local GFP peaks as the initial clustering input prior to cluster analysis. 
GFP was derived by computing the sum of squared differences 
between all electrode potentials and the mean potential, with its value 
reflecting the spatial consistency of EEG signals. Based on AV EEG 
data under different frequency band conditions, GFP calculation 
provided highly representative initial topographic maps for 
subsequent clustering.

Subsequently, a Topographical Atomize and Agglomerate 
Hierarchical Clustering-based microstate analysis was performed. 
First, local GFP peak points were identified, with their potential 
distributions treated as candidate microstates. Initially, the potential 
map of each local peak was considered an independent cluster. Cluster 
similarity was measured using Pearson correlation coefficients, and 

https://doi.org/10.3389/fnins.2025.1643554
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Xi et al. 10.3389/fnins.2025.1643554

Frontiers in Neuroscience 06 frontiersin.org

the most similar clusters were iteratively merged to form microstate 
templates. This bottom-up process gradually reduced the number of 
clusters, ultimately generating microstate templates for each candidate 
cluster number.

The selection of the optimal cluster number requires balancing 
model complexity and interpretability. Common evaluation 
methods include GEV that maximizes the cumulative GEV to 
ensure selected clusters sufficiently explain spatial features of EEG 

FIGURE 2

Flowchart of sub-stage division for AV information processing based on EEG microstates.
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signals; cross-validation (CV) which partitions data into training/
validation sets to assess model stability across cluster numbers, 
selecting the number with minimal generalization error; and KL 
criterion which identifies inflection points where the rate of change 
in cluster compactness (e.g., within-cluster similarity) 
significantly declines.

After determining the optimal cluster number, microstate 
backfitting and refinement were conducted. During backfitting, the 
potential map of each time point was matched to all microstate 
templates via Pearson correlation coefficients, assigning it to the most 
similar class to form continuous microstate time series. This process 
was iterated until assignments stabilized. Short-duration noise 
segments were removed using a window smoothing algorithm, 
yielding stable microstate sequences reflecting AV processing 
dynamics. This methodology enabled efficient spatiotemporal 
modeling and analysis of EEG signals. This workflow is illustrated in 
Figure 3.

2.4.2 Optimal cluster number selection method 
based on KL_GEV

In this study, we proposed a method for evaluating the clustering 
results of task-state EEG microstates. The KL_GEV evaluation metric was 
applied to AV EEG signals, and the microstate classifications selected 

under the KL_GEV, KL, and CV evaluation metrics were compared based 
on the variance ratio criterion (CH Index) and the silhouette coefficient.

The calculation principle of GEV is based on the idea of 
decomposing the total variance into the portion explained by the 
model and the portion unexplained by the model. By comparing the 
sizes of these two portions, the proportion of total variance explained 
by the model can be determined. Specifically, the formula is as follows:
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Where T  is the total number of time points, and ( )y t  is the 
observed value vector at time point t .

KL-GEV is an improved method based on the KL criterion. It 
determines the optimal number of microstate classifications by 
analyzing the rate of change of GEV as the number of classifications 
increases. Its core idea is to capture the “point of diminishing marginal 
returns” in GEV growth, i.e., the inflection point where the improvement 
in model-explained variance significantly weakens with the addition of 
more classifications. Its calculation formula is as follows:

 += − 1i i idiff GEV GEV

FIGURE 3

Flowchart of time-frequency domain feature calculation for AV EEG based on multi-band microstates.
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The larger the GEVKL  value, the smaller the impact of adding one 
more microstate to the growth of GEV. Therefore, the optimal number 
of microstate classifications can be considered as the point where 

GEVKL  is maximized.
The KL-GEV microstate clustering number selection criterion was 

compared with CV and KL using evaluation metrics such as the CH 
index and the silhouette coefficient.

The CH index essentially represents the ratio of between-cluster 
distance to within-cluster distance, and its overall calculation process is 
similar to that of variance, hence it is also referred to as the variance 
ratio criterion.

The silhouette coefficient measures the separation between clusters 
by comparing the similarity of each object to its own cluster with its 
similarity to objects in other clusters. First, the mean distance (within-
cluster distance) between sample point and all other sample points in its 
cluster is calculated, and then the ratio of this distance to the mean 
distance (between-cluster distance) between the sample point and all 
sample points in the nearest other cluster is computed. The silhouette 
coefficient ranges from −1 to 1, with higher values indicating better 
clustering performance.

2.5 Features calculation of AV processing 
modulated by attention mechanisms

As shown in Figure 3, we calculated the AV processing microstates 
under both attended and unattended conditions, both before frequency 
division and within the delta, theta, alpha, and beta frequency bands. By 
comparing and analyzing the differences in microstates between 
attended and unattended conditions, we aimed to explore the regulatory 
role of attention on brain activity during AV processing. Additionally, the 
microstate properties in each frequency band were used as time-
frequency domain features to characterize AV processing. Machine 
learning algorithms were employed to classify attended and unattended 
AV processing, further validating the regulatory mechanisms of attention 
on such processing. This approach also provided a reference method for 
identifying characteristic computations of brain activity.

2.5.1 Property calculation for multi-band 
microstates

In this study, we  filtered the preprocessed EEG data during AV 
stimulus presentation to obtain AV processing EEG data in four frequency 
bands: delta, theta, alpha, and beta. Using the aforementioned methods 
for calculating EEG microstates during brain processing of AV tasks, 

microstates under both attended and unattended conditions were 
computed for each of the four frequency bands. Together with the original 
EEG data before frequency division, we ultimately obtained microstates 
for 2 (attended and unattended conditions) × 5 (original, delta, theta, 
alpha, and beta bands) = 10 types of AV processing, as shown in Figure 3.

Further calculations were performed to determine the following 
properties for each type of microstate under these 10 conditions: 
Duration, Coverage, Occurrence, and Transition Probabilities. Among 
these, Duration was used to describe the length of time each microstate 
persists in the EEG signal. Coverage was used to describe the proportion 
of a specific microstate in the entire EEG signal. Occurrence refers to the 
number of times a specific microstate appears per unit time. The 
Transition Probability between microstates refers to the likelihood of 
transitioning from a specific microstate to another microstate.

2.5.2 Time-frequency domain feature analysis of AV 
processing modulated by attention mechanisms

This study calculated the microstate properties (Duration, Coverage, 
Occurrence, and Transition Probabilities) under both attended and 
unattended conditions for the original EEG, as well as the delta, theta, 
alpha, and beta frequency bands. These microstate time series, which 
incorporate frequency-domain features, provide a time-frequency 
domain feature set for analyzing the AV processing stages and the 
regulatory role of attention. Based on the original EEG, we computed the 
microstates of AV processing, thereby dividing the processing stages into 
multiple sub-stages. Similarly, we were able to obtain the sub-stages of 
AV processing in the delta, theta, alpha, and beta frequency bands.

To explore the characteristics of the sub-stages of AV processing, 
we compared the microstate properties derived from the original EEG 
with those from each frequency band. For the microstate properties of 
Duration, Coverage, Occurrence, and Transition Probability, a repeated 
measures analysis of variance (ANOVA) (N Microstates conditions 
[MS1, MS2, … and MSn]) as within-subject factors was conducted 
separately. Paired-t tests were conducted in the presence of main or 
interaction effects, and for origin EEG and each frequency, all the 
microstate properties of Duration, Coverage, Occurrence, and Transition 
Probability were separately entered into a repeated measures ANOVA 
[two Attention conditions (attended and unattended)] as within-subject 
factors, to find significant differences caused by the attention mechanism. 
All statistical analyses were conducted using IBM SPSS software (version 
22, IBM Inc., Armonk, NY) for Windows. Greenhouse–Geisser 
corrections were applied with adjusted degrees of freedom. Effects and 
correlations were considered significant when p < 0.05.

2.5.3 Classification of AV processing brain activities 
based on time-frequency domain features

To validate that the time-frequency domain features calculated using 
multi-band microstates could effectively characterize the regulatory role 

TABLE 1 Parameter settings of six machine learning models.

Classifier Parameters

SVM kernel = ‘rbf ’, C = 1, gamma = 1, random_state = 42

Random forest n_estimators = 100, max_depth = None

Gradient boosting n_estimators = 100, max_depth = 3

KNN k = 5

Logistic regression penalty = ‘l2’, C = 1

LDA solver = ‘svd’, tol = 0.0001
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of attention in AV processing, we  applied several classical machine 
learning algorithms to classify brain activities under attended and 
unattended conditions based on these features. Additionally, we extended 
this method to classify brain activities during unimodal visual processing, 
unimodal auditory processing, and AV information processing, further 
verifying that the time-frequency domain features derived from multi-
band microstates can effectively represent brain activities during different 
information processing tasks.

For the classification experiments in this study, six classical 
machine learning models were employed: SVM, Random Forest, 
Gradient Boosting, k-nearest neighbors (KNN), Logistic Regression, 
and Linear Discriminant Analysis (LDA). The parameter Settings of 
these six machine learning models are shown in Table 1. The specific 
experimental setup included an i7-9750H processor, an NVIDIA 
GeForce RTX 1660 Ti graphics card, 16 GB of memory, and the 
Windows 10 Pro 64-bit operating system. All experiments were 
conducted in the MATLAB R2022a environment, using 5-fold 

cross-validation to evaluate the classification performance of each 
model. Evaluation metrics included accuracy, precision, recall, and 
F1 score.

3 Results and analysis

3.1 Division of sub-stages in AV processing

3.1.1 Evaluation results of optimal cluster number 
based on KL_GEV

Current research typically divides microstates during the resting 
state of the brain into four categories: A, B, C, and D. However, when 
processing AV information, the brain is in a task state, and the changes 
in scalp electric field distribution are related to the neural mechanisms 
of AV information processing. Therefore, it is not appropriate to simply 
categorize microstates in the same way as in the resting state.

TABLE 2 Comparison of clustering performance based on different evaluation criteria.

Conditions Evaluation methods Optimal Cluster Number CH_Score silhouette coefficient

Attended AV

Origin

CV 7 2164.352 0.07196

KL 5 2378.497 0.076566

KL_GEV 6 2447.977 0.076588

Delta

CV 6 2942.375 0.076338

KL 10 2219.615 0.033569

KL_GEV 6 2942.375 0.076338

Theta

CV 9 1760.172 −0.002210

KL 12 1450.215 −0.027301

KL_GEV 8 1947.016 0.013379

Alpha

CV 8 2045.314 0.070799

KL 13 1453.455 0.052390

KL_GEV 4 3247.124 0.105336

Beta

CV 11 1108.778 0.050355

KL 12 1035.411 0.048540

KL_GEV 11 1108.778 0.050355

Unattended AV

Origin

CV 5 2726.437 0.061659

KL 7 2206.027 0.038566

KL_GEV 4 3357.477 0.076578

Delta

CV 4 4545.957 0.112436

KL 4 4545.957 0.112436

KL_GEV 4 4545.957 0.112436

Theta

CV 14 1483.109 −0.018532

KL 13 1405.437 −0.020005

KL_GEV 14 1483.109 −0.018532

Alpha

CV 12 1540.616 0.045729

KL 12 1540.616 0.045729

KL_GEV 5 2704.912 0.084078

Beta

CV 7 1321.498 0.052318

KL 10 1117.718 0.043486

KL_GEV 8 1440.693 0.062208

CH, Calinski-Harabasz. KL, Krzanowski-Lai. KL_GEV, Krzanowski-Lai Global Explained Variance. CV, cross-validation. The bold values in the table represent the optimal values.
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We proposed the use of KL_GEV to evaluate the number of 
microstate clusters, thereby determining the optimal number of 
microstates for AV information processing. Our KL_GEV calculation 
results are shown in Table 2. Under attended conditions, the optimal 
number of microstates for unfiltered AV information processing was 
six. For the delta, theta, alpha, and beta frequency bands, the optimal 
numbers of microstates were six, eight, four, and 11, respectively. 
Under unattended conditions, the optimal number of microstates for 
unfiltered AV information processing was four. For the delta, theta, 
alpha, and beta frequency bands, the optimal numbers of microstates 
were four, 14, five, and eight, respectively.

We employed the CH Score and silhouette coefficient as evaluation 
metrics for clustering performance, comparing them with two other 
classical methods for determining the optimal number of clusters: 
CV and KL.

When selecting the number of microstate categories based on CV, 
two main approaches were used. The first involved observing the slope 

changes in the CV curve. Although CV continues to decrease as the 
number of microstate categories increases, the rate of decrease may 
significantly slow down after a certain number of categories (the “elbow 
point”), which can be considered a candidate for the optimal number of 
categories. The second approach involved physiological constraints, 
referencing typical numbers of microstate categories in task states from 
existing literature (e.g., four to seven categories) to avoid selecting 
excessively high and less interpretable numbers.

The CH Index essentially represents the ratio of between-cluster 
distance to within-cluster distance, and its calculation process is similar 
to that of variance, hence it is also referred to as the variance ratio 
criterion. The silhouette coefficient measures the separation between 
clusters by comparing the similarity of each object to its own cluster with 
its similarity to objects in other clusters. The results are shown in Table 2 
and Figure  4. These results showcase the CH index and silhouette 
coefficient of the selected clusters for each microstate clustering method 
across each frequency band.

FIGURE 4

Evaluation of microstate clustering numbers for unfiltered AV processing under attended and unattended conditions.
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From the above results, it can be observed that the brain processes 
AV information regardless of whether attentional resources are engaged. 
Under attended conditions, the AV information processing can 
be represented by an alternating sequence of six microstates, while under 
unattended conditions, it is represented by four microstates. This may 
suggest that the processing of AV information by the brain is more 
refined and complex when attentional resources are engaged. This 
finding aligns with conclusions from some previous studies, further 
highlighting the importance and value of classifying brain microstates 
for research purposes. From the perspective of information processing, 

the handling of AV information by the brain is an extremely complex 
process involving numerous levels and types of neural activities. By 
classifying microstates, these complex neural activities can 
be systematically organized and categorized, clearly revealing the specific 
patterns of information processing under different conditions. For 
example, in this study, distinguishing between six microstates under 
attended conditions and four microstates under unattended conditions 
allows us to intuitively observe the impact of attentional resource 
allocation on the refinement and complexity of information processing, 
providing a framework for a deeper understanding of the information 

FIGURE 5

Evaluation of microstate clustering numbers for AV processing under attended and unattended conditions across different frequency bands.
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processing mechanisms of the brain. From the perspective of exploring 
neural mechanisms, different microstates may represent the activation 
of distinct neural functional modules or neural circuits. Classifying 
microstates helps us identify the specific neural regions and pathways 
involved in AV information processing. The alternation of different 
microstates may reflect the dynamic interactions between these neural 
regions. By analyzing these microstates, we  can better uncover the 
mysteries of brain neural mechanisms and clarify the specific roles and 
interrelationships of different neural regions in information processing.

Further, the differing results of microstate clustering across 
frequency bands for AV information imply that neural oscillations 
in different frequency bands contribute to the processing of AV 
information, but the mechanisms vary across bands. By further 
analyzing the properties of microstate sequences in various 
frequency bands, we  can obtain time-domain and frequency-
domain features that characterize brain activity during AV 
information processing under both attended and 
unattended conditions.

FIGURE 6

Sub-stage division results for AV processing under attended and unattended conditions.
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3.1.2 Results of sub-stage division in 
attention-modulated AV processing

As shown in Figures 4, 5, we used the KL_GEV evaluation method 
to cluster the microstates of AV information processing under attended 
conditions into six categories and those under unattended conditions 
into four categories. To facilitate a comparative analysis of the microstate 
properties under both conditions, we relabeled these microstates based 
on the similarity of their topographic distributions, as illustrated in 
Figure 6A. Many classic studies (Huang et al., 2018; Xi et al., 2020a,b; 
Matusz and Eimer, 2013; Brunellière et  al., 2013) divide the AV 
information processing stages into early and late phases based on the 
timing of ERP presentations. However, this division lacks clear temporal 
boundaries and does not consider whether the scalp electric field 
distributions are consistent within the same phase. The scalp electric field 
distribution reflects the neural activity state of the brain during 
information processing and is closely related to cognitive processes. 
Therefore, we have proposed that processing stages with identical or 
similar scalp electric field distributions represent identical or similar 
cognitive processes.

In this study, based on the clustering results of AV microstates, 
we used the time series of the same microstate category to represent a 
sub-stage of AV information processing. Consequently, the AV 
information processing under attended conditions was divided into six 
and under unattended conditions into four sub-stages, as shown in 
Figure 6B.

Our findings demonstrate that the sub-stages of AV information 
processing, as delineated by microstate segmentation, do not follow 
a fixed sequential order but rather operate through dynamic 
alternation and collaboration to accomplish information processing. 
This suggests that the processing of external information by the brain 
involves complex mechanisms that likely encompass multiple 
cognitive and computational processes. We hypothesized that these 
sub-stages which are defined by microstates reflect the interactive 
dynamics of various processing and cognitive mechanisms. Notably, 
attended AV processing was segmented into six sub-stages (MS1–
MS6), whereas unattended processing yielded four sub-stages (MS1–
MS4). This marked difference indicates that the allocation of 
attentional resources significantly enhances processing complexity, 
potentially reflecting top-down regulatory mechanisms that facilitate 
refined integration of multimodal information (e.g., conflict 
resolution, task switching). The increased number of alternating 
sub-stages may correspond to a more sophisticated dynamic 
reorganization of cognitive functions. Even in the absence of 
attentional engagement, the brain maintains a basic processing of AV 

information (represented by four microstate clusters), albeit through 
a simpler mechanism characterized by fewer processing sub-stages. 
This likely reflects an automatic or passive processing mode that lacks 
the depth of integration and refinement afforded by attention-guided 
mechanisms. This reduced sub-stage complexity suggests 
fundamental differences in neural resource allocation and 
computational demands between the attended and unattended 
processing states.

It can be observed that MS1 and MS2 resemble the classical 
microstate D. Previous research suggests this microstate 
(particularly associated with the right temporoparietal junction, 
inferior parietal lobule, and the dorsal attention network) primarily 
orchestrates attentional resource allocation (Khanna et al., 2015). 
During audiovisual processing, it may participate in integrating 
visual and auditory information. MS3 and MS4 correspond 
approximately to microstate C. This microstate (typically linked to 
core regions of the default mode network, such as the posterior 
cingulate cortex/precuneus and medial prefrontal cortex) is 
generally associated with self-referential thinking (e.g., 
autobiographical memory, introspection) during rest (Brodbeck 
et al., 2012). During audiovisual processing, it may mediate the 
integration of emotion and perception. MS5 and MS6 are similar to 
microstate B. Previous studies indicate that microstate B (primarily 
involving the ventral attention network, including the 
temporoparietal junction, inferior frontal gyrus, and dorsolateral 
prefrontal cortex) is mainly associated with visuospatial information 
processing, attentional shifting, and the monitoring of exogenous 
stimuli (Michel and Koenig, 2018).

3.2 Calculation results of multi-band 
microstate properties

To obtain time-domain and frequency-domain features 
characterizing AV information processing, we  further calculated 
microstate properties, including Duration, Coverage, Occurrence, 
and Transition Probability. The calculated microstate properties for 
AV information processing under attended and unattended 
conditions are presented in Table 3, while the Transition Probability 
calculation results are shown in Figure 7.

By filtering the EEG data of AV processing, we further calculated 
the microstates under both attended and unattended conditions in 
the delta, theta, alpha, and beta frequency bands. The properties of 
these microstates are presented in Tables 4, 5.

TABLE 3 EEG microstate properties for AV processing.

Properties Duration (ms) Coverage (%) Occurrence (times)

Microstates Attended Unattended Attended Unattended Attended Unattended

MS1 77.60 87.88 15.52 24.41 2.12 2.95

MS2 70.99 78.03 19.10 24.69 2.66 3.24

MS3 71.00 90.34 16.60 21.99 2.34 3.47

MS4 68.56 69.53 15.13 28.90 2.28 2.78

MS5 61.12 – 15.35 – 2.28 –

MS6 64.53 – 18.30 – 2.61 –

EEG, electroencephalogram. AV, audiovisual.
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TABLE 4 Microstate properties for AV processing under attended conditions across different frequency bands.

Attended 
AV

Duration Coverage Occurrence

Delta Theta Alpha Beta Delta Theta Alpha Beta Delta Theta Alpha Beta

MS1 93.02 66.61 55.68 38.17 16.51 16.74 32.93 12.27 1.36 2.61 5.98 2.72

MS2 91.59 48.32 52.75 43.27 14.35 12.85 28.93 11.60 1.36 2.23 5.49 2.28

MS3 89.09 50.82 52.49 30.36 12.96 13.87 17.86 7.35 1.14 2.28 3.48 1.63

MS4 96.46 46.83 48.72 26.98 16.96 11.30 20.28 5.43 1.58 1.79 3.97 1.20

MS5 131.22 48.41 – 40.06 21.34 9.18 – 9.84 1.52 1.58 – 2.12

MS6 112.50 50.27 – 27.25 17.88 11.31 – 6.73 1.36 1.79 – 1.20

MS7 – 52.20 – 45.47 – 11.83 – 12.28 – 2.12 – 2.45

MS8 – 56.98 – 37.59 – 12.90 – 7.73 – 2.01 – 1.68

MS9 – – – 34.62 – – – 7.44 – – – 1.58

MS10 – – – 44.17 – – – 12.52 – – – 2.66

MS11 – – – 26.41 – – – 6.81 – – – 1.47

AV, audiovisual.

FIGURE 7

Transition probability matrices for AV microstates under attended and unattended conditions.

TABLE 5 Microstate properties for AV processing under unattended conditions across different frequency bands.

Unattended 
AV

Duration Coverage Occurrence

Delta Theta Alpha Beta Delta Theta Alpha Beta Delta Theta Alpha Beta

MS1 140.78 51.41 50.43 48.66 21.59 9.20 25.99 22.76 1.65 1.53 5.11 4.60

MS2 187.05 45.94 58.62 43.72 32.88 9.02 28.15 11.08 1.99 1.48 4.89 2.44

MS3 126.72 35.01 47.46 45.66 23.38 8.34 18.41 13.51 1.82 1.42 3.70 2.61

MS4 116.25 36.95 47.66 35.73 22.15 7.07 15.34 8.73 1.88 1.02 3.10 1.70

MS5 – 42.89 38.80 46.13 – 6.82 12.11 12.72 – 1.14 2.61 2.56

MS6 – 33.33 – 42.59 – 7.63 – 10.62 – 1.36 – 2.22

MS7 – 23.02 – 37.59 – 3.81 – 10.21 – 0.68 – 2.22

MS8 – 34.45 – 45.19 – 5.77 – 10.38 – 1.02 – 1.93

MS9 – 44.75 – – – 7.59 – – – 1.19 – –

MS10 – 57.23 – – – 10.97 – – – 1.59 – –

MS11 – 34.30 – – – 6.45 – – – 1.14 – –

MS12 – 25.68 – – – 4.03 – – – 0.80 – –

MS13 – 31.70 – – – 6.79 – – – 1.25 – –

MS14 – 32.73 – – – 6.51 – – – 1.19 – –

AV, audiovisual.
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FIGURE 8 (Continued)
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The Transition Probabilities of microstates across different 
frequency bands are illustrated in Figure 8.

3.3 EEG signal classification results

The classification results based on machine learning models 
such as SVM, Random Forest, Gradient Boosting, KNN, Logistic 
Regression, and LDA are shown in Figures  9, 10. A 5-fold 

cross-validation was used to evaluate the performance of each 
classifier. The AV EEG signals were classified into attended and 
unattended conditions, and the EEG signals under attended 
conditions were further classified into AV, auditory, and visual 
categories. The classification results for attended and unattended 
conditions are shown in Figure 9.

Additionally, we employed multiple machine learning models to 
classify AV EEG signals under attended and unattended conditions 
based on microstate features. The classification results are shown in 

FIGURE 8

Transition probabilities of microstates for AV processing across different frequency bands.

TABLE 6 Classification results for attended and unattended AV processing brain activities based on time-frequency domain features.

Models Accuracy (%) Precision (%) Recall (%) F1-Score (%)

SVM 97.8 98.0 90.0 97.8

Random forest 97.4 98.3 97.5 97.7

Gradient boosting 97.4 96.3 95.5 95.4

KNN 95.6 95.0 93.5 93.2

Logistic regression 97.8 98.0 98.0 97.8

LDA 93.3 91.2 86.0 84.9

AV, audiovisual. SVM, support vector machine. KNN, k-nearest neighbors. LDA, linear discriminant analysis.

TABLE 7 Classification results for AV, auditory, and visual processing brain activities based on time-frequency domain features.

Models Accuracy (%) Precision (%) Recall (%) F1-Score (%)

SVM 98.6 98.9 98.7 98.7

Random forest 97.1 97.8 97.3 97.3

Gradient boosting 98.6 98.9 98.7 98.7

KNN 94.3 95.7 94.3 94.2

Logistic regression 98.6 98.9 98.7 98.7

LDA 69.6 66.1 69.7 65.1

AV, audiovisual. SVM, support vector machine. KNN, k-nearest neighbors. LDA, linear discriminant analysis.
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Table 6, demonstrating that most machine learning models achieve a 
satisfactory performance in distinguishing between attended and 
unattended conditions using microstate features.

These results indicate that by dividing the multi-band AV EEG 
signals into multiple stages using microstates and calculating 
microstate properties as time-frequency features, most machine 
learning models can effectively learn and classify the data with an 
accuracy of approximately 97%. This result also demonstrates that 
this method can effectively characterize brain activity during the 
processing of AV information (Table 7).

4 Conclusion

This study utilized EEG microstates to divide the AV information 
processing process into multiple sub-stages and calculated microstate 
attributes across multiple frequency bands to comprehensively 
characterize the corresponding brain activity. We  propose an 
evaluation method based on KL_GEV for determining the optimal 
number of microstate clusters in AV EEG processing, which integrates 
the KL criterion with the GEV metric to identify the most appropriate 
number of microstate clusters.

FIGURE 9

Classification results and ROC curves for attended vs. unattended EEG signals.
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Additionally, this study presented an EEG microstate-based 
method for segmenting AV information processing into 
sub-stages. Based on the microstate clustering results, this method 
used temporally continuous microstate sequences of the same 
class to represent individual processing sub-stages, thereby 
dividing attended AV processing into six sub-stages and 
unattended processing into four sub-stages. This microstate-based 
segmentation was able to account for changes in cognitive states 
and provided a higher temporal resolution, offering new 
perspectives for understanding the neural mechanisms of AV 
information processing.

Further, by computing microstate attributes across multiple 
frequency bands, we developed a method for calculating time-
frequency domain features of brain activity during AV processing. 
We calculated the Duration, Occurrence, Coverage, and Transition 
Probability of microstates in unfiltered data and in delta, theta, 
alpha, and beta frequency bands under both attended and 
unattended conditions, comparing the differences in these 
attributes to investigate the regulatory role of attention in AV 
processing. Using these frequency-band microstate attributes as 
time-frequency domain features characterizing AV processing 
brain activity, we  validated their effectiveness through 

FIGURE 10

Classification results and ROC curves for AV, auditory, and visual EEG signals.
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classification with various machine learning models (SVM, 
Random Forest, etc.). These features achieved up to 97.8% 
accuracy in classifying attended versus unattended AV processing 
brain activity and 98.6% accuracy in classifying unimodal (visual, 
auditory) and multimodal (AV) brain activities. Our time-
frequency feature calculation method effectively characterized 
brain activity during AV information processing and provided 
neurophysiological interpretability for the machine learning 
classification results from the perspective of information 
processing mechanisms. This study provided theoretical and 
experimental foundations for analyzing the neural mechanisms of 
multisensory integration and developing brain-inspired 
information processing algorithms.
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