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Introduction: Mind wandering, the shift of attention from an ongoing task to
task-unrelated thoughts, is a pervasive cognitive phenomenon often accompanied
by detrimental consequences for task performance. While extensively studied
in visual and auditory paradigms, attentional fluctuations during visuo-haptic
tasks, such as force control, remain underexplored despite their high relevance
to real-world skilled activities such as surgical operations or robotic-assisted
manipulation. There exists a critical deficiency in exploring signatures of mind
wandering from the perspective of neural synchronization.

Methods: This study investigated EEG-based synchronization features to
decode attentional states during a novel continuous force control task using the
thought-probe method. Nine healthy male participants tracked a dynamically
varying target force while scalp EEG and high-frequency force data were
recorded synchronously. EEG epochs preceding self-reported attentional
probes were labeled as on-task or mind-wandering states. Spectral power
and three synchronization features — cross-frequency coupling, functional
connectivity, and neural-behavioral synchronization — were extracted and
compared between on-task and mind-wandering states.

Results and discussion: Results revealed that the mind-wandering state was
characterized by increased alpha power (8-10 Hz) over frontal-posterior
regions and reduced occurrence of high alpha-theta harmonic ratios. It also
exhibited increased functional connectivity within sensorimotor networks and
decreased mutual information between frontal EEG activity and force errors.
Support vector machine classifiers for the binary attentional-state classification,
utilizing combined spectral power and synchronization features, achieved
75.53% within-participant and 71.57% cross-participant accuracy, outperforming
single-feature models. These findings highlight EEG synchronization signatures
of mind wandering and demonstrate their feasibility for decoding attentional
states during the force control task. This work may provide a foundation for
future exploration of haptic-based neurofeedback systems, which could
potentially complement existing visual and auditory modalities in applications
such as neurocognitive rehabilitation or skilled motor training.
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mind wandering, attentional state, electroencephalogram (EEG), neural
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1 Introduction

Sustained attention, the cognitive ability to maintain focus on a
given task over extended periods, is essential for our everyday lives.
However, this ability is inherently limited. Attention often shifts from
the ongoing task to spontaneous, task-unrelated thoughts—a
ubiquitous phenomenon termed mind wandering (MW) in academic
research (Smallwood and Schooler, 2015; Christoff et al., 2016). While
MW may benefit creativity and problem-solving under certain
conditions, its negative outcomes, such as impaired task performance,
increased risk of accidents, and affective dysfunction, have attracted
significant research attention (Killingsworth and Gilbert, 20105
Schooler etal., 2011). Consequently, developing reliable and objective
methods for detecting MW has become a major research focus in
recent decades (Fortenbaugh et al., 2018; Kam et al., 2022; Tang and
Li, 2024). Investigating the neural mechanisms underlying MW and
establishing objective detection methods hold promise for the
diagnosis and intervention of attention-related neurological disorders,
such as mild cognitive impairment (MCI) and attention deficit
hyperactivity disorder (ADHD) (Zhao and Yuan, 2025; Wiebe
etal., 2024).

The MW has primarily been studied through vigilance tasks
within visual or auditory modalities, such as the continuous
performance task (CPT), where participants respond to infrequent
target stimuli (Esterman et al., 2013), and the sustained attention to
response task (SART) which typically requires responding to frequent
non-targets while withholding responses to rare targets (Eskandari
Nasab et al., 2024). However, relatively little is known about MW
during haptic or visuo-haptic tasks that involve continuous motor
regulation, such as force control. Force control refers to the precise
and continuous adjustment of muscle output or tool-applied forces to
achieve task goals (Nakahara et al., 2002). This ability is critical in
many real-world scenarios, such as surgical tool manipulation,
robotic-assisted rehabilitation exercises, and sports requiring fine
motor adjustments. Studying MW in these contexts is important
because lapses in attention can directly impair task performance,
leading to increased errors or reduced efficiency.

Although the ultimate goal of MW detection research is to
develop objective detection methods for MW, thought probing
remains essential due to its inherently subjective nature. A widely used
approach involves inserting probe questions into the ongoing task
randomly or at the end of each block (Cheyne et al., 2009; Stawarczyk
etal, 2011; Seli etal., 2018). Upon encountering a probe, participants
are asked to report the content of their thoughts or rate their
attentional focus. By comparing measures within the few seconds
preceding mind-wandering reports with those preceding on-task
reports, researchers have linked behavioral indicators (e.g., errors and
response time variability) (Esterman et al., 2013; Zheng et al., 2019;
Peng et al., 2021) and physiological signals (e.g., eye movements,
pupillometry, and heart rate) (Smallwood et al., 2007, 2011; Wainstein
etal., 2017) to self-reported MW.

Regarding neural correlates of attentional fluctuations, the
electroencephalogram (EEG) has been widely used due to its high
temporal resolution and applicability. EEG power-based metrics and
event-related potential (ERP) components have been extensively
studied as important parameters for characterizing MW (Kam et al.,
2022). Numerous studies have reported reduced amplitudes of ERP
components (P1 and P3) prior to performance errors or MW reports
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(Braboszcz and Delorme, 2010; Kam et al., 2011; Liu et al., 2021),
supporting the “perceptual decoupling” hypothesis (Schooler et al.,
2011; Smallwood, 2013). This theory posits that attention disengages
from external sensory input during MW. Additionally, spectral
features including delta, theta, alpha, and beta power have been
extensively examined in relation to MW. For example, increased
power in the alpha band has been linked to both vigilance decrement
and the occurrence of MW during SART (Compton et al., 2019; Jin
et al,, 2019). Power-based indices derived from spectral bands (e.g.,
beta-to-alpha ratio and inverse alpha power) have also shown
significant correlations with behavioral markers of attentional lapses
(Coelli et al., 2018), such as variations in mean reaction time.

While these spectral and ERP features provide valuable markers
of MW, they largely capture localized neural activity. To further
understand how distributed neural systems coordinate during
attentional fluctuations, a growing number of studies have explored
neural synchronization-based measures, including cross-frequency
coupling (e.g., alpha-theta phase synchrony and harmonicity) and
functional connectivity between brain regions. Functional
connectivity (FC) measures the synchrony between signals recorded
from different electrodes or regions (e.g., via phase-locking value,
coherence), reflecting functional integration within networks (Aydore
etal,, 2013). Numerous studies using functional Magnetic Resonance
Imaging (fMRI) have shown that the Default Mode Network (DMN)
exhibits increased activation and altered connectivity patterns with
other networks (e.g., the dorsal attention network) during the MW
state (Jang et al., 2011; Mittner et al., 2014; Christoft et al., 2016; Kucyi
et al,, 2016). A pioneering study combining DMN activation with
pupil diameter achieved promising MW classification accuracy (~80%
within-participant, ~65% across-participant) (Groot et al., 2021).
Cross-frequency coupling (CFC), which examines synchronization
between neural oscillations of different frequencies, is believed to
underlie complex information processing and communication. For
example, increased alpha-theta phase synchrony has been associated
with the occurrence of MW during breath-focused meditation
(Rodriguez-Larios and Alaerts, 2019, 2021; Rodriguez-Larios et al.,
2020). Despite these advances, the relationship between EEG-derived
synchronization features (both FC and CFC) and attentional
fluctuations remains less well-established and understood. Few studies
have explicitly examined the efficacy of EEG synchronization features
in classifying attentional states, and most have focused on visual
paradigms (Melinscak et al., 2016; Compton et al., 2019; Groot et al.,
2021). The potential of these synchronization features for MW
detection is largely unexplored.

Given these limitations, an important next step is to evaluate
whether such synchronization features can enhance MW detection
when combined with machine learning approaches. Recently, machine
learning techniques have increasingly been applied to classify
attentional states. The majority of these studies have extracted features
from EEG recordings during visual tasks (e.g., SART, visual search
tasks) and used spectral power or ERP components as classifier inputs,
typically reporting classification accuracies of 60-70% (Jin et al., 2019,
2020; Dong et al., 2021). Beyond basic features, researchers have also
explored complexity-based metrics, such as sample entropy and
permutation entropy. These metrics, which capture the irregularity or
predictability of EEG signals, have yielded promising classification
performance (e.g., AUC up to 0.71) in SART paradigms (Chen et al.,
2022). A recent study comparing complexity features with traditional
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band power reported comparable performance (AUC = 0.64) in video
learning tasks, with slight improvements from combining features
(AUC = 0.66) (Tang and Li, 2024). Notably, features capturing neural
synchronization, such as functional connectivity and alpha-theta
phase synchrony, represent a promising yet underexplored avenue for
improving MW detection accuracy.

Collectively, despite growing interest and recent advances in
understanding attentional fluctuations and detecting MW, several
critical issues need to be considered, particularly regarding task
modalities and feature types. First, the majority of MW research
has relied on visual or auditory tasks. In contrast, MW detection
in haptic or visuo-haptic tasks—such as force control—remains
significantly understudied. The neurocognitive basis of haptic
perception involves complex feedback loops from hand tactile
receptors to the primary somatosensory cortex (S1) and broader
attentional networks (Lederman and Klatzky, 2009; Grunwald,
2008). The hand’s acute perception and force control abilities make
it particularly well-suited for investigating attentional fluctuations.
Although preliminary work by Peng et al. (2021) using a discrete
force control task identified behavioral markers (e.g., reaction time
variability) and basic EEG features (e.g., increased frontal-central
alpha power) potentially related to MW, a systematic investigation
into the neural signatures of attentional states—particularly
regarding synchronization dynamics during the force control
process —remains lacking. Second, the very few EEG studies
examining attentional states during force control tasks have
confined analysis to fundamental, well-established metrics such as
spectral power density and ERPs (Zhang et al., 2023; Delisle-
Rodriguez et al., 2023). There exists a critical deficiency in
examining features from the perspective of neural synchronization,
including FC, CFC, as well as the synchronization between neural
activities and behavioral data, within the haptic modality. These
synchronization metrics may reveal how distributed brain
networks coordinate and how brain activity interacts with motor
output during attentional lapses in force control. They may serve
as novel and more sensitive biomarkers compared to isolated
power or ERP components. Finally, as a consequence of these gaps,
the utility and effectiveness of EEG synchronization features for
decoding attentional states during force control tasks remain
largely unexplored. Whether robust synchronization signatures
can be extracted from complex sensorimotor tasks, and whether
these features can reliably distinguish MW from on-task states,
remain unclear.

Therefore, this study aims to address these issues by investigating
EEG synchronization signatures within a force control paradigm.
We propose a novel continuous visuo-haptic force control task in
which participants precisely modulate their force to track a
dynamically changing target force based on visual cues. During the
task, participants reported their attentional states when thought
probes appeared. Simultaneously, EEG and high-frequency force data
were recorded. The objectives of this study are twofold:

(1) To examine EEG synchronization metrics—specifically cross-
frequency coupling, functional connectivity, and neural-
behavioral — synchronization—sensitive ~to  attentional
fluctuations (on-task versus MW states) during force control.

(2) To evaluate the feasibility and classification performance of

these synchronization features, both individually and in
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combination with other metrics, for classifying on-task and
MW states using machine learning.

We hypothesize that synchronization metrics, capturing the
interactive dynamics within the brain and between the brain and
behavior, will provide unique and complementary information for
decoding attentional states during force control. By identifying EEG
synchronization markers of MW in this underexplored haptic context
and evaluating their feasibility for decoding attentional states, this
study aims to deepen our understanding of the neural basis of
attention and lay the groundwork for future research into developing
haptic-based neurofeedback attention training systems. Such systems
could potentially offer a valuable complement to existing visual and
auditory approaches for neurocognitive rehabilitation or skilled
activities training.

2 Methods
2.1 Participants

Fourteen healthy male adults (mean age=27.4+ 3.5 years)
participated in the experiment. Informed written consent was
obtained from all participants. One participant was excluded for not
completing the entire experiment, resulting in a final sample of 13
participants. All participants reported normal or corrected-to-normal
vision and were right-handed. The study was approved by the
Biological and Medical Ethics Committee of Beihang University and
was conducted in accordance with the World Medical Association
Declaration of Helsinki.

2.2 Task and experimental procedure

Considering that humans are more susceptible to attentional
lapses during prolonged continuous tasks than discrete ones (Rahman
etal., 2021; Reteig et al., 2019), we designed a novel continuous force
control task to induce mind wandering, instead of using the discrete
paradigms from prior studies (Peng et al., 2021; Zhang et al., 2023).
Herein, participants held a pen-shaped handle to exert force while
tracking a periodically varying target force. As shown in Figure 1a,
participants were seated in front of a computer screen and held the
handle with their dominant hand. They maintained a naturalistic
pen-holding posture, mimicking handwriting. The handle was an end
effector of a haptic device (Touch, 3D Systems Inc., United States). The
haptic device allowed six degrees of freedom in movement and three
degrees of freedom in force feedback within a 26.5 x 24.1 x 8.9 cm
workspace. A virtual 3D scene was constructed, displaying a gray
circular object, an annular object, and a pen-shaped object. The
circular and annular objects remained fixed, while the pen-shaped
virtual object was attached to the real-world handle. As participants
moved the handle in the real space, the virtual pen synchronously
performed the same movement on the screen.

During the task, a black dot moved clockwise around the gray
annular region at a constant speed of 20°/s. The diameter of the black
dot (D,, in millimeters, mm) scaled proportionally to the contact force
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FIGURE 1

Task design and experimental procedure. (a) Continuous force control task. Participants were instructed to adjust the width of a clockwise moving
trajectory by modulating their output force, aiming to match the gray target zone as closely as possible. (b) Experimental procedure. Force data and
EEG data were recorded during the entire experiment. With an interval of 40-50s, a thought probe would appear on the screen, requiring participants
to report the degree to which their thoughts wandering from the task. The 3-s data preceding each thought probe was extracted as a single trial.

(F,, in newtons, N) exerted by the user’s virtual pen on the circular
palette, as shown in Equation 1:

Dy =k-E,+0.5 (1)

where k denotes a scaling constant (k = 3 mm/N). This value was
empirically determined to ensure that the dot’s size varied within a
perceptually noticeable but not overly intrusive range (approximately
2.0-10.0 mm) across the allowable force range of 0.5-3.17 N. A linear
mapping was adopted due to its intuitiveness, allowing participants to
quickly learn the relationship between applied force and visual
feedback. This helped reduce the learning burden and enabled
participants to focus on force output regulation. The width of the gray
annular region varied nonlinearly over each 60-degree cycle.
Participants were required to adjust their exerted force based on the
dot’s position to align its trajectory with the target zone. The circular
palette was established using sphere tree models with Solidworks
(Dassault Systems Inc., United States) and 3D Studio Max (Autodesk

Frontiers in Neuroscience

Inc., United States). Real-time force feedback was implemented using
a validated haptic rendering algorithm (Wang et al., 2013). Exerted
forces were recorded at a 1,000 Hz sampling rate using the haptic
device and custom scripts developed with Microsoft Foundation
Classes (MFC).

The experimental procedure is illustrated in Figure 1b. Each
participant completed three sessions of the force control task
following a practice session. Each session lasted approximately
10 min, with a short break (1-2 min) to eliminate muscle fatigue.
Participants were instructed to focus on the moving dot and
modulate their exerted force to match the target zone’s width. At
random intervals (40-50s), a probe question appeared on the
screen asking ‘What are you thinking about? Task or Something
else?’ Participants rated their attentional states on a 0-100 scale,
where 0 indicated being completely focused on the task and 100
indicated complete distraction (Kucyi et al., 2016). EEG and force
data from the 3-s time window preceding each thought probe were
extracted as individual trials for subsequent analyses.
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2.3 Behavioral data analysis

During the continuous force control task, the exerted force data
were recorded at a sampling rate of 1,000 Hz. Because the target force
(Fiarger)s corresponding to the width of the target zone, varied
nonlinearly over a 3-s cycle (i.e., 60 degrees), the target force pattern
in the 3 s preceding each probe was consistent across trials. As shown
in Figure 2a, we calculated the force error within the 3-s period to
assess the performance of force control for each trial. The force error
(BEny) represented the relative difference between the output force
(Foupu) and the target force (Fye). It was computed at each sampling
point and analyzed using sliding windows (1-s length, 90% overlap)
to quantify the variation of force errors within each trial. BEy, was
computed as Equation 2:

2
2 Ftar et — Doutput
8 P
2
z F target

BEyL, = (2)

where the value of BEy; ranges from 0 to 1, with smaller values
indicating better task performance. We also calculated the sum of
BE,, within each trial, termed BEy; .., to assess the overall
behavioral performance. Figure 2b shows examples of BEx; yial
values for two trials, where a smaller value indicates better force
control performance.

Additionally, based on the participants’ self-reported ratings, trials
were sorted by quartiles for each subject. Specifically, trials were
divided into four groups based on the quartiles of the rating scores.
Trials with ratings in the lowest quartile (<25%) were classified as

a 35 0.5
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FIGURE 2

Behavioral performance during the force control task. (a) Example
data of the target force, output force, and the force error BEy, within
a trial. (b) Examples of the overall force error BEy. s during two
trials. The left panel with a lower value of BEy_ i, (0.06) shows
relatively good performance and the right panel with a higher value
of BEyvia (0.29) shows relatively poor performance.
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task-focused (onT), and those in the highest quartile (>75%) as mind-
wandering (MW).

2.4 EEG data acquisition and analysis

2.4.1 EEG recording and pre-processing

EEG data were recorded from 64 Ag/AgCl electrodes positioned
according to the international 10-20 system, using an NSW364
wireless amplifier (Neuracle Technology Co., Ltd., China) at a
sampling rate of 1,000 Hz. The impedance of the electrodes was
maintained below 5 kQ using NaCl-based conductive gel (Liu et al.,
2019). The reference electrode was placed at the CPz. EEG recordings
were synchronized to the force control task, and event times (thought
probe onsets) were automatically documented with markers in the
continuous EEG data files.

Raw EEG data were preprocessed offline using EEGLAB v13.6.5b
(Delorme and Makeig, 2004), an open-source toolbox running in
MATLAB R2021a (MathWorks Inc., United States). The EEG data were
first bandpass filtered between 2 and 45 Hz using a zero-phase FIR filter
with a Hamming window (function pop_eegfiltnew). The filtered data
were re-referenced using the REST toolbox (Dong et al., 2017). For each
participant, data segments within each trial were extracted and
concatenated for further analysis. Subsequently, artifact rejection was
performed on the concatenated EEG data in three steps. First, bad
channels were identified and removed using the pop_rejchan function in
EEGLAB based on probability, resulting in the removal of an average of
1.0 (SD = 1.15) channels per participant. Second, the remaining data
were decomposed using logistic infomax Independent Component
Analysis (ICA; function pop_runica), and artifact components were
identified and rejected using the MARA plugin (Winkler et al., 2011,
2014). Third, the signals were back-projected to the sensor level, and any
rejected bad channels were interpolated using the pop_ interp function.
Finally, the cleaned EEG data for each participant were categorized into
two separate sets: on-task (onT) or mind-wandering (MW).

It should be noted that after the ICA-based artifact removal, EEG
data from nine participants were included in the subsequent analysis;
data from the other four participants were excluded due to extensive
artifacts exceeding +150 pV (Zhang et al., 2019; Peng et al., 2021).

2.4.2 Feature extraction

2.4.2.1 Spectral power

At each electrode, a short-time Fourier transform was performed on
the preprocessed EEG data to estimate the power spectrum for each trial.
The sliding window length was set to 1 s with 90% overlap between
successive segments. Subsequently, EEG power spectra were extracted
into five frequency bands: delta (1-4 Hz), theta (4-8 Hz), alpha
(8-13Hz), beta (13-30Hz) (30-45Hz), and
log-transformed. For each condition, the spectral powers of all trials were

and gamma

averaged to obtain the mean band power for each frequency band at each
electrode. The group-level average power for each frequency band was
calculated by averaging the band power across all participants.

2.4.2.2 Cross-frequency coupling: alpha-theta ratios
Given reports of increased alpha-theta harmonicity and phase

synchrony during MW, this study assessed alpha-theta cross-

frequency coupling during the force control task. Following
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previous studies (Rodriguez-Larios and Alaerts, 2021), we used the
findpeaks approach to compute the cross-frequency ratios between
the theta and alpha bands. Specifically, after applying short-time
Fourier transformations (sliding window =100 ms) to the
preprocessed EEG data to compute the time-varying spectrum
between 4 and 13 Hz, we applied the findpeaks function to detect
transient peak frequencies in the theta (4-8 Hz) and alpha
(8-13 Hz) bands separately. When more than one peak was
detected, the frequency with the highest amplitude was selected as
the peak frequency. The algorithm detected at least one peak in
99.52% (SD =0.20%) of alpha-band time points and 94.11%
(SD = 1.19%) of theta-band time points. The identified transient
peak frequencies in the alpha and theta bands were used to
compute their numerical ratio per time point. To analyze the
distribution of these ratios, we binned them in steps of 0.1 across
a range of 1.1-3.3 and calculated the proportion of time points
falling into each bin. Proportions of cross-frequency ratios were
computed per epoch and averaged within the same condition (onT
or MW) for each participant and electrode. This yielded a
normalized distribution across ratio bins for each condition,
participant, and electrode, which we refer to as the probability
density of alpha-theta ratios. In this framework, a higher
probability density at a specific ratio indicates that the alpha-theta
system was more likely to align around that harmonic relationship
during the task. Neurophysiologically, this suggests that certain
stable harmonic states are more prevalent, which may reflect a
that
synchronization necessary for sustained attention (Rodriguez-
Larios and Alaerts, 2019).

mechanism facilitates  efficient  cross-frequency

2.4.2.3 Functional connectivity: within-band coupling
between electrode pairs

Phase Locking Value (PLV) quantifies phase synchronization
between electrode pairs by measuring the absolute value of the
mean phase difference between two signals as a complex unit-
length vector (Rosenberg et al., 1989; Aydore et al., 2013). PLV is
a measure of pairwise functional connectivity commonly used to
quantify the phase coupling between two nonlinear signals. It has
a range from 0 to 1, where a value of 0 indicates no phase coupling
and a value of 1 indicates complete phase locking. In this study,
we computed sensor-level PLV between all electrode pairs using
the ft_connectivityanalysis function from the FieldTrip toolbox
(Oostenveld et al.,, 2011), generating five 64 x 64 connectivity
matrices (one matric per band). To assess their significance,
we employed the Network-Based Statistic toolbox to perform
permutation testing on the connectivity matrices (Zalesky et al.,
2010). This approach allows us to control for family-wise error
rates while identifying significant network components. We also
extracted community connectivity within and across distinct brain
regions and performed repeated one-way analysis of variance
(ANOVA) to assess the significance of connectivity patterns among
predefined brain communities.

2.4.2.4 Neural-behavioral synchronization: mutual
information

Mutual information (MI) between EEG power amplitude and
force error was computed to quantify the neural-behavioral
synchronization. MI (X, Y) indicates both linear and nonlinear
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statistical dependencies between two variables X and Y, which can
be computed as Equation 3:

MI(X,Y)=H(X)+H(Y)-H(X.Y) ©)

where H(X) and H(Y) denote the priori uncertainty of X and Y,
respectively. H(X, Y) denotes the posteriori uncertainty on X when the
measurement of Y is given. The value of MI(X, Y) answers the
question: “Given a measure of Y, how many bits of information about
X can be predicted on average?” (John et al., 2018; Liang et al., 2022).
In this study, we computed MI between the within-trial force error
(BEx:) and the corresponding EEG power amplitude (obtained using
the short-time Fourier transform) for each electrode. For each subject,
the MI values formed a multidimensional array with dimensions:
frequency point x electrode x trial.

2.5 Features selection

All the behavioral and EEG features were first compared between
conditions. To identify significant effects, we employed appropriate
statistical tests (¢-tests or cluster-based permutation testing), and only
these significant features were retained for subsequent classification.
Specifically, for the behavioral force errors, data were first averaged
across trials for each condition within subjects, and then paired-sample
t-tests were performed to evaluate condition-related differences. For
EEG features (i.e., spectral power, alpha-theta ratios, PLV, and MI),
cluster-based permutation testing was adopted to evaluate condition-
related differences. This nonparametric statistical approach controls the
family-wise type I error rate that arises from multiple comparisons
across electrodes and frequency bins by employing Monte Carlo
randomization. Briefly, the data were shuffled (1,000 permutations) to
estimate a null distribution of effect sizes based on cluster-level
statistics—specifically, the sum of ¢-values with the same sign across
adjacent electrodes, frequencies, or ratios. The cluster-corrected p-value
was defined as the proportion of permuted datasets in which the cluster-
level statistic exceeded that of the original data (cluster-defining
threshold: p < 0.05). Statistically significant features and electrodes were
then selected as the final feature subset and used as inputs for the
classifier. We chose cluster-based permutation testing because this
nonparametric method can effectively control false positives under
multiple comparison corrections while accounting for the spatial and
spectral contiguity of EEG data (Maris and Oostenveld, 2007). This
approach yields interpretable clusters of features rather than isolated
points, which is particularly appropriate for EEG and connectivity
analyses (Pernet et al., 2015).

2.6 Classifier training and validation

Using the identified features as inputs and the attentional state
labels (onT or MW) as outputs, we trained the classifiers using the
support vector machine (SVM) algorithm to decode attentional states
for each trial. Although previous studies have employed various
machine learning algorithms, such as decision trees (Tasika et al.,
2020), random forests (Chen et al., 2022), and artificial neural
networks (Hosseini and Guo, 2019), this study applied SVM due to its
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suitability for small-sized datasets with low-dimensional data.
Moreover, most prior studies on attention decoding have reported
superior classification performance using SVM (Jin et al., 2019, 20205
Dong et al,, 2021; Jothiral et al., 2025). A radial basis function (RBF)
was selected as the kernel function, and the default parameter settings
in LIBSVM were applied (i.e., penalty parameter C = 1 and kernel
parameter y = 1/feature dimension). To ensure comparability across
features, all input features were z-score standardized within each
training fold before model fitting, and the same transformation was
applied to the corresponding test fold.

Two cross-validation strategies were employed to evaluate the
trained models:

(1) Leave-one-subject-out (LOSO) cross-validation for cross-
participant evaluation: in each iteration, one participant’s data
were used as the test dataset, while data from the remaining
N-1 participants formed the training dataset. This process was
repeated N times, where N denotes the number of participants
included in the analysis (N = 9). The mean classification
performance was then averaged across all iterations.

(2) Five-fold cross-validation for within-participant evaluation: for
each participant, trials were randomly divided into five subsets
while preserving class balance (i.e., each fold contained equal
numbers of onT and MW trials). In each round, one subset
served as the test dataset, while the remaining four subsets
were used for training. The average classification performance
was computed across all folds and all participants.

Finally, we computed five commonly used metrics—accuracy,
recall, precision, F1-score, and the area under the receiver operating
characteristic curve (AUC)—to comprehensively evaluate the
effectiveness of the selected features in classifying attentional states.
The classification performance for various feature combinations was
also assessed using these metrics.

3 Results

3.1 Self-reported ratings and behavioral
performance

To assess whether the off-task ratings reported by participants
increased over time during the force control task, we performed a
linear regression analysis on the z-scored ratings across trials for each
participant. Figure 3a illustrates the rating scores of a representative
participant across all trials (blue dots), along with the corresponding
regression-fitted curve (red line). Figure 3b presents the group-
averaged slope values of the regression-fitted curves. A one-tailed
one-sample ¢-test confirmed that the slope was significantly greater
than zero [#(8) =2.53, p =0.018], indicating a significant upward
trend in self-reported off-task ratings over time. For the trial-level
force error (i.e., BExy i), We performed a similar linear regression on
the z-scored values across trials for each participant. Figure 3¢ shows
the BEyiua values of a representative participant with the
corresponding regression-fitted curve, and Figure 3d summarizes the
slope values for all participants. A one-tailed one-sample ¢-test on
these slope values revealed a significant increasing trend in force error
over trials (#(8) =3.16, p = 0.007). The z-scored MW ratings and

Frontiers in Neuroscience

10.3389/fnins.2025.1654827

BExi g data  for all
Supplementary Figures 1, 2, respectively.

participants are  provided in

During the experiment, seven participants completed 36 trials and
the other two participants completed 48 trials. As shown in Figure 3e,
trials were classified based on rating quartiles: the trials in the lowest
quartile (<25%) were labeled as onT condition, and those in the
highest quartile (>75%) as MW condition. Consequently, two
participants contributed 12 trials per condition, while the remaining
seven participants contributed 9 trials per condition. Group-averaged
force errors (BEx; i) for the two conditions are presented in Figure 3f.
Paired-sample t-tests revealed significantly higher force errors during
the MW condition (0.24 £ 0.07) compared to the onT condition
[0.17 + 0.03; £(8) = 3.4, p = 0.004].

3.2 Condition-specific differences in
spectral power

For the trials classified as onT and MW, power spectra were
estimated at each electrode for every frequency point between 2 and
45 Hz in a step of 0.1 Hz. Paired-sample ¢-tests were conducted to
assess the power differences between conditions, with t-values (onT
minus MW) visualized as spatial-frequency topographies (Figure 4a).
Cluster-based permutation tests were then applied, and ¢-values that
survived the significance threshold (p-cluster <0.025) are shown in the
lower panel of Figure 4a. The analysis revealed two significant clusters
in the low alpha band (8-10 Hz). Cluster 1 was primarily distributed
over the frontal region, encompassing electrodes FPz, Fz, FCz, FP1,
AF7, AF3,F1, F3, F5, F7, FC1, FC3, FC5, F17, FP2, AF8, AF4, F2, F4,
F6, F8, FC2, FC4, and FCé. Cluster 2 was mainly distributed over the
posterior region, involving electrodes POz, Oz, Pz, TP7, P7, P5, P3,
PO7, PO5, PO3, TP8, CP6, P4, P6, P8, PO4, PO6, and POS.
Additionally, cluster-averaged power within the 8-10 Hz band was
compared between the two conditions. As shown in Figure 4b, the
cluster-averaged power during the MW condition was significantly
higher than during the onT condition in both the frontal region
(MW =0.142 + 0.079, onT =0.068 £ 0.029; p<0.001) and the
posterior (MW =0.170 £ 0.089, onT =0.074 +0.039;
p<0.001).

To further localize the cortical sources associated with attentional

region

fluctuations during the force control task, we conducted source
localization analysis using a beamformer algorithm implemented in
FieldTrip (Oostenveld et al., 2011). For each participant, source
activity estimates were obtained for both the onT and MW conditions
within the 8-10 Hz band. Paired-sample ¢-tests were used to assess
differences in neural activity between the two conditions, followed by
cluster-based permutation testing (p-cluster <0.025). As shown in
Figure 5, the average power in the left middle occipital gyrus (MNI:
[-30-70 12]) was significantly higher during the MW condition
(3.51 £0.39dB) than during the onT condition [3.36 + 0.40 dB;
£(8) = 4.99, p = 0.0084].

3.3 Condition-specific differences in
alpha-theta ratios

Synchronization between neural oscillations at different frequencies
has been proposed as a core mechanism for the coordination and
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Behavioral measures of attentional states. (a) Z-scored off-task ratings (blue dots) and linear regression fit (red line) for a single representative
participant. (b) Group-level slope coefficients derived from the linear regression of z-scored off-task ratings. (c) Z-scored trial-level force error
(BEnLwia; blue dots) and linear regression fit (red line) for the representative participant. (d) Group-level slope coefficients for z-scored BEy . (€) Trial
classification based on rating quartiles (onT: green; MW: yellow). (f) Comparison of force error between onT and MW conditions.

integration of neural systems. Mathematically, when two oscillators with
different frequencies form a harmonic relationship (e.g., i/f, = 2), as
opposed to a nonharmonic relationship (e.g., fi/f, = 1.6), the harmonic
arrangement allows for more frequent excitatory phase meetings,
thereby facilitating cross-frequency synchronization. In line with this
principle, recent theoretical frameworks suggest that shifts in oscillatory
peak frequencies constitute a principal mechanism for implementing
cross-frequency coupling and decoupling in the brain (Rodriguez-
Larios and Alaerts, 2019, 2021; Rodriguez-Larios et al., 2020). Following
this framework, we quantified cross-frequency coupling by analyzing
peak frequency ratios between different bands and compared them
between onT and MW conditions during the force control task. Given
the established role of alpha-theta coupling in tasks involving attention
and executive control, we specifically examined peak frequency ratios
between the alpha and theta bands. Figure 6a illustrates trial-wise
variability in alpha and theta peak frequencies, as well as their
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corresponding numerical ratios over a 3-s period for a representative
participant and electrode. Figure 6b compares the spectral power in two
representative trials: one showing a harmonic alpha-theta ratio (2.04)
and the other a non-harmonic ratio (1.62). Figure 6¢ shows the
distribution of alpha and theta peak frequencies across all trials for the
same participant and electrode.

Differences between onT and MW conditions were further
assessed using paired-sample t-tests for each electrode and cross-
frequency ratio (ranging from 1.1 to 3.3 in a step of 0.1). Cluster-based
permutation testing was applied to identify significant clusters based
on adjacency in electrode space and cross-frequency ratio, while
controlling for multiple comparisons. As described in Section 2.4.2.2,
the distribution of alpha-theta ratios was represented by its probability
density, where higher density at a given ratio reflects a greater
likelihood of oscillatory alignment around that harmonic relationship.
Figure 7a shows the probability density of each ratio averaged across
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all electrodes for the onT and MW conditions. Figure 7b visualizes the
condition differences in probability density by plotting t-values for
each ratio and electrode. Positive t-values (shown in cold colors)
indicate higher probability density during the onT condition
compared to the MW condition. A negative cluster (i.e., MW > onT)
was observed at posterior electrodes within the lower ratio range
(1.2-1.7), although it did not reach significance in the permutation
test. However, a significant positive cluster was identified within the
2.6-3.0 ratio range, indicating a significantly higher probability
density during the onT condition compared to the MW condition
(p-cluster < 0.05). Figure 7c presents the topographical heat map of
t-values averaged over the 2.6-3.0 ratio range, with PO3 and PO4
marked as significant electrodes from the permutation test. A repeated
one-way ANOVA on the identified cluster confirmed that the cluster-
averaged probability density within the 2.6-3.0 ratio range was
significantly higher during the onT condition (0.299 + 0.066) than
during the MW condition [0.226 + 0.065; F, 4, = 8.21, p = 0.0005;
Figure 7d].

3.4 Condition-specific differences in
functional connectivity

Given the significant condition-related differences observed in the
8-10 Hz band (Section 3.2), we analyzed PLVs between all electrode
pairs to investigate functional connectivity differences within this
frequency range. Paired-sample t-tests with permutation-based
correction revealed no significant differences for the onT > MW
comparison, but significantly higher connectivity during MW
compared to onT at specific connections. The statistically significant
PLV values and their corresponding electrode pairs are shown in
Figure 8a.

To investigate condition-related connectivity differences from a
network-level perspective, electrodes were grouped into four brain
regions (Figure 8b): frontal lobe (F), parieto-occipital lobe (PO), left
central motor area (LC), and right central motor area (RC).
Community connectivity (CC) was computed by averaging PLV's
within or between these defined regions. A repeated-measures

10.3389/fnins.2025.1654827

one-way ANOVA revealed significantly higher intra-region CC within
the LC during the MW condition compared to the onT condition
[Foio0=19.76, p<0.001]. Inter-region CC between PO-RC
[Fiio0 = 9.36, p = 0.003], F-LC [Fy100) = 6.84, p = 0.010], and LC-RC
[E(1,100) = 6.85, p = 0.010] was also significantly higher during the MW
condition than during the onT condition. Descriptive statistics and
corresponding significance values are summarized in Table 1.

3.5 Condition-specific differences in
neural-behavioral synchronization

Mutual information (MI) between the within-trial force error
(BEx1) and EEG power amplitude was analyzed to assess neural-
behavioral synchronization. Figure 9a presents paired-sample ¢-test
values for each electrode and frequency point (2-45 Hz in 0.1 Hz
steps), where positive t-values (shown in cold colors) indicate higher
MI during the onT condition compared to the MW condition. Cluster-
based permutation testing identified a significant negative cluster
within the 7.2-8.8 Hz range (p-cluster < 0.05), indicating significantly
stronger neural-behavioral synchronization during the onT condition
compared to the MW condition. This negative cluster was located in
the anterior region, including electrodes F1, F3, F5, F2, F4, and F6.
Figure 9b shows the topographical t-value map averaged across these
six electrodes within the 7.2-8.8 Hz range. A repeated-measures
one-way ANOVA on the identified cluster further confirmed
significantly higher MI during the onT condition (0.650 + 0.085)
compared to the MW condition [0.530 £ 0.054; F(,, = 10.69,
p =0.0015; Figure 9c].

3.6 Attentional states classification results

An SVM-RBF model was trained to classify binary attentional
states and evaluated using two cross-validation strategies (i.e.,
LOSO and 5-fold cross-validation). Each feature that passed the
aforementioned statistical tests was evaluated individually in
separate classification models. Table 2 summarizes the classification
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and RC (right central motor area).

Functional connectivity differences between onT and MW conditions. (a) The left panel illustrates the differences in PLV between the onT and MW
conditions by plotting paired-sample t-test values. The right panel highlights the connections showing significant increases during MW compared to
onT. (b) Four electrode categories used for the community connection analysis: F (frontal lobe), PO (parieto-occipital lobe), LC (left central motor area),
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TABLE 1 Descriptive and statistics results of community connection analysis.

10.3389/fnins.2025.1654827

Brain regions F-values

F 0.681 = 0.035 0.675 % 0.083 0.015 0.904
LC 0.617 £ 0.053 0.668 £ 0.077 19.761 2.28e-5%+*
RC 0.606 = 0.055 0.615 % 0.107 0.120 0.729
PO 0.656 + 0.052 0.643 £ 0.063 2.817 0.096
F-LC 0.537 £ 0.035 0.566 + 0.087 6.843 0.010%
F-RC 0.542 £ 0.035 0.559 % 0.087 1.928 0.168
F-PO 0.605 = 0.037 0.610 % 0.063 0.138 0.711
LC-RC 0.541 £ 0.051 0.570 % 0.086 6.848 0.010%
LC-PO 0.520 £ 0.031 0.536 % 0.075 0.858 0.357
RC-PO 0.524 +0.029 0.565 + 0.073 9.362 0.003%*

#p < 0,05, #¥p < 0.01, **p < 0.001.
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ons. (a) The top panel displays the paired-sample t-test values per
presents the cluster that survived from the cluster-based permutation test

8 Hz under onT and MW conditions.

performance metrics for each individual feature under both
validation strategies. The chance-level accuracy is 50% because the
dataset was balanced using the quartile-based labeling approach.
Here, MW was defined as the positive class. The single-feature
models showed generally comparable classification performance
across both validation strategies. Among the four features, spectral
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power yielded the highest accuracy, precision, Fl-score, and
AUC. Considering comparability with existing literature, this study
primarily focuses on the accuracy and AUC metrics. For the cross-
participant classification (i.e., LOSO strategy), the power feature
achieved a mean accuracy of 66.99 + 12.34% and a mean AUC of
76.37 £ 19.26%. Similarly, in the within-participant classification
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TABLE 2 Classification performance using individual features under LOSO and 5-fold cross-validation (Mean + SD).

Metrics Spectral power Ratio A MI
LOSO cross validation (%)
Accuracy 66.99 +12.34 54.07 £ 12.89 54.26 £ 14.32 50.42 +7.72
Recall 80.00 + 27.44 33.52 +22.46 41.39 + 30.47 94.54 £ 8.41
Precision 64.48 £ 11.18 57.41 £ 30.17 53.70 + 28.29 50.25+5.43
Fl-score 68.75 £ 17.67 40.04 £ 20.83 43.27 +25.09 65.59 £ 5.43
AUC 76.37 £19.26 61.65 + 14.90 51.83 £22.61 45.47 £ 14.93
5-fold cross validation (%)
Accuracy 68.28 £7.14 54.91 +£9.99 51.32+£6.37 50.09 + 6.03
Recall 81.35+10.31 4222 +£25.03 40.97 + 33.58 90.26 +£9.74
Precision 65.27 £7.52 49.12 +£28.21 50.02 £ 13.37 50.09 + 3.32
Fl-score 71.92 £5.64 44.88 £ 25.38 40.39 +21.46 64.32 £ 4.64
AUC 71.86 £ 7.05 61.43 +£9.49 49.66 +11.17 47.78 +£10.46
Bold values indicate the best performance in terms of Accuracy and AUC.
TABLE 3 Classification performance using feature combinations under LOSO and 5-fold cross-validation (mean + SD).
Metrics Accuracy Recall Precision Fl-score AUC
LOSO cross validation (%)
Power + MI 69.21 + 14.55 66.39 + 31.00 68.58 + 30.96 64.55 + 25.87 77.51 £11.34
Power + PLV 71.02 £15.24 67.78 £32.32 71.16 £ 32.37 66.21 * 26.80 77.88 £15.79
Power + Ratio 70.46 £ 12.59 62.96 + 33.85 74.45 £ 33.41 63.35 £26.01 79.29 £ 14.84
Power + Ratio +PLV 71.57 £10.79 67.04 £ 28.89 83.34 £ 18.39 67.70 £17.13 79.87 +£15.59
Power + Ratio + MI 68.10 £ 13.36 67.04 £ 28.89 79.87 £221.71 65.67 £ 16.94 76.63 £16.32
Power + PLV + MI 67.82 £16.42 68.24 £ 30.39 66.85 + 31.36 64.64 + 25.85 77.44 £13.03
Power + Ratio + 70.37 £13.79 77.41 + 24.82 76.20 £ 18.67 71.42 +12.79 78.34 £14.53
PLV + MI
5-fold cross validation (%)
Power + MI 7221 £12.74 71.44 +17.12 72.50 £12.36 71.60 + 13.26 75.20 £ 7.05
Power + PLV 71.21 £ 12.16 71.44 +17.12 70.56 +9.94 70.79 £ 12.90 74.56 + 8.24
Power + Ratio 73.43 £10.34 70.97 + 11.06 7529 £11.41 72.79 +9.81 76.42 +7.16
Power + Ratio + PLV 71.43 £8.31 7520 £ 11.27 69.97 £ 7.46 72.31 +8.38 76.58 £7.07
Power + Ratio + MI 71.09+£7.19 73.83 +13.18 70.60 £ 6.76 71.55 +7.64 75.07 £ 6.26
Power + PLV + MI 7197 £ 11.17 76.51 + 14.24 69.88 +8.77 72.94 +11.03 74.39 £7.59
Power + Ratio + 75.53 + 8.40 80.50 £ 5.43 70.87 £7.32 7523 £5.62 76.12 £ 5.81
PLV + MI

Bold values indicate the best performance in terms of Accuracy and AUC.

(i.e., 5-fold strategy), the power feature yielded a mean accuracy of
68.28 + 7.14% and a mean AUC of 71.86 + 7.05%. For the MI-only
model, the recall for the MW class was high, whereas overall
accuracy, precision, and AUC remained low. This indicates a bias
toward predicting MW trials, leading to numerous false positives
for onT trials, as illustrated by the confusion matrices shown in
Supplementary Figure 3.

To evaluate whether synchronization features (i.e., ratio, PLV, and
MI) could enhance the classification performance, we combined the
spectral power feature with these synchronization features as inputs
to the SVM-RBF models. Table 3 presents the classification results
from all possible combinations of spectral power and synchronization-
related features. Overall, combining spectral power with any of the
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synchronization features improved classification accuracy and
AUC. Under LOSO cross-validation, the combination of spectral
power, ratio, and PLV achieved the highest accuracy (71.57 + 10.79%)
and AUC (79.87 % 15.59%). the
combination of all four features yielded the highest accuracy

In 5-fold cross-validation,

(75.53 + 8.40%), while the combination of spectral power, ratio, and
PLV achieved the highest AUC (76.58 + 7.07%).

4 Discussion

This study aimed to advance the understanding of the
neurophysiological signatures and detection of mind wandering

frontiersin.org


https://doi.org/10.3389/fnins.2025.1654827
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Zheng et al.

(MW) by investigating EEG synchronization features within a novel
visuo-haptic force control paradigm. Although MW has been
extensively studied in visual and auditory domains, its neural
correlates during sensorimotor engagement—particularly involving
force modulation—remain largely unexplored. Moreover, despite the
theoretical importance of neural synchronization in attention
regulation, few studies have systematically assessed the efficacy of
EEG-based functional connectivity (FC), cross-frequency coupling
(CFC), and neural-behavioral synchronization (NBS) in detecting
MW, especially in haptic contexts. Our investigation yielded key
insights into the neural signatures of MW during force control and
demonstrated the feasibility of using synchronization features for
attentional state classification.

4.1 Neural signatures of mind wandering

The proposed continuous force control task effectively induced
MW episodes, as evidenced by a significant upward trend in off-task
ratings over trials and a marked degradation in behavioral
performance (i.e., increased BEy; i errors) during the MW
condition compared to the onT condition. In terms of neural
activity, we observed increased alpha power (8-10 Hz) over frontal
and parieto-occipital regions during MW, with source localization
revealing the increased activity in the left middle occipital gyrus.
This widespread alpha power increase during MW aligns with the
“perceptual decoupling” hypothesis (Schooler et al., 2011;
Smallwood, 2013) and numerous EEG studies using visual vigilance
tasks such as the SART (Compton et al., 2019; Jin et al., 2019).
Notably, our findings are consistent with recent observations by
Luna et al. (2023), who reported increased alpha power in left
occipital regions prior to missed targets compared to correct
detections in a visual vigilance task, suggesting that alpha increases
may reflect attentional disengagement across both visual and visuo-
motor tasks. Regarding the haptic domain, while Peng et al. (2021)
reported increased frontal-central alpha associated with off-task
states in a discrete force task, we observed a more distributed
pattern involving both frontal and posterior areas. The localized
increase in the left middle occipital gyrus indicates that even in a
force-focused task, MW involves disengagement of visual
processing regions, likely reflecting the visuo-haptic integration
demands of our paradigm, since force adjustments in our task were
guided by visual feedback. These findings highlight the modality-
independent nature of alpha increases as a potential neural marker
of attentional disengagement.

Beyond single-frequency analyses, we evaluated cross-
frequency coupling and found significantly reduced probability
density of high alpha-theta ratios (2.6-3.0) under the MW state,
particularly over parietal-occipital electrodes PO3 and PO4. While
prior work by Rodriguez-Larios and Alaerts (2019, 2021) and
Rodriguez-Larios et al. (2020) linked increased alpha-theta phase
synchrony to MW during meditation, our focus on harmonic
frequency ratios reveals a different aspect of cross-frequency
organization. Harmonic ratios near 3.0 may support on-task
attention by enabling stable cross-frequency phase coupling. This
precise phase alignment likely optimizes communication between
neural assemblies supporting top-down control (theta) and those
involved in sensory inhibition (alpha), thereby facilitating efficient
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information integration. The reduction of these stable harmonic
ratios during MW suggests a breakdown in this coordinated cross-
frequency mechanism. This view aligns with theories proposing
that optimal cognitive control relies on harmonic cross-frequency
arrangements enabling effective communication between neural
assemblies (Fries, 2005; Palva and Palva, 2017). The parietal-
occipital localization (PO3/PO4) further implicates visuospatial
processing networks in maintaining this rhythmic coordination
during force tracking. Nevertheless, whether the near 3.0 ratios
observed here also support focused attention in other motor tasks
or in other modalities (such as pure visual or auditory tasks)
remains to be determined by future studies. Direct cross-task
comparisons and source-level CFC analyses would be required to
assess the generalizability.

Additionally, MW was associated with enhanced functional
connectivity across sensorimotor networks. Within the 8-10 Hz
band, MW states exhibited significantly stronger phase locking
within the left central motor area and between the PO-RC, F-LC,
and LC-RC communities. One plausible interpretation is the
compensatory recruitment of task-relevant sensorimotor assemblies
when top-down control wanes; such localized synchronization
could transiently support baseline performance despite attentional
lapses. This finding extends previous fMRI research highlighting the
dominance of the DMN during mind wandering by suggesting a
context-dependent compensatory mechanism: in the force control
task requiring continuous sensorimotor engagement, attenuated
top-down attention may trigger localized synchronization within
task-relevant networks to sustain baseline performance (Christoff
et al.,, 2009). This aligns with recent findings demonstrating a
dynamically interdependent relationship between external (sensory
and motor processing) and internal cognition (mind wandering)
(Long et al., 2025). In accordance with the recently proposed
“Baseline model of internal and external cognition” (Northoff et al.,
2022), the observed hyperconnectivity likely reflects inefficient
neural resource reallocation—where heightened “noisy” processing
in sensorimotor circuits fails to fully compensate for attentional
lapses—as evidenced by concurrent increases in behavioral errors.
Our results underscore that MW dynamically redistributes neural
resources with sensorimotor synchronization representing a
signature of embodied attentional fluctuations. Nevertheless,
alternative explanations for increased sensor-level connectivity—
such as contamination by muscle activity, volume conduction, field
spread, or other recording artifacts—cannot be ruled out (Haufe
et al., 2012). Importantly, our connectivity estimates were derived
at the sensor level without full source-level leakage correction;
therefore, these results should be interpreted with caution as
preliminary evidence. Future studies should complement sensor-
level FC with source reconstruction, leakage-robust metrics, and
muscle activity monitoring to better distinguish neural coupling
from confounds.

In addition to neural synchronization metrics, we also
examined the coupling between neural activity and behavioral
performance by assessing the mutual information between the force
error (i.e., BEy) and EEG power. During MW, the MI was
significantly reduced within the 7.2-8.8 Hz band over several
frontal electrodes, suggesting a breakdown in the real-time coupling
between brain dynamics and motor output during attentional
lapses. This observation is conceptually novel. Although previous
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studies have linked behavioral variability (e.g., RT variability) to
MW (Esterman et al., 2013; Peng et al., 2021), none have quantified
the dynamic synchronization between continuous neural signals
and high-frequency motor performance. The 7.2-8.8 Hz band
overlaps with the low-alpha/mu rhythm, known to reflect motor
cortical excitability and somatosensory processing. Reduced NBS
likely reflects a weakened predictive relationship between
fluctuations in this rhythm and moment-to-moment force control
accuracy weakens during MW. This decoupling might provide an
objective neurobehavioral signature of attentional disengagement
specific to active motor tasks and represents an advance beyond
static behavioral error measures.

4.2 Classification performance

The SVM classification achieved optimal performance when
traditional power features were combined with synchronization
metrics. Within-participant models (5-fold CV) using all features
reached 75.53% accuracy (AUC = 76.12%), while cross-participant
models (LOSO CV) using power + alpha-theta ratio + FC features
achieved 71.57% accuracy (AUC =79.87%). These results are
comparable to or slightly better than performance reported in
similar binary classification studies (Jin et al., 2019, 2020; Dong
etal, 2021; Chen et al., 2022). Several factors likely contributed to
the classification performance. First, the combination of commonly
used features (i.e., power) and novel synchronization features
FC, NBS)
information. Notably, adding synchronization features consistently

(cross-frequency ratio, offered complementary
boosted performance over power features alone (e.g., LOSO AUC
increased from 76.37 to 79.87% with power + ratio + FC),
highlighting the value of capturing distributed network dynamics
and brain-behavior interactions. Second, the proposed continuous
force task provided a rich stream of behavioral data (1,000 Hz)
tightly synchronized with EEG data. This enabled the calculation
of NBS, a feature unavailable in discrete response tasks and proved
to be a useful feature for classification. Third, the continuous,
dynamic nature of the force control task likely elicited more
pronounced and ecologically valid MW states compared to simpler
vigilance tasks, leading to clearer neural dissociations.

However, direct comparisons are challenging due to differences in
tasks, probing methods, and classification approaches (e.g., LOPOCV
vs. LOSO vs. within-participant). Our cross-participant accuracy
(71.57%) highlights the challenge of generalizing models across
individuals, a common limitation in the field. Future work should
advanced  normalization or  domain

explore  more

adaptation techniques.

4.3 Limitations and future work

While this study offers novel insights, the findings should
be considered with several limitations. First, the final sample size
of nine participants (after artifact rejection) is relatively small and
all participants were male. Future studies should recruit larger,
more diverse cohorts, including females and individuals from
broader age ranges, to enhance generalizability and to explore
potential sex differences in neural correlates of MW during motor
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tasks.
classification, their neurobiological interpretation remains

Second, while synchronization features improved
complex. For instance, increased FC within motor areas during
MW could reflect different processes (e.g., maladaptive noise,
inefficient compensation, or muscle artifacts). Given the sensor-
level nature of our connectivity analyses, we emphasize the need
for source-space reconstructions and leakage-robust measures in
future work to distinguish true inter-region interactions from
sensor-level mixing. Future research should also integrate
computational modeling or causal interventions (e.g., transcranial
magnetic stimulation) to elucidate the functional significance of
these connectivity patterns. Third, EEG epochs were extracted
from the 3 s preceding thought-probes, which occurred at 40-50 s
intervals. This quasi-periodicity could have induced anticipatory
effects or strategic attention re-engagement just before probes,
potentially affecting the MW vs. onT contrast. However, the overall
monotonic increase in MW reports across trials, coupled with the
corresponding behavioral degradation, suggests that anticipatory
effects alone are unlikely to fully account for our main findings.
Nevertheless, future studies are necessary to employ randomized
probe timing to eliminate this potential confound.

Finally, our findings pertain to a specific visuo-haptic force control
task. The generalizability of the identified synchronization signatures
to other haptic tasks or modalities remains to be investigated. Future
studies should systematically compare MW signatures across different
task types, such as pure haptic vs. visuo-haptic or force vs. texture
discrimination. Future studies should also explore more sophisticated
synchronization measures, such as directed connectivity (Tafreshi
etal., 2019), graph theory metrics (Moon et al., 2020), and advanced
machine learning algorithms that may better capture complex
spatiotemporal dynamics in EEG data.

5 Conclusion

This study demonstrates that EEG synchronization features—
including functional connectivity within sensorimotor networks,
alterations in alpha-theta cross-frequency coupling, and neural-
behavioral synchronization—serve as sensitive and complementary
markers of mind wandering during a continuous visuo-haptic force
control task. Our findings extend the understanding of attentional
fluctuations beyond visual/auditory paradigms, revealing task-specific
neural dynamics characterized by increased motor network synchrony
and disrupted neural-behavioral alignment during attentional lapses.
Using these synchronization features, machine learning classifiers
achieved 75.53% within-participant and 71.57% cross-participant
accuracy when combined with spectral power features, confirming
their feasibility and complementary value for decoding covert
attentional states. This work extends the understanding of neural
representations underlying attentional fluctuations during the
continuous force control process. While our paradigm was constrained
to a laboratory setting, the identified synchronization markers may
provide preliminary insights to guide the future development of
haptic-based attention training systems. Such systems could serve as
a complementary approach to existing visual and auditory modalities
in contexts such as sports training, surgical skill learning, or
neurorehabilitation, pending further validation in more ecologically
valid settings.
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