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Upper limb amputation significantly affects daily functioning and quality of 
life. Although myoelectric prostheses offer a promising avenue for restoring 
motor capabilities, high rates of device abandonment underscore challenges 
in control performance and user integration. Recent advances in high-density 
electromyography (HD-EMG) and machine learning (ML) algorithms have shown 
potential to enhance prosthetic dexterity. HD-EMG interfaces capture richer 
spatial and temporal muscle activation data, while ML algorithms exploit this 
information to improve intention detection and motion control. This mini-review 
explores advancements in HD-EMG acquisition systems, including both interface 
designs and recording technologies, as well as ML algorithms leveraging spatial 
information. In addition to summarizing the current state of the art, we discuss 
the challenges and the opportunities of embedding these technologies in 
prosthetic systems, with the objective of facilitating the translation of laboratory 
research into clinical applications. 
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1 Introduction 

Dexterous hand and upper limb movements, facilitated by the coordinated activation 
of multiple muscle groups, are fundamental to human interaction with the environment. 
Upper limb amputation disrupts these essential functions, leading to significant limitations 
in daily living, reducing independence, and complicating work tasks and social interactions 
(Cordella et al., 2016). In response, prosthetic devices have become vital tools in restoring 
motor function, aiming to replicate the biomechanical and functional capabilities of 
the natural limb. Over the past two decades, upper limb prostheses, particularly poly-
articulated systems, have undergone substantial technological advancement, offering 
increased functionality and customization to meet diverse user needs. However, as these 
devices become increasingly sophisticated, there is a growing demand for intuitive and 
robust control strategies capable of matching their complexity and dexterity, thus reducing 
both mental and physical effort. Among the various control approaches explored (Marinelli 
et al., 2023; Esposito et al., 2021), electromyography (EMG)-based methods are the 
most widely studied and implemented thanks to their ability to directly reflect voluntary 
muscle activation and, consequently, user intention (Merletti and Farina, 2016). The most 
advanced commercial solutions, myoelectric prostheses, utilize EMG signals derived from 
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residual muscle contractions to control prosthetic movements. 
Despite their potential, the overall abandonment rates of upper 
limb prostheses is of approximately 44%, with myoelectric devices 
accounting for 92% of these cases (Salminger et al., 2022). This 
high abandonment rate is primarily attributed to inadequate 
control mechanisms (Salminger et al., 2022; Smail et al., 2021), 
which fail to manage the prostheses’ available degrees of freedom 
in a natural and intuitive manner. Indeed, most commercial 
prosthetic devices rely on two surface EMG (sEMG) electrodes 
only, confining the control to one joint at a time and reducing 
functionality during complex tasks encountered in everyday 
life (Marinelli et al., 2023; Roche et al., 2014). To overcome these 
constraints, the growing emergence of artificial intelligence has 
led to increased interest in machine learning (ML) algorithms, 
which offer promising strategies for managing the complexity 
of multi-degree-of-freedom control. However, these approaches 
necessitate richer data input, thus prompting the development 
of high-density electromyography (HD-EMG) interfaces. These 
interfaces are based on the increased number of surface electrodes, 
typically more than 16, densely arranged over a smaller portion of 
the body, in contrast to standard low-density EMG configurations 
using up to 8 channels. By employing closely spaced electrodes 
placed on the skin above the target muscles, these high-density 
interfaces enable the generation of two-dimensional maps that 
represent the synergistic activation patterns of muscles during 
contraction (Merletti and Muceli, 2019). This capability to produce 
bi-dimensional representations has paved the way to leverage not 
only the temporal characteristics of EMG signals but also their 
spatial features within control algorithms for gesture recognition. 

Given the growing interest in HD-EMG interfaces and 
the emerging significance of spatial-based control strategies, 
particularly for embedded systems in upper limb prosthetics, 
this mini-review examines the current state of the art in these 
fields (Figure 1). The literature review was performed across major 
scientific databases such as Google Scholar, PubMed, IEEE Xplore, 
and Scopus. We used a combination of keywords including “High-
Density EMG”, “EMG Recording Interfaces”, “EMG Recording”, 
“Myoelectric Control through Spatial Information”, “Graph Neural 
Network”, focusing on past decade’s developments. While this 
work concentrates on acquisition systems and control strategies, 
comprehensive overviews of complete prosthetic devices can be 
found in existing reviews (Marinelli et al., 2023; Huang et al., 
2024; Bates et al., 2020). By summarizing recent advancements and 
identifying key challenges in real-world implementation, this work 
aims to provide a foundation for future research and innovation in 
prosthetic applications. 

2 HD-EMG acquisition systems 

To the benefit of the discussion, we separate the HD-
EMG acquisition system into two main subsystems: the 
electrode interface (Section 2.1) and the recording system 
(Section 2.2). These components are separately addressed in the 
following subsections. 

2.1 HD-EMG interfaces 

HD-EMG interfaces for upper limb prosthetics present 
significant challenges, with stringent technical and clinical 
requirements. Key technical factors include high electrode density 
for adequate spatial resolution, electrode diameters between 
3 and 10 mm (Merletti and Farina, 2016) , and proximal 
A/D conversion to minimize noise (Dumitru et al., 2025) . 
Clinically, critical requirements involve dry-contact interfaces, 
robust mechanical fixation for user comfort, and flexible, 
stretchable, full-circumference designs to accommodate various 
stump geometries. 
To date, no commercial prosthetic system exceeds 8 bipolar 
EMG channels. On the other hand, HD-EMG electrode interfaces, 
conceived for electrophysiology applications (Drost et al., 2006), 
offer significantly higher spatial resolution but are not yet suitable 
for practical prosthetic use. Conventional HD-EMG interfaces 
consist of arrays of monopolar electrodes arranged on a planar 
patch, having a conductive gel layer applied between the skin and 
the electrodes (i.e., wet electrodes, see Figure 1a) (Merletti and 
Cerone, 2020). The gel enhances signal quality by minimizing 
skin-electrode impedance and improves contact stability, thereby 
reducing movement artifacts. However, the need for gel represents 
a major barrier to usability and maintenance in everyday prosthetic 
applications. Other key aspects to consider are the electrode cabling 
arrangement, the electrodes encumbrance and the mechanical 
interface to the skin, including the material composition and the 
geometry. Ideally, the interface should conform to the anatomical 
variability of the residual limb and maintain stable contact during 
dynamic contractions. Moreover, ensuring consistent electrode 
placement across multiple donning and doffing cycles is crucial 
for minimizing data distribution shifts, which represent one of 
the most significant challenges in ML-based myocontrol prostheses 
(Kyranou et al., 2018). To address these limitations, several 
novel dry-electrode HD-EMG interfaces have been proposed, and 
although all following solutions are not ready for a clinical use, they 
were all validated in the lab. 

These challenges led to the development of a flexible 
dry interface consisting of 32 copper electrodes mounted on 
interconnected stiffeners (Tam et al., 2019a). While effective, 
the use of multiple external wires limited its practicality. A 
subsequent design iteration (Tam et al., 2020) eliminated these 
cables, improving integration with prosthetic liners and enhancing 
wearability. Advancing toward even more flexible systems, a new 
solution based on textile (polyamide and elastene fabric) grid 
with 32 silver electrodes supported by polylactic acid (PLA) 
pads, and embedded wiring was developed (Cerone et al., 2021). 
Similarly, a 64 electrodes interface printed on a polyester and 
cotton textile substrate was introduced (Murciego et al., 2023). 
Alternatively, another highly flexible system relying on a thin 
polyethylene terephthalate (PET) sheet, with 64 screen-printed 
silver electrodes and integrated wiring was proposed (Moin et al., 
2021). In addition to flexibility, recent efforts have explored 
stretchability as a key interface property. Although not high-
density, a promising system was demonstrated effective for its 
stretchable Kirigami-based serpentine design (Lee et al., 2023). 
This hexagonal electrode pattern, supported by a breathable and 
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FIGURE 1 

(A) Overview of HD-EMG interfaces components applied to the upper limb prosthetic control: electrodes are in contact with the residual limb skin, 
via a wet or dry interface (a). The socket is formed by an inner (stump interface) and outer rigid liner (structural hand interface): electrodes are located 
in the inner liner and the recording and control system are placed between the two liners. EMG signals are acquired via a multichannel 
analog-to-digital converter (ADC) and elaborated with a computing unit running the control algorithm (c) to decode user movement intention. 
Predictions are then mapped to prosthetic functions references for enabling joints actuation. (B) Overview of some reviewed article of HD-EMG 
interfaces and HD-EMG research-based recording systems. 

adhesive substrate, enables excellent conformity to skin movements 
and promotes comfort by allowing vapor permeability. A more 
comprehensive solution combining flexibility, stretchability, and 
high sensor count was proposed through the development of 
an adjustable HD-EMG interfaces using elastic band combined 
with polyimide flexible printed circuit board (PCB) with 64 
electrodes, which allow accommodation to various forearm sizes 
(Chamberland et al., 2023; Rolandino et al., 2024). Another 
novel flexible PCB-based solution covered with fabric and rubber 
layers was presented for its enhanced flexibility, stretchability, and 

wearability (Varghese et al., 2024). Despite these advantages, the 
connection cabling to the external MyoLink amplifier (Koutsoftidis 
et al., 2022) poses practical limitations for real-world application 
and remains a key barrier to clinical translation. A different solution 
proposed a semi-rigid system using a custom thermolyn liner 
embedded with 64 metal dome electrodes (Di Domenico et al., 
2024). This system is designed to conform to the forearm and adapt 
to volume changes during muscle contractions, but it still relies 
on wired connections, which may reduce mechanical robustness 
and reliability. 
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An ideal EMG interface should incorporate high-density 
electrode count to enhance spatial resolution, while relying 
on dry electrodes to eliminate the need for conductive gel. 
However, eliminating the gel could compromise electrode-
skin contact stability and signal quality. Additionally, for an 
ideal prosthetic integration, the interface must minimize inter-
electrode cabling and be specifically designed for the incorporation 
within prosthetic sockets. A summary table is provided in the 
Supplementary material, detailing the design characteristics and 
key properties of the aforementioned EMG interfaces intended for 
embedded prosthetic applications. As shown in this comparative 
analysis, no single interface fully satisfies all requirements for 
clinical prosthetic integration. Despite significant advancements 
in the development of dry, flexible, stretchable, and minimally 
cabled systems, a critical limitation persists: the inadequate 
practical integration of these technologies within prosthetic 
sockets. Moreover, the absence of extensive validation under real-
world conditions further underscores the gap between research and 
clinically viable solutions. Bridging this gap between laboratory 
prototypes and deployable clinical solutions remains a key objective 
for future research. 

2.2 HD-EMG recording systems 

Although some HD-EMG recording systems are commercially 
available, they do not fully meet the requirements for prosthetic 
integration. While most satisfy technical specifications, such as 
a sampling rate ≥2,000 Hz (Merletti et al., 2009; Farago et al., 
2023) and ADC resolution of 12–24 bits (Merletti et al., 2009), 
the main limitation lies in embedding-related aspects. In particular, 
the acquisition system lacks a compact form factor suitable for 
integration into an embedded prosthesis near the electrode, which 
would eliminate the need for long analog signal paths (thereby 
reducing signal degradation), along with reliance on external signal 
centralization units. 
Below, we outline both commercial and research solutions, 
comparing their key attributes in Table 1. In this case as well, the 
proposed research solutions have been validated exclusively under 
laboratory conditions. 

Among commercial devices, the SAGA System (TMSi) 
supports up to 128 channels, offering high acquisition capacity. 
However, its large form factor significantly limits its applicability 
in embedded prosthetic settings. Similarly, the 64-channels 
portable wireless amplifier Sessantaquattro+ (2024) offers 
enhanced wearability, but remains too bulky for direct socket 
integration. A more compact option from the same manufacturer, 
is the MuoviPro (2023), which reduces physical encumbrance 
but still requires a separate wet reference electrode and an 
external signal centralization unit, a limitation for practical 
prosthetic use. A smaller alternative, with embedded dry 
reference electrode, is proposed by Delsys, with the 16-channels 
Trigno Maize Sensor (Delsys). However, its native skin interface, 
constrained in a 30 × 50 mm area, might limit forearm coverage 
for prosthetic application. These limitations highlight the need 
for co-designing electrode interfaces and recording units to meet 
the specific requirements of embedded prosthetic systems. A key 

enabler for such integration is the amplifier chip itself: in this 
regard, a valuable solution is provided by INTAN Recording with 
their RHD2000 series (INTAN Technologies LLC, 2012). The 
RHD chips are compact, low-power integrated circuits capable of 
amplifying, filtering, and digitizing electrophysiological signals up 
to 64 channels in a 9 × 9 mm package. This small, high-density 
configuration makes it particularly well-suited for the development 
of embedded solutions. In fact, different models of RHD2000 
series chips have been employed in many research applications for 
recording systems (Cerone and Gazzoni, 2017; Cerone et al., 2019; 
Tam et al., 2019a,b; Chamberland et al., 2023). 

As outlined in Table 1, most research-based systems achieve 
essential signal acquisition benchmarks, including high resolution 
and adequate sampling rates, while supporting a minimum of 
32 channels. However, limitations persist in certain designs. 
Specifically, some systems are characterized by excessive bulk 
and a lack of integrated form factor, requiring long external 
cabling between the electrode array and recording unit (Pozzo 
et al., 2004; Barone and Merletti, 2013; Zhao et al., 2021). 
Such configurations not only compromise wearability but also 
introduce susceptibility to noise interference, thereby restricting 
their usability for prosthetic applications. Conversely, certain 
research-based systems surpass commercial solutions in terms of 
wearability by adopting a compact architecture, minimizing the 
physical distance between electrodes and acquisition circuit to 
preserve signal fidelity, while avoiding external signal centralizer. 

In light of these considerations, future HD-EMG recording 
system for prosthetic applications should embody a miniaturized, 
wearable form factor; support high-resolution and appropriately 
sampled signal acquisition across the full EMG bandwidth; ensure 
close coupling between electrodes and acquisition electronics 
to mitigate noise; and incorporate low-power consumption and 
wireless data transmission capabilities to promote prosthetic 
applications. 

3 Spatial-based control algorithms 

Recently, advanced ML algorithms have emerged as promising 
alternative to traditional myoelectric control for upper-limb 
prostheses. In particular, growing interest has been directed toward 
algorithms that leverage spatial information (Figure 1c), driven by 
the development of HD-EMG interfaces. These methods provide 
high-resolution temporal and spatial activity information from the 
same data, expanding the range of neuromuscular characteristics 
that can be extracted, such as spatial distribution and muscular 
activation patterns, which are not accessible with conventional 
low-density EMG configuration. 

For simplicity these algorithms are following categorized in 
spatial features-based, deep learning (DL) approaches, and Graph 
Neural Networks (GNNs). While the focus is on methods targeting 
motor execution of the prosthesis, real-time implementations 
remain limited in the literature. The studies presented primarily 
address intention detection, which, nevertheless, constitutes a 
critical first step toward full control. 

Spatial features offer notable advantages for HD-EMG-based 
myoelectric control, primarily, they are more robust against 
signal variability. Unlike time-domain features, they are not solely 
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TABLE 1 Commercial and research-based HD-EMG recording systems with their key features for embedded prosthetic application. 

General 
information 

Mechanical Sampling Interface 

Device Dimensions [mm] Wearability* A/D res. [bits] Data rate [Hz] N. ch Dry 

Commercial Sessantaquattro+ 73 × 105 × 12 ✗ 16 2,000 64 ✓/✗

MuoviPro (probe) 40 × 40 × 17 ✗ 16 2,000 32 ✓/✗

Trigno Maize Sensor body: 50 × 30 × 13 
head: 46 × 27× 13 

✗ n.d. n.d 16 ✓

Trigno Avanti Sensor 27 × 37 × 13 ✗ 16 4,370 1 ✓

SAGA System (TMSi) ø179 × 88 ✗ 24 500–4,000 32/64 ✗

Research Barone and Merletti (2013) 145 × 160 × 22 ✗ 24 2,441 24–64 ✗

Cerone et al. (2019) 34 × 30 × 15 ✓ 16 2,048 32 ✗

Cerone and Gazzoni (2017) 37 × 30 × 20 ✓ 16 2,048 32 ✗

Chamberland et al. (2023) n.d. ✓ 16 1,000 64 ✓† 

Koutsoftidis et al. (2022) 100 × 80 ✗ 24 8,000 32 n.d. 

Lee et al. (2023) n.d. ✓ n.d. 400 8 ✓† 

Moin et al. (2021) n.d. ✓ n.d. 1,000 64 ✓† 

Pozzo et al. (2004) 140 × 95 × 62 ✗ 16 1,024/2,048 4 × 16 ✗† 

Tam et al. (2019b,a) 20 × 65 ✓ 16 1,000 32 ✓† 

Zhao et al. (2021) 105 × 110 × 90 ✗ 12/16/20 500–4,000 64–256 n.d. 

*Wearability is evaluated in the context of prosthetic fitting, considering factors such as system dimensions, the distance between the recording system and electrodes, and the need for an 
additional external signal centralizer. †The system is coupled with custom interface. 

dependent on signal amplitude, which makes them particularly 
effective in mitigating amplitude signal fluctuations caused 
by muscle fatigue, electrode displacement, or posture changes 
(Kyranou et al., 2018). Indeed, spatial features are demonstrated 
in several works to be particularly effective in combination with 
temporal, and spectral descriptors (Nougarou et al., 2019; Jaber 
et al., 2021a,b; Chen et al., 2023a; Ma et al., 2023). Additionally, 
some spatial features algorithms, were proved to support lower 
computational cost and time (Ma et al., 2023). Building on 
this concept, future researches could explore different EMG 
representation to leverage its spatial properties starting from 
images (Díaz-Amador et al., 2018), pharos (Onay and Mert, 2020), 
or 3D muscle activity reconstruction (Urbanek and Van der Smagt, 
2016). However, spatial features alone lack temporal resolution, 
limiting their effectiveness in dynamic gesture recognition. Their 
performance also depends heavily on electrode grid density and 
placement, with suboptimal configurations reducing reliability. 
Thus, while spatial features strengthen robustness against signal 
instability and computational efficiency, their limitations must 
be addressed through careful system design and hybrid feature 
integration. 

In parallel, DL approaches, and in particular Convolutional 
Neural Networks (CNNs), have gained interest due to their ability 
to automatically learn features, process large datasets, and extract 
spatial-temporal features (Chen et al., 2023b) while inherently 
offering a degree of translational invariance, an advantageous 
property for mitigating the effects of electrode displacement. 
Additionally, such methods are well-suited to be enhanced 
in combination with other architectures and pre-processing 

processes, such as array barrel shifting (Chamberland et al., 2023), 
data augmentation for proportional and simultaneous control 
(Sîmpetru et al., 2023), improved hand kinematics estimation 
(Sîmpetru, 2023), signal expansion and deformable convolution 
layers for performance optimization (Wang et al., 2022), and two-
branches CNN architecture for more robust gesture recognition 
(Tam et al., 2024). However, these algorithms require large datasets, 
significant processing power and memory, which may limit their 
deployment in low-power or wearable systems. 

More recently, Graph Neural Networks (GNNs) have been 
emerged as promising direction for upper limb prosthesis control, 
offering the possibility to model the spatial relationships between 
electrodes. By representing each electrode as a node and their 
physical or functional proximity as edges, GNNs can effectively 
capture topological relationships and dynamic muscle interactions 
that are not easily modeled using traditional algorithms. While 
widely studied in fields like social networks and molecular 
interactions, their application to EMG signals remains relatively 
unexplored. Pioneered work relied on graph-based HD-EMG 
representation to leverage the spatial information provided 
by sensors, by using 128 nodes (electrodes) and 884 edges 
(neighboring connections) (Massa et al., 2022). Despite promising 
results, excessive inter-node connections increased computational 
cost. To address this, a follow-up study (Massa et al., 2023) applied 
explainable AI to retain only essential edges, reducing complexity 
while maintaining performance. Unlike these electrode-structured 
graphs, a muscle connectivity-based graph, incorporating also a 
temporal module alongside spatial features, was also proposed 
(Zhong et al., 2023). Similarly, a spatio-temporal graph convolution 
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module was presented (Xu et al., 2024). Recently, another 
spatio-temporal GNN with sensor-wise temporal connections, 
linking corresponding nodes across consecutive spatial graphs over 
successive time, was demonstrated (Lee et al., 2025). Although these 
GNN algorithms performed well in laboratory tests, their real-time 
applicability for prosthetic control remains untested. In practice, 
their deployment may be constrained by high computational 
demands, particularly with densely connected graphs and complex 
model architectures. 

In conclusion, the spatial information encoded in HD-
EMG constitutes a powerful means of enhancing myoelectric 
control. While a range of algorithms have been proposed to 
leverage this spatial richness, each presents distinct trade-offs, 
and comparative analysis, to define which approach outperforms 
the others, remains limited. Algorithm selection should therefore 
be application’s needs-driven, balancing real-time performance, 
robustness, and computational constraints. In addition, in an 
ideal context, algorithm should run on energy-efficient, embedded 
platform capable of real-time processing and adaptation; however, 
current hardware often falls short of the demands of DL 
models, necessitating cloud-based or external computation, which 
introduces latency, bandwidth concerns, and security risks. As 
such, optimizing the trade-off between algorithmic complexity and 
hardware capability remains a key design constraint. 

4 Integration of HD-EMG and 
spatial-based control algorithms 

As observed, recent advancements in upper limb prosthetics 
focus on HD-EMG interfaces and sophisticated intention decoding 
algorithms that utilize spatial and positional information from 
electrode arrays. However, the next significant step in this field is 
integrating these components to fully maximize their potential. 

Although a fully integrated system, comprising an HD-EMG 
interface, an HD-EMG recording system, and a computing unit 
with advanced algorithm, has not yet been realized in the current 
state of the art, some preliminary integration solutions have been 
proposed. For instance, Chamberland et al. (2023), as well as 
Tam et al. (2020) and Varghese et al. (2024), proposed a novel 
interface coupled with a CNN-based algorithm. However, in most 
studies presenting novel interfaces, control algorithms are typically 
employed for validation rather than as fully integrated components 
within embedded prosthetic systems. A notable integration effort, 
though not fully embedded, was introduced by (Moin et al., 
2021), who presented an HD-EMG recording system with in-
sensor adaptive ML for real-time prosthetic control. Conversely, 
when novel ML spatial-based algorithms are introduced, the 
primary focus is typically on the algorithm itself rather than on 
its integration with new interface designs. Indeed, most studies 
reviewed in Section 3 lack in pairing their algorithms with 
novel user interfaces. Instead, they utilized signals acquired from 
commercial wet (such as in Sîmpetru et al., 2023; Sîmpetru, 2023), 
or dry electrode solutions (such as in Xu et al., 2024), or relied on 
public dataset (as in Wang et al., 2022; Massa et al., 2023; Lee et al., 
2025). 

Regarding fully integrated prosthetic systems, (Nguyen, 2021) 
proposed a system incorporating a peripheral nerve signal 
recording device and a recurrent neural network. While this 

approach represents progress toward integrated prosthetics, the 
system remains bulky and impractical for real-world applications. 

These recent advancements clearly indicate a promising 
new direction in upper-limb prosthetics, where high-resolution 
sensing and advanced algorithm are converging toward integration. 
However, they also highlight several critical challenges, in both 
hardware and software design, that must be addressed to 
exploit the full potential of such embedded systems. From the 
hardware perspective, key areas for future development include 
the design of dry HD-EMG interface with minimal cabling to 
enhance wearability, the miniaturization of acquisition electronics 
to enable compact and lightweight recording units positioned 
near the electrodes, and the integration of low-power, high-
efficiency processing units between the prosthetic socket and 
the liner. Conversely, on the software side, the implementation 
of computationally efficient, real-time, and robust intention 
decoding algorithm remains a primary challenge. Algorithms 
must be optimized not only for improving accuracy and 
robustness to signal variability, such as electrode shift, muscle 
fatigue, and environmental noise, but also for execution on 
resource-constrained embedded platforms (Zanghieri et al., 2019). 
Addressing these limitations will be essential for the development 
of the next generation of embedded prosthetic systems. 

5 Conclusions 

The integration of HD-EMG interfaces and advanced ML 
algorithms represents a significant improvement in prosthetics, 
enabling more precise, intuitive, and multi-degrees control of 
upper-limb devices. HD-EMG interfaces provide more spatial and 
temporal data, while ML algorithms can extract insights from this 
data to improve gesture recognition and motion control. However, 
translating this potential into real-world solutions remains an 
ongoing challenge. Real-world implementation requires stable 
and high-quality signals, compact hardware, and robust real-time 
control. In addition, daily usability requires interfaces that ensure 
accurate fitting and easy wearability. Facing these hardware and 
software challenges will be central to the next stage of progress in 
prosthetic development, as it is crucial for enabling reliable, high-
dexterity devices suitable for everyday use. Ultimately, moving 
from lab setups to wearable systems will support clinical validation 
in real-world conditions, improve user experience, and reduce 
prosthesis abandonment. 
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