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Introduction: Clinical studies assessing cognition in Alzheimer’s and other 
neurodegenerative diseases require endpoints that are sensitive to treatment 
response across a broad range of cognitive abilities. However, responsiveness 
of conventional cognitive assessments typically varies with the performance 
level, especially due to non-linearities such as floor or ceiling effects. Here, 
we  evaluate 6 newly developed smartphone-based and gamified Adaptive 
Cognitive Assessments (ACAs) entailing a system of dynamic difficulty 
adaptation to individual performance, which is expected to improve adherence 
but also measurement properties. Deployment of such ACAs to maximize their 
discriminative ability in comparative studies requires exploration of many free 
parameters and complex dynamics.
Methods: In simulations of cohorts of patients with cognitive impairment, 
we compared two ACAs paradigms: after 14 daily tests allowing performance-
based difficulty adaptation, the difficulty level was either (1) fixed or (2) kept 
adaptive for a period of 4 years with weekly testing. Sensitivity to between-group 
effects was assessed in cohorts characterized by cognitive decline observed in 
neurodegenerative diseases.
Results: The discriminative ability of the two paradigms depends on features 
of the study design and subjects. At study end, the adaptive difficulty paradigm 
clearly outperformed the fixed-difficulty paradigm in terms of responsiveness 
for cognitive decline rates >2.5% per year.
Discussion: ACA can increase biomarker responsiveness to treatment effects 
over fixed difficulty. ACA deployment should be guided by study and assessment 
features, including duration, expected cognitive decline rates and effect size. In 
the high-dimensional parameter space of ACA instruments, study simulations 
are indispensable to identify suitable deployment strategies.
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1 Introduction

In the area of neurodegenerative diseases, recent years have seen 
a constant increase in the number of interventional clinical studies 
that target cognitive function as a key outcome of interest. Measures 
of cognition are among the main study endpoints in Alzheimer’s 
Disease (AD) (Mintun et al., 2021; van Dyck et al., 2023) and are 
becoming increasingly relevant also in other neurodegenerative 
conditions, such as Parkinson’s Disease (PD) with its variants 
(Aarsland et al., 2017), Multiple Sclerosis (MS) (Strober et al., 2019), 
Huntington’s Disease (HD) (Paulsen et  al., 2013) as well as in 
psychiatric diseases. In clinical study cohorts, cognitive ability/
performance and cognitive decline often vary over a broad range 
(Mintun et al., 2021; van Dyck et al., 2023; Butler et al., 2025). Large 
between-subject variability constitutes a serious challenge to the 
sensitivity of experiments because the responsiveness of conventional 
tools typically depends on the performance level as well as several 
other factors (Albert et al., 2011; Elkana et al., 2016). This is due to 
floor or ceiling effects (Butler et  al., 2025) or other types of 
nonlinearities in the mapping of cognitive ability to test results. In 
addition, prolonged learning/practice effects are commonly observed, 
especially in subjects with normal or only slightly impaired cognitive 
ability, and often mask cognitive decline by yielding apparent 
improvement trajectories. For example, in MS, cognitive performance 
measured by the symbol-digit modalities test (SDMT) or the paced 
auditory serial addition test (PASAT) generally increases during the 
entire course of a typical interventional study (generally of about 
2 years duration), even in control arms (Benedict et al., 2025; Leavitt 
et al., 2025).

Compared to standard in-clinic neuropsychological tests, the use 
of smartphone-based self-assessments at home may improve 
measurement reliability, ecological validity and accuracy, while 
enabling an increased assessment density, which may also result in a 
rapid saturation of any learning or practice effects (Pham et al., 2021; 
Lam et al., 2022). Gamification and adaptive features are expected to 
provide relevant advantages in terms of compliance in longitudinal 
studies. Importantly, adaptation may additionally confer beneficial 
psychometric properties to the tests, especially concerning 
longitudinal responsiveness and sensitivity to treatment effects. 
Nonetheless, this aspect appears to be neglected in the literature on 
adaptive cognitive tests, where development efforts typically focused 
on diagnostic tools that reduce the testing burden (Wouters et al., 
2009; Gibbons et  al., 2024) rather than tools designed to detect 
longitudinal change and treatment effects. Longitudinal responsiveness 
would be  a necessary feature of instruments to be  used as 
pharmacodynamic response biomarkers indicative of disease 
modification (Cummings et al., 2025).

In this work, we  evaluate CoGames, a battery of 6 recently 
developed smartphone-based and gamified adaptive cognitive 
assessments (ACAs), which entail a system of dynamic difficulty 
adaptation to individual performance over repeated administrations 
(Pless et  al., 2023, 2025). The ACA instruments assess working 
memory, information processing speed, short-term (visuo-spatial) 
memory, semantic recognition, executive functioning, cognitive 
flexibility, sustained and divided attention, and psychomotor speed.

In adaptive cognitive assessment paradigms, the change in 
assessment difficulty along with performance creates an entanglement 
between the performance metrics (scores) and the task difficulty level, 

which makes the definition of longitudinal measures of cognitive 
decline multidimensional by construction. In this sense, optimal 
deployment and endpoint definitions that maximize the 
responsiveness and discriminative ability of ACAs in clinical studies 
remain to be identified. Due to the highly dimensional parameter 
space, which experimental data and statistical models can only cover 
to a minimal extent, study simulations are an essential strategy to 
explore relevant practical scenarios as well as general properties of 
ACAs. This work hence describes a study simulation tool and 
investigates the instrument responsiveness resulting from different 
deployment strategies of ACAs, with a focus on long-term 
investigations of cognitive decline in Alzheimer’s disease.

2 Materials and methods

2.1 Simulation tool

Indivi’s CoGames battery (Supplementary Figure S1 and 
Supplementary Table S1) includes six distinct ACA instruments, in 
which subjects are invited to perform ACA runs iteratively according 
to a protocol-specific schedule. Based on performance (termed 
‘score’), at each run (i.e., test execution) at a given difficulty level 
(termed rank), subjects are assigned a rank for the next run. The 
different instruments have between 5 and 8 ranks.

We developed a tool to stochastically simulate trajectories of 
individual subjects through a series of runs of each CoGames ACA 
instrument and implemented it in R (R Core Team, 2021), version 
4.5.0. The tool generates individual trajectories (T), i.e., for each 
patient i and ACA instrument, a sequence of N runs:

	 ( ) = …=, , , 1, ,,i N i k i k k NT rank score

From an initial rank (that can be chosen freely), trajectories are 
calculated iteratively by generating (1) the current score, based on a 
probabilistic individual subject model, which for each test consists of 
the distribution of the individual subject’s score at any given run in a 
trajectory, and (2) the next rank, determined from a study model. This 
consists of a set of deterministic rank transition rules that identify the 
next rank as a function of the current test score and the trajectory up 
to that run.

2.1.1 Individual subject model
Since the models are built in the same way for all 6 CoGames ACA 

instruments (with the exception of the short-term memory ACA 
«Treasure Hunt», as noted below), the approach will be described 
without reference to a specific test.

In the iterative simulation of individual subject trajectories 
through a set of runs, for a subject i who performs the j-th test in a 
trajectory and has been assigned ,i jrank , the test score ( ,i jscore ) is 
drawn from a probability distribution (which we generically call f) that 
depends on the past runs in the trajectory:

	 ( )−=, , , 1,i j i j i jscore f rank T
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These distributions define individual subject models, which need 
to be constructed for each cohort to be simulated. An example is 
presented in Section 2.2.1, where the patient model is based on normal 
distributions. In general, the distributions f, are obtained by: (1) 
defining a (marginal) baseline distribution for each rank (typically 
from experimental data) used for the first test execution at each rank, 
(2) tuning the parameters of the marginal distribution for subsequent 
runs to model longitudinal performance changes, such as short-term 
learning/practice effects or steady cognitive decline, and (3) 
incorporating within-subject relationships (correlation) to model the 
stability of individual trajectories, so that the current score is drawn 
from a conditional distribution accounting for the past. Parameters of 
these distributions can be defined on the individual subject level. 
Short-term learning effects (including also practice effects) and steady 
cognitive decline were modeled over time by deterministic functions 
used as multipliers for the expectation of the score distribution at 
each run.

More specifically, short-term learning effects were incorporated 
using the following (half) sigmoidal function of the run (called L) 
with a value of 1 at the first run, an asymptote at max (reflecting 100 
* (max − 1) % improvement) and a rate parameter determining how 
quickly the asymptote is approached.

	
( )

( )( )( )
=

+ − ∗ − − −

maxmax , ,
1 exp 1 ln max 1 /

L rate run
rate run rate

Cognitive decline was modeled for all tests and ranks as the 
constant 1 (no decline) for a certain initial number of runs and 
thereafter a linear function of the run (constant decline), until the 
minimum of 0 (not reached in the scenarios presented in this work). 
The initial period with stable cognition is used to represent studies 
including a run-in phase with intensive test administration (e.g., daily 
for 2 weeks) before subjects are moved to a regular schedule with more 
distanced assessments (e.g., weekly, monthly). For a regular testing 
schedule, which we assume for our typical simulated studies (after a 
short initial intensive run-in phase, see Section 2.2.2), a linear decline 
function reflects constant cognitive decline over time. See Figure 1 for 
an example of learning and decline functions and their 
combined effect.

2.1.2 Study model
The study model (function sm) describes the decision rules 

determining the rank assigned to a subject who has obtained a specific 
score at a given test run in a trajectory. For a subject i who has 
performed the j-th test in trajectory, i.e., who has been assigned to 

,i jrank  and obtained ,i jscore  the next rank described as a deterministic 
function of the trajectory

	 ( ) ( )+ =, 1 , ,i j i j i jrank score sm T

In a typical implementation (see Section 2.2.2), this decision rule 
assigns a higher rank (if available for the specific instrument) to the 
subjects if the score has exceeded specific cutoffs for a given number 
of the latest runs in a row, or a lower rank if the score was repeatedly 
under some other cutoffs. Note that, in our parameterization, the time 
between administrations (e.g., weekly, monthly) is not explicitly 
mapped in the study model but would have to be  incorporated 

indirectly by manipulating other parameters such as learning and 
decline functions or longitudinal correlations.

2.2 Simulations

2.2.1 Parameters of the patient model
At any given run in a trajectory, a score is initially obtained from 

a (conditional) normal distribution. To reflect the range of possible 
values in the features being modeled, if the obtained score is <0, it is 
set to 0. An upper limit was only set for Treasure Hunt instrument, 
where the score is limited to 100, consistently with its specific derived 
candidate biomarker (relative correctness of the execution) being 
bound to 0–100%. While the lower limit does not have practical 
relevance in the original data and in the simulations, the upper limit 
in Treasure Hunt reflects a substantial ceiling effect, which in the data 
was present especially in the lower ranks, where the test is rather easy 
for the subjects with unimpaired cognitive abilities.

The parameters of the baseline distributions were supposed to 
reflect a cohort with a rather broad range of cognitive capacity and, on 
average, with mild cognitive impairment. As a data source for patients 
in whom cognition is expected to be slightly impaired (Benedict et al., 
2025; Nasirzadeh et al., 2024), we used patients with Multiple Sclerosis 
at an overall low level of disability from an observational study 
(NCT05009160) (Research Center for Clinical Neuroimmunology 
and Neuroscience Basel, 2025).

As in the referenced study some of the upper ranks were disabled 
for the ACA, the parameters of the distribution for the missing ranks 
were obtained by extrapolation using data from healthy volunteers 
(HVs) (Pless et al., 2025) in the following way: for each game, for all 
the ranks that were in common, we first computed the mean (over 
ranks) of the percentage difference in rank-specific sample means 
between the patients and the HVs. This percentage (reflecting a lower 
performance in patients vs. HV) was applied to the mean in HV to 

FIGURE 1

Learning, cognitive decline functions and their combined effect. 
Example based on the following parameters: Study: 14-day run-in, 
then weekly tests. Learning: max. 1.3, rate 0.15, weekly decline rate 
0.0005 (i.e., modest decline of ~2.5%/year).
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derive the mean for ranks where no patient data were available. 
Similarly, for the standard deviation, the extrapolation from HV to 
patients was done by computing the mean coefficient of variation in 
patients, which was multiplied by the mean in HVs. This was justified 
by the observation of a quite stable coefficient of variation across the 
different situations. Notably, the distributions were computed using 
the first test execution at each rank in these studies. From the second 
run onwards at a given rank, the parameters were taken from the 
second test execution in the reference study, as there was generally a 
slight change from the first to the second execution. The parameters 
of the patient model can be found in the Supplementary material. The 
studies involving humans were approved by Ethikkommission 
Nordwest- und Zentralschweiz (EKNZ), Basel, Switzerland (BASEC 
ID 2021 D0040). The studies were conducted in accordance with the 
local legislation and institutional requirements. The participants 
provided their written informed consent to participate in the studies.

The learning function had maximum = 1.3 and rate = 0.2 as 
parameters, corresponding to an improvement from baseline 
approaching 30% with 80% of the effect reached after 14 runs 
(simulating a run-in baselining phase of 2 weeks of daily runs). These 
may be conservative estimates compared to data from the literature, 
considering the dense initial testing schedule in a population of elderly 
subjects with modest cognitive impairment (Bartels et al., 2010; Zheng 
et al., 2022). Cognitive decline was modeled for all tests as the constant 
1 (no decline) until the 14th run and a linear function of the run 
thereafter, with rates that were varied in different simulations.

In the iterative simulation of trajectories, when the rank 
changed, the new score was obtained from the marginal normal 
distribution appropriate for the run (i.e., accounting for learning 
and decline effects). In subsequent runs at the same rank, the new 
score accounted for the previous score and the within-subject 
correlation. For each game and rank, this correlation was estimated 
from the patients or the HV data (where no patient data were 
available) using the first two available test runs. Correlations were 
generally high, implying a good stability of trajectories compared 
to the overall variability in the cohort: the mean over all games and 
ranks was 0.76, and <10% of the values were under 0.5 (mostly from 
the lowest ranks of Treasure Hunt, where the mentioned non-linear 
effects appear).

A new score (at run j + 1) was computed conditionally on the 
observation of the previous score (run j) by assuming bivariate normal 
distribution for the two scores, with their rank and run-specific means 
(μ) and standard deviations (σ) and the rank-specific correlation (𝜌): 

( )µ σ µ σ ρ+ +
2 2

1 1, , , , .j j j jN Parameters of the univariate normal 
distribution of the new score scorej+1 conditional on the observation 
of the previous one ( jscore ) were then:

	

( ) ( )+
+ +

ρ σ −µ
= µ + = −ρ σ

σ
1 2 2

1 1Mean ;Variance 1
j j j

j j
j

score

In practice, from the second run at each rank, the time series was 
generated by a non-stationary (due to the learning and decline trends), 
first-order autoregressive process.

2.2.2 Parameters of the study model
Two study types with different administration paradigms of 

smartphone-based ACAs were modeled and compared. In a first 

common run-in phase of the study, for the first 14 runs (reflecting 
daily testing for 2 weeks), subject-level performance-based difficulty 
adaptation was allowed at every run, i.e., if the specific cutoff for rank 
change was reached at the specific run. Then in a second phase of the 
study (the evaluation phase), the difficulty level was either fixed, which 
is termed “fixed-rank” paradigm, or kept adaptive, in the “adaptive-
rank” paradigm. In both cases, testing was assumed to be conducted 
for a period of up to 4 years with weekly testing, i.e., for a total of 
220 runs.

The cutoffs for rank change were determined in simulations 
performed in the context of the design of a clinical study, which is 
currently in the active recruitment phase. There, the aim was to find a 
set of cutoffs that enable a rather broad spread in the ranks at study 
end (36 runs), with the objective of reflecting the high variability in 
cognitive ability expected in study participants. Parameters of the 
patient and the study model can be found in the Supplementary material 
(Supplementary Table S2).

2.2.3 Parameters of the study simulations
Sensitivity to between-group effects, reflective of potential 

pharmacodynamic responsiveness of candidate biomarkers of 
Alzheimer’s disease modification, was assessed in five cohorts 
characterized by cognitive decline rates of zero/run (0%/year), 
0.0005/run (~2.5%/year), 0.001/run (~5%/year), 0.0015/run (~7.5%/
year) and 0.002/run (~10%/year). As a rough reference, normal aging 
is expected to be associated with a rate of cognitive performance 
decline of 0–2.5%/year and appears to be rather linearly stable over 
the age span, as recently assessed in the INTUITION Study (Butler 
et al., 2025). Transition from Mild Cognitive Impairment (MCI) to 
the earliest stages of mild dementia as seen in early AD can 
be approximately associated with rates of decline evolving between 
2.5 and 5% per year (van der Veere et al., 2023). The two higher rates 
(7.5%/year and 10%/year) correspond to examples anchored in the 
range of cognitive decline expected in rapidly progressive dementias 
associated with Alzheimer’s disease (van der Veere et al., 2023) and 
related disorders.

We simulated cohorts of 200 patients, roughly reflecting a typical 
small-size phase 2a proof-of-concept study of a new drug or of an 
observational study investigating cohorts defined by different risk 
profiles for cognitive decline, for instance subjects at risk for 
Alzheimer’s disease or with MCI aged 50 years or older.

2.2.4 Endpoints
The rank and score of the last run of the run-in phase were used 

as baseline for the subsequent evaluation phase. The numerical 
variables tracked in the evaluation phase to derive longitudinal 
endpoints were the score for the fixed-rank and the rank for the 
adaptive-rank paradigm. The reason for this difference is that tracking 
the score in the adaptive-rank configuration would not provide a 
consistent and interpretable endpoint: when the rank changes, the 
score follows a different distribution and has a different longitudinal 
correlation pattern.

From the longitudinal values, three endpoints were derived for 
analysis purposes: the change from baseline, the percentage change 
from baseline and the “time to confirmed decline.” For the latter 
endpoint, a decline event was defined as a >30% decrease from 
baseline, and for the event to qualify for the analysis (“confirmed 
decline”) that level of decline was required to be maintained for a 
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confirmation period of at least eight consecutive runs (reflecting about 
2 months).

2.2.5 Analysis methods
The analysis was exploratory and primarily used descriptive 

statistical methods. Time-to-event endpoints were analyzed using the 
Kaplan–Meier method. For continuous endpoints, Cohen’s d was used 
as a measure of the effect size when comparing cohorts with different 
cognitive decline rates.

3 Results

We exemplify the key observations using one of CoGames’ ACAs 
(Numbers), noting that findings were consistent for the other ACA 
instruments of the CoGames battery (Supplementary Figure S3).

Sensitivity to change and between-groups discriminative ability 
(reflecting pharmacodynamic responsiveness of candidate biomarkers 
of disease modification) of the Fixed vs. Adaptive rank testing 
paradigms differed according to parameters of the cohorts/studies. 
Figure 2 depicts the trajectory of the mean score/rank values over time 
(Figure  2A) and the analysis of the time to confirmed decline 
(Figure 2B) for five discrete rates of cognitive decline between 0 and 
10%/year. In the fixed-rank paradigm, for both types of analysis, the 
separation of the curves is rather gradual both as a function of time 
(i.e., run number) and of the decline rate. In contrast, for the adaptive-
rank paradigm, the separation appears non-linear both as a function 
of time and decline rate: i.e., for the first 1–2 years there is no or 
minimal separation, but then trajectories separate quickly in particular 
for the intermediate range of the evaluated rates of decline, 
corresponding to 2.5–7.5% per year.

Figure 3 visualizes the sensitivity to change, in a 4-year study 
simulation of one of the ACA instruments (Numbers), as measured 
by the percentage change in score or rank years for the fixed versus 
adaptive rank paradigms by yearly cognitive decline rate. At 4 years, 
the adaptive rank paradigm clearly outperforms the fixed-rank 
paradigm in terms of sensitivity to change for cognitive decline rates 
>2.5% per year.

The adaptive rank paradigm outperformed the fixed rank 
paradigm also in terms of ability to discriminate, e.g., between decline 
rates of 5 and 7.5%, as measured by Cohen’s d calculated for different 
types of endpoints (Table 1).

The theoretical expected effect size of the ACA instrument 
(Numbers) in the fixed-rank configuration to compare two decline 
rates separated by 2.5% per year is 0.62 for the most common rank at 
baseline in the simulations, which is close to the value obtained from 
simulations. For other baseline ranks, the theoretical effect size goes 
up to 1.03, which remains clearly smaller than the effect in the 
adaptive-rank configuration for the comparison of decline rates of 5 
and 7.5%.

Because of the described non-linear relationships, there are 
regions of the parameter space where the sensitivity to treatment effect 
for the adaptive-rank paradigm is small or even absent.

For example, for the smallest overall decline rates (<5%), the 
fixed-rank paradigm delivers roughly stable Cohen’s d values for the 
same absolute difference, but the advantage of the adaptive-rank 
paradigm would decrease: it would still be  clear for 2.5% vs. 5% 
(Cohen’s d of 0.95 for the study end values and only slightly lower for 
the other continuous endpoints), but practically absent for the 
comparison of 0% vs. 2.5% (Cohen’s d: 0.52–0.29).

As illustrated in Figure  2, sensitivity to change and 
pharmacodynamic responsiveness are dependent on study duration, 

FIGURE 2

Performance for one ACA instrument (Numbers) in a 4-year study. Comparison of post-baseline fixed difficulty (“Fixed rank”) vs. post-baseline dynamic 
adjustment of difficulty (“Adaptive rank”). (A) Mean values over time; (B) Kaplan–Meier analysis of the time to confirmed decline.
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and findings observed at 4 years would not necessarily generalize to 
much shorter studies. As a matter of fact, for a readout at 2 years post-
baseline, the analysis of the time to confirmed decline with the 
adaptive-rank paradigm would not be promising because there would 
be hardly any progression events. For the continuous endpoints, the 
results in 2-year study simulations are somewhat opposite to 4-year 
simulations, with a numerical superiority of the fixed-rank paradigm 
in terms of sensitivity to change and pharmacodynamic responsiveness, 
albeit with expectedly lower effect sizes (Supplementary Figure S2 and 
Supplementary Table S3). However, different choices of the ACA 
parameter may create a shift in these effects.

4 Discussion

With the progress in the biological understanding of 
neurodegenerative diseases such as Alzheimer’s and the identification 
of druggable targets, the number of interventional trials targeting 
cognitive decline is increasing (Lysandropoulos, 2024). The success of 
these trials crucially depends on the sensitivity to detect treatment 
effects of their cognitive endpoints. In this paper, we  investigated 
Indivi’s battery of novel and gamified adaptive cognitive assessments 
(ACAs) that are expected to be  superior to currently available 

instruments because the difficulty of the task can be tailored to the 
capacity of each individual. The aspirational context of use of these 
instruments in clinical development programs may be  that of 
pharmacodynamic response biomarkers indicative of disease 
modification (Cummings et al., 2025).

Adaptive tests produce complex longitudinal trajectories, which 
experimental data and statistical models from a limited set of study 
configurations can only capture to a limited extent. This motivated us 
to develop a simulation tool for longitudinal studies of subjects 
performing our adaptive cognitive assessments. The description of the 
modeling approach is a first contribution of our work to the literature.

In simulations targeting cohorts of subjects with, or at risk of, rapid 
cognitive decline, we  specifically investigated two deployment 
paradigms: with or without rank adaptation after an initial adaptive 
pre-baseline run-in phase, which was meant to saturate learning/practice 
effects. We found that the sensitivity to treatment effects was robustly 
different for the two paradigms. The enhanced sensitivity in the adaptive 
rank paradigm crucially depends on the presence of dynamic features in 
the cognitive assessments, which confer a means of amplifying treatment 
effects in specific regions of the parameter space.

Several limitations have to be considered. First, the simulations 
may not capture relevant aspects of the cognitive trajectories, and 
refinements of the patient models are planned based on data currently 
being collected at different stages of the Alzheimer’s disease 
continuum, including pre-symptomatic subjects. Preliminary analyses 
suggest that the models are reasonable, although much larger datasets 
would be  needed for a robust assessment. Second, although our 
findings are robust and concern practically relevant scenarios, 
we  cannot claim any generality, neither for the parameter range 
we explored, nor for the resulting interpretation. In this sense, our 
findings have to be considered an illustration of specific emergent 
properties of the system rather than general rules that practitioners 
can directly apply to their study. Any concrete study design will 
require a careful evaluation of a large parameter space. Some 
parameters will be  constrained by features of the study (e.g., the 
characteristics of the subjects in a specific therapeutic indication), but 
there are many parameters that the experimenter will be  able to 
(almost) freely manipulate and that have a large influence on the 
measurement properties of the system. In addition to the discussed 
endpoint configuration and study duration, important free parameters 
in the study model are the cutoffs for changing rank, which strongly 
impact the adaptive rank configuration.

Simulations are becoming a standard tool at the planning stage of 
clinical studies, including for investigations using digital measures in 
neurodegenerative diseases (Lavine et al., 2024). We found simulations 
to be  useful for the concrete task of determining these cutoffs for 
non-comparative studies in already two therapeutic areas, and they will 
be indispensable for the evaluation of comparative study designs.

FIGURE 3

Sensitivity to change of one of the ACA instruments (Numbers) 
measured by the percentage change in score or rank at end of a 
4-year study simulation for the fixed versus adaptive rank paradigms 
by yearly cognitive decline rate.

TABLE 1  Responsiveness assessed by the effect size at end of a 4-year study simulation for the ability to discriminate between decline rates of 5 and 
7.5% with the fixed versus adaptive rank paradigms.

Post-baseline ACA 
configuration

Effect size type Study end value Endpoint change 
from baseline

%-change from 
baseline

Fixed difficulty/rank Raw Cohen’s d 0.58 0.32 0.37

Fixed difficulty/rank Cohen’s d from linear model 0.59 0.42 0.45

Adaptive difficulty/rank Raw Cohen’s d 2.09 2.07 2.05

Adaptive difficulty/rank Cohen’s d from linear model 2.10 1.99 1.97

Cohen’s d calculated for different types of endpoints and for raw data or based on a linear model with adjustment for baseline.
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In conclusion, we developed a tool to simulate clinical studies 
using a battery of novel gamified ACAs. Simulations showed that with 
ACAs, post-baseline difficulty adaptation can provide increased 
sensitivity to cognitive decline and to treatment effects over fixed 
difficulty in longer study durations. Customized use of ACAs should 
be  guided by study design features, such as duration, ACA 
administration frequency, expected levels of impairment, decline and 
treatment effect in target populations.
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