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Neuroprotective effects of
bavachalcone in a mouse model
of Parkinson’s disease: linking the
gut-brain axis and systemic
metabolism
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!Department of Neurosurgery, Shaoxing People’s Hospital, Shaoxing, Zhejiang, China, 2Department of
Medical Research Center, Shaoxing People’'s Hospital, Shaoxing, Zhejiang, China, *Department of
Endocrinology, Shaoxing People's Hospital, Shaoxing, Zhejiang, China

Background: Parkinson’'s disease (PD) is a progressive neurodegenerative
disorder characterized by motor dysfunction and dopaminergic neuronal
loss. Emerging evidence suggests that gut microbiota dysbiosis and systemic
metabolic disturbances contribute to the pathogenesis of PD. This study
aimed to investigate the neuroprotective effects of bavachalcone, a prenylated
chalcone isolated from Psoralea corylifolia, in an MPTP-induced mouse model
of PD, with a particular focus on its effects on motor function, inflammation, gut
microbiota, and serum metabolism.

Methods: Male C57BL/6 mice were divided into Control, MPTP, Bavac-L
(low-dose bavachalcone), and Bavac-H (high-dose bavachalcone) groups.
Bavachalcone was administered by gavage, followed by MPTP injection to
induce PD. Behavioral assessments (open field test, pole test, and rotarod test),
western blotting, immunohistochemistry, immunofluorescence, 16S rDNA
sequencing of fecal microbiota, and untargeted metabolomics of serum were
performed to evaluate the effects of bavachalcone.

Results: Bavachalcone significantly alleviated MPTP-induced motor impairment,
preserved dopaminergic neurons in the substantia nigra and striatum, and
reduced systemic inflammation and glial activation. Gut microbiota analysis
showed that bavachalcone improved microbial richness and diversity, enriched
beneficial genera, such as Allobaculum, and suppressed harmful taxa, such
as Ligilactobacillus and Helicobacter. Metabolomic profiling revealed that
bavachalcone modulated pathways, including pyruvate metabolism, folate
biosynthesis, and phenylalanine metabolism.

Conclusion: Bavachalcone exerts neuroprotective effects in mice with PD
by improving motor function, preserving dopaminergic neurons, reducing
inflammation, modulating gut microbiota composition, and remodeling
systemic metabolism. These findings highlight bavachalcone as a promising
therapeutic candidate for PD.

KEYWORDS
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Introduction

Parkinsons disease (PD) is the second most common
neurodegenerative disorder after Alzheimer’s disease, affecting more
than 6 million people worldwide, with a prevalence of approximately
1% among individuals over 60 years of age (Tysnes and Storstein,
2017). Clinically, PD is characterized by bradykinesia, resting tremor,
muscular rigidity, and postural instability. Its pathological hallmark is
the progressive degeneration of dopaminergic neurons in the
substantia nigra pars compacta (Ramesh and Arachchige, 2023).
Despite extensive research, the precise pathogenesis of PD remains
incompletely understood, and current therapeutic strategies mainly
provide symptomatic relief without halting disease progression.

In recent years, accumulating evidence has highlighted the
important role of the gut-brain axis in the pathogenesis of PD (Houser
and Tansey, 2017). The gut microbiota can influence central nervous
system functions through multiple mechanisms, including the
modulation of immune responses, production of microbial
metabolites, and regulation of the enteric nervous system (Liu et al.,
2022). Dysbiosis of the gut microbiota is commonly observed in
patients with PD, suggesting that intestinal inflammation and
microbiota-derived neuroactive molecules may contribute to
neurodegenerative processes (Kleine Bardenhorst et al, 2023;
Safarpour et al., 2022). Thus, the modulation of the gut microbiota has
been proposed as a promising therapeutic strategy for PD.

Because of their broad therapeutic potential and the ease of
structural modification on both the A and B rings, chalcones represent
promising scaffolds for the development of novel treatments for PD
and other neurodegenerative diseases (Krolicka et al., 2022; Parambi
et al., 2020). Bavachalcone is a naturally occurring, prenylated
flavonoid isolated from the traditional Chinese medicinal plant
Psoralea corylifolia. Bavachalcone has demonstrated protective effects
in models of oxidative stress and neuroinflammation, suggesting its
potential applications in the treatment of neurodegenerative diseases
(Dang et al., 2015; Wu et al.,, 2023). Notably, bavachalcone can
penetrate the blood-brain barrier and accumulate within brain tissue
(Yang et al, 2018). However, there have been no systematic
investigations into the role of bavachalcone in PD or its effects on the
gut-brain axis.

In this study, we used an MPTP-induced mouse model of PD to
systematically evaluate the effects of bavachalcone on motor
dysfunction, dopaminergic neuronal survival, gut microbiota
composition, and the serum metabolic profile. Our aim was to explore
the neuroprotective mechanisms of bavachalcone and to provide new
insights into potential therapeutic strategies for PD.

Materials and methods
Animals and treatment

Eight-week-old male C57BL/6 mice (23 + 2 g) were obtained from
Shanghai Model Organisms Center, Inc. The mice were maintained in
a standard environment (temperature, 22+2 °C; humidity,
50% * 10%) under specific pathogen-free conditions. All animal
experiments were approved by the Animal Ethics Committee of
Shaoxing People’s Hospital (Approval no. 2024Z078). The mice were
randomly assigned to four groups (1 = 6 per group): (1) Control group,
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(2) MPTP model group (MPTP), (3) low-dose bavachalcone + MPTP
group (Bavac-L, 30 mg/kg), (Aladdin, China; Cat. No. 28448-85-3),
and (4) high-dose bavachalcone + MPTP group (Bavac-H, 60 mg/kg).

All animals underwent daily oral gavage for seven consecutive
days. The Bavac-L and Bavac-H groups were administered
bavachalcone, respectively, whereas the Control and MPTP groups
received phosphate-buffered saline (PBS, pH 7.4). On day 7 post-
treatment, mice in the MPTP, Bavac-L, and Bavac-H groups were
intraperitoneally injected with MPTP (25 mg/kg/d, Sigma-Aldrich,
USA; Cat. No. M0896) for seven consecutive days. An equivalent
volume of isotonic sodium chloride solution was administered to the
Control group.

All surgical procedures were performed under anesthesia induced
by intraperitoneal injection of 0.3% pentobarbital sodium (50 mg/kg;
Sigma-Aldrich, USA; Cat. No. 4390-16-3), with rigorous measures
taken to minimize animal suffering. The study protocol was approved
by the Institutional Animal Care and Use Committee of Shaoxing
People’s Hospital (Shaoxing, China; ID number: 2024Z078) and
strictly complied with China’s Regulations for the Administration of
Affairs Concerning Experimental Animals. All experimental
ARRIVE  guidelines for

procedures conformed to the

preclinical research.

Behavioral assessments

Pole test

The pole test was performed to evaluate motor coordination and
bradykinesia. A vertical wooden pole (120 cm high and 3 cm in
diameter) was used. During training, mice were placed at the top of
the pole with their heads oriented upward and allowed to descend to
the base three times for acclimatization. On the test day (24 h-72 h
after the final MPTP administration), each mouse was placed head-up
at the top of the pole, and the time required to descend completely to
the base was recorded. Three trials were conducted per mouse at 1 h
intervals, and the average descent time was calculated for analysis.

Rotarod test

The rotarod test was conducted to assess motor coordination and
balance in mice. Mice were placed on an automated rotating rod at
30 rpm for up to 180 s. Each mouse underwent three training sessions
(1 hapart). During the formal test, the total distance traveled by mice
during falled form rotarod was recorded. Three trials were performed
per mouse with 1 h inter-trial intervals, and the average distance was
used for statistical analysis.

Open field test

Before testing, mice were acclimatized to the experimental
environment for 30 min. Each mouse was placed in the center of a
dark experimental box (25 x 25 cm), and its activity was recorded
during a 3 min observation period. The total distance traveled was
calculated to assess spontaneous locomotor activity.

Western blotting analysis

Brain tissues from the striatum were rapidly isolated and stored at
—80 °C. Tissues were homogenized in 1 x RIPA lysis buffer
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supplemented with 1 mM phenylmethylsulfonyl fluoride and a
phosphatase inhibitor cocktail (Roche, Basel, Switzerland). The
homogenates were centrifuged at 12,000 g for 15 min at 4 °C, and the
supernatants were collected for protein analysis.

Equal amounts of total protein from each group were separated by
12% SDS-polyacrylamide gel electrophoresis and transferred onto
0.45 um polyvinylidene difluoride membranes. Membranes were
blocked with 5% (w/v) skim milk in Tris-buffered saline containing 0.1%
Tween-20 for 1 h at room temperature to prevent nonspecific binding.

Subsequently, membranes were incubated overnight at 4 °C with
primary antibodies, including mouse anti-tyrosine hydroxylase (TH)
antibody (Sigma, USA; Cat. No. AB152; 1:1000) and mouse anti-
GAPDH antibody (Proteintech, China; Cat. No. 60004-1-Ig; 1:1000).
After washing, the membranes were incubated with horseradish
peroxidase-conjugated goat anti-mouse secondary antibodies (Cell
Signaling Technology, USA; 1:1000) for 1 h at room temperature. Protein
bands were visualized using an enhanced chemiluminescence detection
kit and imaged using an Invitrogen iBright 1,500 imaging system.

Immunohistochemistry

Brain samples were collected and fixed in 4% paraformaldehyde
at —4 °C for subsequent preparation of paraffin-embedded sections.
Mouse brain tissue sections were deparaffinized using environmentally
friendly dewaxing reagents and dehydrated using anhydrous ethanol.
Sections were incubated overnight at 4 °C with a rabbit monoclonal
anti-TH primary antibody (Sigma, USA; Cat. No. AB152; 1:200).
Following three washes with PBS, the sections were incubated with
horseradish peroxidase-conjugated goat anti-rabbit IgG secondary
antibody (Proteintech, China; Cat. No. SA00001-2; 1:200) for 50 min
at room temperature, then washed three times with PBS. TH
immunoreactivity was visualized using DAB chromogenic substrate,
and images were acquired using a light microscope.

Immunofluorescence

Sections were deparaffinized in xylene and rehydrated using a
graded ethanol series. Antigen retrieval was performed by boiling the
sections in 10 mM citrate buffer (pH 6.0) for 15 min. After cooling,
sections were blocked with 5% normal goat serum containing 0.3%
Triton X-100 for 1 h at room temperature.

Primary antibodies against GFAP (Abcam, UK; Cat. No. ab7260;
1:1000) and IBA1 (Wako, Japan; Cat. No. 019-19,741; 1:500) were
applied overnight at 4 °C. After washing with PBS, the sections were
incubated with Alexa Fluor 594- or Alexa Fluor 488-conjugated
secondary antibodies (Invitrogen, USA; Cat. No. 8890 & 4,412;
1:1000) for 1h at room temperature in the dark. Nuclei were
counterstained with DAPI (Proteintech, China; Cat. No. 28718-90-3;
1 pg/mL). Images were captured using a fluorescence microscope.

Enzyme-linked immunosorbent assay
(ELISA)

Whole blood samples were collected from the mice via cardiac
puncture and allowed to clot at room temperature. Serum was
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separated by centrifugation at 3000 rpm for 10 min at 4 °C and stored
at —80 °C until analysis.

Serum levels of TNF-a, IL-1p, and IL-6 were quantified using
commercial ELISA kits (Byabscience Biotechnology Co., Ltd., China;
Cat. No. BY-EM220852, BY-EM220174 and BY-EM220188) according
to the manufacturer’s protocols. Absorbance was measured at 450 nm
using a microplate reader, and cytokine concentrations were calculated
based on standard curves.

Gut microbiota 16S rDNA sequencing and
analysis

Fresh fecal samples were collected from mice and immediately
stored at —80 °C. Total bacterial genomic DNA was extracted using a
commercial extraction kit according to the manufacturer’s
instructions. The V3-V4 hypervariable regions of the bacterial 16S
rRNA gene were amplified using PCR with specific primers.
Amplicons were purified, quantified, and sequenced on an Illumina
MiSeq platform.

Raw sequencing data were quality-filtered, merged, and clustered
into operational taxonomic units at a 97% similarity threshold using
QIIME software. Alpha diversity indices, including Shannon, Chaol,
and ACE, were calculated to assess species richness and diversity. Beta
diversity was analyzed using Principal Coordinate Analysis and
nonmetric multidimensional scaling based on Bray—Curtis distances.
Differential microbial taxa among groups were identified using LEfSe
analysis, and the taxonomic composition was visualized using
community bar plots at various taxonomic levels (family, genus, and
species). Data analysis was performed using majorbio tools created
by Major-BIO Co. Ltd. (Shanghai, China) at https://cloud.
majorbio.com/.

Untargeted serum metabolomics analysis

Untargeted metabolomic profiling was performed using liquid
chromatography-tandem mass spectrometry with a high-resolution
mass analyzer (Thermo Fisher Q Exactive). Chromatographic
separation was achieved using a C18 reverse-phase column with
gradient elution. Data acquisition was performed in both positive and
negative ion modes.

Raw data were processed for peak alignment, normalization,
and identification using Compound Discoverer software.
Multivariate statistical analyses—including principal component
analysis, partial least squares discriminant analysis (PLS-DA), and
orthogonal PLS-DA—were conducted to identify global metabolic
differences. Differential metabolites were selected based on a
variable importance in projection value >1.0 and p < 0.05. KEGG
pathway enrichment analysis was performed to explore the
biological pathways involved.

Statistical analysis
All statistical analyses were conducted using GraphPad Prism

9.0 (GraphPad Software, Inc., San Diego, CA, USA). At least three
independent replicates were used to ensure accuracy. Statistical
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analyses were performed using GraphPad Prism 5. Student’s t-test
was used to compare two groups, and one-way analysis of variance
with Tukey’s or Bonferroni’s multiple comparison test was used to
assess the significance in more than two groups. Data are
presented as the mean + standard error of the mean. Statistical
differences between groups were evaluated, and p-values < 0.05
were considered statistically significant. Significance levels are
indicated as follows: p<0.05, *p<0.01, **p<0.001, and
**p < 0.0001.

Results

Bavachalcone alleviates MPTP-induced
behavioral impairments in mice

To investigate the protective effects of bavachalcone, a
bioactive compound derived from Psoralea corylifolia, in a mouse
model of PD, mice were randomly assigned to four groups:
Control, MPTP model, Bavac-L, and Bavac-H. Bavachalcone was
administered via oral gavage for seven consecutive days, followed
by intraperitoneal MPTP injection to induce the Parkinsonian
phenotype. After model induction, behavioral assessments—
including the open field test, pole test, and rotarod test—were
performed to evaluate the therapeutic effect of bavachalcone on
motor deficits (Figure 1A).

The open field test was used to assess spontaneous locomotor
activity, a general indicator of motor performance. Mice in the MPTP
group showed a significant reduction in total distance traveled and
less complex movement trajectories compared with those in the
Control group, indicating impaired locomotor function. By contrast,
mice treated with bavachalcone exhibited increased total distance
traveled and more complex movement patterns, suggesting that
bavachalcone mitigated MPTP-induced motor
(Figures 1B,C).

The pole and rotarod tests were used to assess bradykinesia and

impairment

motor coordination, respectively. MPTP treatment significantly
increased the time required to descend the pole, whereas
bavachalcone treatment significantly reduced this latency
(Figure 1D). In the rotarod test, mice in the MPTP-treated group
exhibited significantly reduced travel distance, whereas those
administered bavachalcone demonstrated markedly increased travel
distance on the rotating rod, indicating improved motor
coordination (Figure 1E). Collectively, these behavioral results
demonstrate that bavachalcone attenuates MPTP-induced motor

dysfunction in mice.

Bavachalcone attenuates MPTP-induced
dopaminergic neurodegeneration in the
substantia nigra and striatum of mice with
PD

To evaluate dopaminergic neuronal damage, TH protein
expression in the striatum was assessed using western blotting. TH
levels were significantly reduced in the striatum of MPTP-treated
mice compared with those in the control group. Notably,
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bavachalcone treatment partially restored TH expression levels
relative to those in the MPTP group (Figures 2A,B), suggesting a
neuroprotective effect.

Immunohistochemical staining was performed to detect
TH-positive neurons in the substantia nigra (Figures 2C,D).
Compared with the control group, the MPTP group showed a
significant reduction in the number of TH-positive dopaminergic
neurons. However, bavachalcone administration resulted in a notable
increase in the number of TH-positive neurons relative to that in the
MPTP group.

These findings indicate that bavachalcone effectively mitigates
MPTP-induced dopaminergic neurodegeneration in the nigrostriatal
pathway in the mouse model of PD.

Bavachalcone reduces systemic
inflammation and glial activation in mice
with MPTP-induced PD

To determine whether bavachalcone alleviates inflammation in
mice with PD, serum levels of proinflammatory cytokines were
measured using ELISA. MPTP-treated mice exhibited significantly
elevated levels of TNF-q, IL-1p, and IL-6 compared with those in the
control group. Notably, bavachalcone treatment significantly reduced
the levels of these cytokines in both low- and high-dose groups
(Figures 3A-C).

To assess glial activation in the substantia nigra,
immunofluorescence staining was performed to detect GFAP and
IBA1 expression (Figures 3D-F). MPTP administration substantially
increased GFAP and IBA1 expression, indicating significant activation
of astrocytes and microglia, respectively. Bavachalcone effectively
attenuated glial activation in a dose-dependent manner. These results
indicate that bavachalcone mitigates both central and peripheral
inflammatory responses in the MPTP-induced PD model.

Collectively, these findings demonstrate that bavachalcone exerts
potent anti-inflammatory effects by suppressing systemic cytokine

production and central glial activation in mice with PD.

Bavachalcone modulates gut microbiota
diversity in mice with MPTP-induced PD

Recent studies have indicated that dysbiosis of the gut
microbiota plays a critical role in the pathogenesis of PD. To
whether
phenotypes by modulating the gut microbiota, we performed 16S

investigate bavachalcone improves Parkinsonian
rDNA sequencing of fecal samples from Control, MPTP, and
bavachalcone-treated mice.

The rank-abundance curve reflected high species richness and
even distribution within the microbial community (Figure 4A). A
curve was plotted with the amount of extracted data on the x-axis and
alpha diversity index on the y-axis. Flattening of the rarefaction curves
indicated that the sequencing depth was sufficient (Figure 4B).
a-Diversity analysis revealed significant differences in gut microbiota
richness among the control group, MPTP-treated group, and
bavachalcone-intervention group (Figures 4C,D). In f-diversity

analysis, both principal coordinate analysis and non-metric
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FIGURE 1
Bavachalcone ameliorates motor deficits in PD model mice. (A) Schematic of the animal experimental procedure. (B) Representative images from open
field tests. (C) Total distance moved in the open field test. (D) Time to descend the pole in the pole test. (E) Distance to fall in the rotarod test. Data are
expressed as mean + SEM (n = 6 per group). *p < 0.05, **p < 0.01, ***p < 0.001. PD, Parkinson's disease; SEM, standard error of the mean.

multidimensional scaling revealed distinct differences in gut
microbiota composition among the treatment groups (Figures 4E,F).

Collectively, these results indicate that bavachalcone effectively
modulates the diversity and composition of gut microbiota disrupted
by MPTP treatment. Bavachalcone may help alleviate gut dysbiosis
associated with PD, offering new insights into its potential
therapeutic mechanisms.

Frontiers in Neuroscience

Bavachalcone reshapes gut microbiota
composition in mice with PD

The Venn diagram demonstrated partial overlap in operational
taxonomic units among the three groups, with the bavachalcone
group displaying a unique microbial profile, suggesting its potential
for targeted microbial modulation (Figure 5A).
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positive neurons in the substantia nigra. Data are expressed as mean + SEM (n =

Bavachalcone restores TH expression in the striatum and substantia nigra. (A) Representative western blot of TH in the striatum. (B) Quantification of TH
protein expression in the striatum. (C) Representative images of TH immunofluorescence staining in the substantia nigra of mice. (D) Quantification of TH-

3 per group). *p < 0.05, **p < 0.01, ***p < 0.001. TH, tyrosine hydroxylase.

To further explore the specific effects of bavachalcone on gut
microbiota composition, we generated community bar plots at
different taxonomic levels, including phylum (Figure 5B) and genus
(Figure 5C). At the phylum level, Firmicutes were enriched in the
Control and bavachalcone groups but markedly decreased in the
MPTP group. By contrast, the relative abundance of Bacteroidetes,
Actinobacteria, and Campylobacterota was elevated in the MPTP
group, indicating dysbiosis, which was partially reversed by
bavachalcone treatment (Figure 5B). At the genus level, Allobaculum
was highly enriched in both the Control and bavachalcone groups,
whereas its abundance was significantly reduced in the MPTP group.
By contrast, Ligilactobacillus was significantly elevated in the MPTP
group, and this increase was suppressed by bavachalcone (Figure 5C).
These results suggest that bavachalcone alleviates gut dysbiosis by
reducing the abundance of harmful genera and restoring
beneficial taxa.

To identify key differential taxa influenced by bavachalcone,
we performed intergroup differential significance testing. At the genus
level, Allobaculum was significantly enriched in the Control and
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bavachalcone groups but markedly reduced in the MPTP group. By
contrast, Ligilactobacillus, Eubacterium xylanophilum, and Helicobacter
were significantly enriched in the MPTP group and reduced in the
Control and bavachalcone groups (Figure 6A). At the phylum level,
Firmicutes were enriched in the Control and bavachalcone groups but
significantly decreased in the MPTP group. Conversely, Bacteroidetes,
Campylobacteroides, and Cyanobacteria were elevated in the MPTP
group and reduced in the Control and bavachalcone groups
(Figure 6B). Furthermore, the cladogram generated from phylogenetic
analysis illustrated the evolutionary relations among differential taxa,
suggesting that bavachalcone may exert neuroprotective effects
through the modulation of specific microbial pathways (Figure 6C).

Bavachalcone regulates serum metabolites
in mice with MPTP-induced PD

To investigate the effects of bavachalcone on systemic metabolic
profiles in mice with MPTP-induced PD, serum metabolomic analysis
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FIGURE 3
Bavachalcone reduces systemic inflammation and glial activation in MPTP-induced PD mice. (A—C) ELISA analysis of serum levels of proinflammatory
cytokines TNF-¢, IL-1p, and IL-6. MPTP administration significantly increased cytokine levels, which were attenuated by bavachalcone treatment in
both low and high doses. n = 5-6 per group. (D) Representative immunofluorescence images of GFAP (astrocyte marker, red), IBAL (microglial marker,
green), and DAPI (nuclear stain, blue) in the substantia nigra. MPTP induced pronounced glial activation, whereas bavachalcone treatment mitigated
astrocytic and microglial reactivity. Scale bar = 50 pm. (E-F) Quantification of GFAP and IBA1 immunofluorescence intensity in the substantia nigra (SN)
of mice. n = 3 per group. Data are expressed as mean + SEM. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. PD, Parkinson’s disease; ELISA,
enzyme-linked immunosorbent assay; SEM, standard error of the mean.

was performed. The volcano plot showed a number of significantly
altered metabolites between the bavachalcone-treated and MPTP
groups, including 133 upregulated and 73 downregulated metabolites
(Figure 7A). Principal component analysis demonstrated distinct
clustering between the two groups, indicating treatment-related
metabolic shifts (Figure 7B). Furthermore, supervised PLS-DA and
orthogonal PLS-DA confirmed a clear separation between groups,
suggesting that bavachalcone treatment substantially altered serum
metabolite composition (Figures 7C,D).
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To further identify the key metabolites contributing to group-
level metabolic differences, variable importance in projection
analysis based on the PLS-DA model was performed (Figure 7E).
Metabolites, such as hypoxanthine, swertiamarin, riboflavin, and
tiopronin, were identified as major contributors to intergroup
separation. Additionally, a heatmap of the top-ranking metabolites
revealed distinct expression patterns between the MPTP and
bavachalcone-treated groups, with bavachalcone partially restoring
the levels of several disrupted metabolites. These findings suggest
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that bavachalcone exerts significant regulatory effects on the serum
metabolic profile, which may underlie its neuroprotective
action in PD.

Further classification of the differentially abundant metabolites
indicated that most belonged to compound classes, such as carboxylic
acids, phospholipids, amino acids, and vitamins (Figure 8A). KEGG
pathway enrichment analysis revealed that the altered metabolites
were primarily associated with pyruvate metabolism, folate
biosynthesis,  glycolysis/gluconeogenesis, and phenylalanine
metabolism—pathways closely related to the pathogenesis of PD
(Figure 8B).

These results suggest that bavachalcone may exert its
neuroprotective effects in PD, at least in part, by remodeling systemic
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metabolism and restoring key metabolic pathways disrupted by
MPTP treatment.

Discussion

This study provides comprehensive evidence that bavachalcone, a
prenylated chalcone derived from Psoralea corylifolia, exerts
neuroprotective effects in an MPTP-induced murine model of
PD. Our findings revealed that bavachalcone ameliorated motor
dysfunction, preserved dopaminergic neurons in the nigrostriatal
pathway, and modulated both gut microbiota composition and serum
metabolic profiles. These results highlight the therapeutic potential of
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bavachalcone in PD through its multitarget actions on the gut-brain
axis and systemic metabolic regulation.

In our study, bavachalcone administration significantly ameliorated
motor deficits in MPTP-induced Parkinson’s model mice, as evidenced
by improved performance in the pole, rotarod, and open field tests.
These behavioral improvements were accompanied by preservation of
TH-positive neurons in the substantia nigra and striatum, indicating
protection of dopaminergic neurons. The neuroprotective effects of
bavachalcone are likely attributable to its antioxidant properties, as
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chalcone derivatives have been reported to activate the Nrf2/ARE
pathway, thereby reducing oxidative stress—a key contributor to PD
pathogenesis (Dang et al, 2015; Wu et al, 2023). Furthermore,
chalcones have been shown to exert anti-inflammatory effects by
inhibiting microglial activation and suppressing proinflammatory
mediators, such as COX-2 and iNOS, which may further contribute to
the observed neuroprotection (Parambi et al., 2020).

In addition to gut microbiota dysbiosis, systemic and central
inflammation are increasingly recognized as key contributors to the
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pathophysiology of PD. Elevated levels of proinflammatory cytokines,
such as TNF-q, IL-1, and IL-6, have been consistently reported in the
serum and cerebrospinal fluid of patients with PD and are known to
correlate with disease severity and progression (Chen et al., 2018; Qin
et al., 2016; Tansey et al, 2022). In the present study, MPTP
administration significantly increased the serum levels of these
cytokines, indicating a robust peripheral inflammatory response.
Notably, bavachalcone treatment markedly reduced cytokine
expression in a dose-dependent manner, suggesting potent systemic
anti-inflammatory activity.

Moreover, immunofluorescence analysis of the substantia nigra
revealed pronounced activation of astrocytes and microglia following
MPTP exposure, as indicated by increased expression of GFAP and
IBA1, respectively. Glial activation, a hallmark of neuroinflammation,
has been implicated in dopaminergic neuronal loss (Isik et al., 2023;
Kam et al., 2020). Meanwhile, recent evidence has demonstrated that
the gut microbiome is essential for movement disorders, microglial
activation, and a-synuclein pathology (Sampson et al, 2016).
Bavachalcone significantly suppressed glial reactivity, indicating its
capacity to attenuate neuroinflammatory processes in the central
nervous system. Together, these findings suggest that bavachalcone may
exert neuroprotective effects not only by modulating the gut microbiota
but also by mitigating both systemic and central inflammatory
responses, thereby offering a multifaceted mechanism of action in PD.

Recent research has highlighted the crucial role of the gut
microbiota in the pathogenesis and progression of PD, suggesting that
microbiome-targeted therapies may provide promising therapeutic
avenues. In this study, we demonstrated that bavachalcone significantly
modulated gut microbial composition in MPTP-induced Parkinson’s
model mice, as evidenced by distinct microbial profiles and partially
restored community structures at both the phylum and genus levels.

Our results showed that the gut microbiota in the MPTP group
exhibited typical dysbiotic features, including a decrease in Firmicutes
and an increase in Bacteroidota, consistent with prior reports (Jiao
2025) to PD-related
neuroinflammation and intestinal barrier dysfunction (Hu et al., 2024;

et al, linking microbial imbalance
Jiao et al., 2025). Cyanobacteria were enriched in the MPTP group,
and several cyanobacterial toxins are known to act through multiple
molecular mechanisms and exhibit high neurotoxicity (Sini et al.,
2021). Bavachalcone treatment partially reversed these changes,
suggesting a rebalancing effect on the gut microbial ecosystem. The
abundance of short-chain fatty acid (SCFA)-producing bacteria is
significantly reduced in the intestines of patients with PD, and SCFAs
play an important role in maintaining intestinal barrier function and
regulating neuroinflammation (Kalyanaraman et al., 2024). At the
genus level, bavachalcone significantly restored the abundance of
Allobaculum, a known SCFA-producing genus that supports gut
barrier integrity and possesses anti-inflammatory properties (Li et al.,
2023; Wang et al., 2018; Xu et al., 2024; Zhou et al., 2024). Additionally,
bavachalcone suppressed the overgrowth of potentially pathogenic
taxa, such as Ligilactobacillus, Escherichia—Shigella, and Helicobacter,
which have been associated with gastrointestinal inflammation and
may exacerbate Parkinsonian symptoms (Gamez-Macias et al., 2024;
Lehours and Ferrero, 2019; Q. Li et al., 2021).

Moreover, phylogenetic cladogram analysis revealed that these
bavachalcone-responsive taxa were phylogenetically distinct, indicating
a broad-spectrum impact on microbial networks. The restoration of
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beneficial taxa and suppression of harmful genera suggest that
bavachalcone may exert neuroprotective effects via the gut-brain axis,
potentially by modulating microbial metabolites, immune signaling, or
intestinal permeability. In summary, these findings indicate that
bavachalcone alleviates PD-associated gut dysbiosis by reshaping
microbial community structure, enriching beneficial bacteria, and
suppressing harmful taxa. This microbial reprogramming may
represent one of the mechanisms contributing to the therapeutic effects
of bavachalcone in PD and warrants further mechanistic investigation.
Our study demonstrated that bavachalcone significantly altered
the diversity and abundance of serum differential metabolites in PD
mice, with notably elevated levels of hypoxanthine, 5-phosphonooxy-
L-lysine, 6,8-dihydroxypurine, and Beta-alanyl-L-arginine, while
markedly reduced levels of swertiamarin, vanilloyl glucose,
desmedipham, and phenylacetylglycine were observed; enrichment
analysis of these differential metabolites indicates that bavachalcone
normalized MPTP-induced disruptions in pyruvate metabolism,
folate biosynthesis, and phenylalanine metabolism. Pyruvate
metabolism is essential for mitochondrial energy production, and its
dysregulation exacerbates oxidative stress in PD (Mallet et al., 2022;
Quansah et al, 2018). The upregulation of riboflavin and
hypoxanthine—metabolites with antioxidant and neurotrophic
properties—suggests that bavachalcone enhances endogenous
neuroprotection (Ebadi et al., 1998). Furthermore, the restoration of
phenylalanine metabolism may mitigate dopamine depletion, as
phenylalanine is a precursor of TH (Fernstrom and Fernstrom, 2007).
Although our study demonstrated the efficacy of bavachalcone in a
preclinical model, several translational challenges remain. First, the
precise molecular targets through which bavachalcone modulates the gut
microbiota and metabolic pathways require validation using germ-free or
antibiotic-treated models. Second, the dose-dependent effects observed
(Bavac-H vs. Bavac-L) warrant pharmacokinetic studies to define optimal
therapeutic windows. Third, we conducted experiments exclusively on
C57BL/6 mice without extending to additional mouse strains such as
CD-1 mice. Fourth, while we examined differential metabolite levels in
mouse serum, we did not assess differential metabolites in the intestinal
tract; nor did we investigate the functional consequences of these core
differential metabolites on PD mice. Finally, clinical studies are necessary
to confirm these findings, particularly in light of species-specific
differences in gut microbiota composition and drug metabolism.

Conclusion

Our study provides evidence that bavachalcone exerts protective
effects against MPTP-induced PD phenotypes by improving motor
function, preserving dopaminergic neurons, suppressing
inflammation, modulating gut microbiota, and remodeling systemic
metabolism. These findings support the potential of bavachalcone as

a promising therapeutic candidate for PD.
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