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Biomarkers of Alzheimer's disease
modification using adaptive
cognitive assessments to improve
responsiveness—a simulation
study

Antonio Rodriguez-Romero?, Shibeshih Belachew?,
Emmanuel Bartholomé?, Claudia Mazza!, Oscar Reyes?,
Carlos Luque?, Silvan Pless? and Corrado Bernasconi'*

YIndivi AG, Basel, Switzerland, ?Research Center for Clinical Neuroimmunology and Neuroscience
Basel (RC2NB), University Hospital Basel, University of Basel, Basel, Switzerland

Introduction: Clinical studies assessing cognition in Alzheimer's and other
neurodegenerative diseases require endpoints that are sensitive to treatment
response across a broad range of cognitive abilities. However, responsiveness
of conventional cognitive assessments typically varies with the performance
level, especially due to non-linearities such as floor or ceiling effects. Here,
we evaluate 6 newly developed smartphone-based and gamified Adaptive
Cognitive Assessments (ACAs) entailing a system of dynamic difficulty
adaptation to individual performance, which is expected to improve adherence
but also measurement properties. Deployment of such ACAs to maximize their
discriminative ability in comparative studies requires exploration of many free
parameters and complex dynamics.

Methods: In simulations of cohorts of patients with cognitive impairment,
we compared two ACAs paradigms: after 14 daily tests allowing performance-
based difficulty adaptation, the difficulty level was either (1) fixed or (2) kept
adaptive for a period of 4 years with weekly testing. Sensitivity to between-group
effects was assessed in cohorts characterized by cognitive decline observed in
neurodegenerative diseases.

Results: The discriminative ability of the two paradigms depends on features
of the study design and subjects. At study end, the adaptive difficulty paradigm
clearly outperformed the fixed-difficulty paradigm in terms of responsiveness
for cognitive decline rates >2.5% per year.

Discussion: ACA can increase biomarker responsiveness to treatment effects
over fixed difficulty. ACA deployment should be guided by study and assessment
features, including duration, expected cognitive decline rates and effect size. In
the high-dimensional parameter space of ACA instruments, study simulations
are indispensable to identify suitable deployment strategies.
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simulation—computers, responsiveness, digital health

01 frontiersin.org


https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2025.1653261&domain=pdf&date_stamp=2025-09-23
https://www.frontiersin.org/articles/10.3389/fnins.2025.1653261/full
https://www.frontiersin.org/articles/10.3389/fnins.2025.1653261/full
https://www.frontiersin.org/articles/10.3389/fnins.2025.1653261/full
https://www.frontiersin.org/articles/10.3389/fnins.2025.1653261/full
https://www.frontiersin.org/articles/10.3389/fnins.2025.1653261/full
mailto:corrado.bernasconi@indivi.io
https://doi.org/10.3389/fnins.2025.1653261
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2025.1653261

Rodriguez-Romero et al.

1 Introduction

In the area of neurodegenerative diseases, recent years have seen
a constant increase in the number of interventional clinical studies
that target cognitive function as a key outcome of interest. Measures
of cognition are among the main study endpoints in Alzheimer’s
Disease (AD) (Mintun et al., 2021; van Dyck et al., 2023) and are
becoming increasingly relevant also in other neurodegenerative
conditions, such as Parkinson’s Disease (PD) with its variants
(Aarsland et al., 2017), Multiple Sclerosis (MS) (Strober et al., 2019),
Huntington’s Disease (HD) (Paulsen et al., 2013) as well as in
psychiatric diseases. In clinical study cohorts, cognitive ability/
performance and cognitive decline often vary over a broad range
(Mintun et al,, 2021; van Dyck et al., 2023; Butler et al., 2025). Large
between-subject variability constitutes a serious challenge to the
sensitivity of experiments because the responsiveness of conventional
tools typically depends on the performance level as well as several
other factors (Albert et al., 2011; Elkana et al., 2016). This is due to
floor or ceiling effects (Butler et al., 2025) or other types of
nonlinearities in the mapping of cognitive ability to test results. In
addition, prolonged learning/practice effects are commonly observed,
especially in subjects with normal or only slightly impaired cognitive
ability, and often mask cognitive decline by yielding apparent
improvement trajectories. For example, in MS, cognitive performance
measured by the symbol-digit modalities test (SDMT) or the paced
auditory serial addition test (PASAT) generally increases during the
entire course of a typical interventional study (generally of about
2 years duration), even in control arms (Benedict et al., 2025; Leavitt
etal., 2025).

Compared to standard in-clinic neuropsychological tests, the use
of smartphone-based self-assessments at home may improve
measurement reliability, ecological validity and accuracy, while
enabling an increased assessment density, which may also result in a
rapid saturation of any learning or practice effects (Pham et al., 2021;
Lam et al., 2022). Gamification and adaptive features are expected to
provide relevant advantages in terms of compliance in longitudinal
studies. Importantly, adaptation may additionally confer beneficial
psychometric properties to the tests, especially concerning
longitudinal responsiveness and sensitivity to treatment effects.
Nonetheless, this aspect appears to be neglected in the literature on
adaptive cognitive tests, where development efforts typically focused
on diagnostic tools that reduce the testing burden (Wouters et al.,
2009; Gibbons et al., 2024) rather than tools designed to detect
longitudinal change and treatment effects. Longitudinal responsiveness
would be a necessary feature of instruments to be used as
pharmacodynamic response biomarkers indicative of disease
modification (Cummings et al., 2025).

In this work, we evaluate CoGames, a battery of 6 recently
developed smartphone-based and gamified adaptive cognitive
assessments (ACAs), which entail a system of dynamic difficulty
adaptation to individual performance over repeated administrations
(Pless et al., 2023, 2025). The ACA instruments assess working
memory, information processing speed, short-term (visuo-spatial)
memory, semantic recognition, executive functioning, cognitive
flexibility, sustained and divided attention, and psychomotor speed.

In adaptive cognitive assessment paradigms, the change in
assessment difficulty along with performance creates an entanglement
between the performance metrics (scores) and the task difficulty level,
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which makes the definition of longitudinal measures of cognitive
decline multidimensional by construction. In this sense, optimal
that
responsiveness and discriminative ability of ACAs in clinical studies

deployment and endpoint definitions maximize the
remain to be identified. Due to the highly dimensional parameter
space, which experimental data and statistical models can only cover
to a minimal extent, study simulations are an essential strategy to
explore relevant practical scenarios as well as general properties of
ACAs. This work hence describes a study simulation tool and
investigates the instrument responsiveness resulting from different
deployment strategies of ACAs, with a focus on long-term

investigations of cognitive decline in Alzheimer’s disease.

2 Materials and methods
2.1 Simulation tool

Indivis CoGames battery (Supplementary Figure S1 and
Supplementary Table S1) includes six distinct ACA instruments, in
which subjects are invited to perform ACA runs iteratively according
to a protocol-specific schedule. Based on performance (termed
‘scor€’), at each run (i.e., test execution) at a given difficulty level
(termed rank), subjects are assigned a rank for the next run. The
different instruments have between 5 and 8 ranks.

We developed a tool to stochastically simulate trajectories of
individual subjects through a series of runs of each CoGames ACA
instrument and implemented it in R (R Core Team, 2021), version
4.5.0. The tool generates individual trajectories (T), i.e., for each
patient i and ACA instrument, a sequence of N runs:

T; n =(rank; j,score; i )kzl,. N

From an initial rank (that can be chosen freely), trajectories are
calculated iteratively by generating (1) the current score, based on a
probabilistic individual subject model, which for each test consists of
the distribution of the individual subject’s score at any given run in a
trajectory, and (2) the next rank, determined from a study model. This
consists of a set of deterministic rank transition rules that identify the
next rank as a function of the current test score and the trajectory up
to that run.

2.1.1 Individual subject model

Since the models are built in the same way for all 6 CoGames ACA
instruments (with the exception of the short-term memory ACA
«Treasure Hunt», as noted below), the approach will be described
without reference to a specific test.

In the iterative simulation of individual subject trajectories
through a set of runs, for a subject i who performs the j-th test in a
trajectory and has been assigned rank; ;,
drawn from a probability distribution (which we generically call f) that

the test score (score;, ) is

depends on the past runs in the trajectory:

score; j :f(rank,-,j,Ti)j_l)
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These distributions define individual subject models, which need
to be constructed for each cohort to be simulated. An example is
presented in Section 2.2.1, where the patient model is based on normal
distributions. In general, the distributions f, are obtained by: (1)
defining a (marginal) baseline distribution for each rank (typically
from experimental data) used for the first test execution at each rank,
(2) tuning the parameters of the marginal distribution for subsequent
runs to model longitudinal performance changes, such as short-term
learning/practice effects or steady cognitive decline, and (3)
incorporating within-subject relationships (correlation) to model the
stability of individual trajectories, so that the current score is drawn
from a conditional distribution accounting for the past. Parameters of
these distributions can be defined on the individual subject level.
Short-term learning effects (including also practice effects) and steady
cognitive decline were modeled over time by deterministic functions
used as multipliers for the expectation of the score distribution at
each run.

More specifically, short-term learning effects were incorporated
using the following (half) sigmoidal function of the run (called L)
with a value of 1 at the first run, an asymptote at max (reflecting 100
* (max — 1) % improvement) and a rate parameter determining how
quickly the asymptote is approached.

max

L ;rate,;run ) =
(max,rate,run) l+exp(_mte*(run—l—ln(max—l)/mte))

Cognitive decline was modeled for all tests and ranks as the
constant 1 (no decline) for a certain initial number of runs and
thereafter a linear function of the run (constant decline), until the
minimum of 0 (not reached in the scenarios presented in this work).
The initial period with stable cognition is used to represent studies
including a run-in phase with intensive test administration (e.g., daily
for 2 weeks) before subjects are moved to a regular schedule with more
distanced assessments (e.g., weekly, monthly). For a regular testing
schedule, which we assume for our typical simulated studies (after a
short initial intensive run-in phase, see Section 2.2.2), a linear decline
function reflects constant cognitive decline over time. See Figure 1 for
an example of learning and decline functions and their
combined effect.

2.1.2 Study model

The study model (function sm) describes the decision rules
determining the rank assigned to a subject who has obtained a specific
score at a given test run in a trajectory. For a subject i who has
performed the j-th test in trajectory, i.e., who has been assigned to
rank; jand obtained score; ; the next rank described as a deterministic
function of the trajectory

rank; ji1 (score,»,j ) = sm(Ti,j)

In a typical implementation (see Section 2.2.2), this decision rule
assigns a higher rank (if available for the specific instrument) to the
subjects if the score has exceeded specific cutoffs for a given number
of the latest runs in a row, or a lower rank if the score was repeatedly
under some other cutoffs. Note that, in our parameterization, the time
between administrations (e.g., weekly, monthly) is not explicitly
mapped in the study model but would have to be incorporated
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FIGURE 1

Learning, cognitive decline functions and their combined effect.
Example based on the following parameters: Study: 14-day run-in,
then weekly tests. Learning: max. 1.3, rate 0.15, weekly decline rate
0.0005 (i.e., modest decline of ~2.5%/year).

indirectly by manipulating other parameters such as learning and
decline functions or longitudinal correlations.

2.2 Simulations

2.2.1 Parameters of the patient model

At any given run in a trajectory, a score is initially obtained from
a (conditional) normal distribution. To reflect the range of possible
values in the features being modeled, if the obtained score is <0, it is
set to 0. An upper limit was only set for Treasure Hunt instrument,
where the score is limited to 100, consistently with its specific derived
candidate biomarker (relative correctness of the execution) being
bound to 0-100%. While the lower limit does not have practical
relevance in the original data and in the simulations, the upper limit
in Treasure Hunt reflects a substantial ceiling effect, which in the data
was present especially in the lower ranks, where the test is rather easy
for the subjects with unimpaired cognitive abilities.

The parameters of the baseline distributions were supposed to
reflect a cohort with a rather broad range of cognitive capacity and, on
average, with mild cognitive impairment. As a data source for patients
in whom cognition is expected to be slightly impaired (Benedict et al.,
2025; Nasirzadeh et al., 2024), we used patients with Multiple Sclerosis
at an overall low level of disability from an observational study
(NCT05009160) (Research Center for Clinical Neuroimmunology
and Neuroscience Basel, 2025).

As in the referenced study some of the upper ranks were disabled
for the ACA, the parameters of the distribution for the missing ranks
were obtained by extrapolation using data from healthy volunteers
(HVs) (Pless et al., 2025) in the following way: for each game, for all
the ranks that were in common, we first computed the mean (over
ranks) of the percentage difference in rank-specific sample means
between the patients and the HVs. This percentage (reflecting a lower
performance in patients vs. HV) was applied to the mean in HV to
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derive the mean for ranks where no patient data were available.
Similarly, for the standard deviation, the extrapolation from HV to
patients was done by computing the mean coefficient of variation in
patients, which was multiplied by the mean in HVs. This was justified
by the observation of a quite stable coefficient of variation across the
different situations. Notably, the distributions were computed using
the first test execution at each rank in these studies. From the second
run onwards at a given rank, the parameters were taken from the
second test execution in the reference study, as there was generally a
slight change from the first to the second execution. The parameters
of the patient model can be found in the Supplementary material. The
studies involving humans were approved by Ethikkommission
Nordwest- und Zentralschweiz (EKNZ), Basel, Switzerland (BASEC
ID 2021 D0040). The studies were conducted in accordance with the
local legislation and institutional requirements. The participants
provided their written informed consent to participate in the studies.

The learning function had maximum = 1.3 and rate = 0.2 as
parameters, corresponding to an improvement from baseline
approaching 30% with 80% of the effect reached after 14 runs
(simulating a run-in baselining phase of 2 weeks of daily runs). These
may be conservative estimates compared to data from the literature,
considering the dense initial testing schedule in a population of elderly
subjects with modest cognitive impairment (Bartels et al., 2010; Zheng
etal., 2022). Cognitive decline was modeled for all tests as the constant
1 (no decline) until the 14th run and a linear function of the run
thereafter, with rates that were varied in different simulations.

In the iterative simulation of trajectories, when the rank
changed, the new score was obtained from the marginal normal
distribution appropriate for the run (i.e., accounting for learning
and decline effects). In subsequent runs at the same rank, the new
score accounted for the previous score and the within-subject
correlation. For each game and rank, this correlation was estimated
from the patients or the HV data (where no patient data were
available) using the first two available test runs. Correlations were
generally high, implying a good stability of trajectories compared
to the overall variability in the cohort: the mean over all games and
ranks was 0.76, and <10% of the values were under 0.5 (mostly from
the lowest ranks of Treasure Hunt, where the mentioned non-linear
effects appear).

A new score (at run j + 1) was computed conditionally on the
observation of the previous score (run j) by assuming bivariate normal
distribution for the two scores, with their rank and run-specific means
(u) and standard deviations () and the rank-specific correlation (p):
N (,U >0 ]2),“ j+1,0 j+1»/;)- Parameters of the univariate normal
distribution of the new score score;,, conditional on the observation
of the previous one (score j) were then:

p0j+1( scorej—uj)

Sj

Mean=p,; + ; Variance = (1 - pz)cs?“

In practice, from the second run at each rank, the time series was
generated by a non-stationary (due to the learning and decline trends),
first-order autoregressive process.

2.2.2 Parameters of the study model

Two study types with different administration paradigms of
smartphone-based ACAs were modeled and compared. In a first
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common run-in phase of the study, for the first 14 runs (reflecting
daily testing for 2 weeks), subject-level performance-based difficulty
adaptation was allowed at every run, i.e., if the specific cutoff for rank
change was reached at the specific run. Then in a second phase of the
study (the evaluation phase), the difficulty level was either fixed, which
is termed “fixed-rank” paradigm, or kept adaptive, in the “adaptive-
rank” paradigm. In both cases, testing was assumed to be conducted
for a period of up to 4 years with weekly testing, i.e., for a total of
220 runs.

The cutoffs for rank change were determined in simulations
performed in the context of the design of a clinical study, which is
currently in the active recruitment phase. There, the aim was to find a
set of cutoffs that enable a rather broad spread in the ranks at study
end (36 runs), with the objective of reflecting the high variability in
cognitive ability expected in study participants. Parameters of the
patientand the study model can be found in the Supplementary material
(Supplementary Table S2).

2.2.3 Parameters of the study simulations

Sensitivity to between-group effects, reflective of potential
pharmacodynamic responsiveness of candidate biomarkers of
Alzheimer’s disease modification, was assessed in five cohorts
characterized by cognitive decline rates of zero/run (0%/year),
0.0005/run (~2.5%/year), 0.001/run (~5%/year), 0.0015/run (~7.5%/
year) and 0.002/run (~10%/year). As a rough reference, normal aging
is expected to be associated with a rate of cognitive performance
decline of 0-2.5%/year and appears to be rather linearly stable over
the age span, as recently assessed in the INTUITION Study (Butler
et al,, 2025). Transition from Mild Cognitive Impairment (MCI) to
the earliest stages of mild dementia as seen in early AD can
be approximately associated with rates of decline evolving between
2.5 and 5% per year (van der Veere et al., 2023). The two higher rates
(7.5%/year and 10%/year) correspond to examples anchored in the
range of cognitive decline expected in rapidly progressive dementias
associated with Alzheimer’s disease (van der Veere et al., 2023) and
related disorders.

We simulated cohorts of 200 patients, roughly reflecting a typical
small-size phase 2a proof-of-concept study of a new drug or of an
observational study investigating cohorts defined by different risk
profiles for cognitive decline, for instance subjects at risk for
Alzheimer’s disease or with MCI aged 50 years or older.

2.2.4 Endpoints

The rank and score of the last run of the run-in phase were used
as baseline for the subsequent evaluation phase. The numerical
variables tracked in the evaluation phase to derive longitudinal
endpoints were the score for the fixed-rank and the rank for the
adaptive-rank paradigm. The reason for this difference is that tracking
the score in the adaptive-rank configuration would not provide a
consistent and interpretable endpoint: when the rank changes, the
score follows a different distribution and has a different longitudinal
correlation pattern.

From the longitudinal values, three endpoints were derived for
analysis purposes: the change from baseline, the percentage change
from baseline and the “time to confirmed decline” For the latter
endpoint, a decline event was defined as a >30% decrease from
baseline, and for the event to qualify for the analysis (“confirmed
decline”) that level of decline was required to be maintained for a

frontiersin.org


https://doi.org/10.3389/fnins.2025.1653261
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Rodriguez-Romero et al.

confirmation period of at least eight consecutive runs (reflecting about
2 months).

2.2.5 Analysis methods

The analysis was exploratory and primarily used descriptive
statistical methods. Time-to-event endpoints were analyzed using the
Kaplan-Meier method. For continuous endpoints, Cohen’s d was used
as a measure of the effect size when comparing cohorts with different
cognitive decline rates.

3 Results

We exemplify the key observations using one of CoGames’ ACAs
(Numbers), noting that findings were consistent for the other ACA
instruments of the CoGames battery (Supplementary Figure S3).

Sensitivity to change and between-groups discriminative ability
(reflecting pharmacodynamic responsiveness of candidate biomarkers
of disease modification) of the Fixed vs. Adaptive rank testing
paradigms differed according to parameters of the cohorts/studies.
Figure 2 depicts the trajectory of the mean score/rank values over time
(Figure 2A) and the analysis of the time to confirmed decline
(Figure 2B) for five discrete rates of cognitive decline between 0 and
10%/year. In the fixed-rank paradigm, for both types of analysis, the
separation of the curves is rather gradual both as a function of time
(i.e., run number) and of the decline rate. In contrast, for the adaptive-
rank paradigm, the separation appears non-linear both as a function
of time and decline rate: i.e., for the first 1-2 years there is no or
minimal separation, but then trajectories separate quickly in particular
for the intermediate range of the evaluated rates of decline,
corresponding to 2.5-7.5% per year.

10.3389/fnins.2025.1653261

Figure 3 visualizes the sensitivity to change, in a 4-year study
simulation of one of the ACA instruments (Numbers), as measured
by the percentage change in score or rank years for the fixed versus
adaptive rank paradigms by yearly cognitive decline rate. At 4 years,
the adaptive rank paradigm clearly outperforms the fixed-rank
paradigm in terms of sensitivity to change for cognitive decline rates
>2.5% per year.

The adaptive rank paradigm outperformed the fixed rank
paradigm also in terms of ability to discriminate, e.g., between decline
rates of 5 and 7.5%, as measured by Cohen’s d calculated for different
types of endpoints (Table 1).

The theoretical expected effect size of the ACA instrument
(Numbers) in the fixed-rank configuration to compare two decline
rates separated by 2.5% per year is 0.62 for the most common rank at
baseline in the simulations, which is close to the value obtained from
simulations. For other baseline ranks, the theoretical effect size goes
up to 1.03, which remains clearly smaller than the effect in the
adaptive-rank configuration for the comparison of decline rates of 5
and 7.5%.

Because of the described non-linear relationships, there are
regions of the parameter space where the sensitivity to treatment effect
for the adaptive-rank paradigm is small or even absent.

For example, for the smallest overall decline rates (<5%), the
fixed-rank paradigm delivers roughly stable Cohen’s d values for the
same absolute difference, but the advantage of the adaptive-rank
paradigm would decrease: it would still be clear for 2.5% vs. 5%
(Cohen’s d of 0.95 for the study end values and only slightly lower for
the other continuous endpoints), but practically absent for the
comparison of 0% vs. 2.5% (Cohen’s d: 0.52-0.29).

As illustrated in Figure 2, sensitivity to change and
pharmacodynamic responsiveness are dependent on study duration,
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TABLE 1 Responsiveness assessed by the effect size at end of a 4-year study simulation for the ability to discriminate between decline rates of 5 and
7.5% with the fixed versus adaptive rank paradigms.

Post-baseline ACA  Effect size type Study end value Endpoint change %-change from
configuration from baseline baseline
Fixed difficulty/rank Raw Cohen’s d 0.58 0.32 0.37

Fixed difficulty/rank Cohen’s d from linear model 0.59 0.42 0.45
Adaptive difficulty/rank Raw Cohen’s d 2.09 2.07 2.05
Adaptive difficulty/rank Cohen’s d from linear model 2.10 1.99 1.97

Cohen’s d calculated for different types of endpoints and for raw data or based on a linear model with adjustment for baseline.
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FIGURE 3

Sensitivity to change of one of the ACA instruments (Numbers)
measured by the percentage change in score or rank at end of a
4-year study simulation for the fixed versus adaptive rank paradigms
by yearly cognitive decline rate.

and findings observed at 4 years would not necessarily generalize to
much shorter studies. As a matter of fact, for a readout at 2 years post-
baseline, the analysis of the time to confirmed decline with the
adaptive-rank paradigm would not be promising because there would
be hardly any progression events. For the continuous endpoints, the
results in 2-year study simulations are somewhat opposite to 4-year
simulations, with a numerical superiority of the fixed-rank paradigm
in terms of sensitivity to change and pharmacodynamic responsiveness,
albeit with expectedly lower effect sizes (Supplementary Figure S2 and
Supplementary Table S3). However, different choices of the ACA
parameter may create a shift in these effects.

4 Discussion

With the progress in the biological understanding of
neurodegenerative diseases such as Alzheimer’s and the identification
of druggable targets, the number of interventional trials targeting
cognitive decline is increasing (Lysandropoulos, 2024). The success of
these trials crucially depends on the sensitivity to detect treatment
effects of their cognitive endpoints. In this paper, we investigated
Indivi’s battery of novel and gamified adaptive cognitive assessments
(ACAs) that are expected to be superior to currently available
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instruments because the difficulty of the task can be tailored to the
capacity of each individual. The aspirational context of use of these
instruments in clinical development programs may be that of
pharmacodynamic response biomarkers indicative of disease
modification (Cummings et al., 2025).

Adaptive tests produce complex longitudinal trajectories, which
experimental data and statistical models from a limited set of study
configurations can only capture to a limited extent. This motivated us
to develop a simulation tool for longitudinal studies of subjects
performing our adaptive cognitive assessments. The description of the
modeling approach is a first contribution of our work to the literature.

In simulations targeting cohorts of subjects with, or at risk of, rapid
cognitive decline, we specifically investigated two deployment
paradigms: with or without rank adaptation after an initial adaptive
pre-baseline run-in phase, which was meant to saturate learning/practice
effects. We found that the sensitivity to treatment effects was robustly
different for the two paradigms. The enhanced sensitivity in the adaptive
rank paradigm crucially depends on the presence of dynamic features in
the cognitive assessments, which confer a means of amplifying treatment
effects in specific regions of the parameter space.

Several limitations have to be considered. First, the simulations
may not capture relevant aspects of the cognitive trajectories, and
refinements of the patient models are planned based on data currently
being collected at different stages of the Alzheimer’s disease
continuum, including pre-symptomatic subjects. Preliminary analyses
suggest that the models are reasonable, although much larger datasets
would be needed for a robust assessment. Second, although our
findings are robust and concern practically relevant scenarios,
we cannot claim any generality, neither for the parameter range
we explored, nor for the resulting interpretation. In this sense, our
findings have to be considered an illustration of specific emergent
properties of the system rather than general rules that practitioners
can directly apply to their study. Any concrete study design will
require a careful evaluation of a large parameter space. Some
parameters will be constrained by features of the study (e.g., the
characteristics of the subjects in a specific therapeutic indication), but
there are many parameters that the experimenter will be able to
(almost) freely manipulate and that have a large influence on the
measurement properties of the system. In addition to the discussed
endpoint configuration and study duration, important free parameters
in the study model are the cutoffs for changing rank, which strongly
impact the adaptive rank configuration.

Simulations are becoming a standard tool at the planning stage of
clinical studies, including for investigations using digital measures in
neurodegenerative diseases (Lavine et al., 2024). We found simulations
to be useful for the concrete task of determining these cutoffs for
non-comparative studies in already two therapeutic areas, and they will
be indispensable for the evaluation of comparative study designs.
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In conclusion, we developed a tool to simulate clinical studies
using a battery of novel gamified ACAs. Simulations showed that with
ACAs, post-baseline difficulty adaptation can provide increased
sensitivity to cognitive decline and to treatment effects over fixed
difficulty in longer study durations. Customized use of ACAs should
be guided by study design features, such as duration, ACA
administration frequency, expected levels of impairment, decline and
treatment effect in target populations.
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