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Background: Electroencephalography (EEG) is widely used to assess prognosis

in patients with disorders of consciousness (DoC). Visual assessments by

physicians and quantitative EEG (qEEG) are commonly used; however, only a few

studies have directly compared their predictive accuracy. Therefore, in this study,

we aimed to compare the prognostic value of visual EEG classification versus

that of qEEG-based spectral analysis for survival and neurological outcomes in

patients with impaired consciousness.

Methods: In this retrospective study, we examined 97 patients with impaired

consciousness admitted to the Emergency and Critical Care Center of

Fukushima Medical University Hospital between April 2018 and December 2023.

Visual EEG grading was performed using a conventional grading system based

on established criteria. Receiver operating characteristic (ROC) curves were

used to compare predictive performance. Multivariate logistic regression models

were developed incorporating qEEG and clinical prognostic factors (Scarpino

score, rehabilitation status, and age). The incremental predictive value of clinical

variables was assessed using DeLong’s test.

Results: Visual EEG assessment showed moderate predictive accuracy [area

under the curve (AUC) = 0.77 for survival; 0.677–0.725 for neurological

outcomes]. qEEG-based models showed comparable performance to visual

EEG classification, with slightly higher AUC values that were not statistically

significant. The addition of clinical factors significantly improved predictive

accuracy, particularly for neurological recovery (AUC improved from 0.729 to

0.936; P < 0.001).
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Conclusion: Combining qEEG features and clinical prognostic factors provided 

a comprehensive approach for outcome prediction in patients with DoC. 

These findings support the potential of a multimodal prognostic framework 

integrating objective EEG metrics and physician-derived evaluations, although 

further prospective validation is required. 

KEYWORDS 

brain dysfunction, critical care, electroencephalography, neurology, outcome 
prediction models 

1 Introduction 

Electroencephalography (EEG), an important tool in clinical 
neurophysiology, is widely used to assess cortical activity and 
diagnose neurological conditions. Its high temporal resolution 
enables real-time monitoring of brain activity, making it 
particularly valuable for critically ill patients with disorders 
of consciousness (DoC) (Bai et al., 2021; Comanducci et al., 
2020). The International Federation of Clinical Neurophysiology 
and the American Clinical Neurophysiology Society (ACNS) 
have established standardized guidelines for EEG recording and 
interpretation, ensuring consistent application, especially in 
intensive care unit settings (Hirsch et al., 2021). 

Traditional visual EEG interpretation involves evaluating 
several critical parameters, including background rhythm, 
responsiveness to external stimuli, epileptiform activity, and 
pathological patterns (burst suppression and electrocerebral 
inactivity) (Muller et al., 2020; Faro et al., 2019; Synek and Shaw, 
1989). These abnormal EEG patterns are strong predictors of poor 
prognosis in patients with severe brain injuries (Janati, 2011). In 
particular, epileptiform discharges and burst suppression patterns 
in post-anoxic encephalopathy have been associated with poor 
recovery and high mortality rates (Lamartine Monteiro et al., 
2016). The five-stage EEG grading system described by Markand 
(1984), based on earlier frameworks by Hockaday et al. (1965), 
Prior (1973), Hockaday et al. (1965), is one of the most widely used 
approaches for assessing EEG abnormalities and their correlation 
with neurological outcomes. However, visual EEG interpretation 
is inherently subjective, prone to inter-observer variability, and 
highly dependent on clinician expertise. 

To address these limitations of visual EEG interpretation, 
quantitative EEG (qEEG) has become a complementary analytical 
approach. qEEG applies mathematical transformations, including 
the fast Fourier transform and spectral analysis, to objectively 
assess EEG signals (Ballanti et al., 2022). This method enables 
precise measurement of power distribution across frequency 
bands, improves predictive accuracy, and reduces inter-observer 
variability. Key qEEG-derived metrics, such as alpha-to-delta 
power ratios, spectral entropy, and burst suppression ratios, are 
robust markers of neurological deterioration (Wiley et al., 2018). 
Furthermore, EEG reactivity tests, which evaluate brainwave 
responses to external stimuli and evoked potentials, assessing 
sensory processing, have also proven valuable in predicting 
neurological outcomes (Pan et al., 2020; Benghanem et al., 2022; 
Pruvost-Robieux et al., 2022). These quantitative approaches 

are particularly beneficial in neurocritical care, where precise 
prognostication guides treatment decisions and facilitates 
discussions with patients’ families (Curley et al., 2022). 

Previous studies have primarily focused on post-anoxic 
encephalopathy or severe traumatic brain injury (Hofmeijer et al., 
2015; Rossetti et al., 2010; O’Donnell et al., 2021), limiting 
prognostic comparisons between visual EEG assessment and qEEG 
across diverse etiologies of consciousness disorders. Most existing 
research has been limited to narrow patient populations, creating a 
gap in the understanding of EEG-based prognostication in broader 
clinical settings. 

Several EEG-based scoring systems have been proposed 
for predicting neurological outcomes in patients with DoC, 
most of which were developed and validated in heterogeneous 
cohorts predominantly composed of patients with traumatic 
brain injuries, but also including individuals with anoxic and 
cerebrovascular etiologies. Estraneo et al. (2016) developed a 
classification system for diagnostic purposes, categorizing EEG 
backgrounds by frequency, voltage, and reactivity. However, its 
design lacked prognostic intent, limiting its predictive utility. 
Bagnato et al. (2015) subsequently created a prognostic EEG 
scoring method using the same descriptors (frequency, voltage, 
and reactivity) and applied it to rehabilitation cohorts, but it 
lacked comprehensive standardization and integration of multiple 
EEG parameters. Building upon these frameworks, Scarpino 
et al. (2019, 2020) applied standardized descriptors from the 
ACNS classification, including continuity, voltage, frequency, 
symmetry, and reactivity, to a large cohort of patients with 
DoC and demonstrated that this approach provided improved 
prognostic accuracy. Their findings showed that the ACNS-based 
EEG score outperformed Estraneo’s diagnostic EEG classification 
and Bagnato’s prognostic EEG score in predicting post-acute 
neurological recovery. Scarpino’s EEG score achieved the highest 
area under the curve (AUC) (AUC = 0.79), surpassing Bagnato’s 
(AUC = 0.71) and Estraneo’s (AUC = 0.70). When combined 
with the Coma Recovery Scale-Revised score, predictive sensitivity 
increased to 76%, and specificity reached 93%. These findings show 
Scarpino’s EEG scoring system to be a significant prognostic tool 
for DoC. 

We hypothesized that qEEG, particularly when combined 
with clinical scores, would outperform visual EEG in prognostic 
accuracy. Therefore, in this study, we aimed to primarily compare 
the prognostic accuracy of visual EEG assessment (EEG grading 
described by Markand (1984), based on the systems of Hockaday 
et al. (1965), Prior (1973)) with that of qEEG in patients with 
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DoC, without restricting the cohort to those with post-anoxic 
encephalopathy or severe traumatic brain injury. Furthermore, we 
sought to enhance predictive precision by integrating established 
prognostic factors, including the Scarpino score and other outcome 
markers, into qEEG analysis. By systematically evaluating the 
strengths and limitations of both assessment methodologies across 
a heterogeneous patient cohort, we aim to contribute to the 
standardization of EEG-based prognostication and enhance clinical 
decision-making in neurocritical care. 

2 Materials and methods 

2.1 Participants 

Patients were eligible for inclusion if they met the following 
criteria: (1) admission to the Emergency and Critical Care 
Center of Fukushima Medical University between April 2018 
and December 2023; (2) impaired consciousness secondary to an 
identifiable medical condition (cardiac arrest, stroke, infection, 
metabolic disturbance); and (3) referral to the Department of 
Neuropsychiatry for EEG examination to evaluate the state of 
consciousness and neurological prognosis. All patients underwent 
EEG assessment during the acute or subacute phase of illness 
following the discontinuation of sedative medications. The 
Glasgow Coma Scale score at admission was documented to 
define the level of consciousness. Therapeutic and surgical 
interventions, including targeted temperature management, 
mechanical ventilation, and cardiopulmonary resuscitation, were 
permitted and recorded. 

From medical records, the following baseline data were 
collected: age, sex, date of admission and discharge, primary illness, 
duration from the onset of impaired consciousness to EEG, GCS 
score at admission, occurrence of cardiopulmonary arrest, presence 
of targeted temperature management, rehabilitation interventions, 
and antiepileptic drug administration status. 

Primary etiologies included post-anoxic encephalopathy 
following cardiac arrest, ischemic and hemorrhagic strokes, 
metabolic/toxic encephalopathy, and other causes. The distribution 
by etiology is summarized in Table 1. 

Patients were excluded if they met any of the following criteria: 
(1) EEG recordings with severe artifacts preventing reliable visual 
or quantitative analysis; (2) persistent administration of sedative 
or anesthetic agents at the time of EEG; (3) incomplete clinical or 
EEG data; or (4) age < 16 years; or (5) EEG not conducted due to 
logistical limitations; or (6) EEG performed for reasons unrelated 
to the evaluation of consciousness disturbance. For patients with a 
history of chronic neurological or psychiatric disorders (epilepsy, 
dementia), EEGs conducted for reasons other than assessment 
of impaired consciousness or neurological prognostication were 
not routinely excluded unless these conditions interfered with 
the interpretation of EEG or outcome measures. Relevant 
comorbidities, including cardiovascular and metabolic disorders, 
were recorded and considered during the statistical analysis. 
All patients underwent EEG for evaluation of consciousness 
disturbance and neurological prognosis. The sample size was 
determined by including all eligible patients who met the inclusion 
criteria during the study period. 

TABLE 1 Summary of primary illnesses of patients. 

Cause Number Rate 

Acute heart failure due to acute coronary 

syndrome and cardiomyopathy 

13 13% 

Acute drug intoxication 2 2% 

Acute respiratory distress syndrome due to 

drowning 

2 2% 

Anaphylactic shock 2 2% 

Arrhythmia 2 2% 

Asphyxia 3 3% 

Cerebral infarction, hemorrhage 2 2% 

Electrolyte abnormality 2 2% 

Head injury (–) 25 26% 

Heatstroke 1 1% 

Hepatic failure 7 7% 

Hypoglycemic coma 3 3% 

Hypothermia 1 1% 

Infection (including septic shock, urinary) 14 14% 

Kidney failure 1 1% 

Neuroleptic malignant syndrome 1 1% 

Rhabdomyolysis 1 1% 

Suicide by hanging 4 4% 

Unspecified 10 10% 

Infection of unknown focus 1 1% 

Values are presented as n (%) with the % calculated against the total cohort 
(n = 97). “Unspecified” indicates an unclear etiology at discharge after diagnostic 
work-up. “Infection (unknown focus)” refers to a systemic infection without an 
identified primary source. 

2.2 Outcomes 

Regarding each prognosis, the prognosis for survival was 
classified as either survival or death, and neurological outcomes 
were categorized as recovery to pre-illness state, mild disability, 
or severe disability. Following the Cerebral Performance Category 
(CPC) scale, neurological outcomes were defined as follows: CPC1: 
Recovery to pre-illness state, CPC2: Mild disability, and CPC3–5: 
Severe disability. If a patient died during hospitalization, the date 
of death was recorded as the discharge date. In addition, when 
available, survival status and CPC scores were evaluated at 1 month, 
6 months, and 1 year after discharge. The primary endpoint was 
favorable neurological recovery (CPC1), while survival at discharge 
served as a secondary endpoint. 

2.3 EEG acquisition and data processing 

Using the international 10–20 system, EEG was recorded from 
eight scalp electrodes (F3, F4, T3, T4, C3, C4, O1, O2). Power 
spectra were calculated from a single 10 s artifact-free, eyes-
closed resting EEG segment for each patient using fast Fourier 
transform analysis. In EEG signal processing, short stationary 
windows of a few seconds are used for spectral estimation 
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(Melman and Victor, 2016, Schomer and Lopes da Silva, 2012). This 
approach was selected to standardize analysis across heterogeneous 
recordings and minimize artifact contamination, consistent with 
prior studies that demonstrate robust EEG markers can be 
extracted from short stationary segments (Engemann et al., 2018, 
Sitt et al., 2014), This duration strikes a balance between signal 
quality and clinical feasibility while aligning with the potential for 
future automated bedside applications. From the outputs obtained 
for each electrode, the total power was computed for four frequency 
bands: δ (1–4 Hz), θ (4–8 Hz), α (8–13 Hz), and β (13–30 Hz). From 
these data, we derived several functional indices, including occipital 
alpha (sum of α band outputs from O1 and O2) and average 
spectral power values across all electrodes (all-average δ, θ, α, or β). 
Notably, values from the T3 and T4 electrodes were excluded from 
these calculations. Artifact rejection was performed through visual 
inspection. Trained EEG technicians and investigators excluded 
epochs containing eye blinks, muscle activity, electrode pops, or 
movement artifacts. For quantitative analysis, a 10 s artifact-free 
resting segment (eyes closed, no stimulation) was selected for 
each patient. Uniform acquisition filters were applied across all 
recordings (high-pass time constant 0.1 s ≈ 1.6 Hz, low-pass 60 Hz, 
notch filter ON) to suppress baseline drift, high-frequency noise, 
and power-line interference. In this study, EEG was conducted by 
certified technicians accredited by the Japanese Society of Clinical 
Neurophysiology. EEG measurements were obtained in the patient 
rooms of the Emergency and Critical Care Center at our hospital. 
In all cases, sedative medications were discontinued at the time of 
examination. The total EEG recording length per patient ranged 
from 7 to 32 min (median 16 min). 

2.4 EEG interpretation 

Two independent physicians conducted EEG interpretations: 
one certified by the Japanese Society of Clinical Neurophysiology 
and the other a board-certified psychiatrist from the Japanese 
Society of Psychiatry and Neurology with specialized EEG 
expertise. Both physicians remained blinded to the patients’ 
clinical backgrounds throughout the evaluation. In addition, the 
investigators conducting the qEEG analysis were also blinded to 
the patients’ clinical outcomes. Using the previously described 
10 s segment for power spectrum analysis, they graded EEG 
findings according to the system described by Markand (1984), 
which is based on the earlier frameworks of Hockaday et al. 
(1965), Prior (1973). For cases where classification was ambiguous, 
the final evaluation was determined through consensus between 
the two physicians. This five-grade system qualitatively assesses 
the severity of EEG abnormalities, particularly in patients with 
impaired consciousness. The grading is based on the predominant 
background activity and its reactivity to external stimuli: Grade 
1 (Normal or near-normal): The background consists primarily 
of alpha activity, occasionally mixed with scattered theta waves. 
Grade 2 (Mild abnormality): The background is dominated by theta 
activity, with an admixture of alpha and delta components. Grade 
3 (Moderate abnormality): The EEG shows sustained polymorphic 
delta activity with minimal faster frequencies. The pattern shows 
variability and retains reactivity to noxious stimulation. Grade 4 
(Severe abnormality): The EEG is characterized by predominantly 

low-amplitude (< 100 µV) delta activity, with no reactivity to 
any stimuli. Burst suppression patterns may be present. Grade 
5 (Profound abnormality): The tracing is nearly flat or shows 
electrical silence, indicating maximal cortical dysfunction. 

Among available EEG scoring systems proposed by Estraneo 
et al. (2016), Bagnato et al. (2015), Scarpino et al. (2019), 
the Scarpino score was selected due to its superior prognostic 
accuracy. Previous comparative analyses have demonstrated that 
the Scarpino score achieves higher AUC values and improved 
sensitivity and specificity metrics compared to other systems. EEG 
recordings were conducted following a referral from the primary 
emergency care team based on clinical judgment concerning the 
need for neurological prognostication. As such, the timing of EEG 
measurements was not standardized across all patients but reflected 
real-world clinical decision-making in the acute and subacute 
phases of impaired consciousness. In addition to the Markand 
grading, the Scarpino EEG score was calculated when suÿcient 
descriptors were available, allowing supplementary comparison of 
prognostic performance. 

2.5 Statistical analysis 

2.5.1 Clinician-assessed prognostic evaluation 
To evaluate the prognostic utility of the visual EEG grading 

described by Markand (1984), based on Hockaday et al. (1965), 
Prior (1973), we analyzed two primary outcomes: survival 
(classified as survival or death) and neurological prognosis 
[categorized using CPC scores: CPC 1 (recovery to pre-illness 
state), CPC 2 (mild disability), and CPC 3–5 (severe disability)]. 

Receiver operating characteristic (ROC) curves were generated 
to assess predictive accuracy using the pROC package in R (version 
3.1.0). Ninety-five percent confidence intervals (Cis) for AUC were 
estimated using the DeLong method. For neurological prognosis, 
we employed the one-vs.-all method, creating three separate ROC 
curve comparisons: Recovery vs. Others (Mild Disability+Severe 
Disability), Mild Disability vs. Others (Recovery+Severe Disability), 
and Severe Disability vs. Others (Recovery+Mild Disability). 
AUC was calculated for each prognosis to evaluate predictive 
performance. Because group sizes were relatively balanced, no 
resampling or cross-validation procedures were applied. 

In addition to one-vs.-all ROC curves, we performed ordinal 
logistic regression treating CPC as an ordinal outcome. Model 
performance was further evaluated with cumulative AUC analysis. 

2.5.2 EEG-based prognostic evaluation 
Quantitative electroencephalography analysis was conducted 

using power spectral values from each electrode to predict 
survival and neurological outcomes. These spectral power values 
were directly treated as continuous predictor variables. The 
ground truth labels (survival status and CPC-based neurological 
categories) were obtained from medical records, independent 
of EEG evaluation. For each candidate EEG feature, predicted 
probabilities were generated and ROC curves were constructed 
by varying classification thresholds. The predicted outcomes were 
then compared against the ground truth labels to calculate AUC 
values. Specifically, ROC analyses were conducted using global 
average powers across all channels in the δ (1–4 Hz), θ (4–8 Hz), 
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α (8–13 Hz), and β (13–30 Hz) bands. In addition, exploratory 
analyses assessed regional band powers (e.g., occipital α, central 
β). Parameters with the highest discriminative performance are 
presented in the Results section. 

2.5.3 Univariate analysis for identifying 
prognostic factors 

Univariate analyses were conducted to identify potential 
prognostic predictors using chi-square tests for categorical 
variables (cardiopulmonary arrest occurrence, rehabilitation status, 
photic and nociceptive responses); Mann-Whitney U-tests for 
continuous variables (age, Scarpino score) in binary outcome 
analyses; and the Kruskal–Wallis test for continuous variables when 
assessing three-category neurological outcomes. 

2.5.4 Multivariate logistic regression analysis 
All variables showing significant associations in the univariate 

analysis (P < 0.05) were included in a multivariate logistic 
regression model to identify independent predictors of survival 
and neurological prognosis. Adjusted odds ratios (ORs) with 95% 
CIs were reported. 

2.5.5 Multivariate logistic regression 
incorporating spectral power and clinical 
predictors 

A comprehensive multivariate logistic regression model was 
constructed incorporating continuous variables (EEG spectral 
power values and age) and categorical variables (cardiopulmonary 
arrest occurrence, rehabilitation status, and photic stimulation 
response) to evaluate electrophysiological and clinical prognostic 
predictors. Spectral power values were selected based on prior 
statistical evaluations of survival and neurological outcomes, 
specifically choosing frequency bands and scalp regions that had 
shown the highest AUC values in previous univariable analyses. 
For the final integrated multivariable logistic regression model, 
we included the spectral feature that demonstrated the strongest 
univariate association with outcomes, in order to minimize 
overfitting and to focus on the most robust predictors. Thus, 
the overall framework for parameter selection was hypothesis-
driven, while the final choice of the most predictive spectral 
feature incorporated a data-driven element. To evaluate whether 
including clinical predictors could enhance EEG-based model 
performance, we generated ROC curves for a baseline model 
(using only spectral power values) and an extended model 
(integrating additional clinical predictors). The AUC values of 
these models were computed and compared. Finally, to determine 
whether the integration of clinical variables significantly improved 
discriminative performance, we used DeLong’s test for correlated 
ROC curves. Internal validation was performed using bootstrap 
resampling with 1,000 iterations. For both the multivariable 
survival and neurological recovery models, optimism-corrected 
AUC values were calculated to assess model stability. The bootstrap 
procedure was implemented using the pROC package in R 
Statistical Software, and corrected estimates were compared with 
the original AUCs to evaluate potential overfitting. 

To improve transparency of the signal processing steps, 
we provide a schematic flowchart illustrating the preprocessing, 
feature extraction, and subsequent statistical analyses (Figure 1). 

FIGURE 1 

Signal processing workflow for quantitative EEG (qEEG) analysis. 
Raw EEG (eight channels, 10 s epochs) was subjected to band-pass 
filtering (0.1–60 Hz) and notch filtering at 50/60 Hz. 
Artifact-contaminated segments were excluded after visual 
inspection. Fast Fourier transform (FFT) was applied to extract 
power spectral densities in the δ (1–4 Hz), θ (4–8 Hz), α (8–13 Hz), 
and β (13–30 Hz) bands. Global average band powers across all 
channels were used as the primary qEEG features. In addition, 
exploratory analyses assessed regional band powers (e.g., occipital 
α, central β). Receiver operating characteristic (ROC) analysis was 
performed to calculate the area under the curve (AUC) with 95% 
confidence intervals (CI) using DeLong’s method. Finally, 
multivariable regression models were constructed incorporating 
both qEEG-derived features and clinical variables. HPF, high-pass 
filter; LPF, low-pass filter. 

This diagram specifies the raw EEG acquisition parameters, filtering 
procedures, artifact rejection method, extracted quantitative 
features, and how these features were used to generate ROC curves 
and multivariable regression models. 

2.5.6 Software and computational tools 
All statistical analyses were conducted using R Statistical 

Software (version 3.1.0; Foundation for Statistical Computing). 
A P-value of < 0.05 was considered statistically significant. 
Bonferroni correction was used to account for multiple 
comparisons, ensuring the robustness of statistical significance. 

2.6 Ethics 

The Ethics Committee of Fukushima Medical University 
School of Medicine (REC2023-211) approved this study. It was 
conducted under the Declaration of Helsinki. As a retrospective 
medical record review, the study qualified for exemption 
from individual informed consent requirements. However, we 
implemented an opt-out process by publicly disclosing study 
information, ensuring that patients could withdraw if desired. 
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FIGURE 2 

Flow chart describing patient selection. Survey data were obtained for 145 patients. Thirty-eight patients were excluded: 21 owing to incomplete 
clinical or electroencephalography (EEG) data, five because of ongoing sedation at the time of EEG, three because the EEG was not conducted 
owing to logistical limitations, and nine because the EEG was conducted for reasons unrelated to the evaluation of consciousness disturbance. 
Ultimately, 97 patients were included in the final analysis. 

3 Results 

3.1 Demographic characteristics of study 
participants 

A total of 145 patients were initially screened. Of these, 48 were 
excluded: 21 due to incomplete clinical or EEG data, five because of 
ongoing sedation at the time of EEG, three not evaluated because 
of logistical limitations, and nine because EEG was conducted for 
reasons unrelated to consciousness disturbance. Thus, 97 patients 
were included in the final analysis (Figure 2 and Supplementary 
Table 1). The demographic data are summarized in Table 2, and the 
primary illness distribution is shown in Table 1. For 38 deceased 
participants, survival duration (in days) from EEG examination to 
death was recorded. 

3.2 Clinician-assessed prognostic 
evaluation (visual evaluation) 

Overall, 97 patients were evaluated using the five-tier visual 
EEG grading system described by Markand (1984), which is 
based on the earlier frameworks of Hockaday et al. (1965), 
Prior (1973), as assessed by physician evaluation (Table 3). Five 
patients were excluded owing to EEG findings that could not be 
classified, specifically because adequate background activity was not 
present. ROC analysis showed the classification system’s prognostic 
performance: 

For survival prognosis (mortality prediction), the AUC was 
0.77 (95% CI 0.66–0.89), indicating moderate discrimination 
between survival and death. For neurological prognosis, the 
AUC was 0.68 (95% CI 0.52–0.82) for predicting recovery, 

0.710 (95% CI 0.55–0.87) for mild disability, and 0.73 (95% 
CI 0.61–0.83) for severe disability. This grading system showed 
moderate-to-good predictive accuracy, especially for mild to severe 
neurological impairment. 

3.3 EEG-based prognostic evaluation 

Table 4 presents the mean spectral power values for each 
frequency band across electrode sites, along with the corresponding 
AUC values from ROC analyses for mortality and neurological 
prognosis. Analysis of spectral power correlations with survival 
duration revealed a significant positive correlation across all bands. 
Specifically, the delta band showed a significant positive correlation 
with survival duration (ρ = 0.346, P = 0.033); the theta band showed 
a stronger significant correlation (ρ = 0.443, P = 0.005); the beta 
band also showed a significant positive correlation (ρ = 0.426, 
P = 0.008); and the alpha band showed the strongest positive 
correlation with survival duration (ρ = 0.492, P = 0.002). 

3.4 Survival and neurological outcome 
prediction based on physician 
assessment and qEEG 

Figure 3 displays ROC curves that compare physician 
assessments using the five-tier visual EEG grading system described 
by Markand (1984), based on Hockaday et al. (1965), Prior 
(1973), with qEEG parameters for predicting outcomes. ROC 
curves were generated for each qEEG feature (global and regional 
band powers), and the parameters with the highest AUC values 
are presented below as representative findings. For the primary 
endpoint of favorable neurological recovery (CPC1), the Markand 
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TABLE 2 Demographic characteristics of study participants (n = 97). 

Variable Description 

Age: mean (SD) (years) 62.6 (18.8) 

Sex: male (%) 69 (71) 

Hospitalization duration (day): mean (SD) 21.2 (15.8) 

Duration between the onset of consciousness impairment and EEG measurement 
(day): mean (SD) 

3.8 (3.1) 

Scarpino score 7.1 (2.3) 

GCS at admission: mean (SD) 6.2 (4.0) 

GCS at EEG measurement: mean (SD) 6.8 (4.1) 

GCS at discharge: mean (SD) 7.9 (5.1) 

Responsiveness to intermittent photic stimulation at EEG measurement: n (%) 10 (10.3) 

Responsiveness to pain stimulation response at EEG measurement: n (%) 7 (7.2) 

Cardiopulmonary arrest (%) 38 (39.2) 

Targeted temperature management (%) 36 (37.1) 

Rehabilitation intervention (%) 58 (59.8) 

Antiepileptic drug administration status: n (%) 14 (14.4) [†Phenytoin (n): 2, Levetiracetam (n): 16, Lacosamide (n): 2] 

Survival prognosis at the time of discharge: n (%) 

Survival 68 (70.1) 

Death 29 (29.9) 

Survival prognosis at 1 month following discharge n (%)†† 24 (24.7) 

Survival 20 

Death 4 

Survival prognosis at 6 months following discharge n (%)†† 18 (18.6) 

Survival 15 

Death 3 

Survival prognosis at 1 year following discharge n (%)†† 12 (12.4) 

Survival 11 

Death 1 

Neurological prognosis at discharge: n (%) 

Positive outcome (CPC 1, 2) (%) 23 (23.7) 

Negative outcome (CPC 3, 4, 5) (%) 74 (76.3) 

Neurological prognosis at 1 month following discharge: n (%)†† 21 (21.6) 

Positive outcome (CPC 1, 2) (%) 12 

Negative outcome (CPC 3, 4, 5) (%) 9 

Neurological prognosis at 6 months following discharge: n (%)†† 16 (16.5) 

Positive outcome (CPC 1, 2) (%) 9 

Negative outcome (CPC 3, 4, 5) (%) 7 

Neurological prognosis at 1 year following discharge: n (%)†† 10 (10.3) 

Positive outcome (CPC 1, 2) (%) 6 

Negative outcome (CPC 3, 4, 5) (%) 4 

Values are expressed as mean ± SD or n (%) as indicated. Days are counted from the onset of impaired consciousness to the indicated event. Follow-up proportions are calculated with 
the denominator being the total cohort (n = 97); the “n” shown under each timepoint represents the number of patients successfully followed. GCS, Glasgow Coma Scale; CPC, Cerebral 
Performance Category; SD, standard deviation. †Antiepileptic drugs among patients receiving AEDs at electroencephalography (EEG): Phenytoin (n = 2), Levetiracetam (n = 16), and 
Lacosamide (n = 2). Some patients received multiple AEDs. ††Number (and % of the total cohort) with available survival/neurological outcomes at each timepoint. 

classification yielded an AUC of 0.68 (95% CI 0.52–0.82), 
which is comparable to the optimal qEEG parameter, occipital 
beta power, which had an AUC of 0.726 (95% CI 0.59–0.84; 

DeLong P = 0.699). For the secondary endpoint, survival at 
discharge, the Markand ON classification yielded an AUC of 
0.77 (95% CI 0.66–0.89), whereas central alpha power showed 
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TABLE 3 Visual electroencephalography (EEG) grading (Markand, 1984) and prognoses at discharge. 

Grade Survival prognosis at discharge Neurological prognosis at discharge 

Survival Death Recovery Mild Severe 

Grade 1 12 2 5 4 5 

Grade 2 32 5 3 4 30 

Grade 3 12 2 4 2 8 

Grade 4 0 3 0 0 3 

Grade 5 15 6 0 0 21 

Burst suppression 2 1 0 0 3 

Periodic synchronous discharge 4 1 0 1 4 

Numbers are n (row totals shown). Survival refers to status at discharge. Neurological outcomes are categorized by CPC: Recovery, CPC 1; Mild, CPC 2; Severe, CPC 3–5. Five EEGs without 
adequate background activity were not classifiable and are excluded from this table. Burst suppression and periodic synchronous discharge denote pattern-based categories observed outside 
Grades 1–5. CPC, Cerebral Performance Category. 

TABLE 4 Mean spectral values for each frequency band at each electrode site in the survival and deceased groups, along with AUC values from ROC 
analysis for predicting mortality and neurological prognosis. 

Electrode 
location 

Survivor 
groups 

Non-
survivor 
groups 

AUC of the 
ROC curve for 
survival 
prognosis 

AUC of the ROC curve for neurological prognosis 

Recovery Mild disability Severe 
disability 

F-delta 60.22 25.94 0.31 0.61 0.62 0.37 

F-theta 43.75 9.64 0.74 0.57 0.58 0.61 

F-alpha 16.27 2.99 0.80 0.61 0.64 0.36 

F-beta 9.071 2.49 0.787 0.68 0.70 0.32 

C-delta 51.39 21.97 0.727 0.61 0.61 0.37 

C-theta 45.59 9.64 0.757 0.54 0.58 0.58 

C-alpha 15.59 3.19 0.815 0.61 0.62 0.37 

C-beta 7.26 2.51 0.804 0.70 0.71 0.31 

O-delta 31.33 18.08 0.737 0.64 0.58 0.37 

O-theta 23.14 9.45 0.75 0.62 0.58 0.60 

O-alpha 9.88 2.46 0.79 0.69 0.59 0.33 

O-beta 6.88 2.06 0.769 0.726 0.72 0.29 

All-average delta† 42.83 18.66 0.704 0.62 0.61 0.37 

All-average theta† 32.91 8.19 0.751 0.57 0.58 0.61 

All-average alpha† 12.13 2.53 0.804 0.63 0.61 0.36 

All-average beta† 7.12 2.17 0.79 0.70 0.76 0.29 

“Survivor” and “Non-survivor” columns show the mean spectral power (absolute values in µV2/Hz) for each frequency band at the indicated electrode region. The right-hand columns report 
the area under the ROC curve (AUC) for predicting survival prognosis and neurological outcomes (recovery, mild disability, and severe disability) based on each spectral parameter. AUC 
(survival), ROC AUC for mortality prediction. AUC (neurological outcomes), one-vs.-rest ROC AUCs for Recovery (CPC 1), Mild disability (CPC 2), and Severe disability (CPC 3–5). F, frontal 
(F3, F4); C, central (C3, C4); O, occipital (O1, O2). All-average indicates the average across F, C, and O regions. Spectral power was computed from a 10 s, artifact-free, eyes-closed segment 
per patient using Fast Fourier Transform. Bands were δ (1–4 Hz), θ (4–8 Hz), α (8–13 Hz), and β (13–30 Hz). AUC, area under the ROC curve; ROC, receiver operating characteristic; CPC, 
Cerebral Performance Category. †Mean value across all electrodes. 

the highest AUC among qEEG parameters (0.815, 95% CI 0.71– 

0.90; DeLong P = 0.523). For other neurological outcomes, the 

Markand classification yielded AUCs of 0.710 for mild disability 

and 0.73 for severe disability, which were comparable to the 

corresponding qEEG-based parameters (all-region average beta 

power for mild disability, AUC = 0.690, 95% CI 0.58–0.92; all-
region average theta power for severe disability, AUC = 0.619, 

95% CI 0.49–0.75). These models demonstrated moderate to 

good discriminative performance, particularly for recovery and 

mild disability. Additionally, DeLong’s test indicated no significant 
dierences between the physician-based and qEEG-based models 
across all comparisons. Supplementary analyses comparing the 

Markand and Scarpino systems showed comparable predictive 

accuracy for survival (Supplementary Table 2). 

Frontiers in Neuroscience 08 frontiersin.org 

https://doi.org/10.3389/fnins.2025.1644497
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-19-1644497 October 9, 2025 Time: 13:50 # 9

Mori et al. 10.3389/fnins.2025.1644497 

FIGURE 3 

Receiver operating characteristic (ROC) curves for survival and neurological outcome prediction based on physician assessment and quantitative 
EEG analysis. (A) ROC curve for survival prediction: physician vs. quantitative electroencephalography (EEG). ROC curves compare the predictive 
performance of the physician-based visual EEG grading (Markand, 1984) and quantitative EEG (central alpha power) for mortality prediction. The 
blue curve represents the Markand grading [area under the curve (AUC) = 0.770], and the red curve represents central alpha power (AUC = 0.815), 
which showed the highest AUC among all quantitative EEG parameters. The gray dashed line indicates the reference for random prediction. The 
AUC for central alpha power is higher; however, the difference is not significant (P = 0.523, DeLong test). (B) ROC curve for neurological outcome 
prediction: physician vs. quantitative EEG. ROC curves compare the predictive performance of visual EEG grading (blue curves) and quantitative EEG 
(qEEG; red curves) for neurological outcomes: (1) recovery, (2) mild disability, and (3) severe disability. For each outcome, the qEEG parameter with 
the highest AUC is selected (occipital β power for recovery, all-average β power for mild disability, and all-average θ power for severe disability; 
AUCs = 0.729, 0.768, and 0.619, respectively). The gray curves in each outcome represent the Markand grading (AUC = 0.677, 0.710, and 0.725, 
respectively). None of the differences are significant (P = 0.699, 0.621, 0.267; DeLong test). 

3.5 Univariate analysis for identifying 
prognostic factors 

Factors significantly associated with survival prognosis 
included cardiopulmonary arrest (chi-square tests, P < 0.001), 
rehabilitation intervention (chi-square tests, P < 0.001), 
responsiveness to intermittent photic stimulation (chi-square 
tests, P = 0.045), and the Scarpino score (Mann–Whitney U-
test, P < 0.001). Conversely, sex (chi-square tests, P = 0.468), 
responsiveness to pain stimulation (chi-square tests, P = 0.085), 
and age (Mann–Whitney U-test, P = 0.75) showed no significant 
association. Factors significantly associated with neurological 
prognosis included rehabilitation intervention (chi-square tests, 
P = 0.046) and responsiveness to intermittent photic stimulation 
(chi-square tests, P < 0.001). Furthermore, age and the Scarpino 
score were significant factors distinguishing between patients 

who recovered to their pre-morbid state and those with severe 
neurological sequelae regarding neurological prognosis (Kruskal– 
Wallis test, P < 0.001). Conversely, cardiopulmonary arrest 
(chi-square tests, P = 0.128), sex (chi-square tests, P = 0.139), and 
responsiveness to pain stimulation (chi-square tests, P = 0.147) 
showed no significant association. 

3.6 Multivariate logistic regression 
analysis 

3.6.1 Logistic regression to determine 
neurological outcomes for survival prognosis 

A multivariate logistic regression analysis was conducted to 
examine independent predictors of survival, with survival coded 
as the dependent variable (1 = survived, 0 = deceased). Predictor 
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variables included CPA status, rehabilitation participation, photic 
stimulation response, Scarpino score, and age. Results are presented 
as ORs with 95% CIs. Rehabilitation emerged as the only significant 
independent predictor (OR = 5.31, 95% CI: 1.85–15.2, P = 0.002). 
Other variables were not statistically significant, including CPA 
(OR = 0.48, 95% CI: 0.15–1.55, P = 0.217), photic response 
(OR = 1.37, 95% CI: 0.18–9.90, P = 0.756), Scarpino score 
(OR = 1.25, 95% CI: 0.94–1.66, P = 0.132), and age (OR = 1.00, 
95% CI: 0.97–1.03, P = 0.893). The overall model was statistically 
significant (likelihood ratio test, P < 0.001), with Nagelkerke’s 
pseudo R2 of 0.28, indicating moderate explanatory power. 

These results show that undergoing rehabilitation is a 
significant independent predictor of survival, while other clinical 
factors included in the model did not demonstrate significant 
associations with survival prognosis. 

3.6.2 Logistic regression to determine 
neurological outcomes for neurological 
prognosis 

An ordinal logistic regression analysis was conducted to 
examine the association between clinical variables and neurological 
prognosis, classified into three ordinal categories: severe disability, 
mild disability, and recovery. Two pairwise comparisons were 
evaluated: (1) mild disability vs. severe disability and (2) 
recovery vs. severe disability. The independent variables included 
CPA, rehabilitation participation, photic stimulation response, 
Scarpino score, and age. 

In the comparison between mild and severe disability, the 
Scarpino score emerged as a significant predictor (OR = 1.94, 
95% CI: 1.07–3.50, P = 0.028). Higher Scarpino scores were 
associated with better neurological outcomes. Other variables, 
including cardiac arrest (OR = 0.86, 95% CI: 0.20–3.60, P = 0.861), 
rehabilitation (OR = 0.62, 95% CI: 0.15–2.55, P = 0.184), photic 
stimulation response (OR = 1.06, 95% CI: 0.22–5.20, P = 0.121), 
and age (OR = 0.93, 95% CI: 0.87–1.01, P = 0.287), showed no 
significant association with outcome dierences. The overall model 
was statistically significant (likelihood ratio test, P = 0.030), with a 
pseudo R2 of 0.21, indicating modest explanatory power. 

When comparing recovery to severe disability, the Scarpino 
score (OR = 3.96, 95% CI: 1.50–10.5, P = 0.005) and age 
(OR = 0.85, 95% CI: 0.77–0.94, P = 0.001) showed significant 
associations. Higher Scarpino scores were associated with increased 
odds of recovery, while older age was significantly associated with 
a lower likelihood of neurological recovery. Conversely, cardiac 
arrest (OR = 0.87, 95% CI: 0.21–3.70, P = 0.758), rehabilitation 
(OR = 0.34, 95% CI: 0.08–1.50, P = 0.151), and photic stimulation 
response (OR = 1.96, 95% CI: 0.35–11.0, P = 0.220) showed 
no significant associations with outcomes. The overall model 
demonstrated strong explanatory power (likelihood ratio test, 
P < 0.001), with a pseudo R2 of 0.63. 

Ordinal logistic regression using CPC as an ordinal outcome 
confirmed that Scarpino score and age were significant predictors 
of neurological recovery (Supplementary Table 4). Cumulative 
AUC analysis produced similar results. 

These findings show that the Scarpino score is a robust 
predictor of improved neurological prognosis, showing significance 
in both pairwise comparisons. Furthermore, advanced age was 
independently associated with poor recovery. Other clinical 

variables did not show a significant relationship with neurological 
outcomes in this analysis. 

3.6.3 Multivariate logistic regression 
incorporating spectral power and clinical 
predictors 

For survival prognosis, ROC curves were constructed 
to compare the predictive performance of univariable and 
multivariable models for outcomes (Figure 3). The multivariable 
model yielded an AUC of 0.818 (95% CI 0.76–0.94), slightly higher 
than the AUC of the univariable model (0.815). This dierence 
was not significant (P = 0.594; DeLong test), indicating that 
the inclusion of additional clinical variables did not improve 
predictive performance. For neurological prognosis, ROC curves 
were generated similarly to evaluate the predictive performance 
of univariable and multivariable models (Figure 4). A one-vs-rest 
approach was applied to each class: recovery, mild disability, 
and severe disability. For recovery, the multivariable model 
showed substantially better discrimination (AUC = 0.936) (95% CI 
0.81–0.98) compared with the univariable model (AUC = 0.726), 
and the dierence was significant (P < 0.001; DeLong test). For 
mild disability, AUCs were 0.696 and 0.768, respectively, with 
no significant dierence (P = 0.272). For severe disability, the 
multivariable model achieved an AUC of 0.854 versus 0.619 for 
the univariable model; the dierence showed a trend but did 
not reach statistical significance (P = 0.088). Internal validation 
using bootstrap resampling (1,000 iterations) yielded optimism-
corrected AUCs that were nearly identical to the original estimates 
for both survival and recovery models (Supplementary Table 3). 

4 Discussion 

In this study, we investigated the comparative prognostic 
value of visual EEG assessment and qEEG analysis in patients 
with DoC while integrating clinical prognostic factors to develop 
a multimodal prediction model. Unlike many previous studies 
that focused primarily on post-anoxic encephalopathy or severe 
traumatic brain injury, our cohort encompassed a broader 
spectrum of etiologies. This enabled a more comprehensive 
evaluation of EEG-based prognostication across heterogeneous 
clinical contexts. Our findings, consistent with recent literature, 
underline the nuanced but additive role qEEG plays when 
combined with traditional clinical and visual EEG metrics. 

4.1 Visual EEG vs. qEEG: comparative 
prognostic value 

Visual EEG interpretation using the EEG grading described 
by Markand (1984) showed moderate predictive accuracy for 
survival (AUC = 0.770) and varying degrees of neurological 
outcomes. While qEEG features, particularly central alpha power, 
demonstrated a marginally higher AUC (0.815), this dierence was 
not significant (P = 0.523). These findings align with the results of 
previous studies, indicating that while visual EEG remains useful 
in acute and subacute stages (Muller et al., 2020), qEEG oers 
complementary objectivity and reproducibility (Ballanti et al., 2022; 
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FIGURE 4 

Multivariate logistic regression incorporating spectral power and clinical predictors. (A) For survival prognosis, receiver operating characteristic (ROC) 
curves for life prognosis prediction. The univariable model (blue line) is based solely on parietal alpha power (c_α_power), whereas the multivariable 
model (orange line) includes additional clinical variables: the presence of cardiopulmonary arrest, rehabilitation status, photic stimulation response, 
Scarpino score, and age. The multivariable model shows a slightly higher predictive accuracy [area under the curve (AUC) = 0.818] than the 
univariable model (AUC = 0.815), but the difference is not significant (Z = –0.53, P = 0.594; DeLong test). (B) For neurological prognosis, ROC curves 
were generated for predicting neurological outcomes using univariable and multivariable models. A one-vs.-rest approach is applied to each class: 
(1) recovery, (2) mild disability, and (3) severe disability. The univariable model (quantitative electroencephalography (qEEG) only, blue lines) refers to 
a logistic regression model that uses only one qEEG power feature (parietal alpha power) as a predictor. The multivariable model (qEEG+clinical, 
orange lines) includes both qEEG features and additional clinical variables, including cardiopulmonary arrest, rehabilitation status, photic stimulation 
response, Scarpino score, and age. For recovery, the multivariable model shows substantially better discrimination (AUC = 0.936) than the 
univariable model (AUC = 0.729), and the difference is significant (Z = 3.94, P < 0.001; DeLong test). For mild disability, AUCs are 0.696 and 0.768, 
respectively, with no significant difference (Z = 1.10, P = 0.272). For severe disability, the multivariable model achieves an AUC of 0.854, versus 0.614 
for the univariable model; the difference shows a trend but did not reach statistical significance (Z = 1.71, P = 0.088). 

Curley et al., 2022). Notably, the ability of central alpha power to 
achieve comparable predictive performance (AUC = 0.815) to that 
of expert-rated visual EEG (AUC = 0.770) may hold important 
clinical implications. Although the dierence was not significant, 
qEEG’s ability to match expert human interpretation suggests 
potential utility. Unlike visual EEG, which requires specialized 
training and manual review, qEEG provides objective, reproducible 
results eÿciently. This makes it potentially useful as an adjunct 
in high-volume clinical settings or institutions lacking EEG 
specialists. Nevertheless, qEEG oers several important advantages: 
it provides objective and reproducible quantification less dependent 
on individual expertise, captures subtle spectral changes not readily 
discernible by visual inspection, and enables integration with 
multivariate and machine-learning approaches for prognostication. 

Future research incorporating non-linear and connectivity-based 
qEEG metrics may further enhance prognostic sensitivity and 
complement traditional visual EEG interpretation. 

4.2 Spectral features and their 
relationship to survival 

Central alpha, theta, and beta band powers showed significant 
positive correlations with survival duration (all P < 0.01), 
reinforcing prior findings that preserved high-frequency EEG 
rhythms reflect intact cortico-thalamic function and better 
prognosis (Simis et al., 2020; Zhou et al., 2023). In contrast, 
delta activity showed only a weak correlation with survival, likely 
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reflecting a nonspecific marker of severe consciousness impairment 
(Bagnato et al., 2015). These findings align with current network-
based models of consciousness (Babiloni et al., 2016). 

4.3 Prognostic value of alpha and beta 
power in DoC 

Our analysis shows central alpha power as the most 
reliable survival predictor, with global alpha and beta power 
correlating significantly with survival duration. These findings 
align with established models of cortical-thalamic network 
dynamics and hypoxic-ischemic pathophysiology. The Global 
Neuronal Workspace model and Integrated Information Theory 
explain the essential role of thalamocortical integration in 
maintaining consciousness, where alpha oscillations, primarily 
generated using thalamocortical loops, serve as key mediators 
of network coherence (Mashour et al., 2020; Tononi et al., 
2016). Central alpha power reflects the integrity of this network, 
explaining its strong association with survival outcomes. The 
balance of thalamocortical input strength sustains spectral 
transmission, and disruptions in this balance impair cortical 
oscillations, leading to reduced alpha power and compromised 
survival (Saponati et al., 2022; Dickey et al., 2024). Hypoxic-
ischemic injury induces NMDA receptor-mediated excitotoxicity, 
causing calcium influx and oxidative stress that preferentially 
aect thalamic and cortical neurons, disrupting thalamocortical 
synchrony and reducing alpha power, which explains its prognostic 
relevance (Zhang et al., 2020; Li and Wang, 2016). Furthermore, 
the disruption of these networks is associated with poor outcomes 
in DoC, as the restoration of cortico-thalamic connectivity is 
essential for functional recovery (Panda et al., 2022; Edlow et al., 
2021). The observed association of global beta power with survival 
duration suggests that excitotoxic damage to cortical circuits, which 
diminishes the generation of high-frequency beta oscillations, may 
further contribute to adverse outcomes. Given these findings, qEEG 
parameters, particularly alpha and beta power, oer an objective 
and reproducible framework for prognostication in DoC. 

4.4 Multimodal prediction and 
integration of clinical features 

In this study, rehabilitation interventions were significantly 
associated with improved survival outcomes in patients with 
DoC, reinforcing evidence of early, intensive rehabilitation. 
For example, Zhang et al. (2023) demonstrated that patients 
receiving specialized acute-phase rehabilitation had significantly 
higher consciousness recovery rates and medical independence, 
reducing fatal complications such as aspiration pneumonia. 
Similarly, a long-term follow-up study by Katz et al. (2014) 
reported that many minimally conscious patients eventually 
regained household independence or returned to work or school, 
with early rehabilitation and consciousness improvement as key 
prognostic factors. 

Our findings extend these previous observations by 
incorporating a multimodal predictive model for mortality 
in patients with DoC. Central alpha power, measured via 

qEEG, emerged as a strong independent prognostic marker. 
Including multiple clinical features in a multivariable model 
did not substantially enhance predictive performance (AUC). 
Cardiopulmonary arrest, photic stimulation response, Scarpino 
score, and age were significant in univariate analyses; however, 
only rehabilitation intervention remained an independent 
predictor in the final model. This highlights the particularly strong 
impact of rehabilitation on survival beyond other risk factors. 
Taken together, these results underscore the dual importance of 
physiological biomarkers, specifically central alpha power, and 
timely rehabilitation for predicting and improving survival in 
patients with DoC. However, the limited sample size may have 
obscured subtle eects from other clinical variables, warranting 
larger-scale studies. 

Scarpino score, age, and EEG reactivity were significant 
independent predictors in multivariable models. Combining these 
with qEEG features significantly improved neurological recovery 
prediction (AUC increased from 0.729 to 0.936, P < 0.001), 
supporting prior literature on clinical-electrophysiological synergy 
(Toppi et al., 2024; Liu et al., 2024; Bauerschmidt et al., 
2021). Our findings show the synergistic eect of integrating 
clinical variables with qEEG, resulting in a predictive model 
that significantly surpasses the accuracy of previous approaches. 
Unlike prior studies that primarily focused on predicting mortality 
or broad neurological outcomes, our model specifically targets 
the prediction of favorable neurological recovery (CPC 1), 
achieving a high AUC of 0.936 in this cohort (P < 0.001). 
Earlier models by Scarpino et al. (2020), Estraneo et al. (2016), 
Bagnato et al. (2015) targeted dierent endpoints using distinct 
methodologies. For instance, Scarpino et al. (2020) used an EEG 
scoring system based on the ACNS classification, combined with 
CPC evaluation, to predict mortality and long-term neurological 
outcomes, achieving an AUC of 0.79. Estraneo et al. (2016) 
used a standard EEG classification model with an emphasis 
on predicting the recovery of consciousness from unresponsive 
wakefulness syndrome to a minimally conscious state, with an 
AUC of 0.70. Similarly, Bagnato et al. (2015) used a model based 
on EEG reactivity, voltage, and frequency to predict transitions 
from UWS to MCS, reporting an AUC of 0.71. In contrast, 
our study integrated qEEG-derived quantitative features, clinical 
factors, and EEG reactivity into a unified multimodal framework, 
which enhanced the prediction of favorable neurological recovery 
(CPC 1). However, direct comparisons between studies should be 
interpreted with caution due to methodological dierences. By 
focusing on this specific and clinically significant outcome, our 
model demonstrated high predictive precision and may provide a 
more nuanced and comprehensive prognostic approach compared 
to earlier models. Furthermore, this high-precision model has 
the potential to serve as a decision-support tool, assisting in 
family counseling and treatment stratification for patients with 
DoC. The objective and reproducible nature of our approach 
may facilitate more personalized and informed decision-making 
between clinicians and families, but prospective validation is 
required before its clinical utility can be established. Notably, this 
significant improvement was observed primarily in the recovery 
group (CPC 1) but not in mild/severe disability cases. Recovering 
patients may retain partially preserved cortico-thalamic networks 
and residual neuroplasticity, whereas severe disability (CPC 4–5) 
likely reflects irreversible damage, limiting qEEG’s discriminative 
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power. Furthermore, visual EEG often misses covert awareness 
or microstate shifts detectable by qEEG, making it particularly 
useful in distinguishing recovering patients (Li et al., 2025; Forgacs 
et al., 2014). Notably, mild disability prediction did not improve 
in the multivariable model and was slightly lower compared with 
the qEEG-only model. This may reflect the intrinsic ambiguity 
of mild disability as a prognostic category, lying between clear 
recovery and severe impairment. Clinical variables may not 
suÿciently dierentiate this intermediate state, and their inclusion 
could have introduced noise that reduced model discriminability. 
Furthermore, the limited sample size in the mild disability group 
and potential overlap with adjacent outcome categories may have 
contributed to the reduced AUC. 

From a statistical standpoint, binary outcome modeling 
(recovery vs. non-recovery) provides clearer discrimination than 
multi-class stratification (mild vs. severe), explaining the sharper 
AUC increase for recovery prediction. Finally, recovery outcomes 
are more strongly associated with modifiable clinical factors, such 
as rehabilitation and age, whose synergistic eects with EEG metrics 
further enhance model performance (Liu et al., 2024). 

4.5 Emerging EEG approaches beyond 
spectral analysis 

Recent large-scale studies have employed machine learning 
approaches and nonlinear EEG features for outcome prediction 
in DoC (Sitt et al., 2014; Panda et al., 2022). These approaches, 
including entropy, functional connectivity (phase lag index), and 
network dynamics, have demonstrated promising performance and 
may complement conventional spectral power analysis. Beyond 
spectral features, additional EEG metrics such as microstates and 
event-related potentials (e.g., P300, mismatch negativity) also oer 
prognostic value (Kotchoubey, 2017). Nonlinear features show 
promise in identifying latent signs of network reorganization and 
covert awareness (Kulyk, 2019). Furthermore, machine learning 
models that incorporate multiple qEEG features achieve higher 
classification accuracy and may reduce diagnostic uncertainty 
(Stefan et al., 2018). Conventional visual EEG analysis is often 
limited by brief recording periods. Prolonged EEG captures diurnal 
patterns and sleep spindles, features associated with cortico-
thalamic integrity and improved recovery rates (Forgacs et al., 2014; 
Grigg-Damberger et al., 2022; Malinowska et al., 2013). Spindles, 
K-complexes, and cyclic alternating patterns represent key markers 
for incorporation into future qEEG prognostic frameworks. 

4.6 Limitations 

This study has several limitations. First, its retrospective, single-
center design limits generalizability. Second, EEG referral and 
timing were clinician-driven and not standardized, which may 
have introduced selection bias. Third, artifact rejection relied 
on visual inspection rather than automated approaches (e.g., 
ICA), potentially limiting reproducibility. However, all recordings 
were processed under identical acquisition filters, and artifact-
free segments were consistently selected, ensuring comparability 
across patients. Future studies may benefit from incorporating 

automated artifact removal methods to enhance reproducibility. 
Fourth, the brief EEG recordings (10 s epochs) may have 
missed important features, such as reactivity and sleep elements. 
Moreover, since only one artifact-free 10 s segment was chosen 
for each patient, the representativeness of this selected epoch 
may be limited. This selection process could introduce bias; 
thus, future studies should consider using multiple or longer 
EEG segments to enhance robustness. Fifth, five patients were 
excluded due to inadequate background activity. This may have 
selectively removed the most severe cases, potentially leading to an 
overestimation of prognostic performance. Sixth, our multivariate 
models included several predictors relative to the sample size, 
which may increase the risk of overfitting. Although we restricted 
the number of predictors to those significant in univariate analyses, 
we additionally performed bootstrap validation, which confirmed 
the stability of our findings. Nonetheless, external validation in 
independent cohorts remains necessary. Seventh, although CPC 
is an ordinal outcome, we used a one-vs.-all ROC approach 
for comparability with previous studies. This approach does not 
fully capture the ordinal structure of CPC, and future studies 
with larger cohorts should consider ordinal logistic regression or 
cumulative AUC methods. Eighth, the exclusion of patients with 
incomplete EEG or clinical data may have introduced selection 
bias. Ninth, our analysis focused solely on conventional spectral 
power features, omitting non-linear or connectivity-based metrics, 
such as entropy and complexity. Including these measures in future 
studies could yield complementary and potentially more sensitive 
prognostic information. Finally, the visual EEG interpretation in 
this study relied exclusively on the EEG grading described by 
Markand, which may limit generalizability. While this EEG grading 
is widely used for encephalopathy prognosis and served as the basis 
for our main visual EEG analysis, supplementary analyses using 
the Scarpino system yielded comparable results, thereby partially 
supporting the generalizability of our findings. Future studies 
should compare multiple validated systems, such as ACNS grading 
and the Synek classification, to further enhance external validity. 
Future prospective, multicenter studies using long-term recordings 
and multimodal EEG features are warranted. Our findings show 
that even short-duration, bedside EEG recordings may provide 
clinically relevant prognostic information when integrated with 
structured clinical assessments. Incorporating simplified qEEG 
metrics into routine protocols could enhance the training of 
non-specialist clinicians and support timely decision-making in 
neurocritical care settings. As this was a retrospective study, the 
precise timing of EEG recordings following the discontinuation 
of sedative medications was not consistently documented and, 
therefore, could not be analyzed. This represents a methodological 
limitation that may have influenced the interpretation of EEG 
results. Additionally, the Coma Recovery Scale-Revised, which is 
considered the gold standard for assessing DoC, was not routinely 
administered in our cohort. Consequently, we were unable to 
determine patients’ levels of consciousness using Coma Recovery 
Scale-Revised scores. 

5 Conclusion 

In conclusion, our findings suggest that combining qEEG 
features with clinical prognostic factors may improve outcome 
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prediction in DoC. However, due to the retrospective design and 
the short duration of the EEG recordings, these results should 
be considered preliminary. Future prospective studies utilizing 
longer and standardized EEG protocols are necessary to validate 
the clinical utility of qEEG as a bedside decision-support tool. 
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