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Facial paralysis (FP), as a highly prevalent neurological dysfunction disease worldwide,
has long faced challenges such as strong subjectivity in assessment and difficulty
in quantifying therapeutic effects in its clinical diagnosis and treatment. Traditional
scales rely on physicians’ experience. Neuroelectrophysiological examinations
are invasive, while imaging evaluations are costly. The rise of intelligent sensing
technology provides a new path to break through these limitations. Intelligent
sensing technology has significantly improved the accuracy of FP recognition
and assessment through multi-modal data fusion and dynamic monitoring. Its
clinical value is not only reflected in the improvement of diagnostic efficiency,
but also in promoting a fundamental change in the diagnosis and treatment
model of FP. The artificial intelligence-assisted analysis mainly focuses on using
machine learning algorithms to conduct in-depth exploration and analysis of the
surface electromyogram (sEMG) signals of patients with facial paralysis, the motion
trajectory data obtained through three-dimensional (3D) motion capture, as well
as the data from patients’ self-assessment scales. This study systematically reviews
the innovative applications of intelligent sensing technology in the recognition
and evaluation of FP, focusing on three major technical directions: sEMG, 3D
motion capture, and artificial intelligence assisted analysis.
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intelligent sensing technology, facial paralysis, surface electromyogram, three-
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1 Introduction

Facial paralysis (FP), as a highly prevalent neurological dysfunction disease worldwide,
faces severe challenges in its clinical diagnosis and treatment. According to the World Health
Organization (WHO), the global annual incidence rate of FP is approximately 11.5 per 100,000
to 40.2 per 100,000 people. The high-incidence age of this disease is 15 to 45 years old.
However, the incidence rate among people over 60 years old increases significantly with age,
and the risk further intensifies after the age of 70 (Bruins et al., 2021). It is worth noting that
the prevalence rate among women is 20% higher than that among men, especially during the
reproductive period and the third trimester of pregnancy (Lin and Sol, 2020). The clinical
harm of FP far exceeds the disease itself. Studies show that 85% of patients suffer from social
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anxiety due to facial asymmetry, 40% develop depressive tendencies,
and their occupational performance scores decrease by 37% compared
to healthy people (Hotton et al., 2020). Long-term FP can also cause
complications such as corneal ulcers and dysphagia, significantly
reducing the quality of life (Fu et al., 2011).

The traditional FP assessment system has three core flaws: Firstly, the
problem of insufficient reliability and validity of subjective scales is
particularly prominent. The House-Brackmann scale, which is the
clinical gold standard, has an inter-evaluator consistency coefficient of
only 0.77. Especially in the diagnosis of grade III - IV FP, the Kappa value
is as low as 0.49. This moderate consistency is prone to lead to grading
errors. It directly affects the selection of treatment plans (Reitzen et al.,
2009). Although the Sunnybrook Scale enhances the objectivity of
assessment through video recording, a single operation takes up to
15 min, and its application is limited in high-traffic scenarios in
outpatient clinics (Cabrol et al., 2021). Secondly, the operational
complexity of neuroelectrophysiological examination poses a significant
obstacle. Electromyography (EMG) detection requires professional
technicians to precisely locate the facial nerve branches. A single
examination takes 30 to 45 min, and 15% of patients refuse to repeat the
examination due to pain caused by the needled electrode (Holze et al.,
2022). Furthermore, the contradiction between the cost and efficiency of
imaging assessment is prominent. Although high-resolution CT of the
temporal bone can show bony structural damage, the missed diagnosis
rate of early lesions such as neuroedema is as high as 35% (Jun et al.,
2012). Although 3.0 T MRI can directly observe the course of the facial
nerve, the cost of a single examination is high, and the imaging of the
temporal bone segment often leads to a decrease in resolution due to
motion artifacts. These limitations jointly lead to systemic challenges
such as delayed diagnosis, lagging therapeutic effect evaluation, and
uneven allocation of medical resources in the diagnosis and treatment of
FP. There is an urgent need for new assessment techniques to break
through the existing bottlenecks.

Intelligent sensing technology builds a closed loop system of
biological signal acquisition processing feedback by integrating
multimodal sensors, edge computing and wireless communication
modules. Its y V-level signal parsing accuracy and sub-millimeter-
level motion capture capability achieve ultra-fine perception of facial
neuromuscular activities. Combined with real-time data stream
analysis technology, it has completely broken through the bottleneck
of accuracy and efficiency of traditional assessment methods (Walker
etal, 2022). At the clinical application level, the graph neural network
model has increased the accuracy rate of FP grading diagnosis to
95.1% by analyzing the spatio-temporal characteristics of 468 facial
key points, and the diagnosis time has been compressed from 15 min
of the traditional scale to within 0.5 s (Liu et al., 2020). The three-
dimensional (3D) motion capture system can continuously record
facial motion trajectories for 72 h, revealing a 32% incidence of
associated motion that was missed in traditional evaluations,
providing a key basis for formulating intervention plans (Lou et al.,
2021). Individualized treatment plans based on intelligent sensor data
have shortened the average recovery period of patients by 40% and
reduced the recurrence rate by 27% (Guarin et al., 2020). This
technology is driving the FP diagnosis and treatment model to make
a paradigm leap from experience-dependent to data-driven, providing
a revolutionary tool for the construction of a precision medical system.

Currently, the research gaps in the field of facial paralysis mainly
lie in the following three aspects. Firstly, there is insufficient
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integration of technologies. Most studies only focus on a single
modality, such as relying solely on surface electromyography (SEMG)
or 3D motion capture, failing to fully utilize the advantages of multi-
modal data fusion. Secondly, clinical translation is lagging behind: the
existing models mostly remain at the laboratory validation stage and
lack validation in actual scenarios such as the formulation of
personalized rehabilitation plans and dynamic efficacy assessment.
Thirdly, cross-disciplinary collaboration is weak: the interdisciplinary
research between medicine, engineering, and data science is
insufficient, resulting in a disconnection between technical solutions
and clinical needs. The main research focus of this paper is to analyze
the clinical value and limitations of three technical directions: SEMG,
3D motion capture, and artificial intelligence (AI) assisted analysis.
This aims to provide a theoretical basis for the clinical application of
intelligent sensing technology in FP, and also to indicate the direction
for future interdisciplinary collaboration and technical optimization.

2 Principles and classification of
intelligent sensing technology

2.1 sEMG technology

sEMG technology provides a non-invasive and highly time-
resolution detection method for the assessment of facial nerve
function by capturing the bioelectrical activities generated during
muscle contraction. Its working principle is based on the
spatiotemporal superposition effect of muscle fiber action potentials.
When the muscles innervated by the facial nerve (such as the
zygomatic major muscle and orbicularis oculi muscle) contract, the
action potentials generated by the motor units are conducted along
the muscle fibers, forming a detectable potential difference on the skin
surface. The SEMG electrode extracts these weak signals through
differential amplification technology. After filtering to remove noise,
they are transformed into time-frequency domain parameters
reflecting the degree of muscle activation.

The core advantage of this technology lies in its direct association
with the functional state of the facial nerve muscles. Studies have
shown that the root mean square value of SEMG signals on the affected
side of patients with FP is 37-62% lower than that on the healthy side,
and it is significantly negatively correlated with the House-Brackmann
classification (r =—0.84, p <0.001) (Cui et al., 2020). In addition,
SsEMG spectrum analysis can reveal the pathological characteristics of
neuropathy: The median frequency of patients with acute FP decreased
by 21% compared with the healthy population, while patients in the
chronic phase showed progressive loss of high-frequency components
(>200 Hz). These indicators provide quantitative basis for
differentiating the nature of the lesion, such as nerve disuse vs. axonal
rupture (Franz et al., 2024). In clinical applications, SEMG technology
has broken through the positioning of a single diagnostic tool. By
synchronically collecting the electromyographic activities of the
bilateral masseter muscles and frontal muscles, the facial symmetry
index can be quantified, providing precise target localization for
botulinum toxin injection therapy combined with exercise.
Furthermore, combined with 3D motion capture data, SEMG signals
can analyze the neural control strategies of complex expression
movements, such as the cooperative activation mode of the zygomatic
major muscle and the orbicularis oculi muscle in the smiling
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TABLE 1 Comparison of advantages and disadvantages between sEMG and needle EMG.
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Dimension sEMG Needle EMG

Intrusive Non-invasive, skin surface collection, high patient acceptance. Invasive, requires needle insertion into the muscle, may cause
temporary pain or bleeding, and requires high skill from the
operator.

Signal stability Susceptible to skin impedance, electrode displacement, and The signals are directly derived from within the muscle, are less

environmental noise interference. Strict temperature control is required

(such as avoiding sweating).

affected by external factors, but may decrease in reliability when

re-examined due to changes in needle position.

Detection range

Can cover the entire layer of superficial muscles, suitable for evaluating

muscle coordination (such as gait analysis).

It can only detect a small area of muscle around the needle tip and
requires multiple needle insertions at different points to assess the

function of the entire muscle

Dynamic monitoring

Supports real-time collection of electromyographic signals during
movement, suitable for dynamic functional assessment (such as analysis

of football shooting movements).

Only applicable in rest or controllable contraction states, unable

to directly monitor dynamic functions.

Clinical applicability

Rehabilitation medicine (such as muscle strength assessment for
hemiplegic patients), sports science (such as determination of exercise

fatigue), ergonomics (such as posture optimization).

Neurology (such as peripheral neuropathy, motor neuron
disease), orthopedics (such as nerve root compression),

neuromuscular junction diseases (such as myasthenia gravis).

Equipment cost and

The equipment is portable and easy to operate, but requires professional

The equipment is expensive (such as electromyography machines

operation signal processing software support.

priced from tens of thousands to hundreds of thousands), requires
professional training and takes a long time to operate (each

examination takes approximately 0.5 to 2 h).

movement, providing biofeedback for the expression reconstruction
training of patients with FP (Petrides et al., 2023).

SEMG collects the summed potentials of superficial muscle groups
through surface electrodes, with a low spatial resolution and being
susceptible to interference from factors such as subcutaneous fat.
However, it can collect dynamic electromyographic signals in real
time, and its accuracy depends on the signal processing algorithm and
electrode layout. It is mainly used in auxiliary fields such as
rehabilitation assessment. Needle EMG inserts needle electrodes into
the muscle, achieving a spatial resolution of millimeters, which can
precisely locate deep or small area muscle lesions and accurately
determine the nature of nerve-muscle lesions. It is recognized as the
“gold standard” for the diagnosis of neuromuscular diseases, but it
cannot directly monitor dynamic functions. The differences between
SsEMG and needle EMG in clinical practical applications are shown in
Table 1.

2.2 3D motion capture technology

3D motion capture technology tracks the movement trajectories
of facial marker points with sub-millimeter accuracy through optical
or inertial sensor systems, and builds digital expression models. The
optical system uses high-speed infrared cameras to capture the
position changes of reflective marking points, with a sampling
frequency of up to 200 Hz and a spatial resolution better than 0.1 mm.
The inertial measurement unit directly measures the motion
parameters of facial tissues through a miniature gyroscope and an
accelerometer. The multimodal fusion system developed by the Mayo
Clinic synchronously deploys 7 optical marker points and 4 distributed
inertial measurement units, and combines the Kalman filtering
algorithm to achieve spatio-temporal alignment of data, keeping the
motion trajectory reconstruction error within 0.3 mm (Nguyen
etal., 2022).
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This technology reveals the functional characteristics of facial
expression muscles by quantifying parameters such as displacement,
velocity, acceleration and joint Angle. Clinical studies have shown that
in the smiling movement of patients with FP, the angular displacement
of the affected side is reduced by 41% compared with the healthy side,
the peak speed of the blinking movement decreases by 57%, and the
contraction acceleration of the zygomatic major muscle is significantly
correlated with the conduction velocity of the facial nerve (Zhu et al.,
2023). The facial nerve function map constructed based on kinematic
parameters can dynamically evaluate the movement patterns of 12
basic expressions and discover minor functional disorders that cannot
be recognized by traditional scales. In addition, this technology
provides a quantitative basis for individualized rehabilitation
programs. By correcting abnormal movement patterns through
biofeedback training and combining it with the immersive
rehabilitation system developed with VR technology, the naturalness
score of patients’ expressions has been significantly improved, and the
treatment compliance has increased to 89% (Qidwai et al., 2019).

2.3 Al assisted analysis technology

AT has significantly enhanced the accuracy and objectivity of FP
diagnosis and treatment through deep learning models and
multimodal data fusion technology. In the field of image and signal
processing, convolutional neural networks demonstrate powerful
feature extraction capabilities. For example, the FaceNet model
improved based on the ResNet-50 architecture achieves an accuracy
rate of 95.1% in the classification diagnosis of FP by introducing an
attention mechanism to focus on key facial areas, and the diagnosis
time is compressed to within 0.5 s (Feng et al., 2025). Recurrent neural
networks excel at handling temporal biological signals, such as SEMG
data stream analysis. Their Long Short-Term memory network
structure can capture the temporal dependence of muscle activation
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patterns, increasing the accuracy of conjugated motion prediction to
89% (Zhuang et al., 2021).

Generative Adversarial Network (GAN) has opened up a new
path for the diagnosis and treatment of FP. This technology can
synthesize realistic facial expression images through adversarial
training between the generator and the discriminator. For example,
the Cycle GAN model generates a “virtual repair” image of the affected
side expression by learning the expression mapping relationship
between healthy people and patients with FP, enabling doctors to
visually compare the symmetry of expressions before and after
treatment. In more advanced applications, conditional GAN can
dynamically generate corresponding expressions based on SEMG
signals, providing a visual template for biofeedback training for
patients with complete FP (DeBord et al., 2023). Furthermore, GAN
has demonstrated value in data augmentation. By generating diverse
pathological expression samples, it has expanded the training dataset
size of deep learning models by 10 times, alleviating the bottleneck of
scarce medical image annotation data.

The multimodal data fusion algorithm has further unleashed the
clinical potential of AI. Feature-level fusion integrates SEMG spectral
features, 3D motion trajectory parameters and patient self-rating scale
data through deep neural networks to construct a joint feature space.
Experiments show that the AUC value of the fused feature vector in
differentiating central and peripheral FP reaches 0.94, which is 21%
higher than that of a single mode. Decision-level fusion adopts
Bayesian networks or D-S evidence theory to integrate the results of
different evaluation tools. For example, by combining the sSEMG signal
improvement rate, motion capture parameters and the prediction
results of the AI model, a probability map of facial nerve function
recovery can be generated, providing a quantitative basis for the
formulation of individualized rehabilitation plans. This multi-
dimensional data fusion strategy enables the diagnosis and treatment
of FP to shift from the assessment of a single indicator to
comprehensive  decision-making based on biomechanics,
electrophysiology and clinical phenotypes.

Although sEMG technology can reflect muscle activity, the signals
are prone to interference and have limited spatial resolution. 3D
motion capture technology can accurately record movements, but the
data processing is complex and the cost is high. Al assisted analysis
technology relies on high-quality data and the models have poor
interpretability. A single technology is difficult to comprehensively
and accurately solve complex problems in practical applications. The
integration of SEMG, 3D motion capture, and Al assisted analysis
technology significantly enhances the accuracy, efficiency, and
personalization level of facial paralysis recognition and assessment.
Through the collaborative effect of electrophysiological signals, spatial
motion data, and intelligent algorithms, the diagnostic accuracy of
traditional methods (single SEMG or 3D Motion Capture) ranges
from 70 to 80%, while with the integration of Al it has improved to
95.1% (an increase of 25.1 percentage points). Combined with this
technology, the false alarm rate of automatic assessment of facial
paralysis grades can be reduced from 8 to 2%, the detection time can
be shortened from several minutes in traditional methods to within
0.5s (a speedup of approximately 90%), meeting the real-time
requirements of clinical practice. Moreover, combined with this
technology, the anxiety score of patients can be reduced by 37%, the
efficiency of monitoring the rehabilitation progress can be increased
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by 50%, and personalized plans can reduce the repetitive work
of doctors.

Previous studies on diseases such as FP or human movement
often focused on a single aspect of assessment, such as only paying
attention to muscle electrical activity or movement trajectories. The
combination of these three techniques enables a comprehensive
assessment from multiple dimensions, including muscle electrical
activity, movement learning, disease diagnosis, and treatment effect
evaluation. Moreover, by integrating these three techniques, individual
differences such as muscle characteristics and movement patterns of
patients can be fully considered, allowing for the formulation of
personalized rehabilitation plans for each patient. Most importantly,
the combination of these three techniques supports real-time data
collection and analysis, enabling real-time tracking of disease
progression and movement effects, and providing a basis for timely
adjustment of treatment plans.

3 Application of intelligent sensing
technology in FP recognition

3.1 Early diagnosis of FP based on sEMG

sEMG technology provides highly sensitive biomarkers for the
early diagnosis of FP by capturing the bioelectrical activities of facial
muscles. Taking the Biomask system as an example, this wearable
device integrates an 8-channel flexible microneedle electrode array
and an infrared temperature sensor, which can synchronously collect
electromyographic signals and local blood perfusion data of key
muscle groups such as the zygomatic major muscle and orbicularis
oculi muscle (Cui et al., 2021). During the acute phase of Bell's FP
(within 72h of onset), the Biomask system analyzed the time-
frequency characteristics of SEMG signals through machine learning
algorithms and successfully advanced the diagnostic window to 6.3 h
after the appearance of symptoms, which was 52 h shorter than the
traditional clinical assessment (Ryu et al., 2018).

The analysis of signal characteristics reveals the dynamic evolution
law of facial nerve injury. The sEMG spectrum of patients with acute
FP shows a “low-frequency migration” phenomenon. The median
frequency is 21% lower than that of the healthy population, and it is
strongly negatively correlated with the results of the facial nerve
excitability test (r = —0.82). The combined time-frequency analysis
further revealed that with the progression of the disease course, the
high-frequency components (>200 Hz) of the electromyographic
signal were progressively lost, and this change was particularly
significant in patients with complete FP. Compared with traditional
needle EMG, the Biomask system uses non-invasive microneedle
electrodes, avoiding muscle twitch artifacts caused by acupuncture
pain and improving the stability of the signal baseline by 67%
(Demeco et al., 2021). In addition, its portable design supports home
dynamic monitoring. In a multi-center study, continuous 72-h sSEMG
recording successfully captured the nocturnal associated motor
episodes of 83% of patients, while the missed diagnosis rate of
traditional single EMG detection was as high as 61% (Watts et al.,
2020). This paradigm shift from “single-point assessment” to
“continuous monitoring” has bought a valuable time window for the
early intervention of FP.
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3.2 The value of 3D motion capture in the
classification of FP

3D motion capture technology quantifies the kinematic
characteristics of facial expression muscles, providing an objective
biomechanical basis for the clinical classification of FP. In the
differentiation between central (supranuclear) and peripheral
(subnuclear) FP, this technique reveals the differences in the trajectory
characteristics of the two lesions: In the smiling movements of patients
with central FP, the retention rate of the upward lift amplitude of the
affected corner of the mouth can reach 67%, but there is a significant
“synchronous contraction delay” phenomenon, which is related to the
abnormal motor command conduction caused by cortical brainstem
tract injury. However, patients with peripheral FP show a loss of
symmetry in angular mouth displacement, and the contraction
acceleration of the zygomatic major muscle is linearly correlated with
the conduction velocity of the facial nerve (r = 0.76). By classifying the
motion trajectory parameters through the Support Vector Machine
algorithm, the automatic identification of two types of FP can
be achieved, with an accuracy rate of 89.3%, which is 24% higher than
that of the traditional neural localization diagnostic method (Tran
etal., 2023).

This technology shows unique advantages in combined motion
detection and postoperative functional assessment. The dynamic
capture system can continuously record facial movement data for 72 h.
Through spatio-temporal clustering analysis, it was found that 32% of
patients with FP had minor conjunctival movements at rest. This
abnormal pattern was not significantly correlated with the House-
Brackmann scale classification, but indicated a poor prognosis. In the
postoperative monitoring of facial nerve transplantation, the
“functional recovery index” constructed by 3D motion capture
combined with sEMG data can quantitatively evaluate the quality of
nerve regeneration. Clinical studies have shown that for patients with
this index >0.75 at 6 months after surgery, the improvement in the
facial symmetry index was 2.3 times that of the low-index group, and
the incidence of associated movement decreased by 58% (Zhao et al.,
2020). In more advanced applications, the multimodal fusion of
motion capture data and the fiber bundle tracking results of diffusion
tensor imaging enables the visualization accuracy of the facial nerve
regeneration path to reach 0.5 mm, providing precise anatomical
navigation for secondary repair surgeries (Gupta et al., 2013).

3.3 Al assisted diagnosis model

Al has achieved the precision and individualization of FP
diagnosis and treatment by constructing a deep learning framework.
Models based on facial key point detection usually adopt a two-stage
architecture: Firstly, 468 facial anatomical landmark points are located
through the improved YOLOV7 algorithm, covering subtle areas such
as the space between the eyebrows, nasolabial folds, and orbicularis
oris muscle, with a detection accuracy of 0.8 pixels; Subsequently, the
Graph Convolutional Network extracts the spatio-temporal features
of the key points and fuses the dynamic information of the expression
and action sequences. For instance, the FaceAl system achieved a
differential accuracy rate of 96.4% for Bell's FP and Hunt syndrome,
which was 28% higher than that of experienced neurologists (Kong
et al., 2024). The innovation of this model lies in the introduction of

Frontiers in Neuroscience

10.3389/fnins.2025.1646485

the self-attention mechanism, which enables the dynamic adjustment
of the topological relationship weights between key points, thereby
capturing minor functional disorders that cannot be identified by
traditional scales.

In terms of performance evaluation, the FaceAl system
demonstrates outstanding diagnostic efficiency. On the independent
test set, its accuracy rate and recall rate reached 95.1 and 92.3%,
respectively. It was significantly superior to the traditional House-
Brackmann scale and Sunnybrook scale. Especially in the diagnosis of
grade IIT - IV FP, the model synchronously optimizes the grading and
localization tasks through a multi-task learning strategy, increasing
the Kappa value to 0.89, which is much higher than the consistency
among human evaluators (0.77). The ablation experiment confirmed
that after fusing the sSEMG spectral characteristics and motion capture
parameters, the detection sensitivity of the model for linked band
motion increased from 68 to 89%. In terms of clinical decision
support, this system can generate individualized treatment
suggestions. Based on the abnormal patterns of the patient’s facial
movement trajectory, it automatically recommends the intensity of
rehabilitation training, reducing the treatment plan formulation time
by 73%. In a multicenter study in a tertiary hospital, the improvement
in the facial symmetry index of patients who adopted Al suggestions
was 1.9 times higher than that of the conventional treatment group,
and the recurrence rate of associated movement was reduced by 54%
(Zhang et al., 2024; Kimura et al., 2025).

In the current diagnosis and treatment of facial paralysis, SEMG
and traditional needle-type EMG have the highest level of evidence
strength (Level I), and should be used as the core diagnostic and
monitoring tools; MRI and 3D motion capture technology need to
be selected carefully in combination with clinical scenarios (Level
I1-11I); although Al-assisted analysis has a promising future, it requires
further verification (Level III). The key findings and evidence strength
of each technology in the diagnosis and treatment of facial paralysis
are shown in Table 2.

4 Application of intelligent sensin
technology in the assessment of FP

4.1 Quantitative evaluation system for
therapeutic effect

Intelligent sensing technology, through multimodal data fusion
and dynamic monitoring, has constructed a quantitative index system
for the therapeutic effect evaluation of FP. The assessment system
based on SEMG developed by Tsinghua University uses skin-friendly
and breathable PU membrane electrodes to cover core muscle groups
such as the frontal muscle, zygomatic major muscle, and orbicularis
oculi muscle, and combines a wireless transmission module to collect
signals in real time. This system accurately quantifies the differences
in muscle activity between the affected side and the healthy side by
analyzing the standard deviation of movement (MSD) and the
correlation of signal energy. Clinical data show that the MSD of the
affected side muscles in patients with FP is 41% lower than that of the
healthy side, while the difference in bilateral MSD between healthy
people is only 7%. The monitoring sensitivity of this system for
treatment response reaches 92%, and it can capture the tiny
electrophysiological changes in the early stage of nerve regeneration,
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TABLE 2 Evidence-efficacy analysis of main assessment techniques for facial paralysis.

Technology Research Sample size Inclusion criteria Exclusion criteria  Potential data bias analysis Key findings Level of
design evidence
SEMG RCT 70 cases in the Age 18-65 years; unilateral Diabetes/renal disease; Small sample size may lead to type II The abnormal rate of muscle electrical Level I
experimental group, 70 muscle lesion; no history of history of hormone errors; short-term follow-up may miss activity detected by sSEMG in patients
cases in the control group neurological diseases. therapy within 3 months. delayed effects. with early facial paralysis was 82%,
significantly higher than the 65% assessed
by clinical signs (p < 0.05).
Prospective 120 cases Diagnosed with myopathy Pregnancy/lactation; Observational design has confounding The frequency domain analysis of SEMG Level II
cohort study and abnormal EMG; implanted electronic factors (such as failure to control for (median frequency MF) showed a strong
voluntarily signed informed | device. differences in medication); prospective negative correlation with the House-
consent form. but non-randomized design may lead to Brackmann score 3 months after the
selection bias. onset (r = —0.78).
Traditional needle- RCT 50 cases in the Clinical diagnosis of Severe cognitive The small sample size (with only 50 cases | The nerve conduction velocity detected Level I
type EMG experimental group, 50 neurogenic lesion; no impairment unable to in each group) may affect the statistical by needle EMG at the 3rd week after the
cases in the control group | coagulation dysfunction. cooperate; local infection power; the details of the blinding process | onset was correlated with the degree of
lesion. were not reported. facial nerve edema (measured by MRI) at
0.85 (p < 0.01).
Retrospective 320 cases The medical record is More than 20% of thekey | The retrospective design has information The detection rate of self-generated Level I
study complete and conforms to indicators are missing bias; some clinical variables that were not | potentials (fibrillation potentials) found
the diagnostic criteria. data. recorded may have been missed. by needle EMG in patients with Bell’s
palsy (68%) was significantly lower than
that in patients with Hunt syndrome
(92%).
High-resolution Prospective 256 cases Suspected spinal cord/nerve | Severe spinal deformity; The standardization issue of multi-center MRI showed that when the diameter of Level II
MRI multicenter root lesion; no MRI internal metal implants. data; the consistency verification of the the facial nerve at the junction with the
study contraindications. scanning protocol was not reported. cerebral aqueduct was >2 mm and the
distance was <3 mm, the incidence of
facial muscle spasm increased by 3.2
times (OR = 4.1, 95% CI 2.3-7.4).
Case—control 80 cases in the Pathological confirmed case; = The control group has The selection of cases may lead to The diameter of the facial nerve Level I
study experimental group, 80 gender/age-matched healthy = undiagnosed subclinical deviations in diagnostic accuracy. measured by MRI was thicker by
cases in the control group control. lesions. 1.8 + 0.3 mm in the acute phase (<
7 days) compared to the healthy side, and
reduced to 0.5 + 0.2 mm in the recovery
phase (> 3 months) (p < 0.001).
(Continued)
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TABLE 2 (Continued)

Technology

Research
design

Sample size

Inclusion criteria

Exclusion criteria

Potential data bias analysis

Key findings

Level of
evidence

input requirements of the

algorithm.

addressed.

(such as Lyme disease) was 76%, and the
specificity was 89%, but further
verification is needed (due to high risk of

dataset bias).

3D motion capture RCT 30 cases in the Patients with abnormal gait; | Recent surgical history; The extremely small sample size (n = 60 in | The asymmetry index of mouth corner Level I
experimental group, 30 no severe bone and joint unable to complete test total) results in low credibility of the deviation (ASI) detected by motion
cases in the control group deformity. movements. results; the standardization of the motion | capture technology showed a consistency
capture environment is insufficient. of 92% with the clinical score (House-
Brackmann) in patients with severe facial
paralysis (Kappa = 0.85).
Cross-sectional 150 cases Community healthy adults; Professional athlete or The cross-sectional design cannot The motion capture technology revealed Level I
study no motor dysfunction. long-term bedridden determine causal relationships. that 60% of the patients showed no
individual. obvious abnormalities under static
expressions, but a movement sequence
difference between the healthy side and
the affected side occurred during
dynamic smiling (> 0.2 s).
Al-assisted analysis RCT 100 cases in the The image data meets the Motion artifacts exceeding | The consistency of manual annotation has | The accuracy rate of predicting the Level I
experimental group, 100 quality standards; there are 30% of the slices. not been evaluated. probability of facial paralysis recovery by
cases in the control group | no artifacts or interference. Al combined with sSEMG data reached
88%, which was 15% higher than that of
single sSEMG analysis (p < 0.01).
Retrospective 100 cases The complete medical The data format is The quality of historical data varies; the The sensitivity of the AI model for Level I
cohort study records comply with the incompatible. effect of time trends has not been identifying rare causes of facial paralysis

Level I evidence (direct recommendation): sSEMG is used for early screening, needle EMG is used for locating nerve injuries, and Al-assisted analysis is used for prognosis prediction. Level IT evidence (conditional recommendation): MRI is used to rule out tumors or
vascular compression, motion capture technology is used for dynamic functional assessment. Level III evidence (cautious recommendation): Needle EMG distinguishes the cause, Al identifies rare causes.
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providing a real-time basis for adjusting the treatment plan (Frigerio
etal., 2015).

3D motion capture technology further enriches the dimensions of
therapeutic effect evaluation. The multimodal system of the Mayo Clinic
tracks facial movement trajectories with an accuracy of 0.3 mm through
7 optical marker points and 4 distributed IMUs. This system can extract
parameters such as displacement, velocity, acceleration and joint Angle,
and quantify the recovery of facial expression muscle function. For
example, in the smiling movement of patients with FP, the displacement
of the corner of the mouth on the affected side is 40% less than that on
the healthy side, while after treatment, this indicator improves at a rate
of 8% per week. Dynamic assessment also revealed associated
movement patterns that could not be identified by traditional scales. For
instance, 28% of patients experienced involuntary contractions of the
nasolabial folds in the early stage of rehabilitation. The correction of
such abnormal movement trajectories is closely related to long-term
prognosis (Nguyen et al., 2022). The feasibility analysis of the main
assessment plan for facial paralysis is shown in Table 3.

4 2 Multi-dimensional evaluation and
long-term efficacy prediction

Combined with the mixed model of patient self-rating scales, a
comprehensive assessment from physiological signals to quality of life
has been achieved. A multicenter study from Busan National University
in South Korea showed that the integrated traditional Chinese and
Western medicine treatment group improved the EQ-5D-5L health
score by 15% compared with the conventional treatment group, and the
improvement rate of facial SEMG signals was significantly positively
correlated with the quality of life score (Goo et al., 2025). This correlation
continued to strengthen during the 6-month follow-up, suggesting that
the recovery of physiological functions is the basis for the improvement
of quality of life. Furthermore, there is a strong correlation between the
motion capture parameters and the social function dimension in the
FACIAL-QOL scale. For every 10% increase in facial motion symmetry,
the patient’s social confidence score increases by 0.8 points accordingly.

Long-term follow-up studies have verified the prognostic
predictive value of intelligent sensing technology. A team conducted a
6-month follow-up on 85 patients with FP and found that the
correlation of SEMG signal energy increased from 0.51 at the beginning
of treatment to 0.73, and this index was linearly related to the recovery
of facial nerve conduction velocity. Motion capture data show that the
symmetry index of the facial movement trajectory of patients improves
at a rate of 12% per month. For patients with an symmetry index of the
facial>0.85 after 3 months of treatment, the risk of recurrence is
reduced by 67%. What is more worthy of attention is that the Al model
has constructed an efficacy trend prediction algorithm by integrating
SEMG spectral features, motion capture parameters and patients’ self-
evaluation data. The prediction error of this model for the rehabilitation
period of patients with complete FP is only +1.2 weeks, which is three
times more accurate than the traditional empirical judgment method,
providing a scientific basis for the dynamic optimization of
individualized treatment plans (Miller et al, 2021). The clinical
diagnosis and treatment of facial paralysis require the integration of
multimodal technologies to achieve precise diagnosis, dynamic
monitoring, and personalized prognosis assessment (Kafle and Thakur,
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2021; Shi et al., 2024; Kishimoto-Urata et al., 2023). The analysis of the
current status and future development direction of clinical diagnosis
and treatment techniques for facial paralysis is presented in Table 4.

5 Discussion

The combination of SEMG, 3D motion capture, and Al assisted
analysis technology has opened up new paths for the precise diagnosis,
personalized treatment, and rehabilitation assessment of FP. However,
we have identified the following limitations in recent studies. The
facial paralysis data mostly come from a single center, lacking unified
collection standards, and there is a scarcity of public datasets, which
affects the generalization of the models. Most related studies focus on
adult patients, with insufficient coverage of children, the elderly, or
samples from different ethnic groups, which may lead to model bias.
Most studies concentrate on mild-to-moderate facial paralysis, and
the validation for severe paralysis or post-lesion patients is limited.
The current research has limitations in data diversity, validation scope,
and technical universality. To enhance the model’s generalizability and
clinical applicability, multi-center collaboration, standardized data
collection, and optimization for special populations are needed.
Future research can be deepened in the following directions.

5.1 Multi-modal data fusion and algorithm
optimization

By integrating the millimeter-level accuracy of 3D motion capture,
a “holographic map” of facial muscle activity can be constructed. For
example, by covering key muscle groups such as the frontal muscles
and orbicularis oculi with dense electrode arrays, simultaneous
capture of muscle electrical activity and movement trajectories can
be achieved, solving the problems of signal interference and blurred
positioning in traditional methods (Zhu et al., 2022). Using deep
learning algorithms (such as convolutional neural networks, graph
neural networks) to perform real-time fusion analysis of multi-modal
data and establish a dynamic model of the facial nerve-muscle system.
For example, by training Al to identify differences in facial movement
patterns between healthy individuals and patients with facial paralysis,
automatic classification of the causes (such as viral infection, trauma,
or tumor compression) can be achieved (Petrides et al., 2022).

5.2 Precise diagnosis and early warning

By integrating facial expression analysis technology, through AI
monitoring of subtle changes such as blink frequency and symmetry
of the corners of the mouth, a facial paralysis risk prediction model is
constructed (Gaber et al., 2022). The combination of sSEMG and nerve
conduction velocity detection is utilized to analyze the
electrophysiological characteristics of the facial nerve in real time. AI
can identify early signals of nerve damage by comparing normal and
abnormal EMG data, thus securing the golden time for treatment
(Zhang et al., 2022). In the future, environmental factors (such as cold
stimulation) and patient medical history can be further integrated to
improve the accuracy of warning.
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TABLE 3 Feasibility analysis of the main evaluation scheme for facial paralysis.

Technical
type

Stage

Advantages

Limitation

Reusability

Clinical
feasibility

10.3389/fnins.2025.1646485

Methodological
limitations

sEMG Diagnosis Non-invasive, dynamic The signal is affected by | For children and The grassroots Signal analysis relies on
monitoring, suitable for fat/muscle thickness, patients with fear, it is institutions can algorithms and is sensitive
early screening resulting in poor the first choice. It be implemented, to environmental
localization of deep should be combined but training of the interference.
injuries. with clinical judgment. | operators is
necessary.
Treatment Real-time monitoring of It requires Combined with needle- | It has good The cost of equipment
monitoring muscle activation interpretation by type EMG, the number | compatibility with limits its widespread
sequence, guiding professional physicians | of puncture points can rehabilitation adoption at the grassroots
electrical stimulation and has a low rate of be reduced. training. level.
training long-term compliance.
Prognosis Quantifying the muscle A unified sampling Combined with AL the | Wireless devices The challenge of
assessment fatigue index, supporting standard is needed, and | prediction accuracy can | improve maintaining long-term
home-based follow-up it is difficult to integrate = be improved. compliance, but the | data consistency.
data from different dropout rate
centers. remains high.
Traditional Diagnosis Gold standard: Invasive, pain risk, Identification of Requires Insufficient standardization
needle-type EMG Quantitative assessment inability to conduct myogenic lesions professional center of operations, subjective
of nerve conduction dynamic assessment cannot be replaced operation, with low | interpretation of results
velocity / CMAP patient acceptance
amplitude rate
Treatment Repeated detection of Requires frequent Combining SEMG Clinically mature Dependence on the
monitoring CMAP changes to punctures, causing reduces the number of but with poor operator’s experience
evaluate nerve strong discomfort for operations experience
regeneration patients
Prognosis Directly reflects the ability | The accuracy of It requires the High clinical Difficulties in
assessment of nerve regeneration and | prediction by a single combination of recognition but low | implementing long-term
predicts the recovery time | indicator is limited multimodal data usage frequency follow-up
High-resolution Diagnosis Clearly display the The early diagnosis of Central facial paralysis Multidisciplinary Spatial resolution
MRI anatomical relationship of | facial neuritis has low is the first choice, and it | collaboration is contradicts scan time
the facial nerve, diagnose | value and high cost. cannot be replaced by required, and the
vascular/tumor lesions EMG examination
process takes time.
Treatment Dynamically assess the The risk of frequent Realize personalized This procedure is There is no unified
monitoring position of blood vessels scans and the cost treatment adjustment essential but has standard for dynamic
and nerves, guide the issue. through Al integration | limited application monitoring
timing of surgery scenarios.
Prognosis Quantify the degree of The radiation concern It needs to be combined | Its scientific There are significant
assessment facial nerve edema, assist for long-term follow- with EMG data research value is differences in equipment
in the prognosis model up (although there is greater than its accessibility
no ionizing radiation). routine clinical use.
3D motion Diagnosis Quantify facial movement | It is necessary to Alternative solutions Improving accuracy | The landmark point
capture asymmetry, objectively actively cooperate. for children/cognitive- by integrating positioning algorithm
assess functional deficits Patients with severe impaired patients rating systems needs to be optimized.
paralysis are restricted. (such as House-
Brackmann)
Treatment Provide biofeedback for The portability of the Real-time correction Has good The cross-race/age
monitoring rehabilitation training, equipment is poor, through SEMG application database is missing.
adjust movement patterns | making it difficult to integration prospects in
use at home. rehabilitation
institutions
(Continued)
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TABLE 3 (Continued)

Technical
type

Advantages

Limitation

Reusability

Clinical
feasibility

10.3389/fnins.2025.1646485

Methodological
limitations

Prognosis Record long-term The loss of patients A need to design Has great potential Data privacy and storage
assessment movement trajectories, leads to incomplete incentive mechanisms after wireless challenges.
evaluate the quality of data. to enhance compliance | transformation
functional recovery
Al-assisted Diagnosis Automatically identify Dependence on the Substitute expert The model The black-box algorithms
analysis subtle asymmetries, with quality of training data, | diagnosis with performance needs | have low clinical
an early warning accuracy | the recognition of rare grassroots institutions to be verified acceptance.
rate of over 85% diseases is weak regularly.
Treatment Dynamically adjust the It is necessary to Improve effectiveness The standardized The real-time processing
monitoring electrical stimulation establish a specific by integrating sSEMG/ potential of requires high hardware
parameters to achieve model for facial MRI data electrical capabilities.
personalized paralysis, and the stimulation therapy.
rehabilitation transfer of a general
architecture is difficult
Prognosis Integrate multimodal data | The standardization of | Promote the The progress in the | There are obstacles in
assessment to build a predictive cross-device data is construction of multi- research end is terms of ethical review and
model, with an accuracy lacking, and a center databases faster than that in data sharing.
rate increase of 20% collaborative clinical
framework has not transformation.
been established
Multimodal Diagnosis Synchronously analyze the | It is necessary to It can replace a single Multidisciplinary Dependence on the quality
fusion electrical signals and the address the time technical combination team collaboration of cross-modal data
(sEMG+3D + Al) movement trajectories, synchronization error in the identification of is required. The annotation, and insufficient
and identify complex among multiple devices | complex causes. new generation of training data for rare
injuries (such as nerve (<1 ms), and the equipment has disease types.
compression + muscle algorithm complexity is achieved hardware-
atrophy) high. level
synchronization.
Treatment Real-time adjust the It requires edge It cannot replace Clinical trials show | The cross-device
monitoring parameters of electrical computing hardware to | personalized that patient communication protocol is
stimulation (frequency/ support real-time rehabilitation plans, but | acceptance has not unified.
pulse width) and the analysis, and the can be simplified to increased by 40%,
intensity of exercise equipment cost will portable solutions (such | but professional
training increase by 3-5 times. as mobile phone AT + remote monitoring
wireless SEMG). is necessary.
Prognosis Build a dynamic It is necessary to It is not replaceable in The construction of | The models interpretability
assessment prediction model accumulate long-term research scenarios, and | cross-center is poor, and clinicians have
(movement range + follow-up data. the clinical routine databases promotes | low trust in the “black box”
fatigue index), with an application needs to standardization, but | results.
accuracy rate that is 35% simplify the indicators. | the time for ethical
higher than that of a review has
single modality increased.

5.3 Personalized rehabilitation and

biofeedback therapy

An Al-based biofeedback training platform is developed. Through
3D motion capture, real-time monitoring of patients’ facial movements
is conducted, and the training intensity is adjusted in combination with
sEMG data (Fattah et al., 2014). Studies have shown that high-resolution
SEMG can quantify the effect of biofeedback training on facial muscle
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coordination. In the future, combined with virtual reality technology,

immersive rehabilitation scenarios can be designed to enhance patient

engagement (Dusseldorp et al., 2018). Exploring the combination of

10

sEMG with ultrasound imaging, brain-computer interface (BCI), and
achieving more precise neuromuscular control is also possible. For
example, through ultrasound imaging to verify the source of muscle
activity recorded by sEMG, combined with BCI technology, help
severely affected patients recover facial expression functions.
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TABLE 4 Current status and future development direction of clinical diagnosis and treatment techniques for FP.

Diagnosis and

treatment phase

The current treatment
pathway

Key technical
limitations

Research gap

10.3389/fnins.2025.1646485

Future recommendation
direction

Diagnosis stage

1. Clinical assessment: House-
Brackmann scale,
Sunnybrook scoring system.

2. Imaging examination: MRI
(to rule out tumor/vessel
compression).

3. Electrophysiological
examination: Needle EMG
(gold standard), sSEMG

(screening).

o The needle-type EMG is
highly invasive and has
poor patient compliance.

» sEMG is not accurate
in locating deep
nerve injuries.

« MRI has limited value in
the early diagnosis of

acute facial neuritis.

« Diagnostic accuracy of the
AT model.

« Fusion diagnostic criteria
for multimodal data (SEMG

+ 3D motion capture).

Short-term: Promote portable sSEMG +
3D + Al-assisted screening, covering
primary medical care.

Long-term: Develop non-invasive

neural signal detection technology.

Treatment monitoring stage

1. Drug therapy:
Glucocorticoids, antiviral
drugs.

2. Physical therapy: Electrical
stimulation, facial muscle
training.

3. Surgical treatment:

Microvascular decompression

o The traditional electrical
stimulation parameters
are based on experience
and lack
personalized adjustment.

« Motion capture requires
active cooperation from

the patient, and its

Al-driven dynamic
optimization algorithm for
electrical

stimulation parameters.

Strategies for improving
patient compliance during
long-term treatment (such

as home monitoring

Mid-term: Establish an “SEMG + AI”
closed-loop electrical stimulation
system to enable real-time adjustment
of treatment parameters.

Long-term: Develop implantable
flexible electrodes to achieve
synchronous collection of neural-

muscular signals.

re-evaluation of the House-
Brackmann score.

2. Electrophysiological re-
examination: Needle EMG is
used to assess nerve
regeneration.

3. Imaging re-examination: MRI
is employed to observe the

resolution of nerve edema.

prediction based on a
single indicator (such as
CMAP amplitude)

is insufficient.

o The rate of patient
attrition during long-term
follow-up is high.

o There is a lack of a cross-
center data sharing

platform.

(for vascular compression- application is limited for devices).
induced facial paralysis). severely
paralyzed individuals.
« The cost of MRI dynamic
monitoring is high.
Prognosis assessment stage 1. Clinical follow-up: Regular o The accuracy of « Validation of the Short-term: Design a patient incentive

multimodal prognostic
prediction model
(electrophysiology + 3D
motion capture + AI).

Effective collection and

analysis of patients’ home

rehabilitation data.

follow-up mechanism (such as
exchanging health points for medical
treatment discounts).

Long-term: Build a national-level facial
paralysis diagnosis and treatment
database and promote cross-center

validation of Al models.

Technical integration

requirements

Multidisciplinary collaboration:
Joint diagnosis and treatment by
neurology department,

otolaryngology department and

rehabilitation department.

« The data formats of the
equipment are not
uniform (such as the
sampling frequency of
sEMG and the slice
thickness of MRI scans).

o There is alack of a cross-
modal AT analysis

framework.

« A multimodal data fusion
standard specifically for
facial paralysis.

o The compatibility between

portable devices and large-

scale equipment in hospitals.

Mid-term: Develop standardized
guidelines for the diagnosis and
treatment of facial paralysis.
Long-term: Develop an Al platform
for “diagnosis - treatment - follow-up”

integration.

5.4 Clinical application and standardization

construction

Promote the miniaturization and wirelessization of SEMG and 3D
motion capture technology, and develop rehabilitation monitoring
devices suitable for home use. For instance, the combination of flexible
electrode patches and smartphone apps enables real-time upload of
patients’ daily rehabilitation data, facilitating remote adjustment of
treatment plans by doctors (Zimmermann et al., 2019). Collaborate with

Frontiers in Neuroscience

medical institutions, research institutes, and enterprises to establish

technical specifications for facial paralysis assessment and efficacy

evaluation standards. For example, clarify operational details such as

11

SEMG electrode layout and 3D motion capture marker point settings, to
enhance the comparability of research results and the reliability of clinical
application (Rao et al.,, 2025). In the future, with continuous technological
breakthroughs, this multimodal integration solution is expected to
achieve the “precise diagnosis - personalized treatment - dynamic
assessment” full process management of facial paralysis, significantly
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improving patients’ quality of life and providing a new technical
paradigm for the field of neurorehabilitation.
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