Check for updates

OPEN ACCESS

APPROVED BY Frontiers Editorial Office, Frontiers Media SA, Switzerland

*CORRESPONDENCE Frontiers Production Office production.office@frontiersin.org

RECEIVED 27 June 2025 ACCEPTED 27 June 2025 PUBLISHED 17 July 2025

CITATION

Frontiers Production Office (2025) Correction: Inhibition of miR-20a promotes neural stem cell survival under oxidative stress conditions. *Front. Neurosci.* 19:1655293. doi: 10.3389/fnins.2025.1655293

COPYRIGHT

© 2025 Frontiers Production Office. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Correction: Inhibition of miR-20a promotes neural stem cell survival under oxidative stress conditions

Frontiers Production Office*

Frontiers Media SA, Lausanne, Switzerland

KEYWORDS

microRNA-20a, neural stem cells, oxidative stress, neural apoptosis, neuroprotection

A Correction on

Inhibition of miR-20a promotes neural stem cell survival under oxidative stress conditions

by Arzhanov, I., Klassen, R. A., Valihrach, L., and Romanyuk, N. (2025). *Front. Neurosci.* 19:1601101. doi: 10.3389/fnins.2025.1601101

There was a mistake in Table 1 as published. Commas and spaces were erroneously removed from the third column. In rows 5 and 6, "7986" should be "79, 86". In row 12, "351917" should be "35, 19, 17". The corrected Table 1 appears below.

The original version of this article has been updated.

TABLE 1 The list of the primary antibodies.

Antibodies name	Catalog number#	Molecular weight (kDa)	lsotope	Dilution solution	Dilution
mTOR	2983	289	Rabbit mAb	BSA	1:1,000
Akt	9272	60	Rabbit mAb	BSA	1:1,000
PTEN	9559	54	Rabbit mAb	BSA	1:1,000
Phospho-Akt	4060	60	Rabbit mAb	BSA	1:1,000
Stat3	9139	79, 86	Mouse mAb	Milk	1:1,000
Pospho-Stat3	9145	79, 86	Rabbit mAb	BSA	1:2,000
PARP	9542	116	Rabbit mAb	BSA	1:1,000
Cleaved PARP	9541	89	Rabbit mAb	BSA	1:1,000
Mcl-1	94296	40	Rabbit mAb	BSA	1:1,000
Bcl-XL	2764	30	Rabbit mAb	BSA	1:1,000
Bax	14796	20	Rabbit mAb	BSA	1:1,000
Caspase-3	14220	35, 19, 17	Rabbit mAb	BSA	1:1,000
Cytochrome c	11940	14	Rabbit mAb	BSA	1:1,000
β-Actin	A2228	42	Mouse mAb	TBST	1:2,000