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Background: Electroencephalography (EEG) is widely used to assess prognosis
in patients with disorders of consciousness (DoC). Visual assessments by
physicians and quantitative EEG (QEEG) are commonly used; however, only a few
studies have directly compared their predictive accuracy. Therefore, in this study,
we aimed to compare the prognostic value of visual EEG classification versus
that of qEEG-based spectral analysis for survival and neurological outcomes in
patients with impaired consciousness.

Methods: In this retrospective study, we examined 97 patients with impaired
consciousness admitted to the Emergency and Critical Care Center of
Fukushima Medical University Hospital between April 2018 and December 2023.
Visual EEG grading was performed using a conventional grading system based
on established criteria. Receiver operating characteristic (ROC) curves were
used to compare predictive performance. Multivariate logistic regression models
were developed incorporating qEEG and clinical prognostic factors (Scarpino
score, rehabilitation status, and age). The incremental predictive value of clinical
variables was assessed using DelLong’s test.

Results: Visual EEG assessment showed moderate predictive accuracy [area
under the curve (AUC) = 0.77 for survival, 0.677-0.725 for neurological
outcomes]. qEEG-based models showed comparable performance to visual
EEG classification, with slightly higher AUC values that were not statistically
significant. The addition of clinical factors significantly improved predictive
accuracy, particularly for neurological recovery (AUC improved from 0.729 to
0.936; P < 0.001).
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Conclusion: Combining qEEG features and clinical prognostic factors provided
a comprehensive approach for outcome prediction in patients with DoC.
These findings support the potential of a multimodal prognostic framework
integrating objective EEG metrics and physician-derived evaluations, although
further prospective validation is required.
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1 Introduction

Electroencephalography (EEG), an important tool in clinical
neurophysiology, is widely used to assess cortical activity and
diagnose neurological conditions. Its high temporal resolution
enables real-time monitoring of brain activity, making it
particularly valuable for critically ill patients with disorders
of consciousness (DoC) (Bai et al., 2021; Comanducci et al.,
2020). The International Federation of Clinical Neurophysiology
and the American Clinical Neurophysiology Society (ACNS)
have established standardized guidelines for EEG recording and
interpretation, ensuring consistent application, especially in
intensive care unit settings (Hirsch et al., 2021).

Traditional visual EEG interpretation involves evaluating
critical parameters, including background rhythm,
responsiveness to external stimuli, epileptiform activity, and

several

pathological patterns (burst suppression and electrocerebral
inactivity) (Muller et al., 2020; Faro et al., 2019; Synek and Shaw,
1989). These abnormal EEG patterns are strong predictors of poor
prognosis in patients with severe brain injuries (Janati, 2011). In
particular, epileptiform discharges and burst suppression patterns
in post-anoxic encephalopathy have been associated with poor
recovery and high mortality rates (Lamartine Monteiro et al,
2016). The five-stage EEG grading system described by Markand
(1984), based on earlier frameworks by Hockaday et al. (1965),
Prior (1973), Hockaday et al. (1965), is one of the most widely used
approaches for assessing EEG abnormalities and their correlation
with neurological outcomes. However, visual EEG interpretation
is inherently subjective, prone to inter-observer variability, and
highly dependent on clinician expertise.

To address these limitations of visual EEG interpretation,
quantitative EEG (qEEG) has become a complementary analytical
approach. qEEG applies mathematical transformations, including
the fast Fourier transform and spectral analysis, to objectively
assess EEG signals (Ballanti et al., 2022). This method enables
precise measurement of power distribution across frequency
bands, improves predictive accuracy, and reduces inter-observer
variability. Key qEEG-derived metrics, such as alpha-to-delta
power ratios, spectral entropy, and burst suppression ratios, are
robust markers of neurological deterioration (Wiley et al., 2018).
Furthermore, EEG reactivity tests, which evaluate brainwave
responses to external stimuli and evoked potentials, assessing
sensory processing, have also proven valuable in predicting
neurological outcomes (Pan et al., 2020; Benghanem et al., 2022;
Pruvost-Robieux et al, 2022). These quantitative approaches
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are particularly beneficial in neurocritical care, where precise
prognostication guides treatment decisions and facilitates
discussions with patients’ families (Curley et al., 2022).

Previous studies have primarily focused on post-anoxic
encephalopathy or severe traumatic brain injury (Hofmeijer et al.,
2015; Rossetti et al., 2010; O’Donnell et al., 2021), limiting
prognostic comparisons between visual EEG assessment and qgEEG
across diverse etiologies of consciousness disorders. Most existing
research has been limited to narrow patient populations, creating a
gap in the understanding of EEG-based prognostication in broader
clinical settings.

Several EEG-based scoring systems have been proposed
for predicting neurological outcomes in patients with DoC,
most of which were developed and validated in heterogeneous
cohorts predominantly composed of patients with traumatic
brain injuries, but also including individuals with anoxic and
cerebrovascular etiologies. Estraneo et al. (2016) developed a
classification system for diagnostic purposes, categorizing EEG
backgrounds by frequency, voltage, and reactivity. However, its
design lacked prognostic intent, limiting its predictive utility.
Bagnato et al. (2015) subsequently created a prognostic EEG
scoring method using the same descriptors (frequency, voltage,
and reactivity) and applied it to rehabilitation cohorts, but it
lacked comprehensive standardization and integration of multiple
EEG parameters. Building upon these frameworks, Scarpino
et al. (2019, 2020) applied standardized descriptors from the
ACNS lassification, including continuity, voltage, frequency,
symmetry, and reactivity, to a large cohort of patients with
DoC and demonstrated that this approach provided improved
prognostic accuracy. Their findings showed that the ACNS-based
EEG score outperformed Estraneo’s diagnostic EEG classification
and Bagnatos prognostic EEG score in predicting post-acute
neurological recovery. Scarpino’s EEG score achieved the highest
area under the curve (AUC) (AUC = 0.79), surpassing Bagnato’s
(AUC = 0.71) and Estraneo’s (AUC = 0.70). When combined
with the Coma Recovery Scale-Revised score, predictive sensitivity
increased to 76%, and specificity reached 93%. These findings show
Scarpino’s EEG scoring system to be a significant prognostic tool
for DoC.

We hypothesized that qEEG, particularly when combined
with clinical scores, would outperform visual EEG in prognostic
accuracy. Therefore, in this study, we aimed to primarily compare
the prognostic accuracy of visual EEG assessment (EEG grading
described by Markand (1984), based on the systems of Hockaday
et al. (1965), Prior (1973)) with that of qEEG in patients with
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DoC, without restricting the cohort to those with post-anoxic
encephalopathy or severe traumatic brain injury. Furthermore, we
sought to enhance predictive precision by integrating established
prognostic factors, including the Scarpino score and other outcome
markers, into qEEG analysis. By systematically evaluating the
strengths and limitations of both assessment methodologies across
a heterogeneous patient cohort, we aim to contribute to the
standardization of EEG-based prognostication and enhance clinical
decision-making in neurocritical care.

2 Materials and methods

2.1 Participants

Patients were eligible for inclusion if they met the following
criteria: (1) admission to the Emergency and Critical Care
Center of Fukushima Medical University between April 2018
and December 2023; (2) impaired consciousness secondary to an
identifiable medical condition (cardiac arrest, stroke, infection,
metabolic disturbance); and (3) referral to the Department of
Neuropsychiatry for EEG examination to evaluate the state of
consciousness and neurological prognosis. All patients underwent
EEG assessment during the acute or subacute phase of illness
following the discontinuation of sedative medications. The
Glasgow Coma Scale score at admission was documented to
define the level of consciousness. Therapeutic and surgical
interventions, including targeted temperature management,
mechanical ventilation, and cardiopulmonary resuscitation, were
permitted and recorded.

From medical records, the following baseline data were
collected: age, sex, date of admission and discharge, primary illness,
duration from the onset of impaired consciousness to EEG, GCS
score at admission, occurrence of cardiopulmonary arrest, presence
of targeted temperature management, rehabilitation interventions,
and antiepileptic drug administration status.

Primary etiologies included post-anoxic encephalopathy
following cardiac arrest, ischemic and hemorrhagic strokes,
metabolic/toxic encephalopathy, and other causes. The distribution
by etiology is summarized in Table 1.

Patients were excluded if they met any of the following criteria:
(1) EEG recordings with severe artifacts preventing reliable visual
or quantitative analysis; (2) persistent administration of sedative
or anesthetic agents at the time of EEG; (3) incomplete clinical or
EEG data; or (4) age < 16 years; or (5) EEG not conducted due to
logistical limitations; or (6) EEG performed for reasons unrelated
to the evaluation of consciousness disturbance. For patients with a
history of chronic neurological or psychiatric disorders (epilepsy,
dementia), EEGs conducted for reasons other than assessment
of impaired consciousness or neurological prognostication were
not routinely excluded unless these conditions interfered with
the interpretation of EEG or outcome measures. Relevant
comorbidities, including cardiovascular and metabolic disorders,
were recorded and considered during the statistical analysis.
All patients underwent EEG for evaluation of consciousness
disturbance and neurological prognosis. The sample size was
determined by including all eligible patients who met the inclusion
criteria during the study period.
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TABLE1 Summary of primary illnesses of patients.

Acute heart failure due to acute coronary 13 13%

syndrome and cardiomyopathy

Acute drug intoxication 2 2%
Acute respiratory distress syndrome due to 2 2%
drowning

Anaphylactic shock 2 2%
Arrhythmia 2 2%
Asphyxia 3 3%
Cerebral infarction, hemorrhage 2 2%
Electrolyte abnormality 2 2%
Head injury (-) 25 26%
Heatstroke 1 1%
Hepatic failure 7 7%
Hypoglycemic coma 3 3%
Hypothermia 1 1%
Infection (including septic shock, urinary) 14 14%
Kidney failure 1 1%
Neuroleptic malignant syndrome 1 1%
Rhabdomyolysis 1 1%
Suicide by hanging 4 4%
Unspecified 10 10%
Infection of unknown focus 1 1%

Values are presented as n (%) with the % calculated against the total cohort
(n = 97). “Unspecified” indicates an unclear etiology at discharge after diagnostic
work-up. “Infection (unknown focus)” refers to a systemic infection without an
identified primary source.

2.2 Outcomes

Regarding each prognosis, the prognosis for survival was
classified as either survival or death, and neurological outcomes
were categorized as recovery to pre-illness state, mild disability,
or severe disability. Following the Cerebral Performance Category
(CPC) scale, neurological outcomes were defined as follows: CPC1:
Recovery to pre-illness state, CPC2: Mild disability, and CPC3-5:
Severe disability. If a patient died during hospitalization, the date
of death was recorded as the discharge date. In addition, when
available, survival status and CPC scores were evaluated at 1 month,
6 months, and 1 year after discharge. The primary endpoint was
favorable neurological recovery (CPC1), while survival at discharge
served as a secondary endpoint.

2.3 EEG acquisition and data processing

Using the international 10-20 system, EEG was recorded from
eight scalp electrodes (F3, F4, T3, T4, C3, C4, O1, O2). Power
spectra were calculated from a single 10 s artifact-free, eyes-
closed resting EEG segment for each patient using fast Fourier
transform analysis. In EEG signal processing, short stationary
windows of a few seconds are used for spectral estimation
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(Melman and Victor, 2016, Schomer and Lopes da Silva, 2012). This
approach was selected to standardize analysis across heterogeneous
recordings and minimize artifact contamination, consistent with
prior studies that demonstrate robust EEG markers can be
extracted from short stationary segments (Engemann et al.,, 2018,
Sitt et al., 2014), This duration strikes a balance between signal
quality and clinical feasibility while aligning with the potential for
future automated bedside applications. From the outputs obtained
for each electrode, the total power was computed for four frequency
bands: § (1-4 Hz), 6 (4-8 Hz), a (8-13 Hz), and # (13-30 Hz). From
these data, we derived several functional indices, including occipital
alpha (sum of o band outputs from O1 and O2) and average
spectral power values across all electrodes (all-average 8, 6, o, or B).
Notably, values from the T3 and T4 electrodes were excluded from
these calculations. Artifact rejection was performed through visual
inspection. Trained EEG technicians and investigators excluded
epochs containing eye blinks, muscle activity, electrode pops, or
movement artifacts. For quantitative analysis, a 10 s artifact-free
resting segment (eyes closed, no stimulation) was selected for
each patient. Uniform acquisition filters were applied across all
recordings (high-pass time constant 0.1 s ~ 1.6 Hz, low-pass 60 Hz,
notch filter ON) to suppress baseline drift, high-frequency noise,
and power-line interference. In this study, EEG was conducted by
certified technicians accredited by the Japanese Society of Clinical
Neurophysiology. EEG measurements were obtained in the patient
rooms of the Emergency and Critical Care Center at our hospital.
In all cases, sedative medications were discontinued at the time of
examination. The total EEG recording length per patient ranged
from 7 to 32 min (median 16 min).

2.4 EEG interpretation

Two independent physicians conducted EEG interpretations:
one certified by the Japanese Society of Clinical Neurophysiology
and the other a board-certified psychiatrist from the Japanese
Society of Psychiatry and Neurology with specialized EEG
expertise. Both physicians remained blinded to the patients’
clinical backgrounds throughout the evaluation. In addition, the
investigators conducting the qEEG analysis were also blinded to
the patients’ clinical outcomes. Using the previously described
10 s segment for power spectrum analysis, they graded EEG
findings according to the system described by Markand (1984),
which is based on the earlier frameworks of Hockaday et al.
(1965), Prior (1973). For cases where classification was ambiguous,
the final evaluation was determined through consensus between
the two physicians. This five-grade system qualitatively assesses
the severity of EEG abnormalities, particularly in patients with
impaired consciousness. The grading is based on the predominant
background activity and its reactivity to external stimuli: Grade
1 (Normal or near-normal): The background consists primarily
of alpha activity, occasionally mixed with scattered theta waves.
Grade 2 (Mild abnormality): The background is dominated by theta
activity, with an admixture of alpha and delta components. Grade
3 (Moderate abnormality): The EEG shows sustained polymorphic
delta activity with minimal faster frequencies. The pattern shows
variability and retains reactivity to noxious stimulation. Grade 4
(Severe abnormality): The EEG is characterized by predominantly
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low-amplitude (< 100 V) delta activity, with no reactivity to
any stimuli. Burst suppression patterns may be present. Grade
5 (Profound abnormality): The tracing is nearly flat or shows
electrical silence, indicating maximal cortical dysfunction.

Among available EEG scoring systems proposed by Estraneo
et al. (2016), Bagnato et al. (2015), Scarpino et al. (2019),
the Scarpino score was selected due to its superior prognostic
accuracy. Previous comparative analyses have demonstrated that
the Scarpino score achieves higher AUC values and improved
sensitivity and specificity metrics compared to other systems. EEG
recordings were conducted following a referral from the primary
emergency care team based on clinical judgment concerning the
need for neurological prognostication. As such, the timing of EEG
measurements was not standardized across all patients but reflected
real-world clinical decision-making in the acute and subacute
phases of impaired consciousness. In addition to the Markand
grading, the Scarpino EEG score was calculated when sufficient
descriptors were available, allowing supplementary comparison of
prognostic performance.

2.5 Statistical analysis

2.5.1 Clinician-assessed prognostic evaluation

To evaluate the prognostic utility of the visual EEG grading
described by Markand (1984), based on Hockaday et al. (1965),
Prior (1973), we analyzed two primary outcomes: survival
(classified as survival or death) and neurological prognosis
[categorized using CPC scores: CPC 1 (recovery to pre-illness
state), CPC 2 (mild disability), and CPC 3-5 (severe disability)].

Receiver operating characteristic (ROC) curves were generated
to assess predictive accuracy using the pROC package in R (version
3.1.0). Ninety-five percent confidence intervals (Cis) for AUC were
estimated using the DeLong method. For neurological prognosis,
we employed the one-vs.-all method, creating three separate ROC
curve comparisons: Recovery vs. Others (Mild Disability+Severe
Disability), Mild Disability vs. Others (Recovery+Severe Disability),
and Severe Disability vs. Others (Recovery+Mild Disability).
AUC was calculated for each prognosis to evaluate predictive
performance. Because group sizes were relatively balanced, no
resampling or cross-validation procedures were applied.

In addition to one-vs.-all ROC curves, we performed ordinal
logistic regression treating CPC as an ordinal outcome. Model
performance was further evaluated with cumulative AUC analysis.

2.5.2 EEG-based prognostic evaluation

Quantitative electroencephalography analysis was conducted
using power spectral values from each electrode to predict
survival and neurological outcomes. These spectral power values
were directly treated as continuous predictor variables. The
ground truth labels (survival status and CPC-based neurological
categories) were obtained from medical records, independent
of EEG evaluation. For each candidate EEG feature, predicted
probabilities were generated and ROC curves were constructed
by varying classification thresholds. The predicted outcomes were
then compared against the ground truth labels to calculate AUC
values. Specifically, ROC analyses were conducted using global
average powers across all channels in the § (1-4 Hz), 6 (4-8 Hz),
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a (8-13 Hz), and B (13-30 Hz) bands. In addition, exploratory
analyses assessed regional band powers (e.g., occipital o, central
p). Parameters with the highest discriminative performance are
presented in the Results section.

2.5.3 Univariate analysis for identifying
prognostic factors

Univariate analyses were conducted to identify potential
prognostic predictors using chi-square tests for categorical
variables (cardiopulmonary arrest occurrence, rehabilitation status,
photic and nociceptive responses); Mann-Whitney U-tests for
continuous variables (age, Scarpino score) in binary outcome
analyses; and the Kruskal-Wallis test for continuous variables when
assessing three-category neurological outcomes.

2.5.4 Multivariate logistic regression analysis

All variables showing significant associations in the univariate
analysis (P < 0.05) were included in a multivariate logistic
regression model to identify independent predictors of survival
and neurological prognosis. Adjusted odds ratios (ORs) with 95%
CIs were reported.

2.5.5 Multivariate logistic regression
incorporating spectral power and clinical
predictors

A comprehensive multivariate logistic regression model was
constructed incorporating continuous variables (EEG spectral
power values and age) and categorical variables (cardiopulmonary
arrest occurrence, rehabilitation status, and photic stimulation
response) to evaluate electrophysiological and clinical prognostic
predictors. Spectral power values were selected based on prior
statistical evaluations of survival and neurological outcomes,
specifically choosing frequency bands and scalp regions that had
shown the highest AUC values in previous univariable analyses.
For the final integrated multivariable logistic regression model,
we included the spectral feature that demonstrated the strongest
univariate association with outcomes, in order to minimize
overfitting and to focus on the most robust predictors. Thus,
the overall framework for parameter selection was hypothesis-
driven, while the final choice of the most predictive spectral
feature incorporated a data-driven element. To evaluate whether
including clinical predictors could enhance EEG-based model
performance, we generated ROC curves for a baseline model
(using only spectral power values) and an extended model
(integrating additional clinical predictors). The AUC values of
these models were computed and compared. Finally, to determine
whether the integration of clinical variables significantly improved
discriminative performance, we used DeLong’s test for correlated
ROC curves. Internal validation was performed using bootstrap
resampling with 1,000 iterations. For both the multivariable
survival and neurological recovery models, optimism-corrected
AUC values were calculated to assess model stability. The bootstrap
procedure was implemented using the pROC package in R
Statistical Software, and corrected estimates were compared with
the original AUCs to evaluate potential overfitting.

To improve transparency of the signal processing steps,
we provide a schematic flowchart illustrating the preprocessing,
feature extraction, and subsequent statistical analyses (Figure 1).
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Raw EEG

(8 channels, 10s)

Filtering

(0.1s HPF, 60Hz LPF, Notch 50/60Hz)

Artifact rejection
(visual inspection)

Feature extraction

(FFT band powers: 8, 0, a, B)

Derived features
(Global band powers (3, 9, a, B, all channels)
(Exploratory regional powers (e.g., occipital o, central B))

ROC analysis
(AUC, DeLong CI)

Multivariable regression
& | * clinical factors

FIGURE 1

Signal processing workflow for quantitative EEG (qQEEG) analysis
Raw EEG (eight channels, 10 s epochs) was subjected to band-pass
filtering (0.1-60 Hz) and notch filtering at 50/60 Hz
Artifact-contaminated segments were excluded after visual
inspection. Fast Fourier transform (FFT) was applied to extract
power spectral densities in the 8 (1-4 Hz), 6 (4-8 Hz), a (8—-13 Hz),
and B (13-30 Hz) bands. Global average band powers across all
channels were used as the primary qEEG features. In addition,
exploratory analyses assessed regional band powers (e.g., occipital
a, central B). Receiver operating characteristic (ROC) analysis was
performed to calculate the area under the curve (AUC) with 95%
confidence intervals (Cl) using DeLong’s method. Finally,
multivariable regression models were constructed incorporating
both gEEG-derived features and clinical variables. HPF, high-pass
filter; LPF, low-pass filter.

This diagram specifies the raw EEG acquisition parameters, filtering
procedures, artifact rejection method, extracted quantitative
features, and how these features were used to generate ROC curves
and multivariable regression models.

2.5.6 Software and computational tools

All statistical analyses were conducted using R Statistical
Software (version 3.1.0; Foundation for Statistical Computing).
A P-value of < 0.05 was considered statistically significant.
Bonferroni correction was used to account for multiple
comparisons, ensuring the robustness of statistical significance.

2.6 Ethics

The Ethics Committee of Fukushima Medical University
School of Medicine (REC2023-211) approved this study. It was
conducted under the Declaration of Helsinki. As a retrospective
medical record review, the study qualified for exemption
from individual informed consent requirements. However, we
implemented an opt-out process by publicly disclosing study
information, ensuring that patients could withdraw if desired.
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Survey data were obtained for 145 patients
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A\ 4

38 patients excluded

* 21 with incomplete clinical or EEG data

* 5 under ongoing sedation at the time of EEG

* 3 not evaluated due to logistical limitations

* 9 evaluated for reasons unrelated to consciousness
disturbance

v

97 patients included in the study

FIGURE 2

Flow chart describing patient selection. Survey data were obtained for 145 patients. Thirty-eight patients were excluded: 21 owing to incomplete
clinical or electroencephalography (EEG) data, five because of ongoing sedation at the time of EEG, three because the EEG was not conducted
owing to logistical limitations, and nine because the EEG was conducted for reasons unrelated to the evaluation of consciousness disturbance.

Ultimately, 97 patients were included in the final analysis

3 Results

3.1 Demographic characteristics of study
participants

A total of 145 patients were initially screened. Of these, 48 were
excluded: 21 due to incomplete clinical or EEG data, five because of
ongoing sedation at the time of EEG, three not evaluated because
of logistical limitations, and nine because EEG was conducted for
reasons unrelated to consciousness disturbance. Thus, 97 patients
were included in the final analysis (Figure 2 and Supplementary
Table 1). The demographic data are summarized in Table 2, and the
primary illness distribution is shown in Table 1. For 38 deceased
participants, survival duration (in days) from EEG examination to
death was recorded.

3.2 Clinician-assessed prognostic
evaluation (visual evaluation)

Overall, 97 patients were evaluated using the five-tier visual
EEG grading system described by Markand (1984), which is
based on the earlier frameworks of Hockaday et al. (1965),
Prior (1973), as assessed by physician evaluation (Table 3). Five
patients were excluded owing to EEG findings that could not be
classified, specifically because adequate background activity was not
present. ROC analysis showed the classification system’s prognostic
performance:

For survival prognosis (mortality prediction), the AUC was
0.77 (95% CI 0.66-0.89), indicating moderate discrimination
between survival and death. For neurological prognosis, the
AUC was 0.68 (95% CI 0.52-0.82) for predicting recovery,
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0.710 (95% CI 0.55-0.87) for mild disability, and 0.73 (95%
CI 0.61-0.83) for severe disability. This grading system showed
moderate-to-good predictive accuracy, especially for mild to severe
neurological impairment.

3.3 EEG-based prognostic evaluation

Table 4 presents the mean spectral power values for each
frequency band across electrode sites, along with the corresponding
AUC values from ROC analyses for mortality and neurological
prognosis. Analysis of spectral power correlations with survival
duration revealed a significant positive correlation across all bands.
Specifically, the delta band showed a significant positive correlation
with survival duration (p = 0.346, P = 0.033); the theta band showed
a stronger significant correlation (p = 0.443, P = 0.005); the beta
band also showed a significant positive correlation (p = 0.426,
P = 0.008); and the alpha band showed the strongest positive
correlation with survival duration (p = 0.492, P = 0.002).

3.4 Survival and neurological outcome
prediction based on physician
assessment and qEEG

Figure 3 displays ROC curves that compare physician
assessments using the five-tier visual EEG grading system described
by Markand (1984), based on Hockaday et al. (1965), Prior
(1973), with qEEG parameters for predicting outcomes. ROC
curves were generated for each qEEG feature (global and regional
band powers), and the parameters with the highest AUC values
are presented below as representative findings. For the primary
endpoint of favorable neurological recovery (CPC1), the Markand
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TABLE 2 Demographic characteristics of study participants (n = 97).

10.3389/fnins.2025.1644497

Age: mean (SD) (years) 62.6 (18.8)
Sex: male (%) 69 (71)
Hospitalization duration (day): mean (SD) 21.2 (15.8)
Duration between the onset of consciousness impairment and EEG measurement 3.8(3.1)
(day): mean (SD)

Scarpino score 7.1(2.3)
GCS at admission: mean (SD) 6.2 (4.0)
GCS at EEG measurement: mean (SD) 6.8 (4.1)
GCS at discharge: mean (SD) 7.9 (5.1)
Responsiveness to intermittent photic stimulation at EEG measurement: n (%) 10 (10.3)
Responsiveness to pain stimulation response at EEG measurement: n (%) 7(7.2)
Cardiopulmonary arrest (%) 38(39.2)
Targeted temperature management (%) 36 (37.1)
Rehabilitation intervention (%) 58 (59.8)

Antiepileptic drug administration status: # (%)

14 (14.4) [t Phenytoin (n): 2, Levetiracetam (n): 16, Lacosamide (n): 2]

Survival prognosis at the time of discharge: n (%)

Survival 68 (70.1)
Death 29 (29.9)
Survival prognosis at 1 month following discharge n (%)t 24 (24.7)
Survival 20
Death 4
Survival prognosis at 6 months following discharge n (%) 18 (18.6)
Survival 15
Death 3
Survival prognosis at 1 year following discharge n (%)1T 12 (12.4)
Survival 11
Death 1
Neurological prognosis at discharge: n (%)

Positive outcome (CPC 1, 2) (%) 23 (23.7)
Negative outcome (CPC 3, 4, 5) (%) 74 (76.3)
Neurological prognosis at 1 month following discharge: n (%) 21 (21.6)
Positive outcome (CPC 1, 2) (%) 12
Negative outcome (CPC 3, 4, 5) (%) 9
Neurological prognosis at 6 months following discharge: 1 (%) 16 (16.5)
Positive outcome (CPC 1, 2) (%) 9
Negative outcome (CPC 3, 4, 5) (%) 7
Neurological prognosis at 1 year following discharge: n (%)1T 10 (10.3)
Positive outcome (CPC 1, 2) (%) 6
Negative outcome (CPC 3, 4, 5) (%) 4

Values are expressed as mean = SD or n (%) as indicated. Days are counted from the onset of impaired consciousness to the indicated event. Follow-up proportions are calculated with

« »

the denominator being the total cohort (n = 97); the “n” shown under each timepoint represents the number of patients successfully followed. GCS, Glasgow Coma Scale; CPC, Cerebral
Performance Category; SD, standard deviation. T Antiepileptic drugs among patients receiving AEDs at electroencephalography (EEG): Phenytoin (n = 2), Levetiracetam (1 = 16), and
Lacosamide (n = 2). Some patients received multiple AEDs. T Number (and % of the total cohort) with available survival/ neurological outcomes at each timepoint.

classification yielded an AUC of 0.68 (95% CI 0.52-0.82),
which is comparable to the optimal qEEG parameter, occipital
beta power, which had an AUC of 0.726 (95% CI 0.59-0.84;
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DeLong P = 0.699). For the secondary endpoint, survival at
discharge, the Markand ON classification yielded an AUC of
0.77 (95% CI 0.66-0.89), whereas central alpha power showed
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TABLE 3 Visual electroencephalography (EEG) grading (Markand, 1984) and prognoses at discharge.

Survival prognosis at discharge Neurological prognosis at discharge

Survival Death Recovery Mild Severe
Grade 1 12 2 5 4 5
Grade 2 32 5 3 4 30
Grade 3 12 2 4 2 8
Grade 4 0 3 0 0 3
Grade 5 15 6 0 0 21
Burst suppression 2 1 0 0 3
Periodic synchronous discharge 4 1 0 1 4

Numbers are n (row totals shown). Survival refers to status at discharge. Neurological outcomes are categorized by CPC: Recovery, CPC 1; Mild, CPC 2; Severe, CPC 3-5. Five EEGs without
adequate background activity were not classifiable and are excluded from this table. Burst suppression and periodic synchronous discharge denote pattern-based categories observed outside
Grades 1-5. CPC, Cerebral Performance Category.

TABLE 4 Mean spectral values for each frequency band at each electrode site in the survival and deceased groups, along with AUC values from ROC
analysis for predicting mortality and neurological prognosis.

Electrode Survivor Non- AUC of the AUC of the ROC curve for neurological prognosis
location groups survivor ROC curve for
groups survival

prognosis

Recovery Mild disability | Severe
disability

F-delta 60.22 25.94 0.31 0.61 0.62 0.37
F-theta 43.75 9.64 0.74 0.57 0.58 0.61
F-alpha 16.27 299 0.80 0.61 0.64 0.36
F-beta 9.071 2.49 0.787 0.68 0.70 0.32
C-delta 51.39 21.97 0.727 0.61 0.61 0.37
C-theta 45.59 9.64 0.757 0.54 0.58 0.58
C-alpha 15.59 3.19 0.815 0.61 0.62 0.37
C-beta 7.26 2.51 0.804 0.70 0.71 0.31
O-delta 31.33 18.08 0.737 0.64 0.58 0.37
O-theta 23.14 9.45 0.75 0.62 0.58 0.60
O-alpha 9.88 2.46 0.79 0.69 0.59 0.33
O-beta 6.88 2.06 0.769 0.726 0.72 0.29
All-average deltat 42.83 18.66 0.704 0.62 0.61 0.37
All-average thetat 32.91 8.19 0.751 0.57 0.58 0.61
All-average alphat 12.13 2.53 0.804 0.63 0.61 0.36
All-average betat 7.12 2.17 0.79 0.70 0.76 0.29

“Survivor” and “Non-survivor” columns show the mean spectral power (absolute values in |1 V2/Hz) for each frequency band at the indicated electrode region. The right-hand columns report
the area under the ROC curve (AUC) for predicting survival prognosis and neurological outcomes (recovery, mild disability, and severe disability) based on each spectral parameter. AUC
(survival), ROC AUC for mortality prediction. AUC (neurological outcomes), one-vs.-rest ROC AUCs for Recovery (CPC 1), Mild disability (CPC 2), and Severe disability (CPC 3-5). E, frontal
(F3, F4); C, central (C3, C4); O, occipital (O1, O2). All-average indicates the average across F, C, and O regions. Spectral power was computed from a 10 s, artifact-free, eyes-closed segment
per patient using Fast Fourier Transform. Bands were § (1-4 Hz), 6 (4-8 Hz), a (8-13 Hz), and p (13-30 Hz). AUC, area under the ROC curve; ROC, receiver operating characteristic; CPC,
Cerebral Performance Category. T Mean value across all electrodes.

the highest AUC among qEEG parameters (0.815, 95% CI 0.71-  95% CI 0.49-0.75). These models demonstrated moderate to
0.90; DeLong P = 0.523). For other neurological outcomes, the = good discriminative performance, particularly for recovery and
Markand classification yielded AUCs of 0.710 for mild disability =~ mild disability. Additionally, DeLong’s test indicated no significant
and 0.73 for severe disability, which were comparable to the  differences between the physician-based and qEEG-based models
corresponding qEEG-based parameters (all-region average beta  across all comparisons. Supplementary analyses comparing the
power for mild disability, AUC = 0.690, 95% CI 0.58-0.92; all-  Markand and Scarpino systems showed comparable predictive
region average theta power for severe disability, AUC = 0.619,  accuracy for survival (Supplementary Table 2).
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Receiver operating characteristic (ROC) curves for survival and neurological outcome prediction based on physician assessment and quantitative
EEG analysis. (A) ROC curve for survival prediction: physician vs. quantitative electroencephalography (EEG). ROC curves compare the predictive
performance of the physician-based visual EEG grading (Markand, 1984) and quantitative EEG (central alpha power) for mortality prediction. The
blue curve represents the Markand grading [area under the curve (AUC) = 0.770], and the red curve represents central alpha power (AUC = 0.815),
which showed the highest AUC among all quantitative EEG parameters. The gray dashed line indicates the reference for random prediction. The
AUC for central alpha power is higher; however, the difference is not significant (P = 0.523, DeLong test). (B) ROC curve for neurological outcome
prediction: physician vs. quantitative EEG. ROC curves compare the predictive performance of visual EEG grading (blue curves) and quantitative EEG
(9EEG; red curves) for neurological outcomes: (1) recovery, (2) mild disability, and (3) severe disability. For each outcome, the qEEG parameter with
the highest AUC is selected (occipital B power for recovery, all-average g power for mild disability, and all-average 6 power for severe disability;
AUCs = 0.729, 0.768, and 0.619, respectively). The gray curves in each outcome represent the Markand grading (AUC = 0.677, 0.710, and 0.725,
respectively). None of the differences are significant (P = 0.699, 0.621, 0.267; DelLong test).

False Positive Rate

3.5 Univariate analysis for identifying
prognostic factors

Factors significantly associated with survival prognosis
included cardiopulmonary arrest (chi-square tests, P < 0.001),
P < 0.001),
responsiveness to intermittent photic stimulation (chi-square
tests, P = 0.045), and the Scarpino score (Mann-Whitney U-
test, P < 0.001). Conversely, sex (chi-square tests, P = 0.468),
responsiveness to pain stimulation (chi-square tests, P = 0.085),
and age (Mann-Whitney U-test, P = 0.75) showed no significant

rehabilitation intervention (chi-square tests,

association. Factors significantly associated with neurological
prognosis included rehabilitation intervention (chi-square tests,
P = 0.046) and responsiveness to intermittent photic stimulation
(chi-square tests, P < 0.001). Furthermore, age and the Scarpino
score were significant factors distinguishing between patients
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who recovered to their pre-morbid state and those with severe
neurological sequelae regarding neurological prognosis (Kruskal-
Wallis test, P < 0.001). Conversely, cardiopulmonary arrest
(chi-square tests, P = 0.128), sex (chi-square tests, P = 0.139), and
responsiveness to pain stimulation (chi-square tests, P = 0.147)
showed no significant association.

3.6 Multivariate logistic regression
analysis

3.6.1 Logistic regression to determine
neurological outcomes for survival prognosis

A multivariate logistic regression analysis was conducted to
examine independent predictors of survival, with survival coded
as the dependent variable (1 = survived, 0 = deceased). Predictor
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variables included CPA status, rehabilitation participation, photic
stimulation response, Scarpino score, and age. Results are presented
as ORs with 95% ClIs. Rehabilitation emerged as the only significant
independent predictor (OR = 5.31, 95% CI: 1.85-15.2, P = 0.002).
Other variables were not statistically significant, including CPA
(OR = 048, 95% CI: 0.15-1.55, P = 0.217), photic response
(OR = 1.37, 95% CI: 0.18-9.90, P = 0.756), Scarpino score
(OR = 1.25, 95% CI: 0.94-1.66, P = 0.132), and age (OR = 1.00,
95% CI: 0.97-1.03, P = 0.893). The overall model was statistically
significant (likelihood ratio test, P < 0.001), with Nagelkerke’s
pseudo R? of 0.28, indicating moderate explanatory power.

These results show that undergoing rehabilitation is a
significant independent predictor of survival, while other clinical
factors included in the model did not demonstrate significant
associations with survival prognosis.

3.6.2 Logistic regression to determine
neurological outcomes for neurological
prognosis

An ordinal logistic regression analysis was conducted to
examine the association between clinical variables and neurological
prognosis, classified into three ordinal categories: severe disability,
mild disability, and recovery. Two pairwise comparisons were
evaluated: (1) mild disability vs. severe disability and (2)
recovery vs. severe disability. The independent variables included
CPA, rehabilitation participation, photic stimulation response,
Scarpino score, and age.

In the comparison between mild and severe disability, the
Scarpino score emerged as a significant predictor (OR = 1.94,
95% CI: 1.07-3.50, P = 0.028). Higher Scarpino scores were
associated with better neurological outcomes. Other variables,
including cardiac arrest (OR = 0.86, 95% CI: 0.20-3.60, P = 0.861),
rehabilitation (OR = 0.62, 95% CI: 0.15-2.55, P = 0.184), photic
stimulation response (OR = 1.06, 95% CI: 0.22-5.20, P = 0.121),
and age (OR = 0.93, 95% CI: 0.87-1.01, P = 0.287), showed no
significant association with outcome differences. The overall model
was statistically significant (likelihood ratio test, P = 0.030), with a
pseudo R? of 0.21, indicating modest explanatory power.

When comparing recovery to severe disability, the Scarpino
score (OR = 3.96, 95% CI: 1.50-10.5, P = 0.005) and age
(OR = 0.85, 95% CI: 0.77-0.94, P = 0.001) showed significant
associations. Higher Scarpino scores were associated with increased
odds of recovery, while older age was significantly associated with
a lower likelihood of neurological recovery. Conversely, cardiac
arrest (OR = 0.87, 95% CI: 0.21-3.70, P = 0.758), rehabilitation
(OR =0.34, 95% CI: 0.08-1.50, P = 0.151), and photic stimulation
response (OR = 1.96, 95% CI: 0.35-11.0, P = 0.220) showed
no significant associations with outcomes. The overall model
demonstrated strong explanatory power (likelihood ratio test,
P < 0.001), with a pseudo R? of 0.63.

Ordinal logistic regression using CPC as an ordinal outcome
confirmed that Scarpino score and age were significant predictors
of neurological recovery (Supplementary Table 4). Cumulative
AUC analysis produced similar results.

These findings show that the Scarpino score is a robust
predictor of improved neurological prognosis, showing significance
in both pairwise comparisons. Furthermore, advanced age was
independently associated with poor recovery. Other clinical

Frontiers in Neuroscience

10.3389/fnins.2025.1644497

variables did not show a significant relationship with neurological
outcomes in this analysis.

3.6.3 Multivariate logistic regression
incorporating spectral power and clinical
predictors

For survival prognosis, ROC curves were constructed
to compare the predictive performance of univariable and
multivariable models for outcomes (Figure 3). The multivariable
model yielded an AUC of 0.818 (95% CI 0.76-0.94), slightly higher
than the AUC of the univariable model (0.815). This difference
was not significant (P = 0.594; DeLong test), indicating that
the inclusion of additional clinical variables did not improve
predictive performance. For neurological prognosis, ROC curves
were generated similarly to evaluate the predictive performance
of univariable and multivariable models (Figure 4). A one-vs-rest
approach was applied to each class: recovery, mild disability,
and severe disability. For recovery, the multivariable model
showed substantially better discrimination (AUC = 0.936) (95% CI
0.81-0.98) compared with the univariable model (AUC = 0.726),
and the difference was significant (P < 0.001; DeLong test). For
mild disability, AUCs were 0.696 and 0.768, respectively, with
no significant difference (P = 0.272). For severe disability, the
multivariable model achieved an AUC of 0.854 versus 0.619 for
the univariable model; the difference showed a trend but did
not reach statistical significance (P = 0.088). Internal validation
using bootstrap resampling (1,000 iterations) yielded optimism-
corrected AUCs that were nearly identical to the original estimates
for both survival and recovery models (Supplementary Table 3).

4 Discussion

In this study, we investigated the comparative prognostic
value of visual EEG assessment and qEEG analysis in patients
with DoC while integrating clinical prognostic factors to develop
a multimodal prediction model. Unlike many previous studies
that focused primarily on post-anoxic encephalopathy or severe
traumatic brain injury, our cohort encompassed a broader
spectrum of etiologies. This enabled a more comprehensive
evaluation of EEG-based prognostication across heterogeneous
clinical contexts. Our findings, consistent with recent literature,
underline the nuanced but additive role qEEG plays when
combined with traditional clinical and visual EEG metrics.

4.1 Visual EEG vs. qEEG: comparative
prognostic value

Visual EEG interpretation using the EEG grading described
by Markand (1984) showed moderate predictive accuracy for
survival (AUC = 0.770) and varying degrees of neurological
outcomes. While qEEG features, particularly central alpha power,
demonstrated a marginally higher AUC (0.815), this difference was
not significant (P = 0.523). These findings align with the results of
previous studies, indicating that while visual EEG remains useful
in acute and subacute stages (Muller et al., 2020), qEEG offers
complementary objectivity and reproducibility (Ballanti et al., 2022;
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Multivariate logistic regression incorporating spectral power and clinical predictors. (A) For survival prognosis, receiver operating characteristic (ROC)
curves for life prognosis prediction. The univariable model (blue line) is based solely on parietal alpha power (c_a_power), whereas the multivariable
model (orange line) includes additional clinical variables: the presence of cardiopulmonary arrest, rehabilitation status, photic stimulation response,
Scarpino score, and age. The multivariable model shows a slightly higher predictive accuracy [area under the curve (AUC) = 0.818] than the
univariable model (AUC = 0.815), but the difference is not significant (Z = —0.53, P = 0.594; DelLong test). (B) For neurological prognosis, ROC curves
were generated for predicting neurological outcomes using univariable and multivariable models. A one-vs.-rest approach is applied to each class:
(1) recovery, (2) mild disability, and (3) severe disability. The univariable model (quantitative electroencephalography (QEEG) only, blue lines) refers to
a logistic regression model that uses only one qEEG power feature (parietal alpha power) as a predictor. The multivariable model (QEEG+clinical,
orange lines) includes both qEEG features and additional clinical variables, including cardiopulmonary arrest, rehabilitation status, photic stimulation
response, Scarpino score, and age. For recovery, the multivariable model shows substantially better discrimination (AUC = 0.936) than the
univariable model (AUC = 0.729), and the difference is significant (Z = 3.94, P < 0.001; DeLong test). For mild disability, AUCs are 0.696 and 0.768,
respectively, with no significant difference (Z = 1.10, P = 0.272). For severe disability, the multivariable model achieves an AUC of 0.854, versus 0.614

for the univariable model; the difference shows a trend but did not reach statistical significance (Z = 1.71, P = 0.088).

Curley et al., 2022). Notably, the ability of central alpha power to
achieve comparable predictive performance (AUC = 0.815) to that
of expert-rated visual EEG (AUC = 0.770) may hold important
clinical implications. Although the difference was not significant,
qEEG’s ability to match expert human interpretation suggests
potential utility. Unlike visual EEG, which requires specialized
training and manual review, qEEG provides objective, reproducible
results efficiently. This makes it potentially useful as an adjunct
in high-volume clinical settings or institutions lacking EEG
specialists. Nevertheless, qEEG offers several important advantages:
it provides objective and reproducible quantification less dependent
on individual expertise, captures subtle spectral changes not readily
discernible by visual inspection, and enables integration with
multivariate and machine-learning approaches for prognostication.
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Future research incorporating non-linear and connectivity-based
qEEG metrics may further enhance prognostic sensitivity and
complement traditional visual EEG interpretation.

4.2 Spectral features and their
relationship to survival

Central alpha, theta, and beta band powers showed significant
positive correlations with survival duration (all P < 0.01),
reinforcing prior findings that preserved high-frequency EEG
rhythms reflect intact cortico-thalamic function and better
prognosis (Simis et al, 2020; Zhou et al,, 2023). In contrast,
delta activity showed only a weak correlation with survival, likely
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reflecting a nonspecific marker of severe consciousness impairment
(Bagnato et al., 2015). These findings align with current network-
based models of consciousness (Babiloni et al., 2016).

4.3 Prognostic value of alpha and beta
power in DoC

Our analysis shows central alpha power as the most
reliable survival predictor, with global alpha and beta power
correlating significantly with survival duration. These findings
align with established models of cortical-thalamic network
dynamics and hypoxic-ischemic pathophysiology. The Global
Neuronal Workspace model and Integrated Information Theory
explain the essential role of thalamocortical integration in
maintaining consciousness, where alpha oscillations, primarily
generated using thalamocortical loops, serve as key mediators
of network coherence (Mashour et al, 2020; Tononi et al,
2016). Central alpha power reflects the integrity of this network,
explaining its strong association with survival outcomes. The
balance of thalamocortical input strength sustains spectral
transmission, and disruptions in this balance impair cortical
oscillations, leading to reduced alpha power and compromised
survival (Saponati et al., 2022; Dickey et al, 2024). Hypoxic-
ischemic injury induces NMDA receptor-mediated excitotoxicity,
causing calcium influx and oxidative stress that preferentially
affect thalamic and cortical neurons, disrupting thalamocortical
synchrony and reducing alpha power, which explains its prognostic
relevance (Zhang et al., 2020; Li and Wang, 2016). Furthermore,
the disruption of these networks is associated with poor outcomes
in DoC, as the restoration of cortico-thalamic connectivity is
essential for functional recovery (Panda et al., 2022; Edlow et al,,
2021). The observed association of global beta power with survival
duration suggests that excitotoxic damage to cortical circuits, which
diminishes the generation of high-frequency beta oscillations, may
further contribute to adverse outcomes. Given these findings, QEEG
parameters, particularly alpha and beta power, offer an objective
and reproducible framework for prognostication in DoC.

4.4 Multimodal prediction and
integration of clinical features

In this study, rehabilitation interventions were significantly
associated with improved survival outcomes in patients with
DoC, reinforcing evidence of early, intensive rehabilitation.
For example, Zhang et al. (2023) demonstrated that patients
receiving specialized acute-phase rehabilitation had significantly
higher consciousness recovery rates and medical independence,
reducing fatal complications such as aspiration pneumonia.
Similarly, a long-term follow-up study by Katz et al. (2014)
reported that many minimally conscious patients eventually
regained household independence or returned to work or school,
with early rehabilitation and consciousness improvement as key
prognostic factors.

Our these
incorporating a multimodal predictive model for mortality

findings extend previous observations by

in patients with DoC. Central alpha power, measured via
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qEEG, emerged as a strong independent prognostic marker.
Including multiple clinical features in a multivariable model
did not substantially enhance predictive performance (AUC).
Cardiopulmonary arrest, photic stimulation response, Scarpino
score, and age were significant in univariate analyses; however,
only rehabilitation intervention remained an independent
predictor in the final model. This highlights the particularly strong
impact of rehabilitation on survival beyond other risk factors.
Taken together, these results underscore the dual importance of
physiological biomarkers, specifically central alpha power, and
timely rehabilitation for predicting and improving survival in
patients with DoC. However, the limited sample size may have
obscured subtle effects from other clinical variables, warranting
larger-scale studies.

Scarpino score, age, and EEG reactivity were significant
independent predictors in multivariable models. Combining these
with qEEG features significantly improved neurological recovery
prediction (AUC increased from 0.729 to 0.936, P < 0.001),
supporting prior literature on clinical-electrophysiological synergy
(Toppi et al., 2024; Liu et al., 2024; Bauerschmidt et al,
2021). Our findings show the synergistic effect of integrating
clinical variables with qEEG, resulting in a predictive model
that significantly surpasses the accuracy of previous approaches.
Unlike prior studies that primarily focused on predicting mortality
or broad neurological outcomes, our model specifically targets
the prediction of favorable neurological recovery (CPC 1),
achieving a high AUC of 0.936 in this cohort (P < 0.001).
Earlier models by Scarpino et al. (2020), Estraneo et al. (2016),
Bagnato et al. (2015) targeted different endpoints using distinct
methodologies. For instance, Scarpino et al. (2020) used an EEG
scoring system based on the ACNS classification, combined with
CPC evaluation, to predict mortality and long-term neurological
outcomes, achieving an AUC of 0.79. Estranco et al. (2016)
used a standard EEG classification model with an emphasis
on predicting the recovery of consciousness from unresponsive
wakefulness syndrome to a minimally conscious state, with an
AUC of 0.70. Similarly, Bagnato et al. (2015) used a model based
on EEG reactivity, voltage, and frequency to predict transitions
from UWS to MCS, reporting an AUC of 0.71. In contrast,
our study integrated qEEG-derived quantitative features, clinical
factors, and EEG reactivity into a unified multimodal framework,
which enhanced the prediction of favorable neurological recovery
(CPC 1). However, direct comparisons between studies should be
interpreted with caution due to methodological differences. By
focusing on this specific and clinically significant outcome, our
model demonstrated high predictive precision and may provide a
more nuanced and comprehensive prognostic approach compared
to earlier models. Furthermore, this high-precision model has
the potential to serve as a decision-support tool, assisting in
family counseling and treatment stratification for patients with
DoC. The objective and reproducible nature of our approach
may facilitate more personalized and informed decision-making
between clinicians and families, but prospective validation is
required before its clinical utility can be established. Notably, this
significant improvement was observed primarily in the recovery
group (CPC 1) but not in mild/severe disability cases. Recovering
patients may retain partially preserved cortico-thalamic networks
and residual neuroplasticity, whereas severe disability (CPC 4-5)
likely reflects irreversible damage, limiting QEEG’s discriminative
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power. Furthermore, visual EEG often misses covert awareness
or microstate shifts detectable by qEEG, making it particularly
useful in distinguishing recovering patients (Li et al., 2025; Forgacs
et al,, 2014). Notably, mild disability prediction did not improve
in the multivariable model and was slightly lower compared with
the qEEG-only model. This may reflect the intrinsic ambiguity
of mild disability as a prognostic category, lying between clear
recovery and severe impairment. Clinical variables may not
sufficiently differentiate this intermediate state, and their inclusion
could have introduced noise that reduced model discriminability.
Furthermore, the limited sample size in the mild disability group
and potential overlap with adjacent outcome categories may have
contributed to the reduced AUC.

From a statistical standpoint, binary outcome modeling
(recovery vs. non-recovery) provides clearer discrimination than
multi-class stratification (mild vs. severe), explaining the sharper
AUC increase for recovery prediction. Finally, recovery outcomes
are more strongly associated with modifiable clinical factors, such
as rehabilitation and age, whose synergistic effects with EEG metrics
further enhance model performance (Liu et al., 2024).

4.5 Emerging EEG approaches beyond
spectral analysis

Recent large-scale studies have employed machine learning
approaches and nonlinear EEG features for outcome prediction
in DoC (Sitt et al.,, 2014; Panda et al., 2022). These approaches,
including entropy, functional connectivity (phase lag index), and
network dynamics, have demonstrated promising performance and
may complement conventional spectral power analysis. Beyond
spectral features, additional EEG metrics such as microstates and
event-related potentials (e.g., P300, mismatch negativity) also offer
prognostic value (Kotchoubey, 2017). Nonlinear features show
promise in identifying latent signs of network reorganization and
covert awareness (Kulyk, 2019). Furthermore, machine learning
models that incorporate multiple qEEG features achieve higher
classification accuracy and may reduce diagnostic uncertainty
(Stefan et al., 2018). Conventional visual EEG analysis is often
limited by brief recording periods. Prolonged EEG captures diurnal
patterns and sleep spindles, features associated with cortico-
thalamic integrity and improved recovery rates (Forgacs et al., 2014;
Grigg-Damberger et al., 2022; Malinowska et al., 2013). Spindles,
K-complexes, and cyclic alternating patterns represent key markers
for incorporation into future QEEG prognostic frameworks.

4.6 Limitations

This study has several limitations. First, its retrospective, single-
center design limits generalizability. Second, EEG referral and
timing were clinician-driven and not standardized, which may
have introduced selection bias. Third, artifact rejection relied
on visual inspection rather than automated approaches (e.g.,
ICA), potentially limiting reproducibility. However, all recordings
were processed under identical acquisition filters, and artifact-
free segments were consistently selected, ensuring comparability
across patients. Future studies may benefit from incorporating
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automated artifact removal methods to enhance reproducibility.
Fourth, the brief EEG recordings (10 s epochs) may have
missed important features, such as reactivity and sleep elements.
Moreover, since only one artifact-free 10 s segment was chosen
for each patient, the representativeness of this selected epoch
may be limited. This selection process could introduce bias;
thus, future studies should consider using multiple or longer
EEG segments to enhance robustness. Fifth, five patients were
excluded due to inadequate background activity. This may have
selectively removed the most severe cases, potentially leading to an
overestimation of prognostic performance. Sixth, our multivariate
models included several predictors relative to the sample size,
which may increase the risk of overfitting. Although we restricted
the number of predictors to those significant in univariate analyses,
we additionally performed bootstrap validation, which confirmed
the stability of our findings. Nonetheless, external validation in
independent cohorts remains necessary. Seventh, although CPC
is an ordinal outcome, we used a one-vs.-all ROC approach
for comparability with previous studies. This approach does not
fully capture the ordinal structure of CPC, and future studies
with larger cohorts should consider ordinal logistic regression or
cumulative AUC methods. Eighth, the exclusion of patients with
incomplete EEG or clinical data may have introduced selection
bias. Ninth, our analysis focused solely on conventional spectral
power features, omitting non-linear or connectivity-based metrics,
such as entropy and complexity. Including these measures in future
studies could yield complementary and potentially more sensitive
prognostic information. Finally, the visual EEG interpretation in
this study relied exclusively on the EEG grading described by
Markand, which may limit generalizability. While this EEG grading
is widely used for encephalopathy prognosis and served as the basis
for our main visual EEG analysis, supplementary analyses using
the Scarpino system yielded comparable results, thereby partially
supporting the generalizability of our findings. Future studies
should compare multiple validated systems, such as ACNS grading
and the Synek classification, to further enhance external validity.
Future prospective, multicenter studies using long-term recordings
and multimodal EEG features are warranted. Our findings show
that even short-duration, bedside EEG recordings may provide
clinically relevant prognostic information when integrated with
structured clinical assessments. Incorporating simplified qEEG
metrics into routine protocols could enhance the training of
non-specialist clinicians and support timely decision-making in
neurocritical care settings. As this was a retrospective study, the
precise timing of EEG recordings following the discontinuation
of sedative medications was not consistently documented and,
therefore, could not be analyzed. This represents a methodological
limitation that may have influenced the interpretation of EEG
results. Additionally, the Coma Recovery Scale-Revised, which is
considered the gold standard for assessing DoC, was not routinely
administered in our cohort. Consequently, we were unable to
determine patients’ levels of consciousness using Coma Recovery
Scale-Revised scores.

5 Conclusion

In conclusion, our findings suggest that combining qEEG
features with clinical prognostic factors may improve outcome
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prediction in DoC. However, due to the retrospective design and
the short duration of the EEG recordings, these results should
be considered preliminary. Future prospective studies utilizing
longer and standardized EEG protocols are necessary to validate
the clinical utility of qEEG as a bedside decision-support tool.
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