AUTHOR=Morante Manuel , Frølich Kristian , Rehman Naveed ur TITLE=Exploring functional connectivity at different timescales with multivariate mode decomposition JOURNAL=Frontiers in Neuroscience VOLUME=Volume 19 - 2025 YEAR=2025 URL=https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2025.1653007 DOI=10.3389/fnins.2025.1653007 ISSN=1662-453X ABSTRACT=This paper explores an alternative way for analyzing static Functional Connectivity (FC) in functional Magnetic Resonance Imaging (fMRI) data across multiple timescales using a class of adaptive frequency-based methods referred to as Multivariate Mode Decomposition (MMD). The proposed method decomposes fMRI into their intrinsic multivariate oscillatory components through a fully data-driven approach, and enables the isolation of intrinsic neurophysiological activation patterns across multiple frequency bands from other interfering components. Unlike other methods, this approach is inherently equipped to handle the multivariate nature of fMRI data by aligning frequency information across multiple regions of interest. The proposed method was validated using three fMRI experiments: resting-state, motor and gambling experiments. Results demonstrate the capability of the methodology to extract reliable and reproducible FC patterns across individuals while uncovering unique connectivity features at different times scales. In addition, the results evidence the effect of the different task on the spectral organization of FC patterns, highlighting the importance of multiscale analysis for understanding functional interactions.