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Exploring functional connectivity
at different timescales with
multivariate mode
decomposition

Manuel Morante*, Kristian Frølich and Naveed ur Rehman

Department of Electrical and Computer Engineering of Aarhus University, Aarhus, Denmark

This paper explores an alternative way for analyzing static Functional
Connectivity (FC) in functional Magnetic Resonance Imaging (fMRI) data
across multiple timescales using a class of adaptive frequency-based methods
referred to as Multivariate Mode Decomposition (MMD). The proposed method
decomposes fMRI into their intrinsic multivariate oscillatory components
through a fully data-driven approach, and enables the isolation of intrinsic
neurophysiological activation patterns across multiple frequency bands from
other interfering components. Unlike other methods, this approach is inherently
equipped to handle the multivariate nature of fMRI data by aligning frequency
information across multiple regions of interest. The proposed method was
validated using three fMRI experiments: resting-state, motor and gambling
experiments. Results demonstrate the capability of the methodology to extract
reliable and reproducible FC patterns across individuals while uncovering unique
connectivity features at different times scales. In addition, the results evidence
the effect of the different task on the spectral organization of FC patterns,
highlighting the importance of multiscale analysis for understanding functional
interactions.
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1 Introduction

The brain is a complex system that exhibits highly organized neurophysiological
interactions at different timescales (Zalesky et al., 2014; Preti et al., 2017). As a result, brain
activity displays highly complex spatio-temporal dynamics (Bolton et al., 2020b; Lurie
et al., 2020), and their knowledge is crucial to enhancing our understanding of the brain’s
function and cognition (Fair et al., 2009; Poldrack et al., 2011; Friston, 2011). Functional
Magnetic Resonance Imaging (fMRI) has emerged as a key non-invasive modality for
studying brain activity, offering unique insights into neuronal processes through the
Blood-Oxygenation-Level-Dependent (BOLD) contrast (Poldrack et al., 2011). This signal
reflects variations in oxygenation levels elicited by neuronal metabolic activity, enabling
researchers to explore brain functioning indirectly. However, fMRI data is inherently noisy,
comprising not only neural signals but also interfering components such as movement,
respiratory cycles, and cardiac pulsations (Bianciardi et al., 2009; Bolton et al., 2020a).
This complexity requires advanced analysis techniques to reliably interpret the underlying
interactions.
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TABLE 1 Methods for extracting static functional connectivity from fMRI data.

Methods for extracting static fuenctional connectivity

Hypothesis-driven methods Region of interest Static FC extraction Correlation

Other metrics

Data-driven methods Matrix decomposition Independent component analysis

Sparse dictionary learning

Nonnegative matrix factorization

Clustering Clustering methods Hierarchical cluntering

k-means

Affinity propagation

Similarity metrics High-order features

Deep learning Supervised DL CNN

RBM

Unsupervised DL CNN

RBM

DBM

VAE

Adaptive ferquency Static filtering Hilbert Transform

Wavelet Coherence

Iterative filtering

Mode decomposition EMD, VMD

MVMD

This table summarizes current approaches for static FC analysis, extending the categorization reported by Du et al. (2024) in Figure 1, and highlights our contribution in the context of adaptive
frequency-based methods.

Over the past two decades, the study of interactions among
neuronal networks has evolved significantly, as discussed by
Bolton et al. (2020b). Moving beyond conventional analyses for
localizing brain activations, researchers have increasingly focused
on understanding the brain’s dynamic organization through
Functional Connectivity (FC), as envisioned by Friston (2011)
more than a decade ago. No doubt, FC analysis has become
instrumental in identifying brain network patterns, unraveling
cognitive processes, and advancing diagnostics for neurological
disorders (Bolton et al., 2020b,a; Calhoun and Adalı, 2012) The
recent survey in by Du et al. (2024) offers a good overview of
current FC-based approaches for analyzing brain activity. However,
they also highlight some of their challenges and limitations. For
instance, many conventional approaches rely on assumptions of
linearity, stationarity, and independence in the data, which fail
to capture the true complexity of brain dynamics, which may
compromise the interpretability of results (Guan et al., 2020; Lurie
et al., 2020).

Following the current trends discussed by Du et al. (2024),
extracting static FC can be broadly categorized into hypothesis-
driven and data-driven approaches, as we briefly summarized in
Table 1. Hypothesis-driven methods, such as Region of Interest
(ROI)-based correlation analysis, have been widely used but require
a priori knowledge and may overlook unexpected patterns. In
contrast, data-driven methods offer flexibility and adaptability,
including matrix decomposition techniques (e.g., Independent

Component Analysis, sparse dictionary learning), clustering
methods (e.g., hierarchical clustering, k-means), and deep learning
models (e.g., CNNs, RBMs, VAEs) (Song et al., 2022; Golestani and
Chen, 2022).

While these methods have advanced the field, they are not
without drawbacks, as they often struggle with the non-linear
and non-stationary nature of fMRI data. For instance, classical
frequency-domain transforms, such as Hilbert Transform or
Wavelet Coherence (Bolton et al., 2020b), depend on static,
predefined bands and implicitly assume stationarity, hindering
their ability to deal with individual variability (Yuen et al.,
2019). Moreover, recent advances in phase synchronization
analysis have revealed that traditional approaches can introduce
bias and miss important connectivity patterns occurring at
unexpected frequencies as shown by Honari and Lindquist
(2022). Similarly, many deep learning methods often rely
on static band-pass filtering, uniformly applied across all
participants. This preprocessing step inherently assumes that
meaningful brain activity occurs within the same frequency
ranges for everyone (e.g., 0.01–0.1 Hz), and constitutes a
strong oversimplification that fails to account for any task-
related or individual variability. On top of that, this limits the
view of these approaches to a very specific frequency range,
ignoring any other potential information, despite known it carries
relevant information (Bolton et al., 2020a; Honari and Lindquist,
2022).
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A promising direction—yet often overlook in fMRI studies—
lies in adaptive frequency-based methods, which address the
limitations of static filtering by decomposing signals into data-
driven oscillatory components. For example, mode decomposition
techniques, such as the one proposed by Yuen et al. (2019),
decompose fMRI signals into intrinsic modes but are limited
to univariate analysis. However, Yuen et al. (2019) primarily
focused on voxel-level, and they used only on univariate signal
analysis, which ultimately limited its ability to explore the
interconnected (multivariate) nature of the fMRI data and
its connectivity patterns. In contrast, Multivariate Variational
Mode Decomposition (MVMD) (Rehman and Aftab, 2019)
extends this idea to multivariate data, aligning frequency
components across regions and capturing the dynamic interactions
between them. This approach overcomes the limitations from
Yuen et al. (2019) and those from other conventional FC
methods by accommodating the non-linearity, non-stationarity,
and multivariate nature of fMRI data, while avoiding rigid
assumptions or predefined parameters. These are critical aspects,
as the recent study by Honari and Lindquist (2022) has
demonstrated over a wide range of simulations, when multiple
brain regions are analyzed simultaneously, multivariate approaches
significantly outperform univariate methods by ensuring proper
mode alignment and avoiding frequency mismatches between
decomposed components.

All these observations highlight the need for data-driven
signal processing methods for fMRI analysis that can extract
relevant frequency information, handle non-linearity and non-
stationarity of data, and produce reliable and interpretable results.
In response, we propose a novel path for FC analysis in fMRI
data that leverages MVMD. MVMD’s unique advantage lies
in its ability to decompose fMRI signals into their intrinsic
multivariate oscillatory components, enabling a comprehensive
exploration of brain connectivity across multiple timescales.
Additionally, this data-driven approach allows adapting to
individual differences without requiring predefined frequency
bands or static filters. Unlike conventional approaches that
use fixed frequency range, MVMD automatically identifies
each individual’s intrinsic frequency modes directly from their
data, while inherently accommodates the multivariate, non-
linear, and non-stationary nature of fMRI data. By aligning
frequency information across regions of interest, it provides
a robust framework for isolating noise, identifying relevant
patterns, and uncovering unique functional interactions (Huang
et al., 1998; Rehman and Aftab, 2019). Importantly, MVMD
have also been shown to overcome issues such as mode
mixing and noise sensitivity compared to other similar Mode
Decomposition methods, making it particularly suitable for the
analysis of complex, noisy fMRI signals as Honari and Lindquist
(2022).

The key contributions of this work are as follows:

1. We introduce an integrated fully adaptive MVMD-based
method for fMRI analysis, capable of removing artifacts, filtering
noise, and isolating brain activity into fundamental multivariate
oscillatory components, while effectively incorporating the non-
stationary nature of fMRI data. This framework does not rely on
predefined filters or static parameters.

2. We demonstrate the method’s ability to uncover reliable and
reproducible FC patterns across individuals and experimental
conditions, including resting-state, motor, and gambling tasks.

3. We provide new insights into the temporal and spectral
organization of brain connectivity, emphasizing the importance
of multiscale analysis for understanding functional interactions.

The rest of the paper is organized as follows: Section 2 describes
the basis of MVMD, our proposed methodology, the fMRI data, and
the experimental design. Section 3 presents the results, highlighting
key findings. Section 4 discusses the obtained results and their
implications for FC analysis. It also includes a discussion of
limitations and potential avenues for future research. Finally,
Section 5 concludes with a summary of the study’s contributions.

2 Materials and methods

Multivariate Variational Mode Decomposition (MVMD1) is
one of the most popular algorithms used to perform Multivariate
Mode Decomposition (MMD) (Rehman and Aftab, 2019). From
a general perspective, MMD is a Signal Processing model that
assumes a multivariate signal of interest accepts a representation
as a linear combination of a small set of amplitude- and frequency-
modulated (AM-FM) functions (Huang et al., 1998), each with a
well-defined instantaneous frequency shared among all channels
(Huang et al., 1998; Rehman and Aftab, 2019).

Formally, given a multivariate signal x(t) =
[x1(t), x2(t), . . . , xC(t)]T, with C different channels, the MMD
model assumes that the signal arises from a linear combination of
K intrinsic oscillatory components, {u(1)(t), u(2)(t), . . . , u(K)(t)},
referred to as Intrinsic Modes (IMs), as follows:

x(t) =
K∑

k=1

u(k)(t) =
K∑

k=1

a(k) cos(φ(k)(t)), (1)

where a(k)(t) = [a(k)
1 (t), a(k)

2 (t), . . . , a(k)
C (t)]T and φ(k)(t) are the

amplitude and the instantaneous frequency of the k-th oscillatory
component respectively (Rehman and Aftab, 2019). Intuitively,
each intrinsic mode behaves similarly to a harmonic function, as
they remain relatively close to some common central frequency.
Yet, they are still flexible enough to capture non-stationary
and non-linear effects by allowing variations in amplitude and
frequency as detailed by Dragomiretskiy and Zosso (2014).

Despite its intuitive appeal, performing MMD is not trivial.
Consequently, several algorithms have been introduced with
different advantages and trade-offs. In this study, we propose to use
MVMD, which addresses MMD via a robust optimization-based
approach.

1 Open-source code for MVMD available for Python (https://github.com/

Dmocrito/mvmd) and MATLAB (https://se.mathworks.com/matlabcentral/

fileexchange/72814-multivariate-variational-mode-decomposition-

mvmd).
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2.1 Multivariate Variational Mode
Decomposition algorithm

Formally, as introduced by Rehman and Aftab (2019), given
a multivariate signal x(t) containing data from C channels, i.e.,
x(t) = [x1(t), x2(t), . . . , xC(t)]T, the MVMD algorithm tries to
decompose the observed data as a linear combination of K principal
multivariate oscillations, u(k)(t), as in Equation 1, by solving the
following optimization problem:

argmin
{u(k)

c }c,k ,{ωk}k

K∑
k=1

C∑
c=1

∥∥∥∂t

[
ŭ(k)

c (t)e−iωkt
]∥∥∥

2

2

s.t. xc(t) =
K∑

k=1

u(k)
c (t) c = 1, 2, . . . , C,

(2)

where ŭ(k)
c stands for the Hilbert Transform of u(k)

c .
Observe that this particular formulation sets multiple linear

constraints, each one corresponding to each particular channel. On
the other hand, the main loss function works over the K intrinsic
modes, where are minimized to remain close to a common central
frequency, ωk.

Solving the optimization task in Equation 2 posses several
challenges due to the inherent complexity of the task and the
constraints involved. Nonetheless, Rehman and Aftab (2019)
resorted on the classical divide-and-conquer approach, and
employed the Alternating Direction Method of Multipliers
(ADMM) (Boyd et al., 2011) to effectively integrate multiple
constraints. Put succinctly, this approach effectively solves the
described optimization task by splitting the problem in multiple
easier-to-solve subproblems. The resulting problems are then
solved iteratively, producing an estimate of the intrinsic modes. See
the original work by Rehman and Aftab (2019) for the particular
formulation details and optimization steps.

2.2 MVMD and other state-of-the-art MMD
algorithms

Although MVMD is one of the most popular algorithms for
performing MMD, several alternative methods have been proposed.
These include Multivariate Empirical Mode Decomposition
(MEMD) (Rehman and Mandic, 2009), multivariate iterative
filtering (Cicone and Pellegrino, 2022), and multivariate chirp
mode decomposition (Chen Q. et al., 2020). Among these,
MEMD stands out as a widely used alternative to MVMD
due to some unique features. For instance, MEMD does not
require specifying the number of intrinsic modes beforehand
(see Supplementary material, Section B for further details), which
makes it attractive in cases when it is not possible to find a good
estimate for the number of modes.

In essence, MEMD is a data-driven approach that decomposes
a multivariate signal into its intrinsic oscillatory components
through an iterative greedy process. Similar to MVMD, MEMD
aims to extract the same intrinsic modes u(k)(t) as described in
Equation 1. However, MEMD employs a distinct iterative sifting
process. At each iteration, it estimates a local mean by averaging the

maximum and minimum envelopes of the signal. This local mean
is then subtracted from the analyzed signal to produce an IM.

Despite its effectiveness in decomposing multivariate signals,
MEMD has a significant drawback: it is highly sensitive to noise.
This sensitivity can lead to a wide range of problems, including
mode mixing, where a single mode contains multiple frequency
components (Eriksen and Rehman, 2023). In addition, MEMD
is particularly sensitive to noise, as high level of noise may
interfere with the detection of the where ŭ(k)

c stands for the Hilbert
Transform of u(k)

c . For all these reasons, MEMD does not appear as
a suitable algorithm for fMRI analysis.

2.3 Frequency organization of fMRI data

While studies focusing on frequency-related aspects of fMRI
are relatively sparse, existing research offers valuable insight into
the frequency organization of the fMRI signal and brain dynamics.
For instance, Cordes et al. (2001) demonstrates that the frequency
contribution to the correlation patterns spans several frequency
bands. Similarly, Yuen et al. (2019) investigated the inherent
frequency components across different brain locations—in a voxel-
wise fashion—yielding similar findings.

Overall, fMRI frequency components comprise a rich spectrum
that covers several relevant frequency bands. First, very low-
frequency oscillations, much lower than 10 mHz (Power et al.,
2011), correspond to trends,or signal drifts. Unlike low-frequency
components (Tong et al., 2019), trends and drifts have been
consistently been attributed to a combination of physiological
fluctuations (Huettel et al., 2009), head motion residuals (Maknojia
et al., 2019), and scanner instabilities (Smith et al., 1999).
Neurophysiological activation patterns resulting from neuronal
activity appear within the range of 10 to 200 mHz (Cordes
et al., 2001; Yuen et al., 2019; Lurie et al., 2020) emphasizing
the significant contribution of this frequency band to fluctuations
related to brain activity, which corresponds with the natural band
dominated by the BOLD response.

Additionally, fundamental respiratory oscillations occur
around 250 mHz, while the first harmonic of respiration appears
around 500 mHz (Frank et al., 2001). Contributions from blood
vessels and cerebrospinal fluid pulsations fall within the 400 to
800 mHz band. Similarly, those high-frequency components
exhibited significant structured correlations among different brain
areas due to the distinct anatomical distribution of the cerebral
blood vessels and ventricles (Cordes et al., 2001). Similarly, they
also pointed out that cardiac pulsations can spread to lower
frequencies due to aliasing, appearing as additional interfering
structured components, which complies with observations by Soon
et al. (2021).

2.4 Proposed approach: multiscale
functional connectivity using MVMD

In this study, we propose a new method for analyzing FC using
MVMD. The Figure 1 illustrates the main steps of our proposed
approach:
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• Step I. Data collection. The first step involves collecting data
from each individual. We can perform this step at the voxel
level or over some set of ROIs, using an appropriate brain atlas.

• Step II. MVMD analysis. We perform MVMD analysis on
the data collected using a well established algorithm (see
text footnote 1). This analysis obtains the intrinsic oscillatory
components (IMs) associated with each individual.

• Step III. Identification of the relevant IMs. We identify
the relevant IMs by examining their corresponding central
frequencies. Specifically, we focus on the components within
the neurophysiological frequency band 10–200 mHz, as
discussed in Section 2.3.

• Step IV. Functional Connectivity (FC) extraction. We can
use the obtained multivariate IMs associated with each
particular frequency band to uncover the FC at various
timescales, providing a complete multiscale FC representation
of the fMRI data.

2.5 fMRI data, experimental description,
and preprocessing

In this study, we investigated three experiments from the WU-
Minn Human Connectome Project (HCP) (Van Essen et al., 2013).
Specifically, we selected the resting state, motor, and gambling
experiments from the HCP repository2. In each experiment, we
randomly selected 100 healthy participants aged 22 to 35 years.

The first experiment was resting-state, where participants were
instructed to remain as still as possible during the scan, with eyes
open with relaxed fixation on a projected bright cross-hair on a
dark background and presented in a darkened room3. We chose
this experiment because resting-state data is widely used for FC
analysis, often providing reliable results.

The motor experiment followed a standard block paradigm,
where a visual cue asked the participants to tap their left or right
fingers, squeeze their left or right toes, or move their tongue. Each
movement block lasted 12 s and was preceded by a 3-s visual cue.
Additionally, there were two 15-s fixation blocks. We chose this
simple experiment because the activation patterns and neuronal
networks involved are well documented (Morante et al., 2020),
facilitating the evaluation of the results.

Last but not least, the gambling experiment followed a random
block paradigm, where participants tried to guess if a randomly
generated number between 1 and 9 was either higher or lower
than 5. There are two main reasons why we investigated this
additional task-related experiment. Firstly, this experiment has
been well studied, making the evaluation process easier. The
second reason is that, unlike the motor experiment, the gambling
experiment’s paradigm is unpredictable, i.e., the guesses of the
participants cannot be determined a priori. This randomness adds
an unpredictable effect to the responses, increasing the variability
in the data and allowing for a more robust and consistent analysis.

2 Human Connectome Project: https://www.humanconnectome.org/.

3 HCP 3T Imaging Protocol Overview: http://protocols.

humanconnectome.org/HCP/3T/imaging-protocols.html.

Additionally, we expect the level of arousal and effort for this
experiment to be higher than for the other two experiments.

2.5.1 Preprocessing
We obtained the fMRI data directly from the HCP repository

(see text footnote 2). The datasets used were collected using a
3T scanner with a repetition time (TR) of 720 ms. The specific
descriptions of the experimental procedures and acquisition
parameters are detailed in the HCP imaging protocols (see text
footnote 3). In particular, we analyzed the data with minimal
preprocessing steps, including motion correction and spatial
normalization. Finally, on top of the standard preprocessing
pipeline already applied by the HCP (Barch, 2013; Van Essen
et al., 2013), we further smoothed each brain volume with a 4-mm
FWHM Gaussian kernel.

As discussed in the introduction, our proposed methodology
does not require any further preprocessing steps, such as static
temporal filtering or source separation, to uncover the natural
oscillatory components of the fMRI data. Unlike, for example, Yuen
et al. (2019), who explicitly required static temporal filtering.

2.5.2 Selected regions of interest
We divided the brain into several ROIs using the Automated

Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002).
Although the AAL atlas maps the entire brain, we only analyzed
cerebral regions, which resulted in 90 ROIs. Following the recent
module-based network organization proposed by Parente and
Colosimo (2020), we grouped these 90 ROIs into seven functional
modules. For the selected 90 ROIs, we extracted the related time
series using Nilearn toolbox4. Finally, we removed the mean value
from each ROI.

For completeness, Supplementary Table 1 in the
Supplementary material contains detailed information regarding
the ROIs selected from the AAL and its modules, including labels
and network organization.

Additionally, only for the motor experiment, we considered an
extra 5 ROIs for the analysis of the time courses associated with the
different parts of the motor cortex. For extracting these areas, we
used the same motor templates for separating these motor ROIs as,
for example, the one implemented by Morante et al. (2021).

2.5.3 Parameter selection for MVMD
MVMD is a parametric algorithm that requires setting

two parameters: the number of intrinsic modes, K, and the
regularization parameter α, which essentially controls the
bandwidth of each IM. In this study, we conducted a small
exploratory study to determine the optimal value for these
parameters in terms of energy and signal reconstruction, and
we found that K = 10, and α = 1, 000 produced good signal
reconstruction. All the details regarding this evaluation are
discussed in the Supplementary material.

4 Nilearn: https://nilearn.github.io/stable/index.html.
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FIGURE 1

Proposed method. Step I. Data collection, where fMRI data is aggregated either at a voxel level or through predefined brain atlases; Step II. MVMD
analysis, which consists of extracting the Intrinsic Modes (IMs) for each individual; Step III. Identify the relevant IMs within the neurophysiological
frequency band (10–200 mHz); and Step IV. FC extraction associated with the IMs of interest.

3 Results

In this study, we extracted the intrinsic oscillatory components
from all three fMRI experiments evaluated, following the procedure
described in Figure 1. Then, we estimated the FC patterns
associated with each IM among all the different participants.
Finally, we conducted a quantitative analysis of the obtained FC
patterns to evaluate their reproducibility among participants.

3.1 Intrinsic mode extraction using MVMD

We examined the intrinsic modes obtained using MVMD
among all the different experiments. Figure 2 illustrates the central
frequencies, ωk, (a), and relative energy contribution (b) of the IMs
for all the studied participants. We calculated the relative energy
contribution associated to each mode as the ration between the
energy of the k-th mode, say Ek, and the total energy of the signal,
Etot , i.e., Ek/Etot . Each colored box depicts the results associated
with each studied experiment. For convenience, the shadowed area
highlights the IMs within the neurophysiological bandwidth.

Regarding the intrinsic modes, we observed that the first IM
exhibited a dominant frequency, centered around zero. Similarly,
this mode showed a higher relative energy contribution among all
participants. IMs 2 to 5 appeared within the neurophysiological
frequency range. This range includes typical brain activity
frequencies related to several cognitive and neurophysiological
processes (Cordes et al., 2001). Table 2 shows the average
central frequencies for each IM among participants and their
corresponding bandwidths. We found that those results were
relatively consistent among participants and experiments.

The remaining modes spanned across high frequencies. As
discussed in Section 2.3, signals within this frequency range
originate from a mixture of different interfering components. These
components include those induced by respiration movements,
heartbeat, and cerebrospinal fluid pulsations. Notably, mode
6—approximately centered at 250 mHz—appears close to the
primary respiratory-related harmonic, while mode 9—with a
central frequency of ∼520 mHz– closely coincided with the first
harmonic of the cardiac pulsations (Cordes et al., 2001; Yuen et al.,
2019).

Regarding the relative energy contribution among IMs,
illustrated in Figure 2b, we observed that, in general, modes
with lower frequencies exhibited higher energy, while those
with higher frequencies had decreasing energy contributions.
Specifically, we observed that the first IM captured residual trends,
characterized for having a central frequency around zero (see
Table 2). This indicates that this IM is primarily capturing slow
signal drifts (Huettel et al., 2009; Power et al., 2011), rather
than former oscillatory components. In this way, unlike other
general low-frequency components (Tong et al., 2019), the first IM
primarily appeared to capture trends and slow signal drifts (Huettel
et al., 2009; Power et al., 2011; Maknojia et al., 2019), which
have consistently been attributed to a combination of physiological
fluctuations (Huettel et al., 2009; Power et al., 2011), head motion
residuals (Maknojia et al., 2019), and scanner instabilities (Smith
et al., 1999). In contrast, the high-frequency components, over
the neurophyisiological band, which are associated to respiratory
and cardiac harmonics, showed comparatively lower energy
contributions. The reason for this is that these high-frequency
components are more localized (e.g., in the cerebrospinal fluid or
blood vessels), resulting in a relatively smaller contribution to the
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FIGURE 2

Frequency and energy distribution associated with each IM using MVMD. The boxplot depicts the corresponding results among all the studied
participants for the resting-state, motor, and gambling fMRI experiments. The shadowed area highlights the intrinsic modes whose frequency
appears within the neurophysiological band. (a) Frequency distribution for MVMD. (b) Energy distribution for MVMD.

TABLE 2 Average frequency, f̄ , and their corresponding average
bandwidth (BW) for the different studied experiments for MVMD.

Resting-state Motor Gambling

f̄ BW (mHz) f̄ BW (mHz) f̄ BW (mHz)

Mode 1 0 6.8 ± 1.0 0 21.6 ± 1.5 0 26.3 ± 1.5

Mode 2 23 14.3 ± 1.9 23 36.5 ± 4.1 26 44.9 ± 4.3

Mode 3 54 15.0 ± 2.2 56 40.5 ± 1.9 66 50.8 ± 2.3

Mode 4 96 15.9 ± 2.7 99 43.0 ± 3.1 115 53.0 ± 2.9

Mode 5 156 16.9 ± 2.7 157 47.6 ± 3.9 182 57.4 ± 3.6

Mode 6 232 16.5 ± 2.8 231 50.6 ± 3.6 257 57.0 ± 3.8

Mode 7 310 17.2 ± 3.1 308 50.8 ± 3.9 330 57.6 ± 4.1

Mode 8 407 18.1 ± 2.5 400 54.1 ± 4.5 419 61.6 ± 4.4

Mode 9 521 18.3 ± 2.4 514 56.6 ± 3.9 533 63.8 ± 4.0

Mode 10 632 17.4 ± 2.3 627 53.8 ± 5.2 627 56.8 ± 7.4

The notation ± indicates the standard deviation among all studied participants. Formally, for
the k-th intrinsic mode, we calculated the average central frequency, f k as the arithmetic mean
of the central frequencies of all participants, i.e., f k = 1

N
∑N

n=1 ωk,n , where N is the number
of participants and ωk,n is the central frequency of the n-th participant for the k-th mode.

overall fMRI signal, compared to other physiological components,
such for example head movements, that affect the full brain.

3.1.1 Comparison between fMRI experiments
Overall, Figure 2 shows that the intrinsic modes obtained from

the different fMRI experiments display similar central frequencies
and energy contributions, as they follow a similar trend. However,
a closer examination of the energy and frequency distributions
revealed some interesting differences.

For instance, in the resting-state experiment, the majority of
the energy is concentrated at low frequencies, where the first
mode appeared as the most energetic component. In contrast,
task-related experiments—although their trend is similar—showed
slightly different behavior: the first component was relatively

less dominant, whereas the neurophysiologically relevant modes
(IMs 2–5) consistently exhibited higher energy levels compared
to the resting-state condition. Particularly, IMs 2 and 3 showed
significantly higher energy levels, followed by IMs 4 and 5, which
were also elevated compared to the resting-state results. In other
words, neurophysiological components associated with task-related
activity displayed higher energy contributions than those at rest.
This observation is intuitively consistent with the nature of these
experiments, which involve cognitive tasks such as motor and
gambling tasks that require increased neuronal activity.

On the other hand, when focusing on the components
outside the neurophysiological band, we also observed some
relevant differences. For example, modes 6 and 7 in the gambling
experiment exhibited higher central frequencies than the other
experiments. Similarly, when examining the energy distribution, we
observed a significant increase in the energy associated with these
modes compared to resting-state. From Section 2.3, we understand
that the mode 6 falls within the physiological range associated with
the first respiratory harmonic. Therefore, both higher frequency
and energy indicate a faster respiratory rhythm. In this sense, these
results evidenced that our proposed approach is able to capture and
separate both, brain and physiological changes.

3.2 Overview of intrinsic modes from
MVMD

3.2.1 IMs from the resting-state experiment
We visualize the activation patterns associated with some IMs

for different ROIs. The idea is to better illustrate the behavior
of these IMs as well as gain a deeper understanding of their
physiological meaning. Figure 3 displays the IMs within some
randomly selected ROIs for a randomly selected participant.
We also observed that the first mode captured low-frequencies
trends and signal drifts, likely due to motion residuals or scanner
inestabilities (Power et al., 2011; Maknojia et al., 2019; Smith et al.,
1999), which is also reflected in the results in Figure 3.
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FIGURE 3

Time activation patterns associated with some IMs among several randomly selected ROIs from a randomly selected individual. The results
correspond to the analysis of the resting-state experiment.

Even though we observed high levels of consensus among
all participants on frequency and energy distributions, a closer
examination of the specific time activation patterns associated with
this mode in Figure 3, revealed that these patterns varied among
participants, which indicates that these low-frequency components
are highly individual-dependent. Furthermore, intrinsic modes
with high frequencies, including those in respiratory and cardiac
bandwidth, also showed considerable individual variability.

3.2.2 IMs from the motor experiment
In contrast to the resting state, the motor experiment allowed

us to perform a more comprehensive analysis of the IMs and their
neurophysiological meaning. First, we selected the primary visual
cortex (ROI 43 and 44) for visual responses. In addition, we further
divided the motor cortex ROI into five additional motor-related
ROIs for the different motor areas, corresponding to the right/left
hands, right/left feet, and the tongue (Morante et al., 2020).
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FIGURE 4

Average time courses among all the studied participants associated with the first two neurophysiological IMs (2 and 3) from the results of MVMD
(blue lines), and the canonical task-related components (orange lines) for the most relevant ROIs associated with the motor experiment.

The motor experiment follows a conventional block paradigm,
therefore, we have access to the canonical task-related components,
i.e., the time activation patterns that are obtained using the classical
convolutional model with the canonical Hemodynamic Response
Function (HRF) (Power et al., 2011). These components serve no

particular purpose for our proposed approach, but we will use it as
a reference to better illustrate IMs’ behavior.

Figure 4 illustrates the average time courses for the relevant
ROIs associated with the motor experiment among all the
participants from the MVMD algorithm. The blue-colored lines
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correspond to the average of the specific time activation patterns
for IMs 2, 3 and 4 among all the studied participants. Finally,
the orange lines in Figure 4 represent the canonical task-related
component expected within each main ROI. In this case, we focused
only on the task related components, as we aim to compare
them with the canonical task-related component. Higher frequency
modes are not included as they exhibit similar behavior as the ones
from Figure 3, as well as strong individual variability, and renders
their average meaningless.

Those results showed that IM2 and IM3 effectively capture
information related to the expected brain activation patterns within
their corresponding ROIs of interest. For instance, IM 2 closely
aligns with the block-related activity from the motor cortex ROIs.
On the other hand, IM 3, which exhibits a higher central frequency
(see Table 2), encodes the visual cue associated with the motor task
and fixation.

3.3 Multiscale static functional
connectivity using MVMD

Figure 5 depicts the average FC patterns associated only with
neurophysiological modes. We obtained those FC patterns by
averaging them across all participants, as they exhibited high
similarities. Each row corresponds to a particular mode, and each
column contains different experiments. For all comparisons, we
performed a statistical test with respect to a null dataset generated
from each particular decomposition by randomly mixing the
temporal samples of the IMs. Pearson’s correlation coefficients were
Fisher-Z transformed. The lower diagonal of each connectivity
matrix displays the average correlation coefficients, while the upper
diagonal shows only the correlation values that also exhibited
significant activation compared to the null data derived from a
permutation-based t-test corrected for false discovery rate adjusted
to p < 0.001, as used by Romanello et al. (2022), as provide robust
statistical analysis without assumptions about the underlying data
distributions. For convenience, we arranged the ROIs according to
the leading module (left and right), following the order reported in
Supplementary Table 1.

Overall, by examining Figure 5 we observed some overlap in
connectivity patterns across IM 2–5 within each experiment. To
further investigate this observation, we examined the FC patterns
associated with IM 1 and IM 6–10 (see Supplementary Figures 3,
4). Notably, the strong consistent connectivity patterns observed
across IM 2–5 were largely absent in the higher-frequency
components (IM 6–10).

3.3.1 Reproducibility of the FC maps among
participants

Reproducibility refers to the ability of methods to consistently
detect consistent activity within the expected ROIs among different
experimental realizations (Varoquaux et al., 2010; Morante et al.,
2020). Figure 5 contains the average FC patterns for each mode.
However, this figure does not provide any additional information
regarding the reproducibility of these results among participants.
Consequently, we examined the reproducibility of the reported

results. In this regard, this step differs from other approaches
(Amico and Goñi, 2018), in that it constitutes a necessary step to
ensure results consistency.

Therefore, we conducted a study to assess FC patterns
reproducibility among participants. This study aimed to
demonstrate how different FC patterns behaved across participants.
In particular, we studied the individual reproducibility of the static
FC patterns associated with each IM for the three considered fMRI
experiments.

For completeness, we evaluated the reproducibility of FC
patterns across all IMs, including those from outside the
neurophysiological band. To this end, we calculated the Pearson’s
correlation obtained from all the possible pairs of comparisons
across all participants. We want to emphasize that this step was
critical in ensuring the validity of our findings, as it allowed us
to confirm that the FC patterns associated with each IM were
consistent across all participants, providing a solid foundation for
our findings.

Figure 6 illustrates the similarity of the FC associated with
each mode using MVMD for the three studied experiments. The
boxplots depict the results obtained across all pair comparisons for
all participants, for each experiment separately.

Upon examination, we observed that all experiments followed
a similar trend. Specifically, we observed that, although each
experiment exhibit slightly difference reliability values, within each
experiment, the neurophysiological IMs (IM 2–5) consistently
exhibited higher reproducibility than the rest of the components
(IM 1, IM 6–10).

4 Discussion

In this study, we explored the FC patterns associated
with the intrinsic modes (IMs) extracted using MVMD across
different fMRI experiments. Our results demonstrated that MVMD
effectively unveiled the inherent oscillatory components that closely
matched the natural characteristics of the fMRI data.

The study of the FC patterns associated with those IMs also
provided insightful information regarding the brain’s behavior
at different timescales. We also observed differences among the
studied experiments, which underscores the relevance of examining
various temporal scales to gain a comprehensive view of brain
function (Chen J. E. et al., 2020).

Our results provide empirical evidence that MVMD effectively
extracts the intrinsic oscillatory components of fMRI data.
Specifically, we observed that the IMs obtained from MVMD
aligned closely with the expected behavior of fMRI signals, as their
frequency bands and energy distribution adhered to established
characteristics (see Section 2.3).

Furthermore, when we examined the reproducibility of the FC
patterns associated with these IMs in Figure 6, we noted a similar
trend across all experiments: modes within the neurophysiological
band exhibited the highest reproducibility. In particular, IM 3 and
IM 4 demonstrated remarkable consistency, compared to those
outside the neurophysiological band.

The behavior of the results reported in Figure 6 were expected.
We aim to uncover common neurophysiological interactions, so
we anticipated components within the neurophysiological band
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FIGURE 5

Average FC patterns for the IMs 2, 3, 4, and 5 for the three studied fMRI experiments. The FC patterns were estimated by averaging across 100
participants. Person’s correlation coefficients were Fisher-Z transformed. The lower diagonal part shows all the averaged correlation coefficients. The
upper diagonal only displays significant correlation coefficients compared to the null dataset from a permutation-based t-test corrected with a false
positive rate adjusted to p ≤ 0.001.
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FIGURE 6

Reproducibility of the static FC patterns associated with each intrinsic mode for the three considered fMRI experiments using MVMD. The boxplots
depict the Pearson’s correlation values among all the possible individual pair comparisons across all the participants.

producing similar FC patterns to those outside this frequency
band. For instance, we observed that the first IM, despite having
the highest energy, exhibited the lowest reproducibility among
participants and experiments. Because the first intrinsic mode
captures individual trends and motion residuals, which are highly
individual-specific (Power et al., 2011).

Additionally, although the discussed behavior appears
consistently across experiments, Figure 6 also revealed some
differences between experiments. In this study, we estimated
reproducibility separately for each experiment. Therefore, we
hypothesize that the observed differences may reflect inherent
variations in FC characteristics between resting-state and task-
related experiments. However, we acknowledge that the nature of
these differences remains unclear: one possible explanation is that
neurophysiological IMs tend to exhibit higher consistency during
resting-state, while task-related experiments may contain greater
variability, likely due to individual differences in task performance.
Alternatively, those differences could stem from limitations of
MVMD itself, as task-related experiments may contain higher level
of noise and interfering motion residuals, leading to systematic
differences between task-related and resting-state conditions.

On the other hand, we observed that the average activation
patterns for neurophysiological IMs for some ROIs comply with
the expected canonical task-related activation patterns from the
motor experiment as illustrated in Figure 4. In contrast, we
observed a large difference between ROIs for IMs outside the
neurophysiological band, indicating that those components are
more individual-specific, which also appeared within the resting-
state experiment (see Figure 3).

Regarding the high-frequency intrinsic modes, above
the neurophysiological band, although those showed lower
reproducibility, some of them still demonstrated a relatively
large similarity. These findings indicate that certain interfering

physiological components also produce structured and consistent
FC patterns among individuals. These results suggest that high-
frequency modes associated to cardiac or respiratory harmonics
exhibits their own particular characteristics, which is consistent
with the findings by Chen J. E. et al. (2020).

4.1 Analysis of IMs between fMRI
experiments

The central frequency and energy distributions for MVMD
in Figure 2 displayed similar trends across all experiments.
However, closer examination revealed some differences between
the experiments. In the gambling experiment (Figure 2), for
instance, IMs 5 and 6 exhibited significantly higher central
frequencies than those in other experiments.

Similary, IMs 6 and 7 also contributed significantly to the
fMRI signals in the gambling experiment. These findings indicate
faster physiological rhythms during the gambling experiments,
which we attribute to higher arousal levels. The higher central
frequency, especially in IM 6, points to faster respiratory cycles. IM
9 also showed increased energy, consistent with the first respiratory
harmonic. However, when compared to the other experiments, this
difference was not statistically significant.

Low-frequency IMs revealed additional differences in energy
distributions across fMRI experiments. In the resting-state
experiment, energy appeared concentrated primarily in the first
IM, then rapidly shifted to IMs 2 and 3 before vanishing at
higher frequencies. In contrast, in task-related experiments, the
contribution of the first IM was considerably lower, while IMs 2-
4 exhibited consistently higher energy. This pattern suggests that
task-related experiments involve increased energy demands within
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the neurophysiological band and reflect the heightened neuronal
activity required to perform cognitive tasks.

These results also align with previous research indicating that
cognitive engagement leads to stronger BOLD signal changes due to
localized oxygen consumption and vascular responses (Power et al.,
2011). Consequently, our findings underscore the fundamental
contrast between minimal cognitive engagement during resting-
state scans and more complex neuronal activation patterns in task-
based experiments, which ultimately leads to higher overall energy
contributions within these intrinsic modes.

4.2 Neurophysiological multiscale FC
patterns

Regarding the FC study, Figure 5 shows the average FC
patterns associated with neurophysiological IMs from MVMD.
Overall, we identified some similarities between the experiments.
The presence of similar connectivity patterns across multiple
frequency bands likely reflects common underlying anatomical
connectivity structures that support brain activity across the
neurophysiological spectrum. These findings align with previous
static FC studies (Bolton et al., 2020b) that the presence of similar
connectivity patterns across multiple frequency bands likely reflect
a common underlying connectivity structure, large-scale nets of
interconnected neurons that mediates and support the signaling
between brain regions (Hermundstad et al., 2013). Furthermore,
the similarity of FC patterns among participants declined with
increasing frequency (Supplementary Figure 4), supporting our
hypothesis that higher-frequency components are more likely
driven by physiological noise rather than neurophysiological
processes.

On the other hand, the FC patterns associated with IM 1
presented a more complex behavior (Supplementary Figure 3),
exhibiting some consistency across participants with partial
overlap to IM 2–5 patterns. However, it also exhibits large
individual variability as shown in Figure 6, this indicates that
despite having some common patterns, it also contains large
individual differences, which reflect the interplay and mixture
of several components, such as scanner instabilities and motion
artifacts (Maknojia et al., 2019).

Upon closer inspection, we also uncovered some differences,
which provide further opportunities to explore the underlying
brain mechanisms. For instance, IM 2 exhibited extensive activity
across several brain networks, including the default mode network
(DMN), the temporal and occipital modules. When we analyzed
the resting-state patterns, we observed more significant correlations
between the occipital and temporal modules than in task-related
experiments, suggesting broader engagement of neural networks
such as the attention network.

The motor task, on the other hand, showed a higher number of
significant correlations between the occipital region and the DMN.
In contrast, the gambling experiments showed fewer significant
correlations. This finding suggests a specific involvement of visual
control processes, aligning with FC dynamics reported in other
task-related experiments (Branzi et al., 2022).

Furthermore, during the gambling experiment, we noted
strong left-hemisphere correlations within the limbic module. This
lateralization may reflect emotional responses to gambling tasks
(Wu et al., 2022). The DMN and the occipital module also exhibited
significant correlations, highlighting the interplay between intrinsic
processing and visual input during this condition.

Regarding IM 3, we observed more consistent patterns
across experiments. Task-related paradigms consistently showed
a significant connection between the frontoparietal and temporal
modules, marked by left-lateralization that weakened in the resting-
state condition.

Finally, IM 4 revealed minimal differences among experiments,
implying that higher-frequency neurophysiological IMs exert
relatively low influence on task-related activity. We hypothesize
that other paradigms designed to challenge higher cognitive
functions might uncover distinct connectivity patterns at these
frequencies. Future research should explore whether more
demanding tasks or additional cognitive loads could alter high-
frequency FC contributions.

4.3 Limitations and future work

As with any other study, there are some limitations: (1) We
analyzed three fMRI datasets with similar imaging protocols.
Future experiments with a broader range of datasets and conditions
would help us to fully understand the applicability of the proposed
approach. (2) Exploring dynamic FC aspects using MMD was
beyond the scope of this study. A thorough examination of
connectivity dynamics following the proposed approach and how
they relate to other dynamic FC approaches could be explored in
future work. (3) We focused on a single brain atlas. A comparison
with other alternative brain atlases could also provide additional
insights. (4) Our study focused on the ROI level. Exploring the
voxel-level application of MFC could yield fine-grained insights
into brain FC. (5) The current MVMD algorithms are applied
individually. More advanced algorithms tailored to fMRI data and
group-level strategies that integrate information from multiple
participants at the same time could be investigated in future
research.(6) In this study, we analyzed the three different fMRI
experiments separately. As a direction of future work, we suggest
performing a more comprehensive joint analysis, as this would
enable more robust cross-experimental comparisons.

5 Conclusions

In this study, we introduce a novel method for extracting
neurophysiological and functional information from fMRI data
across multiple timescales using Multivariate Variational Mode
Decomposition (MVMD). To the best of our knowledge, this is
the first time applying such an analysis to fMRI data. Our method
differs from prior studies, such as Yuen et al. (2019), by addressing
the non-linear, non-stationary, and multivariate nature of fMRI
data while incorporating individual-specific characteristics in a
data-driven manner, without the need for predefined static filters
or source separation.
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Through the analysis of three distinct fMRI experiments, we
demonstrated that MVMD effectively extracts intrinsic modes
(IMs) from fMRI data. These IMs complied with fMRI frequency
organization and provided meaningful and reproducible FC
patterns across multiple timescales. Furthermore, the study of
these connectivity patterns highlighted the interconnected roles
of various brain networks at different timescales, and showed
interesting differences between the fMRI experiments. Thus, our
method offers a more comprehensive understanding of fMRI
dynamics and network interactions (Preti et al., 2017).
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