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Spiking neural networks for EEG
signal analysis using
wavelet transform

Li Yuan, Jian Wei and Ying Liu*

Academy of Military Sciences, Beijing, China

Introduction: Brain-computer interfaces (BCIs) leverage EEG signal processing
to enable human-machine communication and have broad application potential.
However, existing deep learning-based BCI methods face two critical limitations
that hinder their practical deployment: reliance on manual EEG feature
extraction, which constrains their ability to adaptively capture complex
neural patterns, and high energy consumption characteristics that make
them unsuitable for resource-constrained portable BCI devices requiring edge
deployment.
Methods: To address these limitations, this work combines wavelet transform for
automatic feature extraction with spiking neural networks for energy-efficient
computation. Specifically, we present a novel spiking transformer that integrates
a spiking self-attention mechanism with discrete wavelet transform, termed
SpikeWavformer. SpikeWavformer enables automatic EEG signal time-frequency
decomposition, eliminates manual feature extraction, and provides energy-
efficient classification decision-making, thereby enhancing the model’s cross-
scene generalization while meeting the constraints of portable BCI applications.
Results: Experimental results demonstrate the effectiveness and efficiency of
SpikeWavformer in emotion recognition and auditory attention decoding tasks.
Discussion: These findings indicate that SpikeWavformer can address the key
limitations of existing BCI methods and holds promise for practical deployment
in portable, resource-constrained scenarios.

KEYWORDS

spiking neural networks, EEG signal analysis, brain-computer interfaces, discrete
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1 Introduction

Brain-computer interfaces (BCIs) enable direct communication between the human
brain and machines through electroencephalography (EEG) signal processing (Zhang
et al., 2020). A typical BCI architecture comprises four functional modules: data
acquisition, preprocessing, classification, and a feedback module (Lotte and Guan,
2010). BCI systems have demonstrated extensive real-world applicability in diverse
domains including robotic manipulation (Liu et al., 2015), cognitive signal decoding
(Cai et al., 2021), and neuropsychiatric interventions for emotional regulation (Zotev
et al., 2020; Xing et al., 2019). As a common learning-based BCI method, deep
learning methodology has demonstrated superior performance over conventional machine
learning approaches across diverse BCI tasks (Ang et al., 2008; Wang et al., 2015),
including motor imagery classification (Schirrmeister et al., 2017; Kwon et al., 2019),
mental workload monitoring (Jiao et al., 2018), auditory attention decoding (Faghihi
et al., 2022; Cai et al., 2024), and emotion recognition (Alarcao and Fonseca, 2017;
Li et al., 2018). Nevertheless, previous research has predominantly relied on manually
extracted EEG features such as power spectral density (PSD) and differential entropy
(DE) (Jiao et al., 2018; Song et al., 2018; Zhong et al., 2020), whose limitations
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become increasingly evident. First, these feature extraction
paradigms exhibit strong dependence on domain-specific
knowledge (Singh and Krishnan, 2023; Subasi, 2019), necessitating
task-specific extraction pipelines tailored to distinct experimental
protocols, thereby compromising model generalizability across
tasks. Second, manually crafted features often fail to capture
nonlinear interrelationships in EEG time-frequency characteristics
and multiscale dynamic properties (Singh and Krishnan,
2023; Vallabhaneni et al., 2021), potentially leading to critical
information loss.

Wavelet Transform (WT) has emerged as a fundamental
signal processing tool in EEG analysis (Grobbelaar et al.,
2022) due to its unique time-frequency analysis capabilities.
Unlike conventional Fourier Transform that provides only
global frequency-domain information, WT enables multi-scale
decomposition through its inherent multi-resolution analysis.
This capability permits simultaneous signal characterization
at distinct resolution levels-capturing macroscopic patterns
(e.g., global trends) at coarse-grained scales while resolving
microscopic fluctuations (e.g., localized variations) at fine-grained
scales when processing electroencephalographic (EEG) signals.
Furthermore, WT achieves adaptive hierarchical representation
of non-stationary neural activities by dynamically adjusting
the scale and translation parameters of basis functions, thereby
effectively characterizing both transient features (e.g., high-
frequency oscillations in event-related potentials) and long-range
rhythmic patterns (e.g., sustained α-wave oscillations). Although
recent years have witnessed preliminary applications of wavelet
transform methodologies in EEG classification tasks. However,
their predominant reliance on deep neural networks (DNNs)
introduces computationally and resource-intensive demands,
conflicting with the low-power objectives of resource-constrained
portable BCI devices. Consequently, achieving optimal trade-
offs between classification performance, system portability,
and energy efficiency remains a critical challenge in practical
BCI implementations.

Spiking neural networks (SNNs), recognized as third-
generation neural networks, have emerged as a promising
alternative in BCI research due to their biologically plausible
computation paradigm (Izhikevich, 2003; Maass, 1997; Masquelier
et al., 2008). As shown in Figure 1, instead of continuous activations
in deep neural networks (DNNs), SNNs employ discrete spike
events as neuronal communication media, where spiking neurons
activate exclusively upon reaching threshold potentials and remain
quiescent otherwise (Gerstner and Kistler, 2002). This event-driven
mechanism (Wei et al., 2024) facilitates synaptic computation
sparsity while eliminating multiply-accumulate (MAC) operations,
thereby achieving superior energy efficiency, which is critical
for portable neurotechnological devices. Notably, SNNs have
demonstrated remarkable success across multiple computational
neuroscience domains in recent years. For instance, the energy-
efficient Spike Transformer architectures proposed by Yao et al.
(2023, 2024, 2025) and Zhou et al. (2022, 2023) have demonstrated
exceptional performance in image classification (Deng et al., 2022;
Shi et al., 2024), detection (Luo et al., 2024; Wang et al., 2025), and
segmentation (Lei et al., 2025). Similarly, the SNN-based audio
processing models developed by Wu et al. (2018); Pan et al. (2020);
Wang et al. (2024) have made significant advancements in signal

processing and keyword recognition. These successes establish
a solid foundation for the broader adoption and cross-domain
application of SNNs.

In this paper, we propose a novel BCI signal analysis framework
that integrates wavelet transform with an spiking self-attention
mechanism. This framework enables dynamic modeling and
efficient computation of non-smooth EEG signals by combining
brain-inspired spiking neural networks with the global-local feature
extraction capabilities of the wavelet domain. Our approach not
only overcomes the limitations of traditional manual feature
extraction but also demonstrates, for the first time, the synergistic
effectiveness of spiking self-attention and wavelet transform in
cross-task scenarios through end-to-end training. In experimental
evaluations focused on emotion recognition and auditory attention
decoding tasks, our method achieves outstanding performance.
The main contributions of this work are summarized as follows:

• We propose a novel spiking self-attention module integrated
with discrete wavelet transform (DWT) for EEG signal
processing. This innovative module simultaneously captures
global rhythmic patterns and local transient features
through multi-scale wavelet decomposition. Leveraging the
spatio-temporal dynamics of spiking neurons, it effectively
models nonlinear feature dependencies while replacing
traditional Transformer’s dense attention with efficient sparse
pulse sequences.

• We present SpikeWavformer, the first end-to-end spiking
neural network framework specifically designed for multi-
task BCI analysis. The framework unifies time-frequency
decomposition, dynamic feature selection, and classification
within a biologically plausible computational paradigm.
Its cascade architecture combines reversible wavelet
transforms with spiking self-attention layers, enabling
adaptive optimization across diverse BCI tasks including
emotion recognition and auditory decoding.

• We conduct comprehensive evaluations on multiple
public benchmark datasets to validate the effectiveness of
SpikeWavformer. Experimental results demonstrate superior
performance compared to existing methods, particularly in
resource-constrained environments. The framework shows
significant practical potential for real-world BCI applications,
achieving state-of-the-art results while maintaining low
computational overhead.

2 Related works

2.1 SNNs for EEG signal processing tasks

EEG-based BCIs have demonstrated significant potential across
various downstream tasks, with auditory attention decoding (AAD)
and emotion recognition representing two prominent application
domains. In AAD research, the challenge stems from the cocktail
party effect—the neurocognitive ability to selectively focus on
target speakers in multi-talker environments (Cherry, 1953),
which contrasts with difficulties experienced by hearing-impaired
populations (Cai et al., 2024). Neurophysiological signal analyses
through ECoG (Mesgarani and Chang, 2012), MEG (Akram
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FIGURE 1

Comparison of neuron models in deep neural networks (DNNs) and spiking neural networks (SNNs). (a) Conventional DNNs neuron model processes
continuous-valued inputs, where x represents input activations, w denotes synaptic weights, b is the bias term, and Y corresponds to the output
activation. (b) Typical spiking neuron model that processes discrete spike events, with si representing input spikes, w indicating synaptic weights, and
Y signifying the output spike train.

et al., 2016), and EEG (O’sullivan et al., 2015) have enabled
AAD implementations, catalyzing developments in neuro-steered
hearing aids (Ceolini et al., 2020). For emotion recognition, the
field seeks to model higher-order cognitive functions encoded in
neurophysiological signals (Tan et al., 2021). While emotional states
manifest through various modalities, the susceptibility of physical
expressions to masking effects positions non-invasive EEG as a
robust solution for emotion decoding (Xu et al., 2024; Li et al.,
2019).

SNNs have emerged as a promising computational framework
for both applications, leveraging their inherent low-latency
processing and energy-efficient characteristics. In AAD research,
Faghihi et al. (2022) developed efficient left/right attention
pattern decoding, while Cai et al. (2023) proposed BSAnet,
integrating biologically plausible mechanisms with attention
modeling for temporal dynamics capture. Recent advances
include spiking GCNs for spatial feature extraction (Cai et al.,
2024), demonstrating promising results in low-density electrode
scenarios. In emotion recognition, pioneering SNN applications
have shown methodological viability. Tan et al. (2021) implemented
NeuroSense achieving 78.97%/67.76% (arousal/valence) accuracy
on DEAP, while Alzhrani et al. (2021) attained 94.83% accuracy
using bidirectional spiking networks on DREAMER. Recent
developments include fractal SNN architectures (Li et al., 2023),
SGLNet for spatiotemporal extraction (Gong et al., 2023), and
EESCN achieving 94.81% accuracy on DEAP and SEED-IV (Xu
et al., 2024). However, previous research has predominantly relied
on manually extracted EEG features such as power spectral density
(PSD) and differential entropy (DE) (Jiao et al., 2018; Song et al.,
2018), and automatic EEG feature extraction in this domain
remains largely unexplored.

2.2 Spiking self attention mechanism

Traditional SNNs, despite their inherent advantages in energy
efficiency and biological plausibility, still exhibit a performance
gap compared to their DNN counterparts. Therefore, many recent
works have integrated attention mechanisms into SNNs to enhance
their performance and capabilities (Yao et al., 2021; Zhu et al.,

2024; Zhou et al., 2024; Lu et al., 2025). Yao et al. (2023) addressed
this through Spike-Driven Self-Attention (SDSA), reformulating
matrix multiplications as masking operations to ensure purely
binary spike signal transmission. Building on this foundation,
Yao et al. (2024) introduced the Meta-Spikeformer architecture
that extended the SDSA operator. Those advancement inspired
subsequent research exploring SNN-specific attention mechanisms.
Wang et al. (2023) proposed Spatiotemporal Self-Attention
(STSA) for SNNs, maintaining asynchronous transmission while
capturing spatiotemporal feature dependencies. More recently,
Wang et al. (2025) developed Saccade Spike Self-Attention (SSSA),
enabling comprehensive spatiotemporal feature processing for
holistic visual scene understanding in SNN paradigms. Overall,
these novel spiking self-attention mechanisms have significantly
advanced SNN performance. However, there remains a lack of
effective spiking self-attention designs specifically tailored for EEG
signal processing.

3 Preliminary

3.1 Leaky integrate-and-fire neuron

SNNs rely on spiking neurons (Maass, 1997) as their basic
unit of information transfer, and common spiking neurons
include the Hodgkin-Huxley (Abbott and Kepler, 2005), Izhikevich
(Izhikevich, 2003), and Leaky Integrate-and-Fire (LIF) (Izhikevich,
2003) model. In this work, we use the LIF model as the spiking
neuron in the proposed method. The LIF model is a simple and
effective spiking neuron model. When the membrane potential
reaches a certain threshold, the neuron emits a spike, followed by a
reset of the membrane potential to the resting potential Vreset . The
dynamic model of LIF is described as:

H[t] = V[t − 1] + 1
τ

(X[t] − (V[t − 1] − Vreset)), (1)

S[t] = �(H[t] − Vth), (2)

V[t] = H[t](1 − S[t]) + VresetS[t], (3)

where τ is the membrane time constant, and X[t] is the input
current at time step t. When the membrane potential H[t] exceeds
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the firing threshold Vth, the spiking neuron triggers a spike S[t].
�(·) is the Heaviside step function which equals 1 for v ≥ 0 and 0
otherwise. V[t] represents the membrane potential after the trigger
event which equals H[t] if no spike is generated, and otherwise
equals to Vreset .

3.2 Wavelet transform

Wavelet transforms (WTs) are powerful signal-processing
tools that enable the localization of signals in both time and
frequency domains, which is particularly useful for analyzing non-
stationary signals like EEG. The discrete wavelet transform (DWT),
in particular, provides an efficient method for multi-resolution
analysis by decomposing signals into sub-bands corresponding
to different frequency scales. This decomposition enables the
extraction of local features at various scales, making it well-
suited for EEG signal processing. EEG signals are nonlinear and
non-stationary, posing challenges for traditional analysis methods
in capturing their time-varying and multiscale nature. Wavelet
transforms, and specifically DWT, offer a significant advantage
in feature extraction and time-frequency characterization of
EEG signals. The DWT decomposes EEG data into frequency
bands such as delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–
13 Hz), beta (13–30 Hz), and gamma (greater than 30 Hz).
This decomposition allows us to extract meaningful features
from the EEG data that correspond to various cognitive and
emotional states.

For our application, we employ the Haar wavelet due to its
simplicity and computational efficiency. Haar wavelets are among
the earliest and simplest wavelet functions, characterized by a two-
tap filter with minimal support, which results in fast computations.
Compared to other common wavelets like Daubechies or Morlet,
Haar wavelets are computationally less expensive, requiring only
additions and binary shifts, which makes them well-suited for
real-time, low-power applications such as SNN-based systems.
Haar wavelets are particularly efficient in extracting local, low-
frequency components (such as delta and theta waves) as well
as high-frequency components (like beta and gamma waves),
which are essential for distinguishing different cognitive states
in EEG analysis. The efficiency and simplicity of Haar wavelets
also make them ideal for handling the sparse, event-driven nature
of SNNs.

3.3 Spiking self attention mechanism

The Transformer architecture, originally devised for
natural language processing tasks (Vaswani et al., 2017),
has subsequently permeated multiple subfields of artificial
intelligence. At its core lies the self-attention mechanism,
which facilitates selective information processing by focusing
on relevant contextual elements. Spikformer (Zhou et al.,
2022) pioneered the integration of self-attention into SNNs
through their Spiking Self-Attention (SSA) framework and
spikformer architecture. This approach innovatively employs

sparse spiking representations for the query (Q), key (K), and value
(V) matrices:

Q = SN (BN(XWQ)), (4)

K = SN (BN(XWK )), (5)

V = SN (BN(XWV )), (6)

here, Q, K, and V form tensors of dimension R
T×C×H×W , with

BN(·) representing batch normalization and SN (·) denoting the
spiking neuron layer that maintains the attention mechanism’s
spiking nature. The similarity computation between spiking Q and
K matrices proceeds via dot-product:

Score = Sim(Q, K) = QK�. (7)

The attention output is subsequently calculated as a scaled
weighted sum of V , transformed through spiking neuron
activation, and further processed through linear transformation
and batch normalization before final spiking neuron conversion to
produce the output Z:

Attn = SN (s · Score · V), Z = SN (BN(Linear(Attn))). (8)

4 Methods

In this section, we introduce our approach for EEG-based
emotion recognition and auditory attention decoding. First,
we define the problem formulation in Section 4.1. Then, we
describe the overall data processing workflow in Section 4.2.
Finally, we present the proposed Spiking Wavelet Transformer
(SpikeWavformer) architecture which integrates wavelet transform
and self spiking attention mechanisms in Section 4.4.

4.1 Problem analysis

Given an EEG dataset Deeg, it can be represented as:

Deeg = {(xeeg
i , yi)}N

i=1, (9)

where xeeg
i ∈ Xeeg denotes the raw EEG input signal for the i-th

sample, and yi ∈ Y represents its corresponding label (emotion
category or auditory attention state). Our objective is to learn a
spiking neural network model Fθ with parameters θ to predict
the class label from the EEG input. The model is optimized by
minimizing the expected risk based on the cross-entropy loss LCE:

arg min
θ

E
(xeeg,y)∼Deeg

[
LCE

(
Fθ (xeeg), y

)]
. (10)

In this study, we present a novel spiking transformer
model, denoted as Fθ , to learn discriminative spatio-temporal
representations directly from raw EEG signals for the joint tasks of
emotion recognition and auditory attention decoding. To achieve
this, we introduce a novel Spiking Wavelet Self-Attention (SWSA)
mechanism within a spiking transformer framework. While
conventional Spiking Self-Attention (SSA) enables efficient event-
driven computation, it is limited in its ability to capture the multi-
scale frequency dynamics intrinsic to non-stationary EEG signals.
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The proposed SWSA overcomes this limitation by integrating Haar
wavelet transforms for joint time—frequency analysis, which offer
a minimal filter length and computational simplicity, making them
highly efficient for real-time processing. Compared to other wavelet
bases, such as Daubechies and Morlet, Haar’s shorter filters and
multiply-free operations align well with the event-driven, low-
power nature of spiking neurons. This integration allows the model
to focus on neurophysiologically relevant rhythms (e.g., alpha
and beta bands) critical for emotional and attentional processes,
while maintaining energy-efficient computation. Finally, a cross-
entropy loss function is employed to enable effective gradient-based
optimization for learning highly discriminative features across
both tasks.

4.2 Workflow

The overall workflow of the proposed method is depicted in
Figure 2. Raw EEG signals are first preprocessed and segmented
into overlapping windows via a sliding window strategy to preserve
temporal continuity. To more effectively capture the spatial
characteristics of EEG activity, α-band cortical signals are extracted
and projected onto 2D topographic maps, thereby maintaining
brain-region dependencies. These maps are subsequently divided
into patches and tokenized into fixed-length sequences, which serve
as the input to a stack of N spiking encoder blocks. Finally, the
resulting features are fed into an MLP classification head to predict
the corresponding emotional or attentional state. In summary, this
high-level pipeline constitutes the basis of the proposed model
architecture, which is elaborated in the following section.

4.3 SpikeWavformer

Building on the workflow described above, we design
SpikeWavformer—an end-to-end spiking transformer architecture
that combines wavelet-based multiscale analysis with spiking
attention to enhance EEG feature representation. As shown in
Figure 3, The SpikeWavformer can be written as follows:

X = SPS(X),

X′
l = SWSA(Xl−1) + Xl−1, l = 1, . . . , L (11)

Xl = MLP(X′
l ) + X′

l , l = 1, . . . , L

Y = CH(GAP(XL)).

Given the EEG input X, SpikeWavformer first visualizes the
spatial focus position via the topographic distribution of oscillatory
cortical activities in the α band and converts it into a 2D image.
Subsequently, the SPS module partitions the input into patches and
progressively extracts features, optionally incorporating wavelet
transformation to enhance multiscale feature representation. Then,
L× spiking wavelet encoder blocks with spiking wave attention
mechanism are employed to encode the features. Finally, the
features obtained from extraction and encoding are compressed
into a fixed-dimension vector via global average pooling (GAP) and
fed into a fully connected layer classification head (CH) to produce
classification results.

4.4 Spiking wavelet encoder block

As an essential neurophysiological signal, EEG plays a
pivotal role in research areas such as affective computing and
auditory attention decoding. Nevertheless, its multi-channel
structure, low signal-to-noise ratio (SNR), pronounced temporal
non-stationarity, and intricate time–frequency characteristics
present substantial challenges for existing analysis techniques.
Conventional CNNs are limited in capturing long-range temporal
dependencies inherent in EEG data. In contrast, vanilla
Transformers possess strong long-range modeling capability
but incur prohibitive computational costs when processing long-
sequence EEG signals. Furthermore, many existing approaches
employ irreversible downsampling during multi-scale feature
extraction, resulting in the loss of critical frequency-domain
information. This drawback is particularly detrimental to neural
decoding tasks that rely on specific frequency bands.

To address these issues, we propose a Spiking Wavelet Self-
Attention (SWSA) mechanism for EEG signal processing. It
combines the biological plausibility of SNNs with the flexible time-
frequency analysis of wavelet transforms, offering an efficient,
biologically inspired solution for EEG-based emotion recognition
and auditory attention decoding. Specifically, given multi-channel
EEG inputs X ∈ R

T×B×C×H×W , where T denotes time steps, B
batch size, C EEG channels, and H × W spatial-topological 2D
arrangement. The frequency-domain features of EEG signals are
crucial for neuro-decoding. Different frequency bands correspond
to different cognitive states: δ with deep sleep, θ with memory
encoding, α with relaxation, β with attention and cognitive
activities, and γ with perception and higher-order functions.
We adopt the Haar wavelet for its minimal filter length and
computational simplicity, which enable fast, low-power multiscale
decomposition and align well with the event-driven, resource-
constrained nature of SNN-based BCI systems. Specifically, the
Haar wavelet is used for multiscale decomposition and perform
DWT on EEG features at each time step t:

[
X(t)

LL, X(t)
LH , X(t)

HL, X(t)
HH

]
= DWT

(
X(t)

)
, (12)

here, X(t)
LL captures low-frequency components (like δ, θ), while

high-frequency sub-bands X(t)
LH , X(t)

HL, X(t)
HH retain high-frequency

information (β , γ ). Then, spatial local convolution enhances
frequency-band interactions:

X(t)
filt = LIF

(
BN

(
Conv

(
Concat

([
X(t)

LL , X(t)
LH , X(t)

HL

]))))
, (13)

here, BN is batch normalization, LIF a spiking neuron layer. IDWT
reconstructs spatial-domain features:

X(t)
recon = IDWT

(
X(t)

filt

)
. (14)

Our encoder, inspired by vanilla encoder (Vaswani et al., 2017),
first calculates block-input spikes for self-attention. Three matrices
Wq ∈ R

d×dq , Wk ∈ R
d×dk , Wv ∈ R

d×dv map tokens to vectors.
Spiking neurons convert vectors to spiking sequences Q, K, V :

Q = LIF(BN(XWq)), K = LIF(BN(XWk)), V = LIF(BN(XWv)).

(15)
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FIGURE 2

Workflow of the proposed method for EEG-based tasks. First, raw EEG data are preprocessed and segmented via sliding windows. Second, the
α-band cortical activity is visualized as 2D topological maps. Finally, the data are tokenized into fixed-length sequences with multiple spiking encoder
blocks performing feature extraction and an MLP head outputting the predicted category.

FIGURE 3

The overall architecture of our proposed Spiking Wavelet Transformer (SpikeWavformer) for EEG-based tasks, which consists of a spiking patch
splitting module, L× spiking wavelet encoder blocks, and a linear classification head.

Next, we compute Q-K similarity. Following Zhou et al. (2022),
a scaling factor s controls matrix-multiplication magnitude without
affecting attention properties:

Xattn = LIF(QK�V ∗ s), (16)

X′
attn = LIF(BN(Linear(Xattn))). (17)

To integrate wavelet and attention features effectively, we use
channel-wise concatenation:

Xcombined = Concat
(

X′
attn, X(t)

recon

)
, (18)

SWSA(X) = LIF(BN(Xcombined)). (19)

By integrating wavelet decomposition with spiking
mechanisms, SpikeWavformer enables efficient processing of
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long-sequence EEG data while facilitating the analysis of cross-
frequency neural dynamics, thereby providing richer feature
representations for complex neuro decoding tasks. Specifically, we
analyze the advantages of integrating wavelet transform into SNNs
from the perspectives of convergence and convergence speed. First,
We define the EEG signal space as X = {x ∈ R

T×C×H×W}, where
T represents time steps. C denotes channels, and H ×W represents
spatial dimensions. The discrete wavelet transform operator is
defined as:

W :X → Y , (20)

where Y = {(XLL, XLH , XHL, XHH)} represents the wavelet
coefficient space.

The SWSA mechanism can be formalized as a composite
operator:

SWSA(X) = F(Attn(W(X))) ⊕ W−1(W(X)), (21)

where W is the DWT operator, Attn is the spiking attention
operator, F is the fusion operator, ⊕ denotes concatenation and
W−1 is the inverse DWT (IDWT).

Theorem 1 (Lipschtiz Continuity of SWSA): The SWSA
mechanism satisfies Lipschitz continuity (Hager, 1979; Gouk et
al., 2021; Goldstein, 1977) with constant LSWSA, ensuring stable
convergence during training.

Proof: First, we establish the Lipschitz properties of individual
components: Haar Wavelet Transform Lipschitz Property: For
the Haar wavelet transform W, we have: ||W(x1) − W(x2)||2 ≤
LW ||x1 − x2||2. Since Haar wavelets are orthonormal, LW = 1.
Spiking Attention Lipschitz Property: For the spiking attention
mechanism with LIF neuron, let φ(μ) = �(μ − Vth) be the spike
generation function. The membrane potential dynamics: V[t] =
τV[t − 1] + X[t] − vresetS[t − 1]. For bounded inputs, the LIF
neuron satisfies: |φ(μ1) − φ(μ2)| ≤ 1

Vth
|μ1 − μ2|. Therefore,

LA = 1
Vth

. Combined Operator: The SWSA operator combines
these components: ||SWSA(x1)−SWSA(x2)||2 ≤ LSWSA||x1−x2||2,
where LSWSA = LW · LA · LF = LF

Vth
with LF being the Lipschitz

constant of the fusion operation.
Corollary 1: Under the assumption that LSWSA < 1, the SWSA

operator is a contraction mapping, guaranteeing convergence to a
unique fixed point.

Theorem 2 (Accelerated convergence): The SWSA mechanism
achieves faster convergence compared to vanilla spiking self
attention.

Proof: Consider the optimization landscape with loss function
L(θ). The gradient update for SWSA parameters follows: θt+1 =
θt − α∇θ L(θt). The wavelet decomposition provides a natural
regularization through frequency localization:

LSWSA(θ) = Ldata(θ) + λ
∑

j

||Wj||1. (22)

This L1 regularization on wavelet coefficients promotes sparsity.
The convergence rate is bounded by:

L(θr) − L∗ ≤ 1
2αT

||θ0 − θ∗||2 + αL
2

σ 2, (23)

where the wavelet regularization reduces the effective variance σ 2,
leading to faster convergence.

5 Experiment

This section presents comprehensive experiments to evaluate
the effectiveness and efficiency of the proposed SpikeWavformer
model. First, we detail the experimental setup, including
datasets, preprocessing, and implementation specifics. Second,
comparative studies are conducted on the DEAP and KUL
datasets, demonstrating superior performance over existing
methods in both emotion recognition and auditory attention
decoding tasks. Additionally, we provide an analysis of the
model’s energy efficiency, highlighting its advantages in low-power
computing environments.

5.1 Experimental setup

5.1.1 Datasets
DEAP. The DEAP dataset (Koelstra et al., 2011), widely used

in emotion recognition research, examines emotional responses
to multimedia stimuli by employing peripheral physiological data
and EEG signals. It includes 32-channel EEG recordings and
various physiological signals, such as skin temperature, blood
volume pulse (BVP), respiratory rate, galvanic skin response (GSR),
electrooculogram (EOG), and video clips of facial expressions. The
facial expressions of the first 22 participants were also recorded.
Each participant completed 40 trials, with each trial lasting 1 min
and a 3-second baseline recorded before the start of each trial.
After each trial, participants filled out a questionnaire to self-report
their emotional state in terms of arousal, valence, dominance, and
liking, with each dimension rated on a 9-point scale. EEG data were
collected using a 32-channel device at a sampling rate of 512 Hz.

KUL. The KUL dataset (Das et al., 2019) comprises EEG data
collected using the BioSemi ActivateTwo device. The experimental
environment was electromagnetically shielded and soundproofed
to minimize potential noise interference. Data were collected from
16 subjects with normal hearing, who were instructed to focus on a
specific speaker amidst two speakers. The speakers narrated four
Dutch stories. Each subject participated in 8 trials, each lasting
6 min. Auditory stimuli, filtered through HRTF, were presented
to the subjects in two forms: from the left or right side, in a
randomized manner.

5.1.2 Implementation details
The EEG data from each channel was first re-referenced to

the average response of all electrodes. Given that the analyzed
EEG signals were collected at different sampling rates, they were
all band-pass filtered between 1 and 32 Hz using a 6th-order
Chebyshev Type II filter and down sampled to a 128 Hz sampling
rate. The frequency range was chosen based on previous nonlinear
AAD studies. Finally, the EEG data channels were normalized to
ensure a mean of zero and unit variance for each trial. The study
on the KUL dataset analyzed seven decision window sizes: 0.1, 0.2,
0.5, 1, 2, 5, and 10 seconds. Experiments were conducted using
two NVIDIA RTX 4090 GPUs. The model was optimized using the
Adam optimizer with an initial learning rate of 1×10−4 and trained
for 200 epochs. For the SNN model parameters, LIF neurons were
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set with an initial membrane potential of 0, a spiking threshold
of 0.5, and a simulation time step of 4. To facilitate effective
backpropagation, a sigmoid function with parameter α = 4 was
used as the surrogate gradient function, expressed as sigmoid(x) =
1/(1 + exp(−αx)). The remaining setup of spiking transformer
architecture follows spikformer (Zhou et al., 2022).

5.2 Comparative study

We conduct experiments on the DEAP and KUL datasets
using proposed SpikeWavformer and compare the results with
existing methods for emotion recognition and auditory attention
decoding. As shown in Tables 1, 2, our method achieves state-
of-the-art performance on all datasets. On the DEAP dataset
for emotion recognition, the SpikeWavformer method reaches an
Arousal accuracy of 76.51% (std: 5.48%) and a Valence accuracy of
77.10% (std: 5.68%). Existing methods like EEGNet (Lawhern et al.,
2018) achieve 58.29% (std: 8.60%) for Arousal and 54.56% (std:
8.14%) for Valence. SCN (Schirrmeister et al., 2017) attains 61.19%
(std: 10.28%) for Arousal and 59.42% (std: 8.30%) for Valence. DCN
(Schirrmeister et al., 2017) gets 61.03% (std: 8.58%) for Arousal
and 59.92% (std: 7.82%) for Valence. Tsception (Ding et al., 2022)
achieves 61.57% (std: 11.04%) for Arousal and 59.14% (std: 7.60%)
for Valence.

We further compared the performance of the SpikeWavformer
for different detection window sizes, ranging from 0.1 to 10
seconds, with the results presented in Table 2. On the KUL dataset,
the SpikeWavformer achieved an average decoding accuracy of
96.5% across all subjects for a 1-second decision window, 97.1%
for a 2-second decision window, 97.3% for a 5-second decision
window, and 98.6% for a 10-second decision window. Generally,
larger decision windows yielded better results, corroborating
findings from previous studies (De Taillez et al., 2020; Ciccarelli

et al., 2019; Vandecappelle et al., 2021). Notably, our proposed
method is capable of decoding auditory spatial attention with a very
short decision window of less than 1 second. For decision windows
of 0.5 seconds and 0.2 seconds, the SpikeWavformer attained high
accuracy rates of 94.2% and 86.7%, respectively. Although the
accuracy for the 0.1-second decision window was lower than that
of the 1-second decision window, SpikeWavformer maintained a
high accuracy rate of 80.5%. In all comparisons with related work
(De Cheveigné et al., 2018; Cai et al., 2021; Su et al., 2022), the
SpikeWavformer demonstrated competitive performance.

5.3 Energy consumption comparison

In this section, we validate the energy efficiency of our proposed
model over its ANN counterpart. Based on the energy calculation
standard in neuromorphic computing (Sengupta et al., 2019), we
use the method proposed by Wang et al. (2024) to compute the
energy consumption ratio between our model and the equivalent
ANN model:

Energyrate =
AC

MAC
∗ SpikingRate ∗ TimeSteps. (24)

In the equation, AC
MAC denotes the energy consumption ratio

of an accumulate (AC) operation in SNNs to a multiplication
(MAC) in ANNs. Extensive studies confirm the theoretical value
of AC

MAC is 1
7 (Horowitz, 2014). Here, SpikingRate is the average

spiking rate, and TimeSteps the simulation time window. In our
model, SpikingRate is 12.3%, and TimeSteps is set to 4. Based
on Equation 24, our model achieves over 7× energy efficiency
compared to its ANN counterpart.

TABLE 1 Comparison of different methods on DEAP dataset.

Dataset Method Arousal Valence

Acc. Std Acc. Std

DEAP EEGNet (Lawhern et al., 2018) 58.29% 8.60% 54.56% 8.14%

SCN (Schirrmeister et al., 2017) 61.19% 10.28% 59.42% 8.30%

DCN (Schirrmeister et al., 2017) 61.03% 8.58% 59.92% 7.82%

Tsception (Ding et al., 2022) 61.57% 11.04% 59.14% 7.60%

SpikeWavformer 76.51% 5.48% 77.10% 5.68%

The bold text refers to the method proposed in this paper.

TABLE 2 Performance comparison across different decision windows.

Dataset Model Decision window (second)

0.1 0.2 0.5 1 2 5 10

KUL Linear (CCA) (De Cheveigné et al., 2018) 50.9 53.6 55.7 60.2 63.5 69.4 75.9

Non-linear (CNN) (Cai et al., 2021) 74.3 78.2 80.6 84.1 85.7 86.9 87.9

STAnet (Su et al., 2022) 80.8 84.3 87.2 90.1 91.4 92.6 93.9

SpikeWavformer 80.5 86.7 94.2 96.5 97.1 97.3 98.6

The bold text refers to the method proposed in this paper.
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FIGURE 4

Visualization of saliency maps from DEAP dataset (Sub 1–8): (a) Arousal-dimensional saliency maps and (b) valence-dimensional saliency maps.

FIGURE 5

Visualization of Arousal-dimensional saliency maps from KUL dataset (Sub 1–16).

5.4 Interpretability

In this section, saliency maps (Simonyan et al., 2013) are
employed to visualize the areas of the data that contain the
most information and contribute to classification performance.
The saliency map is one of the most widely used tools for
illustrating which regions of the input data hold classification-
relevant information. To enhance the visualization of the saliency
maps, the original maps were averaged along the time dimension
to capture the topology of the EEG channels. Additionally, the
normalized saliency maps were averaged across different samples
for each subject to produce generalized average saliency maps. The
average saliency maps for the DEAP dataset and the KUL dataset
are presented in Figures 4, 5, respectively.

DEAP. For arousal, as illustrated in Figure 4a, the temporal
and frontal regions of the brain contain a wealth of information.
This indicates that these regions are more involved in processing
emotions, aligning with findings from previous studies (Gao et al.,
2021; Huang et al., 2012; Mickley Steinmetz and Kensinger, 2009).
Emotional arousal is predominantly represented in the temporal
and frontal lobes. The asymmetry between the frontal and temporal
lobes is closely associated with emotion recognition within the

arousal dimension. In terms of valence, Figure 4b shows that
the parietal and temporal lobes are also rich in information.
This observation is consistent with earlier research (Huang et al.,
2012), suggesting that the network effectively learns from these
relevant regions.

KUL. It is expected that the areas of neural activity contributing
to speech processing will exhibit greater significance. As illustrated
in Figure 5, the average saliency map of the KUL dataset reveals
that the frontal and temporal regions contain more substantial
information. These findings align with previous research indicating
that activation is prominently observed in the frontal and temporal
cortices (Ciccarelli et al., 2019; Geirnaert et al., 2020; Vandecappelle
et al., 2021).

6 Conclusion

This paper presents SpikeWavformer, an end-to-end deep
learning SNN model that integrates the wavelet transform with
spiking transformer architecture. The model combines the global–
local feature extraction capability of the wavelet transform with
the low-power, event-driven computation of spiking neurons,
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enabling dynamic modeling and efficient processing of EEG
signals. This integration supports effective time–frequency
decomposition, automatic feature extraction, and classification,
thereby improving generalization across diverse scenarios.
Experiments on two publicly available datasets demonstrate
that SpikeWavformer consistently outperforms established
methods. The experimental results validate its effectiveness in
both emotion recognition and auditory attention decoding tasks,
highlighting its potential for deployment in resource-constrained
brain–computer interface applications. Future deployment of
SpikeWavformer on neuromorphic hardware platforms presents
both promising opportunities and technical challenges. The
energy-efficient characteristics of the approach make it particularly
well-suited for implementation on neuromorphic chips, potentially
enabling low-power BCI applications in portable devices.
However, contemporary neuromorphic architectures are primarily
optimized for convolution-based SNNs, necessitating further
hardware–software co-design efforts to fully realize the benefits
of Transformer-based spiking architectures. Overall, this study
advances the development of energy-efficient, high-performance
brain–computer interfaces suitable for resource-constrained
practical deployment.
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