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Introduction: Mind wandering, the shift of attention from an ongoing task to 
task-unrelated thoughts, is a pervasive cognitive phenomenon often accompanied 
by detrimental consequences for task performance. While extensively studied 
in visual and auditory paradigms, attentional fluctuations during visuo-haptic 
tasks, such as force control, remain underexplored despite their high relevance 
to real-world skilled activities such as surgical operations or robotic-assisted 
manipulation. There exists a critical deficiency in exploring signatures of mind 
wandering from the perspective of neural synchronization.
Methods: This study investigated EEG-based synchronization features to 
decode attentional states during a novel continuous force control task using the 
thought-probe method. Nine healthy male participants tracked a dynamically 
varying target force while scalp EEG and high-frequency force data were 
recorded synchronously. EEG epochs preceding self-reported attentional 
probes were labeled as on-task or mind-wandering states. Spectral power 
and three synchronization features – cross-frequency coupling, functional 
connectivity, and neural-behavioral synchronization – were extracted and 
compared between on-task and mind-wandering states.
Results and discussion: Results revealed that the mind-wandering state was 
characterized by increased alpha power (8-10 Hz) over frontal-posterior 
regions and reduced occurrence of high alpha-theta harmonic ratios. It also 
exhibited increased functional connectivity within sensorimotor networks and 
decreased mutual information between frontal EEG activity and force errors. 
Support vector machine classifiers for the binary attentional-state classification, 
utilizing combined spectral power and synchronization features, achieved 
75.53% within-participant and 71.57% cross-participant accuracy, outperforming 
single-feature models. These findings highlight EEG synchronization signatures 
of mind wandering and demonstrate their feasibility for decoding attentional 
states during the force control task. This work may provide a foundation for 
future exploration of haptic-based neurofeedback systems, which could 
potentially complement existing visual and auditory modalities in applications 
such as neurocognitive rehabilitation or skilled motor training.
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1 Introduction

Sustained attention, the cognitive ability to maintain focus on a 
given task over extended periods, is essential for our everyday lives. 
However, this ability is inherently limited. Attention often shifts from 
the ongoing task to spontaneous, task-unrelated thoughts—a 
ubiquitous phenomenon termed mind wandering (MW) in academic 
research (Smallwood and Schooler, 2015; Christoff et al., 2016). While 
MW may benefit creativity and problem-solving under certain 
conditions, its negative outcomes, such as impaired task performance, 
increased risk of accidents, and affective dysfunction, have attracted 
significant research attention (Killingsworth and Gilbert, 2010; 
Schooler et al., 2011). Consequently, developing reliable and objective 
methods for detecting MW has become a major research focus in 
recent decades (Fortenbaugh et al., 2018; Kam et al., 2022; Tang and 
Li, 2024). Investigating the neural mechanisms underlying MW and 
establishing objective detection methods hold promise for the 
diagnosis and intervention of attention-related neurological disorders, 
such as mild cognitive impairment (MCI) and attention deficit 
hyperactivity disorder (ADHD) (Zhao and Yuan, 2025; Wiebe 
et al., 2024).

The MW has primarily been studied through vigilance tasks 
within visual or auditory modalities, such as the continuous 
performance task (CPT), where participants respond to infrequent 
target stimuli (Esterman et al., 2013), and the sustained attention to 
response task (SART) which typically requires responding to frequent 
non-targets while withholding responses to rare targets (Eskandari 
Nasab et al., 2024). However, relatively little is known about MW 
during haptic or visuo-haptic tasks that involve continuous motor 
regulation, such as force control. Force control refers to the precise 
and continuous adjustment of muscle output or tool-applied forces to 
achieve task goals (Nakahara et al., 2002). This ability is critical in 
many real-world scenarios, such as surgical tool manipulation, 
robotic-assisted rehabilitation exercises, and sports requiring fine 
motor adjustments. Studying MW in these contexts is important 
because lapses in attention can directly impair task performance, 
leading to increased errors or reduced efficiency.

Although the ultimate goal of MW detection research is to 
develop objective detection methods for MW, thought probing 
remains essential due to its inherently subjective nature. A widely used 
approach involves inserting probe questions into the ongoing task 
randomly or at the end of each block (Cheyne et al., 2009; Stawarczyk 
et al., 2011; Seli et al., 2018). Upon encountering a probe, participants 
are asked to report the content of their thoughts or rate their 
attentional focus. By comparing measures within the few seconds 
preceding mind-wandering reports with those preceding on-task 
reports, researchers have linked behavioral indicators (e.g., errors and 
response time variability) (Esterman et al., 2013; Zheng et al., 2019; 
Peng et  al., 2021) and physiological signals (e.g., eye movements, 
pupillometry, and heart rate) (Smallwood et al., 2007, 2011; Wainstein 
et al., 2017) to self-reported MW.

Regarding neural correlates of attentional fluctuations, the 
electroencephalogram (EEG) has been widely used due to its high 
temporal resolution and applicability. EEG power-based metrics and 
event-related potential (ERP) components have been extensively 
studied as important parameters for characterizing MW (Kam et al., 
2022). Numerous studies have reported reduced amplitudes of ERP 
components (P1 and P3) prior to performance errors or MW reports 

(Braboszcz and Delorme, 2010; Kam et al., 2011; Liu et al., 2021), 
supporting the “perceptual decoupling” hypothesis (Schooler et al., 
2011; Smallwood, 2013). This theory posits that attention disengages 
from external sensory input during MW. Additionally, spectral 
features including delta, theta, alpha, and beta power have been 
extensively examined in relation to MW. For example, increased 
power in the alpha band has been linked to both vigilance decrement 
and the occurrence of MW during SART (Compton et al., 2019; Jin 
et al., 2019). Power-based indices derived from spectral bands (e.g., 
beta-to-alpha ratio and inverse alpha power) have also shown 
significant correlations with behavioral markers of attentional lapses 
(Coelli et al., 2018), such as variations in mean reaction time.

While these spectral and ERP features provide valuable markers 
of MW, they largely capture localized neural activity. To further 
understand how distributed neural systems coordinate during 
attentional fluctuations, a growing number of studies have explored 
neural synchronization-based measures, including cross-frequency 
coupling (e.g., alpha-theta phase synchrony and harmonicity) and 
functional connectivity between brain regions. Functional 
connectivity (FC) measures the synchrony between signals recorded 
from different electrodes or regions (e.g., via phase-locking value, 
coherence), reflecting functional integration within networks (Aydore 
et al., 2013). Numerous studies using functional Magnetic Resonance 
Imaging (fMRI) have shown that the Default Mode Network (DMN) 
exhibits increased activation and altered connectivity patterns with 
other networks (e.g., the dorsal attention network) during the MW 
state (Jang et al., 2011; Mittner et al., 2014; Christoff et al., 2016; Kucyi 
et al., 2016). A pioneering study combining DMN activation with 
pupil diameter achieved promising MW classification accuracy (~80% 
within-participant, ~65% across-participant) (Groot et  al., 2021). 
Cross-frequency coupling (CFC), which examines synchronization 
between neural oscillations of different frequencies, is believed to 
underlie complex information processing and communication. For 
example, increased alpha-theta phase synchrony has been associated 
with the occurrence of MW during breath-focused meditation 
(Rodriguez-Larios and Alaerts, 2019, 2021; Rodriguez-Larios et al., 
2020). Despite these advances, the relationship between EEG-derived 
synchronization features (both FC and CFC) and attentional 
fluctuations remains less well-established and understood. Few studies 
have explicitly examined the efficacy of EEG synchronization features 
in classifying attentional states, and most have focused on visual 
paradigms (Melinscak et al., 2016; Compton et al., 2019; Groot et al., 
2021). The potential of these synchronization features for MW 
detection is largely unexplored.

Given these limitations, an important next step is to evaluate 
whether such synchronization features can enhance MW detection 
when combined with machine learning approaches. Recently, machine 
learning techniques have increasingly been applied to classify 
attentional states. The majority of these studies have extracted features 
from EEG recordings during visual tasks (e.g., SART, visual search 
tasks) and used spectral power or ERP components as classifier inputs, 
typically reporting classification accuracies of 60–70% (Jin et al., 2019, 
2020; Dong et al., 2021). Beyond basic features, researchers have also 
explored complexity-based metrics, such as sample entropy and 
permutation entropy. These metrics, which capture the irregularity or 
predictability of EEG signals, have yielded promising classification 
performance (e.g., AUC up to 0.71) in SART paradigms (Chen et al., 
2022). A recent study comparing complexity features with traditional 
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band power reported comparable performance (AUC = 0.64) in video 
learning tasks, with slight improvements from combining features 
(AUC = 0.66) (Tang and Li, 2024). Notably, features capturing neural 
synchronization, such as functional connectivity and alpha-theta 
phase synchrony, represent a promising yet underexplored avenue for 
improving MW detection accuracy.

Collectively, despite growing interest and recent advances in 
understanding attentional fluctuations and detecting MW, several 
critical issues need to be considered, particularly regarding task 
modalities and feature types. First, the majority of MW research 
has relied on visual or auditory tasks. In contrast, MW detection 
in haptic or visuo-haptic tasks—such as force control—remains 
significantly understudied. The neurocognitive basis of haptic 
perception involves complex feedback loops from hand tactile 
receptors to the primary somatosensory cortex (S1) and broader 
attentional networks (Lederman and Klatzky, 2009; Grunwald, 
2008). The hand’s acute perception and force control abilities make 
it particularly well-suited for investigating attentional fluctuations. 
Although preliminary work by Peng et al. (2021) using a discrete 
force control task identified behavioral markers (e.g., reaction time 
variability) and basic EEG features (e.g., increased frontal-central 
alpha power) potentially related to MW, a systematic investigation 
into the neural signatures of attentional states—particularly 
regarding synchronization dynamics during the force control 
process —remains lacking. Second, the very few EEG studies 
examining attentional states during force control tasks have 
confined analysis to fundamental, well-established metrics such as 
spectral power density and ERPs (Zhang et  al., 2023; Delisle-
Rodriguez et  al., 2023). There exists a critical deficiency in 
examining features from the perspective of neural synchronization, 
including FC, CFC, as well as the synchronization between neural 
activities and behavioral data, within the haptic modality. These 
synchronization metrics may reveal how distributed brain 
networks coordinate and how brain activity interacts with motor 
output during attentional lapses in force control. They may serve 
as novel and more sensitive biomarkers compared to isolated 
power or ERP components. Finally, as a consequence of these gaps, 
the utility and effectiveness of EEG synchronization features for 
decoding attentional states during force control tasks remain 
largely unexplored. Whether robust synchronization signatures 
can be extracted from complex sensorimotor tasks, and whether 
these features can reliably distinguish MW from on-task states, 
remain unclear.

Therefore, this study aims to address these issues by investigating 
EEG synchronization signatures within a force control paradigm. 
We propose a novel continuous visuo-haptic force control task in 
which participants precisely modulate their force to track a 
dynamically changing target force based on visual cues. During the 
task, participants reported their attentional states when thought 
probes appeared. Simultaneously, EEG and high-frequency force data 
were recorded. The objectives of this study are twofold:

	(1)	 To examine EEG synchronization metrics—specifically cross-
frequency coupling, functional connectivity, and neural-
behavioral synchronization—sensitive to attentional 
fluctuations (on-task versus MW states) during force control.

	(2)	 To evaluate the feasibility and classification performance of 
these synchronization features, both individually and in 

combination with other metrics, for classifying on-task and 
MW states using machine learning.

We hypothesize that synchronization metrics, capturing the 
interactive dynamics within the brain and between the brain and 
behavior, will provide unique and complementary information for 
decoding attentional states during force control. By identifying EEG 
synchronization markers of MW in this underexplored haptic context 
and evaluating their feasibility for decoding attentional states, this 
study aims to deepen our understanding of the neural basis of 
attention and lay the groundwork for future research into developing 
haptic-based neurofeedback attention training systems. Such systems 
could potentially offer a valuable complement to existing visual and 
auditory approaches for neurocognitive rehabilitation or skilled 
activities training.

2 Methods

2.1 Participants

Fourteen healthy male adults (mean age = 27.4 ± 3.5 years) 
participated in the experiment. Informed written consent was 
obtained from all participants. One participant was excluded for not 
completing the entire experiment, resulting in a final sample of 13 
participants. All participants reported normal or corrected-to-normal 
vision and were right-handed. The study was approved by the 
Biological and Medical Ethics Committee of Beihang University and 
was conducted in accordance with the World Medical Association 
Declaration of Helsinki.

2.2 Task and experimental procedure

Considering that humans are more susceptible to attentional 
lapses during prolonged continuous tasks than discrete ones (Rahman 
et al., 2021; Reteig et al., 2019), we designed a novel continuous force 
control task to induce mind wandering, instead of using the discrete 
paradigms from prior studies (Peng et al., 2021; Zhang et al., 2023). 
Herein, participants held a pen-shaped handle to exert force while 
tracking a periodically varying target force. As shown in Figure 1a, 
participants were seated in front of a computer screen and held the 
handle with their dominant hand. They maintained a naturalistic 
pen-holding posture, mimicking handwriting. The handle was an end 
effector of a haptic device (Touch, 3D Systems Inc., United States). The 
haptic device allowed six degrees of freedom in movement and three 
degrees of freedom in force feedback within a 26.5 × 24.1 × 8.9 cm 
workspace. A virtual 3D scene was constructed, displaying a gray 
circular object, an annular object, and a pen-shaped object. The 
circular and annular objects remained fixed, while the pen-shaped 
virtual object was attached to the real-world handle. As participants 
moved the handle in the real space, the virtual pen synchronously 
performed the same movement on the screen.

During the task, a black dot moved clockwise around the gray 
annular region at a constant speed of 20°/s. The diameter of the black 
dot (Do, in millimeters, mm) scaled proportionally to the contact force 
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(Fo, in newtons, N) exerted by the user’s virtual pen on the circular 
palette, as shown in Equation 1:

	 = ⋅ +o o 0.5D k F 	 (1)

where k denotes a scaling constant (k = 3 mm/N). This value was 
empirically determined to ensure that the dot’s size varied within a 
perceptually noticeable but not overly intrusive range (approximately 
2.0–10.0 mm) across the allowable force range of 0.5–3.17 N. A linear 
mapping was adopted due to its intuitiveness, allowing participants to 
quickly learn the relationship between applied force and visual 
feedback. This helped reduce the learning burden and enabled 
participants to focus on force output regulation. The width of the gray 
annular region varied nonlinearly over each 60-degree cycle. 
Participants were required to adjust their exerted force based on the 
dot’s position to align its trajectory with the target zone. The circular 
palette was established using sphere tree models with Solidworks 
(Dassault Systems Inc., United States) and 3D Studio Max (Autodesk 

Inc., United States). Real-time force feedback was implemented using 
a validated haptic rendering algorithm (Wang et al., 2013). Exerted 
forces were recorded at a 1,000 Hz sampling rate using the haptic 
device and custom scripts developed with Microsoft Foundation 
Classes (MFC).

The experimental procedure is illustrated in Figure 1b. Each 
participant completed three sessions of the force control task 
following a practice session. Each session lasted approximately 
10 min, with a short break (1–2 min) to eliminate muscle fatigue. 
Participants were instructed to focus on the moving dot and 
modulate their exerted force to match the target zone’s width. At 
random intervals (40–50 s), a probe question appeared on the 
screen asking ‘What are you thinking about? Task or Something 
else?’ Participants rated their attentional states on a 0–100 scale, 
where 0 indicated being completely focused on the task and 100 
indicated complete distraction (Kucyi et al., 2016). EEG and force 
data from the 3-s time window preceding each thought probe were 
extracted as individual trials for subsequent analyses.

FIGURE 1

Task design and experimental procedure. (a) Continuous force control task. Participants were instructed to adjust the width of a clockwise moving 
trajectory by modulating their output force, aiming to match the gray target zone as closely as possible. (b) Experimental procedure. Force data and 
EEG data were recorded during the entire experiment. With an interval of 40–50s, a thought probe would appear on the screen, requiring participants 
to report the degree to which their thoughts wandering from the task. The 3-s data preceding each thought probe was extracted as a single trial.
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2.3 Behavioral data analysis

During the continuous force control task, the exerted force data 
were recorded at a sampling rate of 1,000 Hz. Because the target force 
(Ftarget), corresponding to the width of the target zone, varied 
nonlinearly over a 3-s cycle (i.e., 60 degrees), the target force pattern 
in the 3 s preceding each probe was consistent across trials. As shown 
in Figure 2a, we calculated the force error within the 3-s period to 
assess the performance of force control for each trial. The force error 
(BENL) represented the relative difference between the output force 
(Foutput) and the target force (Ftarget). It was computed at each sampling 
point and analyzed using sliding windows (1-s length, 90% overlap) 
to quantify the variation of force errors within each trial. BENL was 
computed as Equation 2:

	

( )∑ −
=

∑

2
target output

NL 2
target

F F
BE

F 	
(2)

where the value of BENL ranges from 0 to 1, with smaller values 
indicating better task performance. We also calculated the sum of 
BENL within each trial, termed BENL-trial, to assess the overall 
behavioral performance. Figure  2b shows examples of BENL-trial 
values for two trials, where a smaller value indicates better force 
control performance.

Additionally, based on the participants’ self-reported ratings, trials 
were sorted by quartiles for each subject. Specifically, trials were 
divided into four groups based on the quartiles of the rating scores. 
Trials with ratings in the lowest quartile (≤25%) were classified as 

task-focused (onT), and those in the highest quartile (≥75%) as mind-
wandering (MW).

2.4 EEG data acquisition and analysis

2.4.1 EEG recording and pre-processing
EEG data were recorded from 64 Ag/AgCl electrodes positioned 

according to the international 10–20 system, using an NSW364 
wireless amplifier (Neuracle Technology Co., Ltd., China) at a 
sampling rate of 1,000 Hz. The impedance of the electrodes was 
maintained below 5 kΩ using NaCl-based conductive gel (Liu et al., 
2019). The reference electrode was placed at the CPz. EEG recordings 
were synchronized to the force control task, and event times (thought 
probe onsets) were automatically documented with markers in the 
continuous EEG data files.

Raw EEG data were preprocessed offline using EEGLAB v13.6.5b 
(Delorme and Makeig, 2004), an open-source toolbox running in 
MATLAB R2021a (MathWorks Inc., United States). The EEG data were 
first bandpass filtered between 2 and 45 Hz using a zero-phase FIR filter 
with a Hamming window (function pop_eegfiltnew). The filtered data 
were re-referenced using the REST toolbox (Dong et al., 2017). For each 
participant, data segments within each trial were extracted and 
concatenated for further analysis. Subsequently, artifact rejection was 
performed on the concatenated EEG data in three steps. First, bad 
channels were identified and removed using the pop_rejchan function in 
EEGLAB based on probability, resulting in the removal of an average of 
1.0 (SD = 1.15) channels per participant. Second, the remaining data 
were decomposed using logistic infomax Independent Component 
Analysis (ICA; function pop_runica), and artifact components were 
identified and rejected using the MARA plugin (Winkler et al., 2011, 
2014). Third, the signals were back-projected to the sensor level, and any 
rejected bad channels were interpolated using the pop_ interp function. 
Finally, the cleaned EEG data for each participant were categorized into 
two separate sets: on-task (onT) or mind-wandering (MW).

It should be noted that after the ICA-based artifact removal, EEG 
data from nine participants were included in the subsequent analysis; 
data from the other four participants were excluded due to extensive 
artifacts exceeding ±150 μV (Zhang et al., 2019; Peng et al., 2021).

2.4.2 Feature extraction

2.4.2.1 Spectral power
At each electrode, a short-time Fourier transform was performed on 

the preprocessed EEG data to estimate the power spectrum for each trial. 
The sliding window length was set to 1 s with 90% overlap between 
successive segments. Subsequently, EEG power spectra were extracted 
into five frequency bands: delta (1–4 Hz), theta (4–8 Hz), alpha 
(8–13 Hz), beta (13–30 Hz) and gamma (30–45 Hz), and 
log-transformed. For each condition, the spectral powers of all trials were 
averaged to obtain the mean band power for each frequency band at each 
electrode. The group-level average power for each frequency band was 
calculated by averaging the band power across all participants.

2.4.2.2 Cross-frequency coupling: alpha-theta ratios
Given reports of increased alpha-theta harmonicity and phase 

synchrony during MW, this study assessed alpha-theta cross-
frequency coupling during the force control task. Following 

FIGURE 2

Behavioral performance during the force control task. (a) Example 
data of the target force, output force, and the force error BENL within 
a trial. (b) Examples of the overall force error BENL-trial during two 
trials. The left panel with a lower value of BENL-trial (0.06) shows 
relatively good performance and the right panel with a higher value 
of BENL-trial (0.29) shows relatively poor performance.
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previous studies (Rodriguez-Larios and Alaerts, 2021), we used the 
findpeaks approach to compute the cross-frequency ratios between 
the theta and alpha bands. Specifically, after applying short-time 
Fourier transformations (sliding window = 100 ms) to the 
preprocessed EEG data to compute the time-varying spectrum 
between 4 and 13 Hz, we applied the findpeaks function to detect 
transient peak frequencies in the theta (4–8 Hz) and alpha 
(8–13 Hz) bands separately. When more than one peak was 
detected, the frequency with the highest amplitude was selected as 
the peak frequency. The algorithm detected at least one peak in 
99.52% (SD = 0.20%) of alpha-band time points and 94.11% 
(SD = 1.19%) of theta-band time points. The identified transient 
peak frequencies in the alpha and theta bands were used to 
compute their numerical ratio per time point. To analyze the 
distribution of these ratios, we binned them in steps of 0.1 across 
a range of 1.1–3.3 and calculated the proportion of time points 
falling into each bin. Proportions of cross-frequency ratios were 
computed per epoch and averaged within the same condition (onT 
or MW) for each participant and electrode. This yielded a 
normalized distribution across ratio bins for each condition, 
participant, and electrode, which we  refer to as the probability 
density of alpha-theta ratios. In this framework, a higher 
probability density at a specific ratio indicates that the alpha-theta 
system was more likely to align around that harmonic relationship 
during the task. Neurophysiologically, this suggests that certain 
stable harmonic states are more prevalent, which may reflect a 
mechanism that facilitates efficient cross-frequency 
synchronization necessary for sustained attention (Rodriguez-
Larios and Alaerts, 2019).

2.4.2.3 Functional connectivity: within-band coupling 
between electrode pairs

Phase Locking Value (PLV) quantifies phase synchronization 
between electrode pairs by measuring the absolute value of the 
mean phase difference between two signals as a complex unit-
length vector (Rosenberg et al., 1989; Aydore et al., 2013). PLV is 
a measure of pairwise functional connectivity commonly used to 
quantify the phase coupling between two nonlinear signals. It has 
a range from 0 to 1, where a value of 0 indicates no phase coupling 
and a value of 1 indicates complete phase locking. In this study, 
we computed sensor-level PLV between all electrode pairs using 
the ft_connectivityanalysis function from the FieldTrip toolbox 
(Oostenveld et  al., 2011), generating five 64 × 64 connectivity 
matrices (one matric per band). To assess their significance, 
we  employed the Network-Based Statistic toolbox to perform 
permutation testing on the connectivity matrices (Zalesky et al., 
2010). This approach allows us to control for family-wise error 
rates while identifying significant network components. We also 
extracted community connectivity within and across distinct brain 
regions and performed repeated one-way analysis of variance 
(ANOVA) to assess the significance of connectivity patterns among 
predefined brain communities.

2.4.2.4 Neural-behavioral synchronization: mutual 
information

Mutual information (MI) between EEG power amplitude and 
force error was computed to quantify the neural-behavioral 
synchronization. MI (X, Y) indicates both linear and nonlinear 

statistical dependencies between two variables X and Y, which can 
be computed as Equation 3:

	 ( ) ( ) ( ) ( )= + −, ,MI X Y H X H Y H X Y 	 (3)

where H(X) and H(Y) denote the priori uncertainty of X and Y, 
respectively. H(X, Y) denotes the posteriori uncertainty on X when the 
measurement of Y is given. The value of MI(X, Y) answers the 
question: “Given a measure of Y, how many bits of information about 
X can be predicted on average?” (John et al., 2018; Liang et al., 2022). 
In this study, we computed MI between the within-trial force error 
(BENL) and the corresponding EEG power amplitude (obtained using 
the short-time Fourier transform) for each electrode. For each subject, 
the MI values formed a multidimensional array with dimensions: 
frequency point × electrode × trial.

2.5 Features selection

All the behavioral and EEG features were first compared between 
conditions. To identify significant effects, we employed appropriate 
statistical tests (t-tests or cluster-based permutation testing), and only 
these significant features were retained for subsequent classification. 
Specifically, for the behavioral force errors, data were first averaged 
across trials for each condition within subjects, and then paired-sample 
t-tests were performed to evaluate condition-related differences. For 
EEG features (i.e., spectral power, alpha-theta ratios, PLV, and MI), 
cluster-based permutation testing was adopted to evaluate condition-
related differences. This nonparametric statistical approach controls the 
family-wise type I error rate that arises from multiple comparisons 
across electrodes and frequency bins by employing Monte Carlo 
randomization. Briefly, the data were shuffled (1,000 permutations) to 
estimate a null distribution of effect sizes based on cluster-level 
statistics—specifically, the sum of t-values with the same sign across 
adjacent electrodes, frequencies, or ratios. The cluster-corrected p-value 
was defined as the proportion of permuted datasets in which the cluster-
level statistic exceeded that of the original data (cluster-defining 
threshold: p < 0.05). Statistically significant features and electrodes were 
then selected as the final feature subset and used as inputs for the 
classifier. We  chose cluster-based permutation testing because this 
nonparametric method can effectively control false positives under 
multiple comparison corrections while accounting for the spatial and 
spectral contiguity of EEG data (Maris and Oostenveld, 2007). This 
approach yields interpretable clusters of features rather than isolated 
points, which is particularly appropriate for EEG and connectivity 
analyses (Pernet et al., 2015).

2.6 Classifier training and validation

Using the identified features as inputs and the attentional state 
labels (onT or MW) as outputs, we trained the classifiers using the 
support vector machine (SVM) algorithm to decode attentional states 
for each trial. Although previous studies have employed various 
machine learning algorithms, such as decision trees (Tasika et al., 
2020), random forests (Chen et  al., 2022), and artificial neural 
networks (Hosseini and Guo, 2019), this study applied SVM due to its 
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suitability for small-sized datasets with low-dimensional data. 
Moreover, most prior studies on attention decoding have reported 
superior classification performance using SVM (Jin et al., 2019, 2020; 
Dong et al., 2021; Jothiral et al., 2025). A radial basis function (RBF) 
was selected as the kernel function, and the default parameter settings 
in LIBSVM were applied (i.e., penalty parameter C = 1 and kernel 
parameter γ = 1/feature dimension). To ensure comparability across 
features, all input features were z-score standardized within each 
training fold before model fitting, and the same transformation was 
applied to the corresponding test fold.

Two cross-validation strategies were employed to evaluate the 
trained models:

	(1)	 Leave-one-subject-out (LOSO) cross-validation for cross-
participant evaluation: in each iteration, one participant’s data 
were used as the test dataset, while data from the remaining 
N-1 participants formed the training dataset. This process was 
repeated N times, where N denotes the number of participants 
included in the analysis (N =  9). The mean classification 
performance was then averaged across all iterations.

	(2)	 Five-fold cross-validation for within-participant evaluation: for 
each participant, trials were randomly divided into five subsets 
while preserving class balance (i.e., each fold contained equal 
numbers of onT and MW trials). In each round, one subset 
served as the test dataset, while the remaining four subsets 
were used for training. The average classification performance 
was computed across all folds and all participants.

Finally, we computed five commonly used metrics—accuracy, 
recall, precision, F1-score, and the area under the receiver operating 
characteristic curve (AUC)—to comprehensively evaluate the 
effectiveness of the selected features in classifying attentional states. 
The classification performance for various feature combinations was 
also assessed using these metrics.

3 Results

3.1 Self-reported ratings and behavioral 
performance

To assess whether the off-task ratings reported by participants 
increased over time during the force control task, we performed a 
linear regression analysis on the z-scored ratings across trials for each 
participant. Figure 3a illustrates the rating scores of a representative 
participant across all trials (blue dots), along with the corresponding 
regression-fitted curve (red line). Figure  3b presents the group-
averaged slope values of the regression-fitted curves. A one-tailed 
one-sample t-test confirmed that the slope was significantly greater 
than zero [t(8) = 2.53, p = 0.018], indicating a significant upward 
trend in self-reported off-task ratings over time. For the trial-level 
force error (i.e., BENL-trial), we performed a similar linear regression on 
the z-scored values across trials for each participant. Figure 3c shows 
the BENL-trial values of a representative participant with the 
corresponding regression-fitted curve, and Figure 3d summarizes the 
slope values for all participants. A one-tailed one-sample t-test on 
these slope values revealed a significant increasing trend in force error 
over trials (t(8) = 3.16, p = 0.007). The z-scored MW ratings and 

BENL-trial data for all participants are provided in 
Supplementary Figures 1, 2, respectively.

During the experiment, seven participants completed 36 trials and 
the other two participants completed 48 trials. As shown in Figure 3e, 
trials were classified based on rating quartiles: the trials in the lowest 
quartile (≤25%) were labeled as onT condition, and those in the 
highest quartile (≥75%) as MW condition. Consequently, two 
participants contributed 12 trials per condition, while the remaining 
seven participants contributed 9 trials per condition. Group-averaged 
force errors (BENL-trial) for the two conditions are presented in Figure 3f. 
Paired-sample t-tests revealed significantly higher force errors during 
the MW condition (0.24 ± 0.07) compared to the onT condition 
[0.17 ± 0.03; t(8) = 3.44, p = 0.004].

3.2 Condition-specific differences in 
spectral power

For the trials classified as onT and MW, power spectra were 
estimated at each electrode for every frequency point between 2 and 
45 Hz in a step of 0.1 Hz. Paired-sample t-tests were conducted to 
assess the power differences between conditions, with t-values (onT 
minus MW) visualized as spatial-frequency topographies (Figure 4a). 
Cluster-based permutation tests were then applied, and t-values that 
survived the significance threshold (p-cluster <0.025) are shown in the 
lower panel of Figure 4a. The analysis revealed two significant clusters 
in the low alpha band (8–10 Hz). Cluster 1 was primarily distributed 
over the frontal region, encompassing electrodes FPz, Fz, FCz, FP1, 
AF7, AF3, F1, F3, F5, F7, FC1, FC3, FC5, FT7, FP2, AF8, AF4, F2, F4, 
F6, F8, FC2, FC4, and FC6. Cluster 2 was mainly distributed over the 
posterior region, involving electrodes POz, Oz, Pz, TP7, P7, P5, P3, 
PO7, PO5, PO3, TP8, CP6, P4, P6, P8, PO4, PO6, and PO8. 
Additionally, cluster-averaged power within the 8–10 Hz band was 
compared between the two conditions. As shown in Figure 4b, the 
cluster-averaged power during the MW condition was significantly 
higher than during the onT condition in both the frontal region 
(MW = 0.142 ± 0.079, onT = 0.068 ± 0.029; p < 0.001) and the 
posterior region (MW = 0.170 ± 0.089, onT = 0.074 ± 0.039; 
p < 0.001).

To further localize the cortical sources associated with attentional 
fluctuations during the force control task, we  conducted source 
localization analysis using a beamformer algorithm implemented in 
FieldTrip (Oostenveld et  al., 2011). For each participant, source 
activity estimates were obtained for both the onT and MW conditions 
within the 8–10 Hz band. Paired-sample t-tests were used to assess 
differences in neural activity between the two conditions, followed by 
cluster-based permutation testing (p-cluster <0.025). As shown in 
Figure 5, the average power in the left middle occipital gyrus (MNI: 
[−30–70 12]) was significantly higher during the MW condition 
(3.51 ± 0.39 dB) than during the onT condition [3.36 ± 0.40 dB; 
t(8) = 4.99, p = 0.0084].

3.3 Condition-specific differences in 
alpha-theta ratios

Synchronization between neural oscillations at different frequencies 
has been proposed as a core mechanism for the coordination and 
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integration of neural systems. Mathematically, when two oscillators with 
different frequencies form a harmonic relationship (e.g., f1/f2 = 2), as 
opposed to a nonharmonic relationship (e.g., f1/f2 = 1.6), the harmonic 
arrangement allows for more frequent excitatory phase meetings, 
thereby facilitating cross-frequency synchronization. In line with this 
principle, recent theoretical frameworks suggest that shifts in oscillatory 
peak frequencies constitute a principal mechanism for implementing 
cross-frequency coupling and decoupling in the brain (Rodriguez-
Larios and Alaerts, 2019, 2021; Rodriguez-Larios et al., 2020). Following 
this framework, we quantified cross-frequency coupling by analyzing 
peak frequency ratios between different bands and compared them 
between onT and MW conditions during the force control task. Given 
the established role of alpha-theta coupling in tasks involving attention 
and executive control, we specifically examined peak frequency ratios 
between the alpha and theta bands. Figure  6a illustrates trial-wise 
variability in alpha and theta peak frequencies, as well as their 

corresponding numerical ratios over a 3-s period for a representative 
participant and electrode. Figure 6b compares the spectral power in two 
representative trials: one showing a harmonic alpha-theta ratio (2.04) 
and the other a non-harmonic ratio (1.62). Figure  6c shows the 
distribution of alpha and theta peak frequencies across all trials for the 
same participant and electrode.

Differences between onT and MW conditions were further 
assessed using paired-sample t-tests for each electrode and cross-
frequency ratio (ranging from 1.1 to 3.3 in a step of 0.1). Cluster-based 
permutation testing was applied to identify significant clusters based 
on adjacency in electrode space and cross-frequency ratio, while 
controlling for multiple comparisons. As described in Section 2.4.2.2, 
the distribution of alpha-theta ratios was represented by its probability 
density, where higher density at a given ratio reflects a greater 
likelihood of oscillatory alignment around that harmonic relationship. 
Figure 7a shows the probability density of each ratio averaged across 

FIGURE 3

Behavioral measures of attentional states. (a) Z-scored off-task ratings (blue dots) and linear regression fit (red line) for a single representative 
participant. (b) Group-level slope coefficients derived from the linear regression of z-scored off-task ratings. (c) Z-scored trial-level force error 
(BENL-trial; blue dots) and linear regression fit (red line) for the representative participant. (d) Group-level slope coefficients for z-scored BENL-trial. (e) Trial 
classification based on rating quartiles (onT: green; MW: yellow). (f) Comparison of force error between onT and MW conditions.
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FIGURE 4

Power differences between onT and MW conditions. (a) The top panel presents the t-value maps from paired-sample t-tests (onT minus MW) for each 
frequency point and each electrode. The bottom panel represents two significant clusters (p-cluster <0.025) at 8-10 Hz. (b) The left panels present 
scalp topographies of 8-10 Hz t-values. Electrodes that survived from the permutation test were marked with black stars. The right panels show 
cluster-averaged power within 8–10 Hz under onT and MW conditions. **p < 0.001.

FIGURE 5

Source localization results. Beamformer analysis showing increased 8–10 Hz power during MW relative to onT in the left middle occipital gyrus (MNI 
[−30–70 12]).
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FIGURE 6

Peak frequency detection of alpha and theta bands and ratio calculation. (a) Temporal variability of peak frequencies and ratios for an exemplary 
participant and electrode. (b) Spectral power in two exemplary trials: alpha and theta peak frequencies formed a harmonic (ratio = 2.04) versus a non-
harmonic (ratio = 1.62) relationship. (c) Distribution of peak frequencies across trials.

FIGURE 7

Condition-specific differences in alpha-theta ratios. (a) Probability density of each alpha-theta ratio (from 1.1 to 3.3 with a step of 0.1) averaged across 
electrodes and subjects. Error bars represent standard deviation across subjects. (b) t-value map of condition differences (onT minus MW). Positive 
t-values shown in cold colors indicate higher probability density under onT condition compared to MW condition. (c) Topographical heat map of 
t-values averaged over 2.6–3.0 ratios. Two electrodes (PO3 and PO4) showing significance during the cluster-based permutation statistics are marked 
by yellow stars. (d) Cluster-averaged probability density under onT and MW conditions.
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all electrodes for the onT and MW conditions. Figure 7b visualizes the 
condition differences in probability density by plotting t-values for 
each ratio and electrode. Positive t-values (shown in cold colors) 
indicate higher probability density during the onT condition 
compared to the MW condition. A negative cluster (i.e., MW > onT) 
was observed at posterior electrodes within the lower ratio range 
(1.2–1.7), although it did not reach significance in the permutation 
test. However, a significant positive cluster was identified within the 
2.6–3.0 ratio range, indicating a significantly higher probability 
density during the onT condition compared to the MW condition 
(p-cluster < 0.05). Figure 7c presents the topographical heat map of 
t-values averaged over the 2.6–3.0 ratio range, with PO3 and PO4 
marked as significant electrodes from the permutation test. A repeated 
one-way ANOVA on the identified cluster confirmed that the cluster-
averaged probability density within the 2.6–3.0 ratio range was 
significantly higher during the onT condition (0.299 ± 0.066) than 
during the MW condition [0.226 ± 0.065; F(1,92) = 8.21, p = 0.0005; 
Figure 7d].

3.4 Condition-specific differences in 
functional connectivity

Given the significant condition-related differences observed in the 
8–10 Hz band (Section 3.2), we analyzed PLVs between all electrode 
pairs to investigate functional connectivity differences within this 
frequency range. Paired-sample t-tests with permutation-based 
correction revealed no significant differences for the onT > MW 
comparison, but significantly higher connectivity during MW 
compared to onT at specific connections. The statistically significant 
PLV values and their corresponding electrode pairs are shown in 
Figure 8a.

To investigate condition-related connectivity differences from a 
network-level perspective, electrodes were grouped into four brain 
regions (Figure 8b): frontal lobe (F), parieto-occipital lobe (PO), left 
central motor area (LC), and right central motor area (RC). 
Community connectivity (CC) was computed by averaging PLVs 
within or between these defined regions. A repeated-measures 

one-way ANOVA revealed significantly higher intra-region CC within 
the LC during the MW condition compared to the onT condition 
[F(1,100) = 19.76, p < 0.001]. Inter-region CC between PO-RC 
[F(1,100) = 9.36, p = 0.003], F-LC [F(1,100) = 6.84, p = 0.010], and LC-RC 
[F(1,100) = 6.85, p = 0.010] was also significantly higher during the MW 
condition than during the onT condition. Descriptive statistics and 
corresponding significance values are summarized in Table 1.

3.5 Condition-specific differences in 
neural-behavioral synchronization

Mutual information (MI) between the within-trial force error 
(BENL) and EEG power amplitude was analyzed to assess neural-
behavioral synchronization. Figure 9a presents paired-sample t-test 
values for each electrode and frequency point (2–45 Hz in 0.1 Hz 
steps), where positive t-values (shown in cold colors) indicate higher 
MI during the onT condition compared to the MW condition. Cluster-
based permutation testing identified a significant negative cluster 
within the 7.2–8.8 Hz range (p-cluster < 0.05), indicating significantly 
stronger neural-behavioral synchronization during the onT condition 
compared to the MW condition. This negative cluster was located in 
the anterior region, including electrodes F1, F3, F5, F2, F4, and F6. 
Figure 9b shows the topographical t-value map averaged across these 
six electrodes within the 7.2–8.8 Hz range. A repeated-measures 
one-way ANOVA on the identified cluster further confirmed 
significantly higher MI during the onT condition (0.650 ± 0.085) 
compared to the MW condition [0.530 ± 0.054; F(1,92) = 10.69, 
p = 0.0015; Figure 9c].

3.6 Attentional states classification results

An SVM-RBF model was trained to classify binary attentional 
states and evaluated using two cross-validation strategies (i.e., 
LOSO and 5-fold cross-validation). Each feature that passed the 
aforementioned statistical tests was evaluated individually in 
separate classification models. Table 2 summarizes the classification 

FIGURE 8

Functional connectivity differences between onT and MW conditions. (a) The left panel illustrates the differences in PLV between the onT and MW 
conditions by plotting paired-sample t-test values. The right panel highlights the connections showing significant increases during MW compared to 
onT. (b) Four electrode categories used for the community connection analysis: F (frontal lobe), PO (parieto-occipital lobe), LC (left central motor area), 
and RC (right central motor area).
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FIGURE 9

Neural–behavioral synchronization differences between onT and MW conditions. (a) The top panel displays the paired-sample t-test values per 
electrode and frequency point (2–45 Hz in 0.1 Hz step). The bottom panel represents the cluster that survived from the cluster-based permutation test 
(p-value of cluster <0.05). (b) Scalp topographical map of t-values averaged within 7.2–8.8 Hz, with electrodes that survived the cluster-based 
permutation test marked by black stars. (c) Cluster-averaged MI within 7.2–8.8 Hz under onT and MW conditions.

performance metrics for each individual feature under both 
validation strategies. The chance-level accuracy is 50% because the 
dataset was balanced using the quartile-based labeling approach. 
Here, MW was defined as the positive class. The single-feature 
models showed generally comparable classification performance 
across both validation strategies. Among the four features, spectral 

power yielded the highest accuracy, precision, F1-score, and 
AUC. Considering comparability with existing literature, this study 
primarily focuses on the accuracy and AUC metrics. For the cross-
participant classification (i.e., LOSO strategy), the power feature 
achieved a mean accuracy of 66.99 ± 12.34% and a mean AUC of 
76.37 ± 19.26%. Similarly, in the within-participant classification 

TABLE 1  Descriptive and statistics results of community connection analysis.

Brain regions CC-onT
(±SD)

CC-MW
(±SD)

F-values p-values

F 0.681 ± 0.035 0.675 ± 0.083 0.015 0.904

LC 0.617 ± 0.053 0.668 ± 0.077 19.761 2.28e-5***

RC 0.606 ± 0.055 0.615 ± 0.107 0.120 0.729

PO 0.656 ± 0.052 0.643 ± 0.063 2.817 0.096

F-LC 0.537 ± 0.035 0.566 ± 0.087 6.843 0.010*

F-RC 0.542 ± 0.035 0.559 ± 0.087 1.928 0.168

F-PO 0.605 ± 0.037 0.610 ± 0.063 0.138 0.711

LC-RC 0.541 ± 0.051 0.570 ± 0.086 6.848 0.010*

LC-PO 0.520 ± 0.031 0.536 ± 0.075 0.858 0.357

RC-PO 0.524 ± 0.029 0.565 ± 0.073 9.362 0.003**

*p < 0.05, **p < 0.01, ***p < 0.001.
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(i.e., 5-fold strategy), the power feature yielded a mean accuracy of 
68.28 ± 7.14% and a mean AUC of 71.86 ± 7.05%. For the MI-only 
model, the recall for the MW class was high, whereas overall 
accuracy, precision, and AUC remained low. This indicates a bias 
toward predicting MW trials, leading to numerous false positives 
for onT trials, as illustrated by the confusion matrices shown in 
Supplementary Figure 3.

To evaluate whether synchronization features (i.e., ratio, PLV, and 
MI) could enhance the classification performance, we combined the 
spectral power feature with these synchronization features as inputs 
to the SVM-RBF models. Table 3 presents the classification results 
from all possible combinations of spectral power and synchronization-
related features. Overall, combining spectral power with any of the 

synchronization features improved classification accuracy and 
AUC. Under LOSO cross-validation, the combination of spectral 
power, ratio, and PLV achieved the highest accuracy (71.57 ± 10.79%) 
and AUC (79.87 ± 15.59%). In 5-fold cross-validation, the 
combination of all four features yielded the highest accuracy 
(75.53 ± 8.40%), while the combination of spectral power, ratio, and 
PLV achieved the highest AUC (76.58 ± 7.07%).

4 Discussion

This study aimed to advance the understanding of the 
neurophysiological signatures and detection of mind wandering 

TABLE 2  Classification performance using individual features under LOSO and 5-fold cross-validation (Mean ± SD).

Metrics Spectral power Ratio PLV MI

LOSO cross validation (%)

Accuracy 66.99 ± 12.34 54.07 ± 12.89 54.26 ± 14.32 50.42 ± 7.72

Recall 80.00 ± 27.44 33.52 ± 22.46 41.39 ± 30.47 94.54 ± 8.41

Precision 64.48 ± 11.18 57.41 ± 30.17 53.70 ± 28.29 50.25 ± 5.43

F1-score 68.75 ± 17.67 40.04 ± 20.83 43.27 ± 25.09 65.59 ± 5.43

AUC 76.37 ± 19.26 61.65 ± 14.90 51.83 ± 22.61 45.47 ± 14.93

5-fold cross validation (%)

Accuracy 68.28 ± 7.14 54.91 ± 9.99 51.32 ± 6.37 50.09 ± 6.03

Recall 81.35 ± 10.31 42.22 ± 25.03 40.97 ± 33.58 90.26 ± 9.74

Precision 65.27 ± 7.52 49.12 ± 28.21 50.02 ± 13.37 50.09 ± 3.32

F1-score 71.92 ± 5.64 44.88 ± 25.38 40.39 ± 21.46 64.32 ± 4.64

AUC 71.86 ± 7.05 61.43 ± 9.49 49.66 ± 11.17 47.78 ± 10.46

Bold values indicate the best performance in terms of Accuracy and AUC.

TABLE 3  Classification performance using feature combinations under LOSO and 5-fold cross-validation (mean ± SD).

Metrics Accuracy Recall Precision F1-score AUC

LOSO cross validation (%)

Power + MI 69.21 ± 14.55 66.39 ± 31.00 68.58 ± 30.96 64.55 ± 25.87 77.51 ± 11.34

Power + PLV 71.02 ± 15.24 67.78 ± 32.32 71.16 ± 32.37 66.21 ± 26.80 77.88 ± 15.79

Power + Ratio 70.46 ± 12.59 62.96 ± 33.85 74.45 ± 33.41 63.35 ± 26.01 79.29 ± 14.84

Power + Ratio +PLV 71.57 ± 10.79 67.04 ± 28.89 83.34 ± 18.39 67.70 ± 17.13 79.87 ± 15.59

Power + Ratio + MI 68.10 ± 13.36 67.04 ± 28.89 79.87 ± 221.71 65.67 ± 16.94 76.63 ± 16.32

Power + PLV + MI 67.82 ± 16.42 68.24 ± 30.39 66.85 ± 31.36 64.64 ± 25.85 77.44 ± 13.03

Power + Ratio + 

PLV + MI

70.37 ± 13.79 77.41 ± 24.82 76.20 ± 18.67 71.42 ± 12.79 78.34 ± 14.53

5-fold cross validation (%)

Power + MI 72.21 ± 12.74 71.44 ± 17.12 72.50 ± 12.36 71.60 ± 13.26 75.20 ± 7.05

Power + PLV 71.21 ± 12.16 71.44 ± 17.12 70.56 ± 9.94 70.79 ± 12.90 74.56 ± 8.24

Power + Ratio 73.43 ± 10.34 70.97 ± 11.06 75.29 ± 11.41 72.79 ± 9.81 76.42 ± 7.16

Power + Ratio + PLV 71.43 ± 8.31 75.20 ± 11.27 69.97 ± 7.46 72.31 ± 8.38 76.58 ± 7.07

Power + Ratio + MI 71.09 ± 7.19 73.83 ± 13.18 70.60 ± 6.76 71.55 ± 7.64 75.07 ± 6.26

Power + PLV + MI 71.97 ± 11.17 76.51 ± 14.24 69.88 ± 8.77 72.94 ± 11.03 74.39 ± 7.59

Power + Ratio + 

PLV + MI

75.53 ± 8.40 80.50 ± 5.43 70.87 ± 7.32 75.23 ± 5.62 76.12 ± 5.81

Bold values indicate the best performance in terms of Accuracy and AUC.
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(MW) by investigating EEG synchronization features within a novel 
visuo-haptic force control paradigm. Although MW has been 
extensively studied in visual and auditory domains, its neural 
correlates during sensorimotor engagement—particularly involving 
force modulation—remain largely unexplored. Moreover, despite the 
theoretical importance of neural synchronization in attention 
regulation, few studies have systematically assessed the efficacy of 
EEG-based functional connectivity (FC), cross-frequency coupling 
(CFC), and neural-behavioral synchronization (NBS) in detecting 
MW, especially in haptic contexts. Our investigation yielded key 
insights into the neural signatures of MW during force control and 
demonstrated the feasibility of using synchronization features for 
attentional state classification.

4.1 Neural signatures of mind wandering

The proposed continuous force control task effectively induced 
MW episodes, as evidenced by a significant upward trend in off-task 
ratings over trials and a marked degradation in behavioral 
performance (i.e., increased BENL-trial errors) during the MW 
condition compared to the onT condition. In terms of neural 
activity, we observed increased alpha power (8–10 Hz) over frontal 
and parieto-occipital regions during MW, with source localization 
revealing the increased activity in the left middle occipital gyrus. 
This widespread alpha power increase during MW aligns with the 
“perceptual decoupling” hypothesis (Schooler et  al., 2011; 
Smallwood, 2013) and numerous EEG studies using visual vigilance 
tasks such as the SART (Compton et  al., 2019; Jin et  al., 2019). 
Notably, our findings are consistent with recent observations by 
Luna et  al. (2023), who reported increased alpha power in left 
occipital regions prior to missed targets compared to correct 
detections in a visual vigilance task, suggesting that alpha increases 
may reflect attentional disengagement across both visual and visuo-
motor tasks. Regarding the haptic domain, while Peng et al. (2021) 
reported increased frontal-central alpha associated with off-task 
states in a discrete force task, we  observed a more distributed 
pattern involving both frontal and posterior areas. The localized 
increase in the left middle occipital gyrus indicates that even in a 
force-focused task, MW involves disengagement of visual 
processing regions, likely reflecting the visuo-haptic integration 
demands of our paradigm, since force adjustments in our task were 
guided by visual feedback. These findings highlight the modality-
independent nature of alpha increases as a potential neural marker 
of attentional disengagement.

Beyond single-frequency analyses, we  evaluated cross-
frequency coupling and found significantly reduced probability 
density of high alpha-theta ratios (2.6–3.0) under the MW state, 
particularly over parietal-occipital electrodes PO3 and PO4. While 
prior work by Rodriguez-Larios and Alaerts (2019, 2021) and 
Rodriguez-Larios et al. (2020) linked increased alpha-theta phase 
synchrony to MW during meditation, our focus on harmonic 
frequency ratios reveals a different aspect of cross-frequency 
organization. Harmonic ratios near 3.0 may support on-task 
attention by enabling stable cross-frequency phase coupling. This 
precise phase alignment likely optimizes communication between 
neural assemblies supporting top-down control (theta) and those 
involved in sensory inhibition (alpha), thereby facilitating efficient 

information integration. The reduction of these stable harmonic 
ratios during MW suggests a breakdown in this coordinated cross-
frequency mechanism. This view aligns with theories proposing 
that optimal cognitive control relies on harmonic cross-frequency 
arrangements enabling effective communication between neural 
assemblies (Fries, 2005; Palva and Palva, 2017). The parietal-
occipital localization (PO3/PO4) further implicates visuospatial 
processing networks in maintaining this rhythmic coordination 
during force tracking. Nevertheless, whether the near 3.0 ratios 
observed here also support focused attention in other motor tasks 
or in other modalities (such as pure visual or auditory tasks) 
remains to be  determined by future studies. Direct cross-task 
comparisons and source-level CFC analyses would be required to 
assess the generalizability.

Additionally, MW was associated with enhanced functional 
connectivity across sensorimotor networks. Within the 8–10 Hz 
band, MW states exhibited significantly stronger phase locking 
within the left central motor area and between the PO-RC, F-LC, 
and LC-RC communities. One plausible interpretation is the 
compensatory recruitment of task-relevant sensorimotor assemblies 
when top-down control wanes; such localized synchronization 
could transiently support baseline performance despite attentional 
lapses. This finding extends previous fMRI research highlighting the 
dominance of the DMN during mind wandering by suggesting a 
context-dependent compensatory mechanism: in the force control 
task requiring continuous sensorimotor engagement, attenuated 
top-down attention may trigger localized synchronization within 
task-relevant networks to sustain baseline performance (Christoff 
et  al., 2009). This aligns with recent findings demonstrating a 
dynamically interdependent relationship between external (sensory 
and motor processing) and internal cognition (mind wandering) 
(Long et  al., 2025). In accordance with the recently proposed 
“Baseline model of internal and external cognition” (Northoff et al., 
2022), the observed hyperconnectivity likely reflects inefficient 
neural resource reallocation—where heightened “noisy” processing 
in sensorimotor circuits fails to fully compensate for attentional 
lapses—as evidenced by concurrent increases in behavioral errors. 
Our results underscore that MW dynamically redistributes neural 
resources with sensorimotor synchronization representing a 
signature of embodied attentional fluctuations. Nevertheless, 
alternative explanations for increased sensor-level connectivity—
such as contamination by muscle activity, volume conduction, field 
spread, or other recording artifacts—cannot be ruled out (Haufe 
et al., 2012). Importantly, our connectivity estimates were derived 
at the sensor level without full source-level leakage correction; 
therefore, these results should be  interpreted with caution as 
preliminary evidence. Future studies should complement sensor-
level FC with source reconstruction, leakage-robust metrics, and 
muscle activity monitoring to better distinguish neural coupling 
from confounds.

In addition to neural synchronization metrics, we  also 
examined the coupling between neural activity and behavioral 
performance by assessing the mutual information between the force 
error (i.e., BENL) and EEG power. During MW, the MI was 
significantly reduced within the 7.2–8.8 Hz band over several 
frontal electrodes, suggesting a breakdown in the real-time coupling 
between brain dynamics and motor output during attentional 
lapses. This observation is conceptually novel. Although previous 
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studies have linked behavioral variability (e.g., RT variability) to 
MW (Esterman et al., 2013; Peng et al., 2021), none have quantified 
the dynamic synchronization between continuous neural signals 
and high-frequency motor performance. The 7.2–8.8 Hz band 
overlaps with the low-alpha/mu rhythm, known to reflect motor 
cortical excitability and somatosensory processing. Reduced NBS 
likely reflects a weakened predictive relationship between 
fluctuations in this rhythm and moment-to-moment force control 
accuracy weakens during MW. This decoupling might provide an 
objective neurobehavioral signature of attentional disengagement 
specific to active motor tasks and represents an advance beyond 
static behavioral error measures.

4.2 Classification performance

The SVM classification achieved optimal performance when 
traditional power features were combined with synchronization 
metrics. Within-participant models (5-fold CV) using all features 
reached 75.53% accuracy (AUC = 76.12%), while cross-participant 
models (LOSO CV) using power + alpha-theta ratio + FC features 
achieved 71.57% accuracy (AUC = 79.87%). These results are 
comparable to or slightly better than performance reported in 
similar binary classification studies (Jin et al., 2019, 2020; Dong 
et al., 2021; Chen et al., 2022). Several factors likely contributed to 
the classification performance. First, the combination of commonly 
used features (i.e., power) and novel synchronization features 
(cross-frequency ratio, FC, NBS) offered complementary 
information. Notably, adding synchronization features consistently 
boosted performance over power features alone (e.g., LOSO AUC 
increased from 76.37 to 79.87% with power + ratio + FC), 
highlighting the value of capturing distributed network dynamics 
and brain-behavior interactions. Second, the proposed continuous 
force task provided a rich stream of behavioral data (1,000 Hz) 
tightly synchronized with EEG data. This enabled the calculation 
of NBS, a feature unavailable in discrete response tasks and proved 
to be  a useful feature for classification. Third, the continuous, 
dynamic nature of the force control task likely elicited more 
pronounced and ecologically valid MW states compared to simpler 
vigilance tasks, leading to clearer neural dissociations.

However, direct comparisons are challenging due to differences in 
tasks, probing methods, and classification approaches (e.g., LOPOCV 
vs. LOSO vs. within-participant). Our cross-participant accuracy 
(71.57%) highlights the challenge of generalizing models across 
individuals, a common limitation in the field. Future work should 
explore more advanced normalization or domain 
adaptation techniques.

4.3 Limitations and future work

While this study offers novel insights, the findings should 
be considered with several limitations. First, the final sample size 
of nine participants (after artifact rejection) is relatively small and 
all participants were male. Future studies should recruit larger, 
more diverse cohorts, including females and individuals from 
broader age ranges, to enhance generalizability and to explore 
potential sex differences in neural correlates of MW during motor 

tasks. Second, while synchronization features improved 
classification, their neurobiological interpretation remains 
complex. For instance, increased FC within motor areas during 
MW could reflect different processes (e.g., maladaptive noise, 
inefficient compensation, or muscle artifacts). Given the sensor-
level nature of our connectivity analyses, we emphasize the need 
for source-space reconstructions and leakage-robust measures in 
future work to distinguish true inter-region interactions from 
sensor-level mixing. Future research should also integrate 
computational modeling or causal interventions (e.g., transcranial 
magnetic stimulation) to elucidate the functional significance of 
these connectivity patterns. Third, EEG epochs were extracted 
from the 3 s preceding thought-probes, which occurred at 40–50 s 
intervals. This quasi-periodicity could have induced anticipatory 
effects or strategic attention re-engagement just before probes, 
potentially affecting the MW vs. onT contrast. However, the overall 
monotonic increase in MW reports across trials, coupled with the 
corresponding behavioral degradation, suggests that anticipatory 
effects alone are unlikely to fully account for our main findings. 
Nevertheless, future studies are necessary to employ randomized 
probe timing to eliminate this potential confound.

Finally, our findings pertain to a specific visuo-haptic force control 
task. The generalizability of the identified synchronization signatures 
to other haptic tasks or modalities remains to be investigated. Future 
studies should systematically compare MW signatures across different 
task types, such as pure haptic vs. visuo-haptic or force vs. texture 
discrimination. Future studies should also explore more sophisticated 
synchronization measures, such as directed connectivity (Tafreshi 
et al., 2019), graph theory metrics (Moon et al., 2020), and advanced 
machine learning algorithms that may better capture complex 
spatiotemporal dynamics in EEG data.

5 Conclusion

This study demonstrates that EEG synchronization features—
including functional connectivity within sensorimotor networks, 
alterations in alpha-theta cross-frequency coupling, and neural–
behavioral synchronization—serve as sensitive and complementary 
markers of mind wandering during a continuous visuo-haptic force 
control task. Our findings extend the understanding of attentional 
fluctuations beyond visual/auditory paradigms, revealing task-specific 
neural dynamics characterized by increased motor network synchrony 
and disrupted neural-behavioral alignment during attentional lapses. 
Using these synchronization features, machine learning classifiers 
achieved 75.53% within-participant and 71.57% cross-participant 
accuracy when combined with spectral power features, confirming 
their feasibility and complementary value for decoding covert 
attentional states. This work extends the understanding of neural 
representations underlying attentional fluctuations during the 
continuous force control process. While our paradigm was constrained 
to a laboratory setting, the identified synchronization markers may 
provide preliminary insights to guide the future development of 
haptic-based attention training systems. Such systems could serve as 
a complementary approach to existing visual and auditory modalities 
in contexts such as sports training, surgical skill learning, or 
neurorehabilitation, pending further validation in more ecologically 
valid settings.
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