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Introduction: Alzheimer’s disease (AD) is a progressive neurological disorder that
impairs memory and cognitive function in elderly individuals. Early detection
is vital to slow disease progression and enable timely therapeutic intervention.
Traditional diagnostic approaches for AD, however, often involve high time
complexity and significant computational resource utilization, highlighting the
need for more efficient automated solutions.
Methods: This study introduces a Resource Efficient Convolutional Neural
Network (RECNN) framework for AD detection and diagnosis using brain
MRI images. The methodology incorporates three main modules: Gabor
transformation, data augmentation, and classification with an anomalous pixel
segmentation algorithm. Gabor transforms are employed to enhance spatial
frequency features and improve detection rates. Data augmentation techniques
are applied to increase the diversity of training samples. The RECNN classifier is
then used for image classification, and functional morphological segmentation
is applied to classify affected pixels into mild or advanced stages of AD. Two
benchmark datasets are utilized for training and testing the proposed framework.
Results: The proposed RECNN-based system demonstrated superior detection
and classification performance compared with conventional AD detection
methods. The model achieved improved accuracy and robustness, with
segmentation results enabling the differentiation between mild and advanced
AD cases. Comparative evaluation confirmed that RECNN significantly reduces
computational complexity while maintaining high diagnostic reliability.
Discussion: The findings suggest that the RECNN framework offers a resource-
efficient and accurate approach for AD detection using MRI data. By combining
Gabor-based feature transformation, augmented data diversity, and advanced
segmentation, the proposed method provides a scalable and clinically applicable
tool for early diagnosis. Future work will extend the model to larger and more
diverse datasets and explore hybrid architectures to further enhance diagnostic
performance.
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1 Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative
disorder that predominantly affects the elderly population. The
disease often begins with subtle, asymptomatic changes, followed
by a gradual decline in cognitive function. One of the earliest
and most defining clinical features is impairment in memory
function, which arises as healthy neurons progressively deteriorate.
As the condition advances, many patients develop mild cognitive
impairment (MCI), a transitional state between normal aging
and dementia.

According to the Neuroimaging Society (NIS) 2021 report
(Helaly et al., 2022; Jain et al., 2019; Wang Y. et al., 2018; Wang
S. H. et al., 2018), AD is still incurable, even if detected at an early
stage. However, timely diagnosis is considered crucial, as it allows
for interventions that can delay disease progression and preserve
quality of life. In particular, cognitive therapies and symptomatic
treatments may help stabilize memory performance and slow the
loss of functional independence.

Neuroimaging plays an essential role in AD detection and
monitoring. Among the available modalities, Magnetic Resonance
Imaging (MRI) and Positron Emission Tomography (PET) are
the most widely adopted. While PET provides metabolic and
molecular-level insights, its use is limited by the risk of radiation
exposure. MRI, on the other hand, offers high-resolution structural
information without the use of ionizing radiation, making it the
preferred modality for longitudinal and clinical studies (Noor et al.,
2020; Pulido et al., 2020; Altinkaya et al., 2020; Chaddad et al., 2018;
Vatanabe et al., 2020).

MRI scans can be further divided into structural MRI
(sMRI) and functional MRI (fMRI). Structural MRI provides
superior pixel resolution and enables precise assessment of cortical
and subcortical atrophy, which are key biomarkers of AD.
Functional MRI, although lower in spatial resolution, captures
dynamic neural activity and serves as a complementary tool for
understanding disease-related brain dysfunction (Mahanty et al.,
2024; Mandawkar and Diwan, 2024; Yao et al., 2023).

To demonstrate the utility of MRI in this context, Figure 1a
shows a structural MRI scan of a healthy subject, while Figure 1b
illustrates an AD-affected brain. Clear differences in structural
integrity can be observed, highlighting the importance of MRI for
early-stage detection.

Despite advances in imaging, traditional diagnostic approaches
often fail to capture the diffuse and subtle structural variations
that characterize early AD. Conventional CNN-based models
used for image classification primarily rely on sequential feature
extraction and may overlook weak but clinically significant signals.
This limitation underscores the need for a resource-efficient and
clinically adaptable deep learning framework.

In this study, we propose a Resource-Efficient Convolutional
Neural Network (RECNN) that integrates Functional Gabor
Transform (FGT) preprocessing, multi-path convolutional feature
extraction, and Fuzzy C-Means clustering-based classification.
By combining these innovations, the framework is designed
to improve sensitivity to early-stage AD biomarkers while
maintaining computational efficiency. Furthermore, the model not
only distinguishes AD from non-AD cases but also provides a

dual-stage categorization (mild vs. advanced), thereby enhancing
its clinical applicability for assessing disease progression.

2 Literature survey

Recent years have witnessed a surge in interest in
the application of deep learning and machine learning
approaches for detecting and classifying Alzheimer’s
disease (AD) using neuroimaging data. Various strategies
have been proposed, ranging from reinforcement
learning frameworks to hybrid and hierarchical CNN-
based models, each aiming to enhance accuracy and
address the challenges of limited data, overfitting, and
disease heterogeneity.

For instance, Hatami et al. (2025) employed a deep
reinforcement learning framework to improve AD image
classification. Their non-linear learning strategy provided
enhanced adaptability, yielding improvements in classification
accuracy. Similarly, Abhaya and Rajkumar (2025) proposed a
hybrid architecture, Spike Google-Deep CNN SEViT, which
successfully mitigated overfitting and produced reliable
diagnostic outcomes. These contributions highlight the
growing role of adaptive and hybrid methods in advancing
AD detection.

Other studies have focused on traditional machine
learning pipelines combined with neuroimaging. Aberathne
et al. (2023) utilized logistic regression on multimodal
MRI and PET scans, reporting very high classification
scores on benchmark datasets (KAD and MIRIAD).
Along similar lines, Diogo et al. (2022) introduced a
multi-stage diagnostic framework based on support
vector machines (SVM) with multi-kernel learning. By
systematically varying kernel functions, their model
demonstrated competitive sensitivity, specificity, and precision,
highlighting the effectiveness of classical ML methods when
carefully optimized.

Efficient architectures have also been explored. Buvaneswari
and Gayathri (2023) applied a linear variable model, achieving
high accuracy with reduced computational demands. Meanwhile,
Liang and Gu (2020) incorporated weakly supervised deep
learning with an attention mechanism to capture subtle disease
cues, while Lian et al. (2020) proposed a hierarchical CNN
to localize atrophy patterns in MRI scans. Both approaches
emphasized the importance of capturing pixel-level structural
differences, with reported accuracies above 93% across
multiple datasets.

Although these studies demonstrate remarkable progress,
they share certain limitations. Many approaches prioritize
overall classification accuracy but do not fully address
the need for robust feature extraction across scales,
reduction of overfitting in limited clinical datasets, or stage-
specific diagnosis that could inform disease monitoring.
Furthermore, while reported performance metrics are
consistently high, these models are often tested on relatively
homogeneous datasets, leaving questions about their
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FIGURE 1

Structural MRI scans illustrating brain morphology. (a) Non-AD brain image. (b) AD brain image.

generalizability to diverse clinical conditions, scanner types,
and noise levels.

Building on these advancements, the present study introduces
a Resource-Efficient Convolutional Neural Network (RECNN).
Unlike prior research, RECNN integrates parallel multi-path
convolution for rich feature extraction, introduces a feature
integration stage to retain complementary signals, replaces
dense layers with fuzzy C-means clustering to improve
adaptability, and incorporates dual-stage diagnostic capability
to separate mild and advanced AD cases. In doing so, it
directly addresses the limitations identified in earlier studies
and offers a unified, clinically meaningful framework for
AD diagnosis.

In this study, we present a Resource-Efficient
Convolutional Neural Network (RECNN) specifically
designed for the classification of Alzheimer’s disease
(AD) images. The proposed framework introduces several
distinct innovations that set it apart from conventional
CNN-based approaches:

1. Multi-path convolutional design: the architecture incorporates
parallel convolution–pooling streams that capture both fine-
grained textural cues and broader structural patterns from brain
images, enabling richer feature learning compared to traditional
sequential CNN models.

2. Feature integration (FI) mechanism: features obtained from
multiple abstraction levels are fused before classification,
ensuring that complementary local and global information
is preserved for more accurate detection of Alzheimer’s-
related changes.

3. Fuzzy C-Means (FCM)–based classification: instead of
conventional fully connected layers, the model leverages FCM
clustering to define adaptive decision boundaries, thereby
improving robustness while mitigating overfitting in medical
datasets with limited sample sizes.

4. Dual-stage diagnostic capability: beyond distinguishing AD
from non-AD, the model provides additional diagnostic support
by separating abnormal cases into mild and advanced stages,

thereby enhancing its clinical utility for disease monitoring and
progression assessment.

Together, these innovations establish RECNN as a technically
distinctive and clinically meaningful framework for Alzheimer’s
disease classification.

The key contributions of this research are as follows:

• Functional Gabor transform (FGT): applied to capture
spatial–frequency pixel properties, enhancing feature
extraction from MRI images.

• Mitigation of overfitting: directional data augmentation (DA)
strategies were employed during training to improve the
model’s robustness and generalization.

• Design of a novel RECNN architecture: a resource-efficient
CNN framework specifically tailored for Alzheimer’s disease
(AD) image classification.

• Integration of Fuzzy C-Means (FCM): replaced traditional
dense layers, providing adaptive decision boundaries and
reducing overfitting risks.

3 Methodology

A RECNN-based deep learning approach is used in this
method for the detection and diagnosis of AD images. Figures 2a,
b illustrate the training and testing models. Brain MRI images
of AD and non-AD subjects are obtained and preprocessed.
The preprocessing module performs resizing and noise removal,
followed by spatial frequency pixel property transformation using
the functional Gabor transform. The data augmentation module
in Figure 2a is used to increase the number of brain MRI images
for training but is not applied during testing. As shown in
Figure 2b, the testing stage classifies Gabor-transformed images
with the RECNN architecture as either AD or non-AD. Subsequent
diagnosis further categorizes AD images as mild or advanced.

The process involved in the training and testing stage is
discussed as follows:
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FIGURE 2

Workflow of the proposed RECNN during (a) training and (b) testing. In training, T1-weighted sMRI images are resized, Gabor-transformed,
augmented, and then input into RECNN for learning. During testing, preprocessed images are fed into the trained RECNN for classification.

3.1 Preprocessing

In the preprocessing stage, images from the Kaggle1 and
MIRIAD2 T1-weighted sMRI datasets were resized to a

1 https://www.kaggle.com/datasets/marcopinamonti/alzheimer-mri-4-

classes-dataset (Accessed on Jul 2023).

2 https://www.ucl.ac.uk/drc/research-clinical-trials/minimal-interval-

resonance-imaging-alzheimers-disease-miriad

standardized resolution, ensuring uniformity across datasets
and compatibility with the CNN input format.

3.2 Gabor transform

The brain MRI images obtained and utilized in this study
exhibit spatial pixel representations in each image. The spatial
variation of each pixel with respect to its surrounding pixels has
a temporal relationship with the amplitude component, which
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reduces the detection rate of the AD image classification system.
To address this, conversion from the spatial domain to the time
and frequency domains with amplitude properties (Hosseini-
Asl et al., 2016) is required to improve detection accuracy. To
accomplish this, various conventional functional transformation
models, such as Contourlet and Curvelet, are available; however,
these models often result in a significant loss of pixel components
during pixel property transformation. To improve the pixel
property relationship during conversion, the functional Gabor
transform (FGT) is used to perform spatial-frequency pixel
property transformation.

The FGT has a unique two-dimensional kernel, which is
multiplied by the two-dimensional brain MRI image to perform
spatial-frequency pixel property conversion. The FGT kernel is
given in Equation 1:

GK = exp

([
−1
2

{(
x1

s ∗ x1

)2
+

(
y1

s ∗ y1

)2
}])

∗ Cos
(
2πfx1

)
(1)

where x1 and y1 are the pixel coordinates in the brain MRI image,
s is the spatial factor, and f is the frequency factor.

The spatial factor is set to 1, and the frequency factor is set to
{1, 2, 3, and 4}.

The pixel coordinates in the brain MRI image are illustrated
in the following Equations 2 and 3 with respect to its angle of
orientation (θ).

x1 = x ∗ cosθ + y ∗ sinθ (2)

y1 = y ∗ cosθ − x ∗ sinθ (3)

where x and y are the pixel intensity values in the source brain MRI
image with respect to the angle of orientation.

The angle of orientation of each pixel varies from −90
degrees to +90 degrees in 1-degree increments. Hence, for each
frequency factor with a spatial factor, there is a 180-degree range
of orientations, which creates 180 GK. These 180 GK are linearly
convolved with the input source brain MRI image, producing
180 Gabor output images. These 180 Gabor output images are
combined into a single Gabor image by selecting the maximum
pixel intensity in each image. Figure 3 depicts an sMRI image of
an AD subject and its corresponding Gabor-transformed image.

3.3 Data augmentation (DA)

As part of the training pipeline, data augmentation was
employed by applying directional translations to the input
images, including shifts to the right, left, upward, and downward
(Li et al., 2018), to increase dataset diversity and mitigate
overfitting. Directional transformations were chosen because of
their ability to maintain the anatomical integrity of brain areas
while introducing spatial variation. Unlike other augmentation
methods, such as random rotations, elastic deformations, or
intensity-based modifications, directional translations preserve
the alignment and structural consistency required for reliable
AD classification using structural MRI. This method keeps the

enhanced data clinically relevant while improving the model’s
robustness, generalization capability, and functional efficiency
during training. The data-augmented images are shown in
Figure 4.

3.4 RECNN architecture for AD
classifications

This module presents the architecture of the proposed
Resource-Efficient Convolutional Neural Network (RECNN),
which is designed for classifying Alzheimer’s disease using brain
MRI images. The classification of a brain image as either
AD or a healthy brain image is performed by the CNN
classifier. The CNN classifier consists of a set of convolutional
layers and pooling layers, along with neural network (NN)
layers. The convolutional layers are designed with a set of
filter kernels of varying sizes, and the NN layer has been
equipped with various numbers of neurons to produce the desired
output response.

Figure 5 shows the existing CNN classifier for AD image
classification (AlexNet). It includes five convolutional layers, three
pooling layers, and a fully connected neural network (FCNN) layer.

The mathematical equations of the conventional classifier are
as follows:

Convolutional layers = {Con_lay1 :Con_lay2 Con_lay3

: Con_lay4 : Con_lay5 } :
Con_lay1 = 32 filters and 3∗3 filter kernel size

Con_lay2 = 64 filters and 5∗5 filter kernel size

Con_lay3 = 128 filters and 5∗5 filter kernel size

Con_lay4 = 256 filters and 3∗3 filter kernel size

Con_lay5 = 512 filters and 5∗5 filter kernel size

Pooling layers = {Pool_lay1 : Pool_lay2 : Pool_lay3}

From Figure 5, it can be inferred that the desired output
is obtained by utilizing a larger number of resources, like
convolutional and pooling layers, with huge neuron requirements
in the NN layer. This consumes more time and resources
to produce the output responses. Hence, there is a need for
developing a resource-optimized CNN architecture for the AD
image classification process. The RECNN architecture is considered
to overcome the limitations.

The proposed RECNN utilizes a pipelined framework to
enhance the classification of AD from brain MRI images.
This architecture combines both feature extraction and
classification into a unified, continuous flow. Unlike conventional
sequential systems—where extraction and classification are
performed as independent processes—this method replaces
the conventional Fully Connected Neural Network (FCNN)
with a Fuzzy C-Means (FCM) clustering technique, ensuring
a more cohesive and optimized flow of operations. Based
on the streamlined architecture, the model is expected to
reduce computational load and latency, thereby improving
efficiency, execution speed, and scalability. This makes the
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FIGURE 3

(a) T1-weighted sMRI image of an AD subject. (b) Corresponding Gabor-transformed image highlighting texture and frequency-domain features.

FIGURE 4

Data augmentation outputs illustrating directional transformations: (a) left-shifted image, (b) right-shifted image, (c) upward-shifted image, and (d)
downward-shifted image. These augmented images are created to improve diversity during the training phase.
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FIGURE 5

Architecture of the conventional AlexNet classifier used for AD image classification. The model processes brain MRI images through a series of
convolutional, pooling, and fully connected layers for feature extraction and classification.

RECNN particularly suitable for real-time analysis in clinical AD
diagnosis scenarios.

The internal design of the RECNN classifier features
three convolutional layers, four pooling layers, and
concludes with an FCM-based classification module, as
shown in Figure 6. The pipeline starts by feeding a data-
augmented brain MRI image into the first convolutional
block (Con_lay1).

• Con_lay1 applies 512 filters, each measuring 5 × 5, to perform
basic feature extraction through convolution. The resulting
feature maps are forwarded simultaneously to both Con_lay2
and the first pooling block (Pool_lay1).

• Pool_lay1 performs a max-pooling operation with a 2 × 2
kernel, down-sampling the feature maps to reduce spatial size
and computational load.

• Con_lay2 consists of 1,024 filters and uses a 7 × 7 kernel.
This layer is strategically placed deeper in the pipeline to
extract complex and abstract spatial features, ensuring that
early-stage layers remain computationally lightweight for all
resource efficiencies.

• The output from Con_lay2 is processed by Pool_lay2 and
Pool_lay3, both of which apply 2 × 2 max pooling to reduce
dimensionality and retain prominent features.

• Simultaneously, the output from Pool_lay1 is passed into
Con_lay3, which uses 512 filters and a 7 × 7 kernel to extract
more refined patterns. These are then processed by Pool_lay4
using max pooling.

Outputs from Pool_lay2, Pool_lay3, and Pool_lay4 are then
combined by a Feature Integrator (FI), which merges information
across scales to create a rich representation of the brain scan.

The final stage involves the FCM classifier, which applies soft
clustering techniques to differentiate between AD and non-AD
(NAD) images. By replacing the traditional FCNN with FCM, the
model gains improved interpretability and enhanced performance
in handling uncertain or overlapping data distributions, which are
common in early or borderline AD cases.

The steps involved in the FCM logical approach are as follows:
The integrated features are included in the new feature vector

“X,”, which contains “n” features generated through the layers of the
proposed RECNN architecture. The new feature vector is illustrated
by the following equation.

x = {x1, x2 . . . . . . . . . ..xn} (4)

Each feature in “x” is assigned to a cluster, and the set of clusters
is denoted in the following equation.

c = {c1, c2 . . . ..ck}, (5)

where k is the number of clusters that are assigned to the
generated features.

The membership function “M” with p rows and q columns is
represented by the following matrix.

m =
[

M1,1 . . . . . . ..M1,k
Mn,1 . . . . . . . . . . . . Mn,k

]
,

where the following conditions need to be met to achieve the
clustering functions.

0 ≤ Mi,j ≤ 1 and∑
i,j

Mi.,j = 1

0 ≤
∑

i,j

Mi.,j ≤ n
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FIGURE 6

Architecture of the proposed RECNN for AD image classification.

Step 1: Assign M = [Mi.,j] with zero iterations.
Step 2: Center vector of the generated features:

Cij =
∑

i,j Mij ∗ xi∑
i,j Mi.,j

(6)

Step 3: Update the membership function M using the
following equation.

Mite = 1(∑ ‖xi − ci‖2 /

∥∥∥∥∥xi − cj
∥∥2

∥∥∥) (7)

Step 4: The stop condition is fixed if the iteration of Mite attains
the maximum value.

3.5 Functional morphological algorithm

Functional Morphological Algorithms (FMA), when associated
with pixel-level segmentation, enable the exact detection of
localized brain alterations in MRI images. This enables reliable
classification of Alzheimer’s stages by revealing small structural
differences in affected regions.

The stepwise procedure for Alzheimer’s-affected pixel
segmentation is outlined in Algorithm 1.

The FMA uses the detected AD image as its input image.
Functional Morphological Dilation (FMD) is applied to the AD
image using a disk-shaped structuring element with a radius
of 0.5 mm, which increases or expands the outlier boundary
of each pixel. The same image is then subjected to Functional

Input: AD image
Output: Alzheimer’s affected pixel (AP)
segmentation
1. Start
2. Functional morphological dilation (FMD):

Apply FMD to the AD image I using a disk-shaped
structuring element with a radius of 0.5mm.
This operation expands the boundary of each
pixel outlier.

DI = FMD (I, “disk,” 0.5mm)

3. Functional morphological erosion (FME):
Apply FME to the AD image I using the
same disk-shaped structuring element. This
operation shrinks the boundary of each pixel
outlier.

EI = FME (I, “disk,” 0.5mm)

4. Segmentation of AP regions:
Subtract the eroded image from the dilated image
to detect and segment Alzheimer’s-affected
pixels.

AP = |DI–EI|

5. End

Algorithm 1. Functional Morphological Algorithm (FMA) for
Alzheimer’s-affected pixel segmentation.
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FIGURE 7

Segmentation output highlighting Alzheimer’s-affected pixel (AP)
regions in an AD brain image.

Morphological Erosion (FME) using the same structuring element,
which shrinks the outlier boundary of each pixel. AP pixels are
detected and segmented in the AD image by subtracting the EI from
DI. Figure 7 illustrates the segmentation of Alzheimer-affected
pixel (AP) regions in an AD brain image, as classified by the
RECNN model.

These segmented AP regions in the classified AD image are
input into the RECNN classification algorithm for further analysis.
Specifically, AP pixels from mild AD images and AP pixels
from advanced AD images are trained separately by the RECNN
algorithm to produce individual training patterns (ITPs). During
testing, the AP regions in the classified AD image are processed
by the RECNN algorithm against the ITPs, producing an output
classified as either mild or advanced AD. Figures 8a, b present
the simulation results from the testing phase, illustrating detection
and classification outcomes for both AD and non-AD images.
The results from each module are visualized through a graphical
user interface.

To illustrate the overall workflow of the proposed system, the
complete process is summarized in Algorithm 2.

4 Results and discussions

The proposed Alzheimer’s disease (AD) image detection
and diagnosis framework based on the RECNN approach was
evaluated using two publicly available datasets: Kaggle AD
(KAD) and Minimal Interval Resonance Imaging in Alzheimer’s
Disease (MIRIAD). Both datasets are openly accessible and
therefore do not require prior licensing agreements for research
use. The KAD dataset includes MRI scans of both AD and
non-AD subjects, each annotated by expert radiologists. It

contains a total of 6,400 MRI brain images, of which 3,540
correspond to AD cases and 2,560 to non-AD cases. All
images are provided at a uniform spatial resolution of 512 ×
512 pixels.

In addition, this study also employed the MIRIAD dataset,
curated by the Dementia Research Center (DRC) in the UK. This
dataset comprises MRI scans from individuals aged 69–72 years,
regardless of gender, with radiologist-provided annotations. The
scans were obtained using a 1.5T Signa scanner with a 24 cm field
of view and a 15◦ flip angle. The images are stored at a resolution
of 256 × 256 pixels. In total, 8,500 images were used in this
study, comprising 3,500 AD scans and 5,000 non-AD scans. All
experiments and simulations were conducted in MATLAB R2024
on a Windows 10 Pro 64-bit system with an Intel Core i7-11700K
processor (3.60 GHz, 8 cores/16 threads), 32 GB RAM, and 1 TB
NVMe SSD. The inclusion of these two independent datasets was
intentional, as they differ in both image resolution and acquisition
settings. This diversity allows for a more rigorous evaluation of the
robustness of the proposed approach.

The mathematical equations for calculating the performance of
the AD image detection system are defined in Equations 8, 9:

AD Detection

Rate (ADDR) = Correctly detected AD images
Total AD images

(8)

Non − AD Detection

Rate (NADDR) = Correctly detected Non − AD images
Total Non − AD images

(9)

Utilizing the equation mentioned above, the computational
performance indicates a detection rate of 98.1% for ADDR and
99.1% for NADDR on the Kaggle dataset, while it reaches 99.7%
for ADDR and 99.4% for NADDR on the MIRIAD dataset.

Furthermore, the performance of the AD detection and
diagnosis system has been calculated and analyzed using the
following mathematical equations:

Sensitivity (Se) = TP
TP + FN

Specificity
(
Sp

) = TN
TN + FP

Precision
(
pr

) = TP
TP + FP

Accuracy (Acc) = TP + TN
TP + TN + FP + FN

,

where TP, TN, FP, and FN stand for true positive, true negative,
false positive, and false negative, respectively. TP and TN indicate
the correctly identified abnormal Alzheimer’s pixels and healthy
pixels. Incorrectly identified abnormal pixels and healthy pixels are
represented by FP and FN, respectively.

Table 1 presents the experimental results of the computational
performance of the AD image detection system on the KAD
dataset. The proposed RECNN-based AD imaging detection and
diagnosis system achieves 99.01%Se, 98.86%Sp, 98.89%pr, and
98.83%Acc, respectively.

Table 2 presents the experimental results of the performance
computation for the AD image detection system on the MIRIAD
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FIGURE 8

Simulation results with the graphical interface: (a) Detection of an advanced-stage AD image, (b) Classification of a non-AD (healthy) brain image.

dataset. The proposed RECNN-based AD imaging detection and
diagnosis system achieves 99.01%Se, 98.86%Sp, 98.89%pr, and
98.83%Acc, respectively.

This study utilizes k-fold cross-validation as a robust statistical
method to evaluate the model’s performance across different
assessment criteria. The computational analysis of the AD detection
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Input: Dataset of AD images
Output: Classification label
1. Start
2. Dataset partitioning: Split the dataset into

training and testing sets.
3. Data augmentation: Apply augmentation

techniques to the training set to increase
variability and robustness.

4. Preprocessing using Functional Gabor
Transform (FGT):
• Define spatial factor and orientation
parameters.

• Generate the Gabor resultant image.
5. Classification with the proposed RECNN:

• Configure convolutional layers with
predefined kernel sizes.

• Apply pooling layers with the selected window
size.

• Replace conventional dense layers with Fuzzy
C-Means (FCM) clustering for classification.

6. Output: Retrieve the final classification
result.

7. End

Algorithm 2. Proposed RECNN-based classification framework.

TABLE 1 Computation of performance for the AD image detection system
on the KAD dataset.

Alzheimer’s
images

Se Sp pr Acc

A1 98.9 99.3 99.3 99.3

A2 98.0 99.1 99.1 99.1

A3 98.3 98.9 98.9 98.7

A4 99.2 98.5 98.4 98.5

A5 99.6 98.3 98.7 98.3

A6 99.4 99.2 99.3 99.7

A7 99.1 99.6 99.1 99.1

A8 98.9 98.1 98.9 98.6

A9 99.3 98.7 98.7 98.3

A10 99.4 98.9 98.5 98.7

Average 99.01 98.86 98.89 98.83

and diagnosis system using the RECNN approach on the KAD and
MIRIAD datasets is shown in Figure 9.

Table 3 presents the computational analysis of the AD detection
and diagnosis system using the RECNN approach.

Table 4 presents a comparative analysis of the proposed
RECNN approach with other similar AD detection and diagnosis
methods with respect to the AD images in the KAD dataset.

The experimental results of the proposed RECNN classification
approach are compared with those of conventional AD detection
methods in this study. Aberathne et al. (2023) attained 97.32%Se,
97.56%Sp, 97.57%pr, and 97.43%Acc on the set of AD images

TABLE 2 Computation of performance for the AD image detection system
on the MIRIAD dataset.

Alzheimer’s
images

Se Sp pr Acc

M1 99.3 98.9 99.3 98.4

M 2 99.1 99.3 99.1 98.2

M 3 98.9 99.1 98.9 98.9

M 4 98.4 99.5 98.5 99.3

M 5 99.2 98.6 98.6 99.1

M 6 99.7 98.9 99.3 98.8

M 7 99.1 99.3 99.1 98.5

M 8 98.6 99.1 98.9 98.3

M 9 98.9 98.7 98.4 99.2

M 10 99.3 98.4 99.3 99.1

Average 99.05 98.98 98.94 98.78

TABLE 3 Computational analysis of the AD detection and diagnosis
system using the RECNN approach.

Performance
computational
parameters

KAD dataset MIRIAD dataset

Se 99.01 99.05

Sp 98.86 98.98

pr 98.89 98.94

Acc 98.83 98.78

on the KAD dataset. Diogo et al. (2022) attained 96.18%Se,
96.38%Sp, 96.12%pr, and 96.97%Acc on the set of AD images on the
KAD dataset. Buvaneswari and Gayathri (2023) attained 95.97%Se,
96.10%Sp, 94.56%pr, and 94.57%Acc on the set of AD images
on the KAD dataset. Liang and Gu (2020) attained 94.16%Se,
94.68%Sp, 94.15%pr, and 94.87%Acc on the set of AD images on
the KAD dataset. Lian et al. (2020) attained 93.19%Se, 93.20%Sp,
93.29%pr, and 93.28%Acc on the set of AD images on the KAD
dataset. The functional morphological algorithm proposed in this
work, when integrated with the proposed RECNN classification
algorithm, improves the overall performance efficiency with respect
to the various evaluation parameters based on different datasets,
as represented in Table 4. The data augmentation module in
this proposed study enhances the dataset samples during the
training stage of the classification algorithm, helping to eliminate
overfitting. This is one of the key reasons for the improved
experimental performance

Table 5 presents a comparative analysis of the proposed
RECNN approach with other similar AD detection and diagnosis
methods, specifically with respect to the AD images in the
MIRIAD dataset.

The experimental results of the proposed RECNN classification
approach have been compared with the conventional AD detection
methods in this paper. Aberathne et al. (2023) attained 97.46%Se,
97.93%Sp, 97.57%pr, and 96.38%Acc on the set of AD images
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FIGURE 9

Performance evaluation of the proposed RECNN model on the KAD and MIRIAD datasets, illustrating classification metrics such as sensitivity,
specificity, accuracy, and precision.

TABLE 4 Comparative analysis of the proposed RECNN approach with
other similar AD detection and diagnosis methods with respect to the AD
images in the KAD dataset.

Methods Performance computational
parameters in %

Se Sp pr Acc

RECNN approach 99.01 98.86 98.89 98.83

Aberathne et al. (2023) 97.32 97.56 97.57 97.43

Diogo et al. (2022) 96.18 96.38 96.12 96.97

Buvaneswari and
Gayathri (2023)

95.97 95.10 94.56 94.57

Liang and Gu (2020) 94.16 94.68 94.15 94.87

Lian et al. (2020) 93.19 93.20 93.29 93.28

on the MIRIAD dataset. Diogo et al. (2022) attained 96.98%Se,
96.46%Sp, 96.21%pr, and 96.87%Acc on the set of AD images on
the MIRIAD dataset. Buvaneswari and Gayathri (2023) attained
96.35%Se, 96.10%Sp, 96.47%pr, and 95.56%Acc on the set of AD
images on the MIRIAD dataset. Liang and Gu (2020) attained
95.87%Se, 95.97%Sp, 95.89%pr, and 94.29%Acc on the set of
AD images on the MIRIAD dataset. Lian et al. (2020) attained
94.46%Se, 95.43%Sp, 94.58%pr, and 94.48%Acc on the set of AD
images on the MIRIAD dataset.

Based on the comparative analysis, it can be observed
that the RECNN approach achieves better results than the
other similar methods. Computational overhead refers to the
consumption of computing resources for a specific task. The
computational overhead includes computational time, memory
utilization, bandwidth usage, and throughput. The determination

TABLE 5 Comparative analysis of the proposed RECNN approach with
other similar AD detection and diagnosis methods for AD images in the
MIRIAD dataset.

Methods Performance computational
parameters in %

Se Sp pr Acc

RECNN approach 99.05 98.98 98.94 98.78

Aberathne et al. (2023) 97.46 97.93 97.57 96.38

Diogo et al. (2022) 96.98 96.46 96.21 96.87

Buvaneswari and
Gayathri (2023)

96.35 96.10 96.47 95.56

Liang and Gu (2020) 95.87 95.97 95.89 94.29

Lian et al. (2020) 94.46 95.43 94.58 94.48

TABLE 6 Computational overhead of the proposed method.

Computational overhead
parameters

Modules

Gabor
transform

FCM
clustering

Time consumption (ms) 0.71 for 180
orientations

0.42 for 100
iterations count

Memory (MB) 158.3 207.1

Throughput (b/s) 12,867 8,712

of computational overhead is important for the Gabor transform
and FCM due to their high computational cost and the large
number of iterations. Table 6 presents the computational overhead
of the proposed algorithm.
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TABLE 7 Execution time comparison with state-of-the-art methods.

Authors Execution time period (ms)

In this work 0.52

Aberathne et al. (2023) 1.67

Diogo et al. (2022) 1.73

Buvaneswari and Gayathri (2023) 1.87

Liang and Gu (2020) 1.98

Lian et al. (2020) 2.09

The execution time of the proposed method was
evaluated in comparison with existing state-of-the-art
approaches using the same computing environment. To
ensure fairness, both the proposed framework and the
baseline methods were implemented and tested on an
identical simulation platform. The results demonstrate
that the proposed approach achieves lower execution time,
thereby reflecting better computational efficiency. A detailed
comparison with recent state-of-the-art techniques is presented
in Table 7.

5 Conclusion

AD primarily affects healthy brain cells, leading to memory
loss and dependence on others for daily activities. Slowing
disease progression can help patients live more independently
and improve their quality of life. The RECNN architecture
proposed in this study detects and diagnoses AD images in
an optimized manner, enabling early identification. Integrated
with the Gabor transform and a data augmentation module,
the RECNN architecture performs spatial transformations
and enhances image samples, thereby improving classification
rates. Using this framework, AD and non-AD images are
classified with efficient resource utilization, while FMA further
distinguishes mild and advanced stages of AD. The proposed
RECNN-based AD detection and diagnosis system achieved
99.01%Se, 98.86%Sp, 98.89%pr, and 98.83%Acc on the KAD
dataset, and 99.05%Se, 98.98%Sp, 98.94%pr, and 98.78%Acc
on the MIRIAD dataset. The experimental outcomes of
the RECNN method are significantly compared with other
existing AD detection methods, confirming that the RECNN
approach used in this study produces better results. This
method may also be extended in future studies to identify and
examine the impacts of AD on those with head injuries and
brain tumors.

Data availability statement

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding author.

Author contributions

TP: Conceptualization, Investigation, Methodology, Software,
Writing – original draft. VS: Formal analysis, Supervision,
Validation, Writing – review & editing.

Funding

The author(s) declare that financial support was received for
the research and/or publication of this article. The authors would
like to thank the VIT management for supporting fund toward the
publication of the work.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation
of this manuscript.

Any alternative text (alt text) provided alongside figures in
this article has been generated by Frontiers with the support of
artificial intelligence and reasonable efforts have been made to
ensure accuracy, including review by the authors wherever possible.
If you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Aberathne, I., Don, K., and Samarasinghe, S. (2023). Detection of Alzheimer’s
disease onset using MRI and PET neuroimaging: longitudinal data analysis and
machine learning. Neural Regen. Res. 18, 2134–2140. doi: 10.4103/1673-5374.367840

Abhaya, S. L., and Rajkumar, T. D. (2025). Spark-based Alzheimer’s disease
classification using hybrid spike Google-deep CNN-SEViT model. Eur. Phys. J. Plus
140:756. doi: 10.1140/epjp/s13360-025-06673-7

Frontiers in Neuroscience 13 frontiersin.org

https://doi.org/10.3389/fnins.2025.1653565
https://doi.org/10.4103/1673-5374.367840
https://doi.org/10.1140/epjp/s13360-025-06673-7
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Prasath and Sumathi 10.3389/fnins.2025.1653565

Altinkaya, E., Polat, K., and Barakli, B. (2020). Detection of Alzheimer’s disease and
dementia states based on deep learning from MRI images: a comprehensive review. J.
Inst. Electron. Comput. 1, 39–53. doi: 10.33969/JIEC.2019.11005

Buvaneswari, P., and Gayathri, R. (2023). Detection and Classification of
Alzheimer’s disease from cognitive impairment with resting-state fMRI. Neural.
Comput. Applic. 35, 22797–22812. doi: 10.1007/s00521-021-06436-2

Chaddad, A., Desrosiers, C., and Niazi, T. (2018). Deep radiomic
analysis of MRI related to Alzheimer’s disease. IEEE Access 6, 58213–58221.
doi: 10.1109/ACCESS.2018.2871977

Diogo, V. S., Ferreira, H. A., and Prata, D. (2022). Early diagnosis of Alzheimer’s
disease using machine learning: a multi-diagnostic, generalizable approach. Alzheimers
Res. Ther. 14:107. doi: 10.1186/s13195-022-01047-y

Hatami, M., Yaghmaee, F., and Ebrahimpour, R. (2025). Improving Alzheimer’s
disease classification using novel rewards in deep reinforcement learning. Biomed.
Signal Process. Control 100, 106920–106934. doi: 10.1016/j.bspc.2024.106920

Helaly, H. A., Badawy, M., and Haikal, A. Y. (2022). Deep learning approach
for early detection of Alzheimer’s disease. Cogn. Comput. 14, 1711–1727.
doi: 10.1007/s12559-021-09946-2

Hosseini-Asl, E., Keynto, R., and El-Baz, A. (2016). “Alzheimer’s disease
diagnostics by adaptation of 3D convolutional network,” in Proceedings of the 2016
IEEE International Conference on Image Processing (ICIP) (Phoenix, AZ: IEEE).
doi: 10.1109/ICIP.2016.7532332

Jain, R., Jain, N., Aggarwal, A., and Hemanth, D. J. (2019). ScienceDirect
Convolutional neural network-based Alzheimer’s disease classification from magnetic
resonance brain images. Cogn. Syst. Res. 57, 147–159. doi: 10.1016/j.cogsys.2018.12.015

Li, S., Xiao, B., Li, W., and Wang, G. (2018). Diagnosis of Alzheimer’s disease based
on 3D-PCANet. Comput. Sci. 45, 140–142. Available online at: https://www.jsjkx.com/
EN/Y2018/V45/I6A/140

Lian, C., Liu, M., Zhang, J., and Shen, D. (2020). Hierarchical fully convolutional
network for joint atrophy localization and Alzheimer’s disease diagnosis
using structural MRI. IEEE Trans. Pattern Anal. Mach. Intell. 42, 880–893.
doi: 10.1109/TPAMI.2018.2889096

Liang, S., and Gu, Y. (2020). Computer-aided diagnosis of Alzheimer’s disease
through weak supervision deep learning framework with attention mechanism. Sensors
21:220. doi: 10.3390/s21010220

Mahanty, C., Rajesh, T., Govil, N., Venkateswarulu, N., Kumar, S., Lasisi, A., et al.
(2024). Effective Alzheimer’s disease detection using enhanced Xception blending with
snapshot ensemble. Sci. Rep. 14:29263. doi: 10.1038/s41598-024-80548-2

Mandawkar, U., and Diwan, T. (2024). Hybrid cuttle Fish-Grey wolf optimization
tuned weighted ensemble classifier for Alzheimer’s disease classification. Biomed. Signal
Process. Control. 92:106101. doi: 10.1016/j.bspc.2024.106101

Noor, M. B. T., Zenia, N. Z., Kaiser, M. S., Al Mamun, S., and Mahmud,
M. (2020). Application of deep learning in detecting neurological disorders from
magnetic resonance images: a survey on the detection of Alzheimer’s disease,
Parkinson’s disease, and schizophrenia. Brain Inform. 7:11. doi: 10.1186/s40708-020-
00112-2

Pulido, M. L. B., Hernández, J. B. A., Ballester, M. A. F., González, C. M. T.,
Mekyska, J., Smékal, Z., et al. (2020). Alzheimer’s disease and automatic speech analysis:
a review. Expert Syst Appl. 150:113213. doi: 10.1016/j.eswa.2020.113213

Vatanabe, P., Manzine, P. R., and Cominetti, M. R. (2020). Historic concepts of
dementia and Alzheimer’s disease: from ancient times to the present. Rev. Neurol. 176,
140–147. doi: 10.1016/j.neurol.2019.03.004

Wang, S. H., Phillips, P., Sui, Y., Liu, B., Yang, M., Cheng, H., et al. (2018).
Classification of Alzheimer’s disease based on an eight-layer convolutional neural
network with leaky rectified linear unit and max pooling. J. Med. Syst. 42:85.
doi: 10.1007/s10916-018-0932-7

Wang, Y., Yang, Y., Guo, X., Ye, C., Gao, N., Fang, Y. A., et al. (2018). A
novel multimodal MRI analysis for Alzheimer’s disease based on convolutional
neural network. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2018, 754–757.
doi: 10.1109/EMBC.2018.8512372

Yao, Z., Mao, W., Yuan, Y., Shi, Z., Zhu, G., Zhang, W., et al. (2023). Fuzzy-
VGG: a fast deep learning method for predicting the staging of Alzheimer’s
disease based on brain MRI. Inf. Sci. 642:119129. doi: 10.1016/j.ins.2023.1
19129

Frontiers in Neuroscience 14 frontiersin.org

https://doi.org/10.3389/fnins.2025.1653565
https://doi.org/10.33969/JIEC.2019.11005
https://doi.org/10.1007/s00521-021-06436-2
https://doi.org/10.1109/ACCESS.2018.2871977
https://doi.org/10.1186/s13195-022-01047-y
https://doi.org/10.1016/j.bspc.2024.106920
https://doi.org/10.1007/s12559-021-09946-2
https://doi.org/10.1109/ICIP.2016.7532332
https://doi.org/10.1016/j.cogsys.2018.12.015
https://www.jsjkx.com/EN/Y2018/V45/I6A/140
https://www.jsjkx.com/EN/Y2018/V45/I6A/140
https://doi.org/10.1109/TPAMI.2018.2889096
https://doi.org/10.3390/s21010220
https://doi.org/10.1038/s41598-024-80548-2
https://doi.org/10.1016/j.bspc.2024.106101
https://doi.org/10.1186/s40708-020-00112-2
https://doi.org/10.1016/j.eswa.2020.113213
https://doi.org/10.1016/j.neurol.2019.03.004
https://doi.org/10.1007/s10916-018-0932-7
https://doi.org/10.1109/EMBC.2018.8512372
https://doi.org/10.1016/j.ins.2023.119129
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

	A pipelined, resource-efficient convolutional neural network architecture for detecting and diagnosing Alzheimer's disease using brain sMRI
	1 Introduction
	2 Literature survey
	3 Methodology
	3.1 Preprocessing
	3.2 Gabor transform
	3.3 Data augmentation (DA)
	3.4 RECNN architecture for AD classifications
	3.5 Functional morphological algorithm

	4 Results and discussions
	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	References


