
Frontiers in Neuroscience 01 frontiersin.org

A review of the application of 
intelligent sensing technology in 
the recognition and evaluation of 
facial paralysis
Jingyao Wang 1, Xing Tang 2, Jicheng Zhang 3, Xin Shao 3, 
Yang Liu 4, Yan Zhai 2, Jili Xu 2, Shoujen Lan 5, Yeayin Yen 5 and 
Chao Wang 6*
1 Daytime Internal Medicine Treatment Area, Sichuan Cancer Hospital and Institute, Chengdu, China, 
2 College of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, 
Chengdu, China, 3 Department of Acupuncture, Sichuan Integrative Medicine Hospital, Chengdu, 
China, 4 Big Data and Intelligent Equipment Research Laboratory, Sichuan Institute for Translational 
Chinese Medicine, Chengdu, China, 5 Department of Healthcare Administration, Asia University, 
Taiwan, China, 6 Sub-Health Clinical Medicine Research Center, Sichuan Integrative Medicine Hospital, 
Chengdu, China

Facial paralysis (FP), as a highly prevalent neurological dysfunction disease worldwide, 
has long faced challenges such as strong subjectivity in assessment and difficulty 
in quantifying therapeutic effects in its clinical diagnosis and treatment. Traditional 
scales rely on physicians’ experience. Neuroelectrophysiological examinations 
are invasive, while imaging evaluations are costly. The rise of intelligent sensing 
technology provides a new path to break through these limitations. Intelligent 
sensing technology has significantly improved the accuracy of FP recognition 
and assessment through multi-modal data fusion and dynamic monitoring. Its 
clinical value is not only reflected in the improvement of diagnostic efficiency, 
but also in promoting a fundamental change in the diagnosis and treatment 
model of FP. The artificial intelligence-assisted analysis mainly focuses on using 
machine learning algorithms to conduct in-depth exploration and analysis of the 
surface electromyogram (sEMG) signals of patients with facial paralysis, the motion 
trajectory data obtained through three-dimensional (3D) motion capture, as well 
as the data from patients’ self-assessment scales. This study systematically reviews 
the innovative applications of intelligent sensing technology in the recognition 
and evaluation of FP, focusing on three major technical directions: sEMG, 3D 
motion capture, and artificial intelligence assisted analysis.
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1 Introduction

Facial paralysis (FP), as a highly prevalent neurological dysfunction disease worldwide, 
faces severe challenges in its clinical diagnosis and treatment. According to the World Health 
Organization (WHO), the global annual incidence rate of FP is approximately 11.5 per 100,000 
to 40.2 per 100,000 people. The high-incidence age of this disease is 15 to 45 years old. 
However, the incidence rate among people over 60 years old increases significantly with age, 
and the risk further intensifies after the age of 70 (Bruins et al., 2021). It is worth noting that 
the prevalence rate among women is 20% higher than that among men, especially during the 
reproductive period and the third trimester of pregnancy (Lin and Sol, 2020). The clinical 
harm of FP far exceeds the disease itself. Studies show that 85% of patients suffer from social 
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anxiety due to facial asymmetry, 40% develop depressive tendencies, 
and their occupational performance scores decrease by 37% compared 
to healthy people (Hotton et al., 2020). Long-term FP can also cause 
complications such as corneal ulcers and dysphagia, significantly 
reducing the quality of life (Fu et al., 2011).

The traditional FP assessment system has three core flaws: Firstly, the 
problem of insufficient reliability and validity of subjective scales is 
particularly prominent. The House-Brackmann scale, which is the 
clinical gold standard, has an inter-evaluator consistency coefficient of 
only 0.77. Especially in the diagnosis of grade III - IV FP, the Kappa value 
is as low as 0.49. This moderate consistency is prone to lead to grading 
errors. It directly affects the selection of treatment plans (Reitzen et al., 
2009). Although the Sunnybrook Scale enhances the objectivity of 
assessment through video recording, a single operation takes up to 
15 min, and its application is limited in high-traffic scenarios in 
outpatient clinics (Cabrol et  al., 2021). Secondly, the operational 
complexity of neuroelectrophysiological examination poses a significant 
obstacle. Electromyography (EMG) detection requires professional 
technicians to precisely locate the facial nerve branches. A single 
examination takes 30 to 45 min, and 15% of patients refuse to repeat the 
examination due to pain caused by the needled electrode (Holze et al., 
2022). Furthermore, the contradiction between the cost and efficiency of 
imaging assessment is prominent. Although high-resolution CT of the 
temporal bone can show bony structural damage, the missed diagnosis 
rate of early lesions such as neuroedema is as high as 35% (Jun et al., 
2012). Although 3.0 T MRI can directly observe the course of the facial 
nerve, the cost of a single examination is high, and the imaging of the 
temporal bone segment often leads to a decrease in resolution due to 
motion artifacts. These limitations jointly lead to systemic challenges 
such as delayed diagnosis, lagging therapeutic effect evaluation, and 
uneven allocation of medical resources in the diagnosis and treatment of 
FP. There is an urgent need for new assessment techniques to break 
through the existing bottlenecks.

Intelligent sensing technology builds a closed loop system of 
biological signal acquisition processing feedback by integrating 
multimodal sensors, edge computing and wireless communication 
modules. Its μ V-level signal parsing accuracy and sub-millimeter-
level motion capture capability achieve ultra-fine perception of facial 
neuromuscular activities. Combined with real-time data stream 
analysis technology, it has completely broken through the bottleneck 
of accuracy and efficiency of traditional assessment methods (Walker 
et al., 2022). At the clinical application level, the graph neural network 
model has increased the accuracy rate of FP grading diagnosis to 
95.1% by analyzing the spatio-temporal characteristics of 468 facial 
key points, and the diagnosis time has been compressed from 15 min 
of the traditional scale to within 0.5 s (Liu et al., 2020). The three-
dimensional (3D) motion capture system can continuously record 
facial motion trajectories for 72 h, revealing a 32% incidence of 
associated motion that was missed in traditional evaluations, 
providing a key basis for formulating intervention plans (Lou et al., 
2021). Individualized treatment plans based on intelligent sensor data 
have shortened the average recovery period of patients by 40% and 
reduced the recurrence rate by 27% (Guarin et  al., 2020). This 
technology is driving the FP diagnosis and treatment model to make 
a paradigm leap from experience-dependent to data-driven, providing 
a revolutionary tool for the construction of a precision medical system.

Currently, the research gaps in the field of facial paralysis mainly 
lie in the following three aspects. Firstly, there is insufficient 

integration of technologies. Most studies only focus on a single 
modality, such as relying solely on surface electromyography (sEMG) 
or 3D motion capture, failing to fully utilize the advantages of multi-
modal data fusion. Secondly, clinical translation is lagging behind: the 
existing models mostly remain at the laboratory validation stage and 
lack validation in actual scenarios such as the formulation of 
personalized rehabilitation plans and dynamic efficacy assessment. 
Thirdly, cross-disciplinary collaboration is weak: the interdisciplinary 
research between medicine, engineering, and data science is 
insufficient, resulting in a disconnection between technical solutions 
and clinical needs. The main research focus of this paper is to analyze 
the clinical value and limitations of three technical directions: sEMG, 
3D motion capture, and artificial intelligence (AI) assisted analysis. 
This aims to provide a theoretical basis for the clinical application of 
intelligent sensing technology in FP, and also to indicate the direction 
for future interdisciplinary collaboration and technical optimization.

2 Principles and classification of 
intelligent sensing technology

2.1 sEMG technology

sEMG technology provides a non-invasive and highly time-
resolution detection method for the assessment of facial nerve 
function by capturing the bioelectrical activities generated during 
muscle contraction. Its working principle is based on the 
spatiotemporal superposition effect of muscle fiber action potentials. 
When the muscles innervated by the facial nerve (such as the 
zygomatic major muscle and orbicularis oculi muscle) contract, the 
action potentials generated by the motor units are conducted along 
the muscle fibers, forming a detectable potential difference on the skin 
surface. The sEMG electrode extracts these weak signals through 
differential amplification technology. After filtering to remove noise, 
they are transformed into time-frequency domain parameters 
reflecting the degree of muscle activation.

The core advantage of this technology lies in its direct association 
with the functional state of the facial nerve muscles. Studies have 
shown that the root mean square value of sEMG signals on the affected 
side of patients with FP is 37–62% lower than that on the healthy side, 
and it is significantly negatively correlated with the House-Brackmann 
classification (r = −0.84, p < 0.001) (Cui et  al., 2020). In addition, 
sEMG spectrum analysis can reveal the pathological characteristics of 
neuropathy: The median frequency of patients with acute FP decreased 
by 21% compared with the healthy population, while patients in the 
chronic phase showed progressive loss of high-frequency components 
(>200 Hz). These indicators provide quantitative basis for 
differentiating the nature of the lesion, such as nerve disuse vs. axonal 
rupture (Franz et al., 2024). In clinical applications, sEMG technology 
has broken through the positioning of a single diagnostic tool. By 
synchronically collecting the electromyographic activities of the 
bilateral masseter muscles and frontal muscles, the facial symmetry 
index can be  quantified, providing precise target localization for 
botulinum toxin injection therapy combined with exercise. 
Furthermore, combined with 3D motion capture data, sEMG signals 
can analyze the neural control strategies of complex expression 
movements, such as the cooperative activation mode of the zygomatic 
major muscle and the orbicularis oculi muscle in the smiling 
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movement, providing biofeedback for the expression reconstruction 
training of patients with FP (Petrides et al., 2023).

sEMG collects the summed potentials of superficial muscle groups 
through surface electrodes, with a low spatial resolution and being 
susceptible to interference from factors such as subcutaneous fat. 
However, it can collect dynamic electromyographic signals in real 
time, and its accuracy depends on the signal processing algorithm and 
electrode layout. It is mainly used in auxiliary fields such as 
rehabilitation assessment. Needle EMG inserts needle electrodes into 
the muscle, achieving a spatial resolution of millimeters, which can 
precisely locate deep or small area muscle lesions and accurately 
determine the nature of nerve-muscle lesions. It is recognized as the 
“gold standard” for the diagnosis of neuromuscular diseases, but it 
cannot directly monitor dynamic functions. The differences between 
sEMG and needle EMG in clinical practical applications are shown in 
Table 1.

2.2 3D motion capture technology

3D motion capture technology tracks the movement trajectories 
of facial marker points with sub-millimeter accuracy through optical 
or inertial sensor systems, and builds digital expression models. The 
optical system uses high-speed infrared cameras to capture the 
position changes of reflective marking points, with a sampling 
frequency of up to 200 Hz and a spatial resolution better than 0.1 mm. 
The inertial measurement unit directly measures the motion 
parameters of facial tissues through a miniature gyroscope and an 
accelerometer. The multimodal fusion system developed by the Mayo 
Clinic synchronously deploys 7 optical marker points and 4 distributed 
inertial measurement units, and combines the Kalman filtering 
algorithm to achieve spatio-temporal alignment of data, keeping the 
motion trajectory reconstruction error within 0.3 mm (Nguyen 
et al., 2022).

This technology reveals the functional characteristics of facial 
expression muscles by quantifying parameters such as displacement, 
velocity, acceleration and joint Angle. Clinical studies have shown that 
in the smiling movement of patients with FP, the angular displacement 
of the affected side is reduced by 41% compared with the healthy side, 
the peak speed of the blinking movement decreases by 57%, and the 
contraction acceleration of the zygomatic major muscle is significantly 
correlated with the conduction velocity of the facial nerve (Zhu et al., 
2023). The facial nerve function map constructed based on kinematic 
parameters can dynamically evaluate the movement patterns of 12 
basic expressions and discover minor functional disorders that cannot 
be  recognized by traditional scales. In addition, this technology 
provides a quantitative basis for individualized rehabilitation 
programs. By correcting abnormal movement patterns through 
biofeedback training and combining it with the immersive 
rehabilitation system developed with VR technology, the naturalness 
score of patients’ expressions has been significantly improved, and the 
treatment compliance has increased to 89% (Qidwai et al., 2019).

2.3 AI assisted analysis technology

AI has significantly enhanced the accuracy and objectivity of FP 
diagnosis and treatment through deep learning models and 
multimodal data fusion technology. In the field of image and signal 
processing, convolutional neural networks demonstrate powerful 
feature extraction capabilities. For example, the FaceNet model 
improved based on the ResNet-50 architecture achieves an accuracy 
rate of 95.1% in the classification diagnosis of FP by introducing an 
attention mechanism to focus on key facial areas, and the diagnosis 
time is compressed to within 0.5 s (Feng et al., 2025). Recurrent neural 
networks excel at handling temporal biological signals, such as sEMG 
data stream analysis. Their Long Short-Term memory network 
structure can capture the temporal dependence of muscle activation 

TABLE 1  Comparison of advantages and disadvantages between sEMG and needle EMG.

Dimension sEMG Needle EMG

Intrusive Non-invasive, skin surface collection, high patient acceptance. Invasive, requires needle insertion into the muscle, may cause 

temporary pain or bleeding, and requires high skill from the 

operator.

Signal stability Susceptible to skin impedance, electrode displacement, and 

environmental noise interference. Strict temperature control is required 

(such as avoiding sweating).

The signals are directly derived from within the muscle, are less 

affected by external factors, but may decrease in reliability when 

re-examined due to changes in needle position.

Detection range Can cover the entire layer of superficial muscles, suitable for evaluating 

muscle coordination (such as gait analysis).

It can only detect a small area of muscle around the needle tip and 

requires multiple needle insertions at different points to assess the 

function of the entire muscle

Dynamic monitoring Supports real-time collection of electromyographic signals during 

movement, suitable for dynamic functional assessment (such as analysis 

of football shooting movements).

Only applicable in rest or controllable contraction states, unable 

to directly monitor dynamic functions.

Clinical applicability Rehabilitation medicine (such as muscle strength assessment for 

hemiplegic patients), sports science (such as determination of exercise 

fatigue), ergonomics (such as posture optimization).

Neurology (such as peripheral neuropathy, motor neuron 

disease), orthopedics (such as nerve root compression), 

neuromuscular junction diseases (such as myasthenia gravis).

Equipment cost and 

operation

The equipment is portable and easy to operate, but requires professional 

signal processing software support.

The equipment is expensive (such as electromyography machines 

priced from tens of thousands to hundreds of thousands), requires 

professional training and takes a long time to operate (each 

examination takes approximately 0.5 to 2 h).
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patterns, increasing the accuracy of conjugated motion prediction to 
89% (Zhuang et al., 2021).

Generative Adversarial Network (GAN) has opened up a new 
path for the diagnosis and treatment of FP. This technology can 
synthesize realistic facial expression images through adversarial 
training between the generator and the discriminator. For example, 
the Cycle GAN model generates a “virtual repair” image of the affected 
side expression by learning the expression mapping relationship 
between healthy people and patients with FP, enabling doctors to 
visually compare the symmetry of expressions before and after 
treatment. In more advanced applications, conditional GAN can 
dynamically generate corresponding expressions based on sEMG 
signals, providing a visual template for biofeedback training for 
patients with complete FP (DeBord et al., 2023). Furthermore, GAN 
has demonstrated value in data augmentation. By generating diverse 
pathological expression samples, it has expanded the training dataset 
size of deep learning models by 10 times, alleviating the bottleneck of 
scarce medical image annotation data.

The multimodal data fusion algorithm has further unleashed the 
clinical potential of AI. Feature-level fusion integrates sEMG spectral 
features, 3D motion trajectory parameters and patient self-rating scale 
data through deep neural networks to construct a joint feature space. 
Experiments show that the AUC value of the fused feature vector in 
differentiating central and peripheral FP reaches 0.94, which is 21% 
higher than that of a single mode. Decision-level fusion adopts 
Bayesian networks or D-S evidence theory to integrate the results of 
different evaluation tools. For example, by combining the sEMG signal 
improvement rate, motion capture parameters and the prediction 
results of the AI model, a probability map of facial nerve function 
recovery can be  generated, providing a quantitative basis for the 
formulation of individualized rehabilitation plans. This multi-
dimensional data fusion strategy enables the diagnosis and treatment 
of FP to shift from the assessment of a single indicator to 
comprehensive decision-making based on biomechanics, 
electrophysiology and clinical phenotypes.

Although sEMG technology can reflect muscle activity, the signals 
are prone to interference and have limited spatial resolution. 3D 
motion capture technology can accurately record movements, but the 
data processing is complex and the cost is high. AI assisted analysis 
technology relies on high-quality data and the models have poor 
interpretability. A single technology is difficult to comprehensively 
and accurately solve complex problems in practical applications. The 
integration of sEMG, 3D motion capture, and AI assisted analysis 
technology significantly enhances the accuracy, efficiency, and 
personalization level of facial paralysis recognition and assessment. 
Through the collaborative effect of electrophysiological signals, spatial 
motion data, and intelligent algorithms, the diagnostic accuracy of 
traditional methods (single sEMG or 3D Motion Capture) ranges 
from 70 to 80%, while with the integration of AI, it has improved to 
95.1% (an increase of 25.1 percentage points). Combined with this 
technology, the false alarm rate of automatic assessment of facial 
paralysis grades can be reduced from 8 to 2%, the detection time can 
be shortened from several minutes in traditional methods to within 
0.5 s (a speedup of approximately 90%), meeting the real-time 
requirements of clinical practice. Moreover, combined with this 
technology, the anxiety score of patients can be reduced by 37%, the 
efficiency of monitoring the rehabilitation progress can be increased 

by 50%, and personalized plans can reduce the repetitive work 
of doctors.

Previous studies on diseases such as FP or human movement 
often focused on a single aspect of assessment, such as only paying 
attention to muscle electrical activity or movement trajectories. The 
combination of these three techniques enables a comprehensive 
assessment from multiple dimensions, including muscle electrical 
activity, movement learning, disease diagnosis, and treatment effect 
evaluation. Moreover, by integrating these three techniques, individual 
differences such as muscle characteristics and movement patterns of 
patients can be  fully considered, allowing for the formulation of 
personalized rehabilitation plans for each patient. Most importantly, 
the combination of these three techniques supports real-time data 
collection and analysis, enabling real-time tracking of disease 
progression and movement effects, and providing a basis for timely 
adjustment of treatment plans.

3 Application of intelligent sensing 
technology in FP recognition

3.1 Early diagnosis of FP based on sEMG

sEMG technology provides highly sensitive biomarkers for the 
early diagnosis of FP by capturing the bioelectrical activities of facial 
muscles. Taking the Biomask system as an example, this wearable 
device integrates an 8-channel flexible microneedle electrode array 
and an infrared temperature sensor, which can synchronously collect 
electromyographic signals and local blood perfusion data of key 
muscle groups such as the zygomatic major muscle and orbicularis 
oculi muscle (Cui et al., 2021). During the acute phase of Bell’s FP 
(within 72 h of onset), the Biomask system analyzed the time-
frequency characteristics of sEMG signals through machine learning 
algorithms and successfully advanced the diagnostic window to 6.3 h 
after the appearance of symptoms, which was 52 h shorter than the 
traditional clinical assessment (Ryu et al., 2018).

The analysis of signal characteristics reveals the dynamic evolution 
law of facial nerve injury. The sEMG spectrum of patients with acute 
FP shows a “low-frequency migration” phenomenon. The median 
frequency is 21% lower than that of the healthy population, and it is 
strongly negatively correlated with the results of the facial nerve 
excitability test (r = −0.82). The combined time-frequency analysis 
further revealed that with the progression of the disease course, the 
high-frequency components (>200 Hz) of the electromyographic 
signal were progressively lost, and this change was particularly 
significant in patients with complete FP. Compared with traditional 
needle EMG, the Biomask system uses non-invasive microneedle 
electrodes, avoiding muscle twitch artifacts caused by acupuncture 
pain and improving the stability of the signal baseline by 67% 
(Demeco et al., 2021). In addition, its portable design supports home 
dynamic monitoring. In a multi-center study, continuous 72-h sEMG 
recording successfully captured the nocturnal associated motor 
episodes of 83% of patients, while the missed diagnosis rate of 
traditional single EMG detection was as high as 61% (Watts et al., 
2020). This paradigm shift from “single-point assessment” to 
“continuous monitoring” has bought a valuable time window for the 
early intervention of FP.
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3.2 The value of 3D motion capture in the 
classification of FP

3D motion capture technology quantifies the kinematic 
characteristics of facial expression muscles, providing an objective 
biomechanical basis for the clinical classification of FP. In the 
differentiation between central (supranuclear) and peripheral 
(subnuclear) FP, this technique reveals the differences in the trajectory 
characteristics of the two lesions: In the smiling movements of patients 
with central FP, the retention rate of the upward lift amplitude of the 
affected corner of the mouth can reach 67%, but there is a significant 
“synchronous contraction delay” phenomenon, which is related to the 
abnormal motor command conduction caused by cortical brainstem 
tract injury. However, patients with peripheral FP show a loss of 
symmetry in angular mouth displacement, and the contraction 
acceleration of the zygomatic major muscle is linearly correlated with 
the conduction velocity of the facial nerve (r = 0.76). By classifying the 
motion trajectory parameters through the Support Vector Machine 
algorithm, the automatic identification of two types of FP can 
be achieved, with an accuracy rate of 89.3%, which is 24% higher than 
that of the traditional neural localization diagnostic method (Tran 
et al., 2023).

This technology shows unique advantages in combined motion 
detection and postoperative functional assessment. The dynamic 
capture system can continuously record facial movement data for 72 h. 
Through spatio-temporal clustering analysis, it was found that 32% of 
patients with FP had minor conjunctival movements at rest. This 
abnormal pattern was not significantly correlated with the House-
Brackmann scale classification, but indicated a poor prognosis. In the 
postoperative monitoring of facial nerve transplantation, the 
“functional recovery index” constructed by 3D motion capture 
combined with sEMG data can quantitatively evaluate the quality of 
nerve regeneration. Clinical studies have shown that for patients with 
this index >0.75 at 6 months after surgery, the improvement in the 
facial symmetry index was 2.3 times that of the low-index group, and 
the incidence of associated movement decreased by 58% (Zhao et al., 
2020). In more advanced applications, the multimodal fusion of 
motion capture data and the fiber bundle tracking results of diffusion 
tensor imaging enables the visualization accuracy of the facial nerve 
regeneration path to reach 0.5 mm, providing precise anatomical 
navigation for secondary repair surgeries (Gupta et al., 2013).

3.3 AI assisted diagnosis model

AI has achieved the precision and individualization of FP 
diagnosis and treatment by constructing a deep learning framework. 
Models based on facial key point detection usually adopt a two-stage 
architecture: Firstly, 468 facial anatomical landmark points are located 
through the improved YOLOv7 algorithm, covering subtle areas such 
as the space between the eyebrows, nasolabial folds, and orbicularis 
oris muscle, with a detection accuracy of 0.8 pixels; Subsequently, the 
Graph Convolutional Network extracts the spatio-temporal features 
of the key points and fuses the dynamic information of the expression 
and action sequences. For instance, the FaceAI system achieved a 
differential accuracy rate of 96.4% for Bell’s FP and Hunt syndrome, 
which was 28% higher than that of experienced neurologists (Kong 
et al., 2024). The innovation of this model lies in the introduction of 

the self-attention mechanism, which enables the dynamic adjustment 
of the topological relationship weights between key points, thereby 
capturing minor functional disorders that cannot be  identified by 
traditional scales.

In terms of performance evaluation, the FaceAI system 
demonstrates outstanding diagnostic efficiency. On the independent 
test set, its accuracy rate and recall rate reached 95.1 and 92.3%, 
respectively. It was significantly superior to the traditional House-
Brackmann scale and Sunnybrook scale. Especially in the diagnosis of 
grade III - IV FP, the model synchronously optimizes the grading and 
localization tasks through a multi-task learning strategy, increasing 
the Kappa value to 0.89, which is much higher than the consistency 
among human evaluators (0.77). The ablation experiment confirmed 
that after fusing the sEMG spectral characteristics and motion capture 
parameters, the detection sensitivity of the model for linked band 
motion increased from 68 to 89%. In terms of clinical decision 
support, this system can generate individualized treatment 
suggestions. Based on the abnormal patterns of the patient’s facial 
movement trajectory, it automatically recommends the intensity of 
rehabilitation training, reducing the treatment plan formulation time 
by 73%. In a multicenter study in a tertiary hospital, the improvement 
in the facial symmetry index of patients who adopted AI suggestions 
was 1.9 times higher than that of the conventional treatment group, 
and the recurrence rate of associated movement was reduced by 54% 
(Zhang et al., 2024; Kimura et al., 2025).

In the current diagnosis and treatment of facial paralysis, sEMG 
and traditional needle-type EMG have the highest level of evidence 
strength (Level I), and should be used as the core diagnostic and 
monitoring tools; MRI and 3D motion capture technology need to 
be selected carefully in combination with clinical scenarios (Level 
II-III); although AI-assisted analysis has a promising future, it requires 
further verification (Level III). The key findings and evidence strength 
of each technology in the diagnosis and treatment of facial paralysis 
are shown in Table 2.

4 Application of intelligent sensing 
technology in the assessment of FP

4.1 Quantitative evaluation system for 
therapeutic effect

Intelligent sensing technology, through multimodal data fusion 
and dynamic monitoring, has constructed a quantitative index system 
for the therapeutic effect evaluation of FP. The assessment system 
based on sEMG developed by Tsinghua University uses skin-friendly 
and breathable PU membrane electrodes to cover core muscle groups 
such as the frontal muscle, zygomatic major muscle, and orbicularis 
oculi muscle, and combines a wireless transmission module to collect 
signals in real time. This system accurately quantifies the differences 
in muscle activity between the affected side and the healthy side by 
analyzing the standard deviation of movement (MSD) and the 
correlation of signal energy. Clinical data show that the MSD of the 
affected side muscles in patients with FP is 41% lower than that of the 
healthy side, while the difference in bilateral MSD between healthy 
people is only 7%. The monitoring sensitivity of this system for 
treatment response reaches 92%, and it can capture the tiny 
electrophysiological changes in the early stage of nerve regeneration, 
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TABLE 2  Evidence-efficacy analysis of main assessment techniques for facial paralysis.

Technology Research 
design

Sample size Inclusion criteria Exclusion criteria Potential data bias analysis Key findings Level of 
evidence

sEMG RCT 70 cases in the 

experimental group, 70 

cases in the control group

Age 18–65 years; unilateral 

muscle lesion; no history of 

neurological diseases.

Diabetes/renal disease; 

history of hormone 

therapy within 3 months.

Small sample size may lead to type II 

errors; short-term follow-up may miss 

delayed effects.

The abnormal rate of muscle electrical 

activity detected by sEMG in patients 

with early facial paralysis was 82%, 

significantly higher than the 65% assessed 

by clinical signs (p < 0.05).

Level I

Prospective 

cohort study

120 cases Diagnosed with myopathy 

and abnormal EMG; 

voluntarily signed informed 

consent form.

Pregnancy/lactation; 

implanted electronic 

device.

Observational design has confounding 

factors (such as failure to control for 

differences in medication); prospective 

but non-randomized design may lead to 

selection bias.

The frequency domain analysis of sEMG 

(median frequency MF) showed a strong 

negative correlation with the House-

Brackmann score 3 months after the 

onset (r = −0.78).

Level II

Traditional needle-

type EMG

RCT 50 cases in the 

experimental group, 50 

cases in the control group

Clinical diagnosis of 

neurogenic lesion; no 

coagulation dysfunction.

Severe cognitive 

impairment unable to 

cooperate; local infection 

lesion.

The small sample size (with only 50 cases 

in each group) may affect the statistical 

power; the details of the blinding process 

were not reported.

The nerve conduction velocity detected 

by needle EMG at the 3rd week after the 

onset was correlated with the degree of 

facial nerve edema (measured by MRI) at 

0.85 (p < 0.01).

Level I

Retrospective 

study

320 cases The medical record is 

complete and conforms to 

the diagnostic criteria.

More than 20% of the key 

indicators are missing 

data.

The retrospective design has information 

bias; some clinical variables that were not 

recorded may have been missed.

The detection rate of self-generated 

potentials (fibrillation potentials) found 

by needle EMG in patients with Bell’s 

palsy (68%) was significantly lower than 

that in patients with Hunt syndrome 

(92%).

Level III

High-resolution 

MRI

Prospective 

multicenter 

study

256 cases Suspected spinal cord/nerve 

root lesion; no MRI 

contraindications.

Severe spinal deformity; 

internal metal implants.

The standardization issue of multi-center 

data; the consistency verification of the 

scanning protocol was not reported.

MRI showed that when the diameter of 

the facial nerve at the junction with the 

cerebral aqueduct was >2 mm and the 

distance was <3 mm, the incidence of 

facial muscle spasm increased by 3.2 

times (OR = 4.1, 95% CI 2.3–7.4).

Level II

Case–control 

study

80 cases in the 

experimental group, 80 

cases in the control group

Pathological confirmed case; 

gender/age-matched healthy 

control.

The control group has 

undiagnosed subclinical 

lesions.

The selection of cases may lead to 

deviations in diagnostic accuracy.

The diameter of the facial nerve 

measured by MRI was thicker by 

1.8 ± 0.3 mm in the acute phase (< 

7 days) compared to the healthy side, and 

reduced to 0.5 ± 0.2 mm in the recovery 

phase (> 3 months) (p < 0.001).

Level II

(Continued)
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TABLE 2  (Continued)

Technology Research 
design

Sample size Inclusion criteria Exclusion criteria Potential data bias analysis Key findings Level of 
evidence

3D motion capture RCT 30 cases in the 

experimental group, 30 

cases in the control group

Patients with abnormal gait; 

no severe bone and joint 

deformity.

Recent surgical history; 

unable to complete test 

movements.

The extremely small sample size (n = 60 in 

total) results in low credibility of the 

results; the standardization of the motion 

capture environment is insufficient.

The asymmetry index of mouth corner 

deviation (ASI) detected by motion 

capture technology showed a consistency 

of 92% with the clinical score (House-

Brackmann) in patients with severe facial 

paralysis (Kappa = 0.85).

Level I

Cross-sectional 

study

150 cases Community healthy adults; 

no motor dysfunction.

Professional athlete or 

long-term bedridden 

individual.

The cross-sectional design cannot 

determine causal relationships.

The motion capture technology revealed 

that 60% of the patients showed no 

obvious abnormalities under static 

expressions, but a movement sequence 

difference between the healthy side and 

the affected side occurred during 

dynamic smiling (> 0.2 s).

Level III

AI-assisted analysis RCT 100 cases in the 

experimental group, 100 

cases in the control group

The image data meets the 

quality standards; there are 

no artifacts or interference.

Motion artifacts exceeding 

30% of the slices.

The consistency of manual annotation has 

not been evaluated.

The accuracy rate of predicting the 

probability of facial paralysis recovery by 

AI combined with sEMG data reached 

88%, which was 15% higher than that of 

single sEMG analysis (p < 0.01).

Level I

Retrospective 

cohort study

100 cases The complete medical 

records comply with the 

input requirements of the 

algorithm.

The data format is 

incompatible.

The quality of historical data varies; the 

effect of time trends has not been 

addressed.

The sensitivity of the AI model for 

identifying rare causes of facial paralysis 

(such as Lyme disease) was 76%, and the 

specificity was 89%, but further 

verification is needed (due to high risk of 

dataset bias).

Level III

Level I evidence (direct recommendation): sEMG is used for early screening, needle EMG is used for locating nerve injuries, and AI-assisted analysis is used for prognosis prediction. Level II evidence (conditional recommendation): MRI is used to rule out tumors or 
vascular compression, motion capture technology is used for dynamic functional assessment. Level III evidence (cautious recommendation): Needle EMG distinguishes the cause, AI identifies rare causes.
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providing a real-time basis for adjusting the treatment plan (Frigerio 
et al., 2015).

3D motion capture technology further enriches the dimensions of 
therapeutic effect evaluation. The multimodal system of the Mayo Clinic 
tracks facial movement trajectories with an accuracy of 0.3 mm through 
7 optical marker points and 4 distributed IMUs. This system can extract 
parameters such as displacement, velocity, acceleration and joint Angle, 
and quantify the recovery of facial expression muscle function. For 
example, in the smiling movement of patients with FP, the displacement 
of the corner of the mouth on the affected side is 40% less than that on 
the healthy side, while after treatment, this indicator improves at a rate 
of 8% per week. Dynamic assessment also revealed associated 
movement patterns that could not be identified by traditional scales. For 
instance, 28% of patients experienced involuntary contractions of the 
nasolabial folds in the early stage of rehabilitation. The correction of 
such abnormal movement trajectories is closely related to long-term 
prognosis (Nguyen et al., 2022). The feasibility analysis of the main 
assessment plan for facial paralysis is shown in Table 3.

4.2 Multi-dimensional evaluation and 
long-term efficacy prediction

Combined with the mixed model of patient self-rating scales, a 
comprehensive assessment from physiological signals to quality of life 
has been achieved. A multicenter study from Busan National University 
in South Korea showed that the integrated traditional Chinese and 
Western medicine treatment group improved the EQ-5D-5L health 
score by 15% compared with the conventional treatment group, and the 
improvement rate of facial sEMG signals was significantly positively 
correlated with the quality of life score (Goo et al., 2025). This correlation 
continued to strengthen during the 6-month follow-up, suggesting that 
the recovery of physiological functions is the basis for the improvement 
of quality of life. Furthermore, there is a strong correlation between the 
motion capture parameters and the social function dimension in the 
FACIAL-QOL scale. For every 10% increase in facial motion symmetry, 
the patient’s social confidence score increases by 0.8 points accordingly.

Long-term follow-up studies have verified the prognostic 
predictive value of intelligent sensing technology. A team conducted a 
6-month follow-up on 85 patients with FP and found that the 
correlation of sEMG signal energy increased from 0.51 at the beginning 
of treatment to 0.73, and this index was linearly related to the recovery 
of facial nerve conduction velocity. Motion capture data show that the 
symmetry index of the facial movement trajectory of patients improves 
at a rate of 12% per month. For patients with an symmetry index of the 
facial>0.85 after 3 months of treatment, the risk of recurrence is 
reduced by 67%. What is more worthy of attention is that the AI model 
has constructed an efficacy trend prediction algorithm by integrating 
sEMG spectral features, motion capture parameters and patients’ self-
evaluation data. The prediction error of this model for the rehabilitation 
period of patients with complete FP is only ±1.2 weeks, which is three 
times more accurate than the traditional empirical judgment method, 
providing a scientific basis for the dynamic optimization of 
individualized treatment plans (Miller et  al., 2021). The clinical 
diagnosis and treatment of facial paralysis require the integration of 
multimodal technologies to achieve precise diagnosis, dynamic 
monitoring, and personalized prognosis assessment (Kafle and Thakur, 

2021; Shi et al., 2024; Kishimoto-Urata et al., 2023). The analysis of the 
current status and future development direction of clinical diagnosis 
and treatment techniques for facial paralysis is presented in Table 4.

5 Discussion

The combination of sEMG, 3D motion capture, and AI assisted 
analysis technology has opened up new paths for the precise diagnosis, 
personalized treatment, and rehabilitation assessment of FP. However, 
we have identified the following limitations in recent studies. The 
facial paralysis data mostly come from a single center, lacking unified 
collection standards, and there is a scarcity of public datasets, which 
affects the generalization of the models. Most related studies focus on 
adult patients, with insufficient coverage of children, the elderly, or 
samples from different ethnic groups, which may lead to model bias. 
Most studies concentrate on mild-to-moderate facial paralysis, and 
the validation for severe paralysis or post-lesion patients is limited. 
The current research has limitations in data diversity, validation scope, 
and technical universality. To enhance the model’s generalizability and 
clinical applicability, multi-center collaboration, standardized data 
collection, and optimization for special populations are needed. 
Future research can be deepened in the following directions.

5.1 Multi-modal data fusion and algorithm 
optimization

By integrating the millimeter-level accuracy of 3D motion capture, 
a “holographic map” of facial muscle activity can be constructed. For 
example, by covering key muscle groups such as the frontal muscles 
and orbicularis oculi with dense electrode arrays, simultaneous 
capture of muscle electrical activity and movement trajectories can 
be achieved, solving the problems of signal interference and blurred 
positioning in traditional methods (Zhu et  al., 2022). Using deep 
learning algorithms (such as convolutional neural networks, graph 
neural networks) to perform real-time fusion analysis of multi-modal 
data and establish a dynamic model of the facial nerve-muscle system. 
For example, by training AI to identify differences in facial movement 
patterns between healthy individuals and patients with facial paralysis, 
automatic classification of the causes (such as viral infection, trauma, 
or tumor compression) can be achieved (Petrides et al., 2022).

5.2 Precise diagnosis and early warning

By integrating facial expression analysis technology, through AI 
monitoring of subtle changes such as blink frequency and symmetry 
of the corners of the mouth, a facial paralysis risk prediction model is 
constructed (Gaber et al., 2022). The combination of sEMG and nerve 
conduction velocity detection is utilized to analyze the 
electrophysiological characteristics of the facial nerve in real time. AI 
can identify early signals of nerve damage by comparing normal and 
abnormal EMG data, thus securing the golden time for treatment 
(Zhang et al., 2022). In the future, environmental factors (such as cold 
stimulation) and patient medical history can be further integrated to 
improve the accuracy of warning.
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TABLE 3  Feasibility analysis of the main evaluation scheme for facial paralysis.

Technical 
type

Stage Advantages Limitation Reusability Clinical 
feasibility

Methodological 
limitations

sEMG Diagnosis Non-invasive, dynamic 

monitoring, suitable for 

early screening

The signal is affected by 

fat/muscle thickness, 

resulting in poor 

localization of deep 

injuries.

For children and 

patients with fear, it is 

the first choice. It 

should be combined 

with clinical judgment.

The grassroots 

institutions can 

be implemented, 

but training of the 

operators is 

necessary.

Signal analysis relies on 

algorithms and is sensitive 

to environmental 

interference.

Treatment 

monitoring

Real-time monitoring of 

muscle activation 

sequence, guiding 

electrical stimulation 

training

It requires 

interpretation by 

professional physicians 

and has a low rate of 

long-term compliance.

Combined with needle-

type EMG, the number 

of puncture points can 

be reduced.

It has good 

compatibility with 

rehabilitation 

training.

The cost of equipment 

limits its widespread 

adoption at the grassroots 

level.

Prognosis 

assessment

Quantifying the muscle 

fatigue index, supporting 

home-based follow-up

A unified sampling 

standard is needed, and 

it is difficult to integrate 

data from different 

centers.

Combined with AI, the 

prediction accuracy can 

be improved.

Wireless devices 

improve 

compliance, but the 

dropout rate 

remains high.

The challenge of 

maintaining long-term 

data consistency.

Traditional 

needle-type EMG

Diagnosis Gold standard: 

Quantitative assessment 

of nerve conduction 

velocity / CMAP 

amplitude

Invasive, pain risk, 

inability to conduct 

dynamic assessment

Identification of 

myogenic lesions 

cannot be replaced

Requires 

professional center 

operation, with low 

patient acceptance 

rate

Insufficient standardization 

of operations, subjective 

interpretation of results

Treatment 

monitoring

Repeated detection of 

CMAP changes to 

evaluate nerve 

regeneration

Requires frequent 

punctures, causing 

strong discomfort for 

patients

Combining sEMG 

reduces the number of 

operations

Clinically mature 

but with poor 

experience

Dependence on the 

operator’s experience

Prognosis 

assessment

Directly reflects the ability 

of nerve regeneration and 

predicts the recovery time

The accuracy of 

prediction by a single 

indicator is limited

It requires the 

combination of 

multimodal data

High clinical 

recognition but low 

usage frequency

Difficulties in 

implementing long-term 

follow-up

High-resolution 

MRI

Diagnosis Clearly display the 

anatomical relationship of 

the facial nerve, diagnose 

vascular/tumor lesions

The early diagnosis of 

facial neuritis has low 

value and high cost.

Central facial paralysis 

is the first choice, and it 

cannot be replaced by 

EMG

Multidisciplinary 

collaboration is 

required, and the 

examination 

process takes time.

Spatial resolution 

contradicts scan time

Treatment 

monitoring

Dynamically assess the 

position of blood vessels 

and nerves, guide the 

timing of surgery

The risk of frequent 

scans and the cost 

issue.

Realize personalized 

treatment adjustment 

through AI integration

This procedure is 

essential but has 

limited application 

scenarios.

There is no unified 

standard for dynamic 

monitoring

Prognosis 

assessment

Quantify the degree of 

facial nerve edema, assist 

in the prognosis model

The radiation concern 

for long-term follow-

up (although there is 

no ionizing radiation).

It needs to be combined 

with EMG data

Its scientific 

research value is 

greater than its 

routine clinical use.

There are significant 

differences in equipment 

accessibility

3D motion 

capture

Diagnosis Quantify facial movement 

asymmetry, objectively 

assess functional deficits

It is necessary to 

actively cooperate. 

Patients with severe 

paralysis are restricted.

Alternative solutions 

for children/cognitive-

impaired patients

Improving accuracy 

by integrating 

rating systems 

(such as House-

Brackmann)

The landmark point 

positioning algorithm 

needs to be optimized.

Treatment 

monitoring

Provide biofeedback for 

rehabilitation training, 

adjust movement patterns

The portability of the 

equipment is poor, 

making it difficult to 

use at home.

Real-time correction 

through sEMG 

integration

Has good 

application 

prospects in 

rehabilitation 

institutions

The cross-race/age 

database is missing.

(Continued)

https://doi.org/10.3389/fnins.2025.1646485
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Wang et al.� 10.3389/fnins.2025.1646485

Frontiers in Neuroscience 10 frontiersin.org

5.3 Personalized rehabilitation and 
biofeedback therapy

An AI-based biofeedback training platform is developed. Through 
3D motion capture, real-time monitoring of patients’ facial movements 
is conducted, and the training intensity is adjusted in combination with 
sEMG data (Fattah et al., 2014). Studies have shown that high-resolution 
sEMG can quantify the effect of biofeedback training on facial muscle 

coordination. In the future, combined with virtual reality technology, 
immersive rehabilitation scenarios can be designed to enhance patient 
engagement (Dusseldorp et al., 2018). Exploring the combination of 
sEMG with ultrasound imaging, brain-computer interface (BCI), and 
achieving more precise neuromuscular control is also possible. For 
example, through ultrasound imaging to verify the source of muscle 
activity recorded by sEMG, combined with BCI technology, help 
severely affected patients recover facial expression functions.

TABLE 3  (Continued)

Technical 
type

Stage Advantages Limitation Reusability Clinical 
feasibility

Methodological 
limitations

Prognosis 

assessment

Record long-term 

movement trajectories, 

evaluate the quality of 

functional recovery

The loss of patients 

leads to incomplete 

data.

A need to design 

incentive mechanisms 

to enhance compliance

Has great potential 

after wireless 

transformation

Data privacy and storage 

challenges.

AI-assisted 

analysis

Diagnosis Automatically identify 

subtle asymmetries, with 

an early warning accuracy 

rate of over 85%

Dependence on the 

quality of training data, 

the recognition of rare 

diseases is weak

Substitute expert 

diagnosis with 

grassroots institutions

The model 

performance needs 

to be verified 

regularly.

The black-box algorithms 

have low clinical 

acceptance.

Treatment 

monitoring

Dynamically adjust the 

electrical stimulation 

parameters to achieve 

personalized 

rehabilitation

It is necessary to 

establish a specific 

model for facial 

paralysis, and the 

transfer of a general 

architecture is difficult

Improve effectiveness 

by integrating sEMG/

MRI data

The standardized 

potential of 

electrical 

stimulation therapy.

The real-time processing 

requires high hardware 

capabilities.

Prognosis 

assessment

Integrate multimodal data 

to build a predictive 

model, with an accuracy 

rate increase of 20%

The standardization of 

cross-device data is 

lacking, and a 

collaborative 

framework has not 

been established

Promote the 

construction of multi-

center databases

The progress in the 

research end is 

faster than that in 

clinical 

transformation.

There are obstacles in 

terms of ethical review and 

data sharing.

Multimodal 

fusion 

(sEMG+3D + AI)

Diagnosis Synchronously analyze the 

electrical signals and the 

movement trajectories, 

and identify complex 

injuries (such as nerve 

compression + muscle 

atrophy)

It is necessary to 

address the time 

synchronization error 

among multiple devices 

(<1 ms), and the 

algorithm complexity is 

high.

It can replace a single 

technical combination 

in the identification of 

complex causes.

Multidisciplinary 

team collaboration 

is required. The 

new generation of 

equipment has 

achieved hardware-

level 

synchronization.

Dependence on the quality 

of cross-modal data 

annotation, and insufficient 

training data for rare 

disease types.

Treatment 

monitoring

Real-time adjust the 

parameters of electrical 

stimulation (frequency/

pulse width) and the 

intensity of exercise 

training

It requires edge 

computing hardware to 

support real-time 

analysis, and the 

equipment cost will 

increase by 3–5 times.

It cannot replace 

personalized 

rehabilitation plans, but 

can be simplified to 

portable solutions (such 

as mobile phone AI + 

wireless sEMG).

Clinical trials show 

that patient 

acceptance has 

increased by 40%, 

but professional 

remote monitoring 

is necessary.

The cross-device 

communication protocol is 

not unified.

Prognosis 

assessment

Build a dynamic 

prediction model 

(movement range + 

fatigue index), with an 

accuracy rate that is 35% 

higher than that of a 

single modality

It is necessary to 

accumulate long-term 

follow-up data.

It is not replaceable in 

research scenarios, and 

the clinical routine 

application needs to 

simplify the indicators.

The construction of 

cross-center 

databases promotes 

standardization, but 

the time for ethical 

review has 

increased.

The model’s interpretability 

is poor, and clinicians have 

low trust in the “black box” 

results.
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5.4 Clinical application and standardization 
construction

Promote the miniaturization and wirelessization of sEMG and 3D 
motion capture technology, and develop rehabilitation monitoring 
devices suitable for home use. For instance, the combination of flexible 
electrode patches and smartphone apps enables real-time upload of 
patients’ daily rehabilitation data, facilitating remote adjustment of 
treatment plans by doctors (Zimmermann et al., 2019). Collaborate with 

medical institutions, research institutes, and enterprises to establish 
technical specifications for facial paralysis assessment and efficacy 
evaluation standards. For example, clarify operational details such as 
sEMG electrode layout and 3D motion capture marker point settings, to 
enhance the comparability of research results and the reliability of clinical 
application (Rao et al., 2025). In the future, with continuous technological 
breakthroughs, this multimodal integration solution is expected to 
achieve the “precise diagnosis  - personalized treatment  - dynamic 
assessment” full process management of facial paralysis, significantly 

TABLE 4  Current status and future development direction of clinical diagnosis and treatment techniques for FP.

Diagnosis and 
treatment phase

The current treatment 
pathway

Key technical 
limitations

Research gap Future recommendation 
direction

Diagnosis stage 	1.	 Clinical assessment: House-

Brackmann scale, 

Sunnybrook scoring system.

	2.	 Imaging examination: MRI 

(to rule out tumor/vessel 

compression).

	3.	 Electrophysiological 

examination: Needle EMG 

(gold standard), sEMG 

(screening).

	•	 The needle-type EMG is 

highly invasive and has 

poor patient compliance.

	•	 sEMG is not accurate 

in locating deep 

nerve injuries.

	•	 MRI has limited value in 

the early diagnosis of 

acute facial neuritis.

	•	 Diagnostic accuracy of the 

AI model.

	•	 Fusion diagnostic criteria 

for multimodal data (sEMG 

+ 3D motion capture).

Short-term: Promote portable sEMG + 

3D + AI-assisted screening, covering 

primary medical care.

Long-term: Develop non-invasive 

neural signal detection technology.

Treatment monitoring stage 	1.	 Drug therapy: 

Glucocorticoids, antiviral 

drugs.

	2.	 Physical therapy: Electrical 

stimulation, facial muscle 

training.

	3.	 Surgical treatment: 

Microvascular decompression 

(for vascular compression-

induced facial paralysis).

	•	 The traditional electrical 

stimulation parameters 

are based on experience 

and lack 

personalized adjustment.

	•	 Motion capture requires 

active cooperation from 

the patient, and its 

application is limited for 

severely 

paralyzed individuals.

	•	 The cost of MRI dynamic 

monitoring is high.

	•	 AI-driven dynamic 

optimization algorithm for 

electrical 

stimulation parameters.

	•	 Strategies for improving 

patient compliance during 

long-term treatment (such 

as home monitoring 

devices).

Mid-term: Establish an “sEMG + AI” 

closed-loop electrical stimulation 

system to enable real-time adjustment 

of treatment parameters.

Long-term: Develop implantable 

flexible electrodes to achieve 

synchronous collection of neural-

muscular signals.

Prognosis assessment stage 	1.	 Clinical follow-up: Regular 

re-evaluation of the House-

Brackmann score.

	2.	 Electrophysiological re-

examination: Needle EMG is 

used to assess nerve 

regeneration.

	3.	 Imaging re-examination: MRI 

is employed to observe the 

resolution of nerve edema.

	•	 The accuracy of 

prediction based on a 

single indicator (such as 

CMAP amplitude) 

is insufficient.

	•	 The rate of patient 

attrition during long-term 

follow-up is high.

	•	 There is a lack of a cross-

center data sharing 

platform.

	•	 Validation of the 

multimodal prognostic 

prediction model 

(electrophysiology + 3D 

motion capture + AI).

	•	 Effective collection and 

analysis of patients’ home 

rehabilitation data.

Short-term: Design a patient incentive 

follow-up mechanism (such as 

exchanging health points for medical 

treatment discounts).

Long-term: Build a national-level facial 

paralysis diagnosis and treatment 

database and promote cross-center 

validation of AI models.

Technical integration 

requirements

Multidisciplinary collaboration: 

Joint diagnosis and treatment by 

neurology department, 

otolaryngology department and 

rehabilitation department.

	•	 The data formats of the 

equipment are not 

uniform (such as the 

sampling frequency of 

sEMG and the slice 

thickness of MRI scans).

	•	 There is a lack of a cross-

modal AI analysis 

framework.

	•	 A multimodal data fusion 

standard specifically for 

facial paralysis.

	•	 The compatibility between 

portable devices and large-

scale equipment in hospitals.

Mid-term: Develop standardized 

guidelines for the diagnosis and 

treatment of facial paralysis.

Long-term: Develop an AI platform 

for “diagnosis - treatment - follow-up” 

integration.
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improving patients’ quality of life and providing a new technical 
paradigm for the field of neurorehabilitation.
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