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Introduction: Contextual embeddings—a core component of large language 
models (LLMs) that generate dynamic vector representations capturing words’ 
semantic properties—have demonstrated structural similarities to brain activity 
patterns at the single-word level. This alignment supports the theoretical framework 
proposing vector-based neural coding for natural language processing in the brain, 
where linguistic units may be represented as context-sensitive vectors analogous 
to LLM-derived embeddings. Building on this framework, we  hypothesize that 
cumulative distance metrics between contextual embeddings of adjacent linguistic 
units (words/Chinese characters) in sentence contexts may quantitatively reflect 
neural activation intensity during reading comprehension.

Methods: Using large-scale EEG datasets collected during reading tasks, 
we systematically investigated the relationship between these computationally 
derived distance features and frequency-specific band power measures 
associated with neural activity.

Results: In conclusion, gamma-band power exhibited associations with various 
NLP features in the ChineseEEG dataset, whereas no comparable gamma-
specific effects were observed in the ZuCo1.0 dataset. Additionally, significant 
effects were found in other frequency bands for both datasets.

Discussion: The mixed yet intriguing results invite a deeper discussion of the 
directional associations (positive/negative) observed in Gamma and other 
frequency bands, their cognitive implications, and the potential influence 
of textual characteristics on these findings. While observed effects may 
be somehow text- or dataset- dependent, our analyses revealed associations 
between various distance metrics and neural responses, consistent with 
predictions derived from the vector-based neural coding framework.
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1 Introduction

The integration of electroencephalogram (EEG) techniques with large language models 
(LLMs) has recently gained significant attention in the field of psycholinguistics. Several 
studies have demonstrated a strong relationship between surprisal/entropy, derived from 
language models, and event-related potentials in EEG such as the N400 (Michaelov et al., 2023; 
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Michaelov et  al., 2024). Moreover, employing representational 
similarity analysis (RSA), recent research has revealed 
correspondences between the representational structures of LLMs and 
brain activity (Gillioz, 2024; Ren et  al., 2024). In this trend, 
LLM-derived metrics not only predict electrophysiological responses 
but also establish systematic correspondences between artificial 
language representations and distributed cortical activation patterns.

Contextual and word embeddings - a core component of LLMs 
and Word2vec approaches, convert words into high-dimensional 
vector representations that encapsulate their semantic attributes. 
These embeddings facilitate semantic computations among words, 
exemplified by the well-known analogy “king  – queen ≈ man  – 
woman” (Levy and Goldberg, 2014). Unlike static word embeddings, 
contextual embeddings excel at capturing nuanced meanings 
depending on surrounding context, thus offering a more dynamic 
understanding of language. Recently, contextual and word embeddings 
have been leveraged in studies investigating how the brain processes 
language (Goldstein et al., 2024; Heilbron et al., 2022; Pereira et al., 
2018). For example, Goldstein et  al. (2024) provided compelling 
evidence for the use of this vector-based neural code at the single-
word level. By analyzing the geometric patterns between brain 
embeddings (a continuous vectorial representation for each word 
derived from dense intracranial recordings in the inferior frontal 
gyrus) and contextual embeddings from LLMs like GPT-2, the 
researchers found significant correlations between these two sets of 
embeddings. This alignment suggests that words in the brain may 
be  represented as dynamic vectors, similar to those generated by 
LLMs. These studies support a framework proposing a vector-based 
neural code for processing natural language in the brain.

The observed similarity between contextual embeddings and 
brain activity patterns at the single-word level gives rise to a 
compelling theoretical proposition: it is possible that the accumulated 
distance between contextual vectors of adjacent linguistic units (words 
or Chinese characters) within sentence structures could quantitatively 
correspond to neural activation intensity during language processing. 
Although our eyes may move back and forth during reading, our brain 
smooths out the discrete inputs so that we maintain a stable coherent 
view of the text sequentially (Rayner, 1998), for example, from left to 
right in English or from right to left in Arabic. In the context of vector-
based neural coding, where contextual embeddings resemble brain 
embeddings, it’s natural to hypothesize that a larger cumulative 
distance or other potential features between adjacent word (or, 
Chinese character) vectors could indicate greater brain activity. In the 
current study, we aimed to investigate this possibility by linking such 
features to EEG band power which relates to brain activity.

To achieve this, various distance metrics between contextual 
embeddings should be considered. For example, Euclidean distance often 
reflects semantic similarity; words like “car” and “automobile” typically 
have a small Euclidean distance due to their closely related meanings. 
Cosine distance, on the other hand, measures directional similarity and is 
particularly useful in contexts where words like “doctor” and “hospital” 
appear in similar situations, leading to a smaller angle and thus a smaller 
cosine distance. Manhattan distance calculates the sum of absolute 
differences between corresponding components of vectors, while 
Chebyshev distance, which measures the maximum difference across any 
single dimension, may highlight the largest shift in meaning between two 
words. Each distance measure may provide unique insights that can 
be valuable depending on the specific linguistic or cognitive phenomenon 
under investigation. In addition to the distances between individual word 

vectors, the norms of sentence-level vectors, typically derived by averaging 
the vectors of each word, may also indicate the richness of the semantic 
information encoded within the sentence. Moreover, dimensionality 
reduction techniques can be  employed to visualize the geometric 
properties of contextual embeddings. By projecting high-dimensional 
word vectors into a two-dimensional space, each word in a sentence is 
represented as a point in this 2D space. Researchers can then construct a 
convex hull around these points. The perimeter of the convex hull may 
suggest the breadth of semantic elements encompassed by the sentence, 
with a larger perimeter potentially indicating greater complexity and 
requiring more cognitive resources to process. Similarly, the area enclosed 
by the convex hull may represent the total semantic volume of the sentence.

To reflect the brain activity, EEG measures, including frequency-
domain metrics like band power and time-domain metrics like N400 
amplitude, are essential for understanding the dynamic shifts in cognitive 
load during sentence processing. Specifically, for sentence-level cognitive 
load, averaged EEG band power may be more informative. EEG band 
power can reflect different types of brain activity across frequency bands, 
with each band (or the coherence between bands) linked to specific brain 
functions and cognitive states. For instance, beta band power may relate 
to processes such as temporal integration and motor planning (Del 
Campo-Vera et al., 2020; van Helvert et al., 2021), while gamma band 
responses are often associated with attention and can serve as a 
quantitative marker of attentional processes (Durrheim et  al., 2023; 
Hanslmayr et al., 2011; Klimesch, 1999; Liljeström et al., 2018). More 
relevant to the current study, previous research found that increases in 
gamma-band activity were closely related to semantic and phonological 
processes, thereby strongly linking the reading process to gamma activity 
(Vidal et al., 2012). Because the roles of other frequency bands in reading 
remain unclear, gamma-band power was the primary focus of the 
present study.

For the purposes of this study, a large-scale EEG dataset employing 
naturalistic reading tasks is essential. The Chinese sentence reading 
EEG dataset released by Mou et al. (2024) is particularly well-suited 
to our research objectives for two key reasons. First, each participant 
in this dataset read more than 10,000 sentences, greatly exceeding the 
scale of most comparable EEG corpora and providing high statistical 
power for examining neural correlates of language processing. Second, 
rather than rapid serial visual presentation (RSVP), their dataset 
employed whole-sentence presentation which is more suitable for the 
current study, enabling more naturalistic investigation of sentence 
comprehension. It should be noted, however, that the logographic 
nature of Chinese, including the absence of explicit word boundaries 
and character-based information encoding, may limit the 
generalizability of the findings. To ensure the robustness and cross-
linguistic applicability of the current study, we additionally included 
the English ZuCo1.0 dataset (Hollenstein et al., 2018) in our analyses.

2 Materials and methods

All analysis scripts are available at OSF | Contextual embedding 
and EEG band power.

2.1 ChineseEEG dataset and EEG band power

A large-scale ChineseEEG dataset provided by Mou et al. (2024) 
was utilized for this study. In this dataset, each run was segmented into 
a series of units, with each unit containing no more than 10 Chinese 
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characters. In their study, 10 participants were instructed to read two 
novels (the Chinese versions of The Little Prince and Garnett Dream), 
presented unit by unit (less than 10 characters). During this, both their 
EEG and eye-tracking data were collected. Mou et al. (2024) provided 
two preprocessed versions of the EEG data, each with different filter 
bands. For this study, we selected the version with the 0.5–80 Hz filter 
band and a sampling rate of 256 Hz (after down sampling). More 
details on the preprocessing can be found in their publication. Aside 
from their preprocessing, no additional preprocessing steps were 
taken to enhance the replicability of the entire analysis.

The processing of the preprocessed EEG data was done using 
Python-MNE (Gramfort et  al., 2013). To ensure the accuracy of 
subsequent analyses, several electrodes (Electrodes near ears, forehead 
and back of head) are excluded from the dataset, these electrodes are 
either deemed irrelevant to the research focus or are prone to artifacts 
during data collection. After excluding these channels, the remaining 
87 electrodes are used for further analysis.

The EEG data contains event markers that are crucial for 
segmenting the continuous data into discrete epochs. The focus of this 
study is on two specific event types: ROWS, Marks the beginning of 
an epoch and ROWE, Marks the end of an epoch. Epochs were 
extracted building on these marks.

The Welch method is applied to compute the PSD of the signal for 
each EEG channel. This method divides the data into overlapping 
segments, applies a window function (Hanning window), and then 
calculates the Fourier transform of each segment. The resulting spectrum 
is averaged over all segments to estimate the power at different frequencies. 
The parameters for the Welch method include the length of each segment 
used in the Fourier transform, which is dynamically set based on the 
duration of the epoch. For each epoch, the window length ranges from 
0.5 s (minimum) to 1 s (maximum). The degree of overlap between 
consecutive segments is set to 50% (i.e., the number of overlapping 
samples between segments is half the segment length).

The power is calculated for several predefined frequency bands, each 
of which corresponds to specific cognitive states or processes: Delta: 
1–4 Hz, theta: 4–8 Hz, alpha: 8–13 Hz, beta: 13–30 Hz, gamma: 30–50 Hz. 
For each frequency band, the indices of the frequencies that fall within the 
band’s range are identified from the computed PSD. Then, the power 
within the frequency band is calculated by integrating the PSD over the 
selected frequency range. This is done by summing the power values 
corresponding to the frequencies within the range of each band. 
Mathematically, this integration is done using the trapezoidal rule (np.
trapz), which provides an approximation of the area under the curve of 
the PSD within the band. The power for each frequency band was 
calculated separately for each EEG channel. To obtain a summary 
measure per epoch, the average power across all channels was computed 
for each frequency band. This yielded the overall band power for each 
epoch in every frequency band.

2.2 Calculation of different features

The current analysis includes four cumulative distance metrics 
calculated from the contextual embeddings of each character: Total 
Euclidean Distance, Total Cosine Distance, Total Manhattan Distance, 
and Total Chebyshev Distance. These contextual embeddings were 
extracted from BERT-base-Chinese,1 where each Chinese character in a 

1 google-bert/bert-base-chinese · Hugging Face

unit is transformed into a 768-dimensional vector. Cumulative distances 
for each unit were computed by summing the distances between adjacent 
contextual vectors within the unit.

Additionally, six unit-level norms were included in this study, 
consisting of three types of norms—Euclidean, Manhattan, and 
Chebyshev—extracted separately from two models: BERT-Chinese 
and Text2Vec.2 For the BERT-Chinese model, each character (e.g., 7 
characters) in a unit was first transformed into contextual embeddings, 
resulting in an embedding matrix of size (7,768). The unit-level 
embedding was then obtained by averaging the first dimension of 
these embeddings, yielding a single vector of size (1, 768). For the 
Text2Vec model, the entire unit was directly transformed into a unit-
level embedding.

In addition to the above features, three derived features from 
dimensionality reduction were included: the sums of neighboring 
point distances, the perimeter, and the area of the convex hull. The 
dimensionality of the character-level embeddings was reduced to two 
using Principal Component Analysis (PCA), projecting the 
embeddings onto a 2D plane. The perimeter and area of the convex 
hull formed by these points were computed, as well as the sum of the 
distances between neighboring points within the convex hull.

For the calculation of cumulative surprisal, each sentence was first 
passed through BERT’s tokenizer to produce a sequence of subword 
tokens. Then, for each token position in turn, we created a “masked” 
input by replacing the original token with the special [MASK] token 
while leaving all other tokens unchanged. This masked sequence was fed 
into the BERT model to obtain the output probability distribution over 
the vocabulary at that masked position. We looked up the probability 
that BERT assigned to the original (unmasked) token, converted that 
probability into a token-level surprisal score by taking its negative log, 
and repeated this process for every token in the sentence. Finally, 
we  summed all token-level surprisal scores to produce a single 
cumulative surprisal value for each sentence, providing a robust measure 
of overall unpredictability as estimated by the language model. An 
example of feature calculation was given in Figure 1.

2.3 Statistical analyses

To investigate the relationship between the 14 features and EEG 
band powers, we fitted Linear Mixed Effect Models (LMM) using the 
statsmodels package in Python (Seabold and Perktold, 2010). The 14 
features were treated as fixed effects for each EEG band power, 
resulting in five separate LMMs, one for each frequency band. Each 
model included random intercepts for both participants and runs. 
Before analyses, the extreme values (a criteria of 2.5SD) were 
excluded from models. Importantly, since the dataset is informative 
enough, The Little Prince and Garnett Dream were analyzed separately 
to determine whether the results differed between these two sets of 
texts. In this analysis, no fixed effects were removed from the linear 
mixed models solely due to statistical insignificance. The primary aim 
was to explore potential factors that might explain the dependent 
variable, rather than focusing exclusively on significance levels. 
While the main threshold for significance was set at α = 0.05, factors 
with p < 0.1 were also reported.

2 shibing624/Text2Vec-base-chinese · Hugging Face
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2.4 ZuCo1.0 dataset and analyses

In the preprocessed ZuCo1.0 dataset (Hollenstein et  al., 
2018), 12 healthy, right-handed native English speakers read 
natural sentences while both EEG and eye movements were 
recorded. EEG was recorded with a 128-channel Geodesic 
HydroCel Sensor Net (Electrical Geodesics, Eugene, OR), 
sampled at 500 Hz with an analog band-pass of 0.1–100 Hz. Of 
those channels, 105 scalp electrodes and 9 EOG channels were 
retained for analysis; the remainder (face/neck) were discarded 
in their dataset and we use the 105 electrodes to calculate the 
averaged band power. After import into EEGLAB, data were 
high-pass filtered at 0.5 Hz and notch-filtered at 49–51 Hz, no 
further downsampling was applied—the data remained at 500 Hz 
throughout. For our study, we  exclusively analyzed data from 
Task 2 (“Normal reading – Wikipedia”) of the ZuCo 1.0 corpus, 
as it most closely mirrors natural reading. In this task, 
participants passively read 300 sentences drawn from a Wikipedia 
relation-extraction corpus, selected from an initial pool of 
relation-containing candidates (The dataset was substantially 
smaller than ChineseEEG, which included over 10,000 sentences 
per participant, whereas the English data comprised only 300 
sentences). One participant was excluded from our analyses due 
to a missing block of data.

In line with the Chinese EEG analysis, we  used the English 
counterparts of the same embedding architectures—namely, 

BERT-base-uncased3 and Text2Vec.4 All feature extractions, band-
power computations, and downstream analyses followed the same 
procedures as those used for the Chinese EEG data.

3 Results

3.1 The result of the little prince in 
ChineseEEG

The correlation matrix of these features was presented in Figure 2. 
No significant effects were found for the delta or theta bands. The only 
factor with a p-value below 0.1 was Total Cosine Distance (β = −2.251, 
SE = 1.157, z = −1.945, p = 0.052) in theta band, which did not reach 
the conventional significance threshold of α = 0.05.

However, for the alpha band, significant associations were 
identified with Total Cosine Distance (β = −1.512, SE = 0.405, 
z = −3.735, p < 0.001) and Euclidean Norm (Bert) (β = −1.034, 
SE = 0.334, z = −3.092, p = 0.002). For the beta band, only Total 
Cosine Distance (β = −1.303, SE = 0.682, z = −1.911, p = 0.056) and 

3 google-bert/bert-base-uncased · Hugging Face

4 shibing624/text2vec-base-multilingual · Hugging Face

FIGURE 1

Example of how 14 features were computed.
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Euclidean Norm (Bert) (β = −0.958, SE = 0.563, z = −1.701, p = 0.089) 
were close to significance.

For the gamma band, significant effects were observed for Total 
Euclidean Distance (β = 12.419, SE = 6.028, z = 2.06, p = 0.039) and the 
Area of Convex Hull (β = 0.375, SE = 0.185, z = 2.02, p = 0.043). 
Although not reaching the conventional threshold of α = 0.05, Total 
Manhattan Distance (β = −0.509, SE = 0.262, z = −1.941, p = 0.052), 
Total Chebyshev Distance (β = −3.253, SE = 1.749, z = −1.86, p = 0.063), 
and Euclidean Norm Text2Vec (β = −42.595, SE = 23.275, z = −1.83, 
p = 0.067) were close to significance. A summary was shown in Table 1.

3.2 The result of Garnett dream in 
ChineseEEG

The correlation matrix of these features was presented in Figure 3. For 
the result of Garnett Dream, neither significant effect nor factors with 
p < 0.1 was observed in the model of delta, theta and beta. However, the 

Euclidean Norm Text2Vec (β = 72.113, SE = 28.211, z = 2.556, p = 0.011), 
Manhattan Norm Text2Vec (β = −2.67, SE = 1.107, z = −2.411, p = 0.016) 
and cumulative surprisal (β = −1.054, SE = 0.485, z = −2.172, p = 0.03) 
were significant in the model of gamma band. Also, Total Euclidean 
Distance (β = 13.613, SE = 7.558, z = 1.801, p = 0.072), Total Manhattan 
Distance (β = −0.591, SE = 0.33, z = −1.794, p = 0.073) and Chebyshev 
Norm Text2Vec (β = −14.551, SE = 8.669, z = −1.679, p = 0.093) were 
close to significance. In alpha band, the cumulative surprisal (β = 0.394, 
SE = 0.22, z = 1.794, p = 0.073) were close to significance.

Since the result of Garnett Dream was quite different from the 
result of The Little Prince, a subsequent combined analysis was done 
to obtain more information.

3.3 The combined results in ChineseEEG

The materials (Garnett Dream and The Little Prince) utilized in 
the experiment, along with the interaction between materials and each 

FIGURE 2

Correlation matrix of features used in the text of The Little Princes. Off-diagonal correlation coefficients reported as “1.00” in the heatmap are due to 
rounding.
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feature, were treated as fixed effects in the linear mixed models 
(LMMs). However, no significant interaction effects were observed in 
any of the models, and as a result, these interactions as well as material 
effect were excluded to simplify the model.

In terms of frequency bands, no significant effects were found for 
the delta, theta, alpha, and beta bands, although many fixed effects 
approached edge significance. For delta band, The Area of Convex 
Hull (β = 2.585, SE = 1.394, z = 1.855, p = 0.064) and Manhattan 
Norm (Bert) (β = −9.779, SE = 5.342, z = −1.83, p = 0.067) were close 
to significance. While for beta band, factors with p < 0.1 was the Area 
of Convex Hull (β = 0.139, SE = 0.075, z = 1.848, p = 0.065). For alpha 
band, the cumulative surprisal (β = 0.302, SE = 0.17, z = 1.777, 
p = 0.076) was close to significance.

However, in the gamma band, the Total Euclidean Distance 
(β = 12.752, SE = 6.465, z = 1.972, p = 0.049), Total Manhattan 
Distance (β = −0.557, SE = 0.282, z = −1.978, p = 0.048), Euclidean 
Norm Text2Vec (β = 49.902, SE = 24.248, z = 2.058, p = 0.04) and 
cumulative surprisal (β = −1.03, SE = 0.424, z = −2.432, p = 0.015) 
were significant. Several were close, including Manhattan Norm 
Text2Vec (β = −1.79, SE = 0.953, z = −1.878, p = 0.06) and 
Chebyshev Norm Text2Vec (β = −14.409, SE = 7.419, z = −1.942, 
p = 0.052).

3.4 The results in ZuCo1.0

The correlation matrix of these features was presented in Figure 4. 
No significant effect was observed in gamma band, which is different 
from ChineseEEG dataset. In the theta band, Chebyshev Norm (Bert) 
(β = 0.075, SE = 0.024, z = 3.126, p = 0.002) was significant. In the 
alpha band, Total Cosine Distance was significantly negatively 
associated with power (β = −0.144, SE = 0.036, z = −4.052, p < 0.001). 
Also in the alpha band, Convex Hull Perimeter showed a reliable 
negative effect (β = −0.028, SE = 0.008, z = −3.370, p = 0.001). In the 
beta band, Total Cosine Distance again emerged as a significant 
negative predictor (β = −0.065, SE = 0.025, z = −2.632, p = 0.008). A 
summary was presented in Table 2.

4 Discussion

4.1 Overview of findings

The current study mainly explored the relationship between 
features derived from contextual embeddings (as well as some 
other NLP features) and EEG band power during Chinese and 
English sentence reading, with a particular focus on gamma band 
activity. The mixed yet intriguing results invite a deeper discussion 
of the directional associations (positive/negative) observed in 
Gamma and other frequency bands, their cognitive implications, 
and the potential influence of textual characteristics on these 
findings. Because the ZuCo corpus is much smaller than 
ChineseEEG dataset, we give greater weight to the ChineseEEG 
results in our interpretations.

4.2 Gamma band: directionality and 
cognitive interpretation

Total Euclidean Distance (TED) exhibited a positive correlation 
with gamma power in The Little Prince and the combined analysis. 
TED quantifies the cumulative semantic divergence between 
adjacent characters in a sentence. A larger TED implies greater 
sequential shifts in meaning, which may demand heightened 
neural resources to integrate contextually distant concepts. This 
aligns with prior findings that Gamma power reflects attentional 
engagement and semantic binding during language comprehension 
(Penolazzi et al., 2009; Tierney et al., 2014). The weaker effects in 
Garnett Dream may stem from text-specific properties: The Little 
Prince, with its narrative simplicity, may emphasize incremental 
semantic shifts, whereas Garnett Dream’s potential complexity 
(e.g., abstract themes or dense syntax) might dilute the salience of 
TED as a global metric.

Area of Convex Hull (AoC) showed a positive correlation in 
The Little Prince but failed to reach significance in Garnett Dream 
or the combined analysis. The AoC represents the semantic 

TABLE 1 Summary of results.

Features β (Fixed Effects) in LMMs

The little princess Garnett Dream Combined

Alpha Gamma Gamma Gamma

Total Euclidean distance 12.419* 12.752*

Total Cosine distance −1.512***

Total Manhattan distance −0.557*

Euclidean Norm (Bert) −1.034**

Manhattan Norm (Bert)

Euclidean Norm (text2vec) 72.113* 49.902*

Manhattan Norm (text2vec) −2.67*

Convex Hull Area 0.375*

Cumulative Surprisal −1.054* −1.03*

***p < 0.001; **p < 0.01; *p < 0.05, Boldface indicates results that remain significant after correction for multiple comparisons (α = 0.05/20 total tests), bands and features that did not reach 
significance are omitted for brevity.
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“spread” of a sentence in a 2D PCA-reduced embedding space. 
Larger areas may suggest broader semantic diversity, which could 
necessitate greater neural synchronization to coordinate 
distributed representations. However, the reliance on PCA may 
introduce critical limitations. PCA prioritizes variance preservation 
but may obscure nonlinear semantic relationships, particularly in 
texts with intricate or abstract content (e.g., Garnett Dream). This 
could explain the inconsistency: simpler texts like The Little Prince 
may retain sufficient geometric structure in 2D to correlate with 
Gamma power, whereas complex texts lose discriminative power 
through PCA.

Cumulative surprisal exhibited a negative correlation with 
gamma power in Garnett Dream and the combined analysis, while 
Euclidean Norm (text2vec) exhibited a positive correlation with 
gamma power in the analysis. These opposing directions suggest 
that cognitive load is multidimensional, with different embedding-
based features engaging distinct neural processes within the 
gamma frequency band.

4.3 Other frequency bands: marginal 
associations and theoretical implications

While gamma band dominated the results, weaker signals in other 
bands warrant discussion (though differences remain in different texts 
and datasets).

In both The Little Prince and ZuCo, Total Cosine Distance (TCD) 
showed significant negative correlations with Alpha power. Alpha 
oscillations are classically associated with cortical inhibition and reduced 
neural excitability (Clayton et al., 2018; Klimesch, 1999). The observed 
negative correlation suggests that sentences requiring less semantic 
reorientation (lower TCD, indicating smoother directional transitions 
between embeddings) may engage stronger alpha suppression. This 
suppression could reflect a disinhibition process, where reduced alpha 
power facilitates neural network activation for semantic integration 
(Hanslmayr et  al., 2011). Also, in Zuco, TCD exhibited a marginal 
negative correlation with Beta power. The marginal effect and the absence 
of the effect in other texts limits interpretability, even if beta oscillations 

FIGURE 3

Correlation matrix of features used in the text of Garnett Dream. Off-diagonal correlation coefficients reported as “1.00” in the heatmap are due to 
rounding.
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are implicated in higher-order linguistic functions, including syntactic 
maintenance and semantic memory retrieval (Lewis et al., 2016; Weiss 
and Mueller, 2012).

In all datasets, no effects reached significance in the delta band 
and only a single theta-band effect was detected, a pattern that aligns 
with the view that delta and theta oscillations predominantly support 
low-level sensory processing and memory encoding rather than 
higher-order linguistic functions (Basar and Duzgun, 2016; Haam 
et al., 2023; Rudoler et al., 2023).

4.4 Differences caused by datasets and 
languages

Although gamma-band power showed robust associations with 
different NLP features in the ChineseEEG dataset, no comparable 
effects emerged in the ZuCo1.0 data. This discrepancy may reflect the 
stark difference in corpus size—300 sentences per participant in 
ZuCo1.0 versus over 10,000  in ChineseEEG—leading to reduced 
power for detecting gamma-band relationships.

FIGURE 4

Correlation matrix of features used in the text of ZuCo1.0. Off-diagonal correlation coefficients reported as “1.00” in the heatmap are due to rounding.

TABLE 2 Summary of results.

Band Features β SE z p

Delta Convex Hull Area −0.002 0.001 −1.853 0.064

Theta Chebyshev Norm (BERT) 0.075 0.024 3.126 0.002

Alpha Convex Hull Perimeter −0.028 0.008 −3.37 0.001

Alpha Total cosine distance −0.144 0.036 −4.052 <0.001

Beta Manhattan Norm(Text2Vec) 0.022 0.013 1.669 0.095

Beta Total cosine distance −0.065 0.025 −2.632 0.008

A summary of result in ZuCo. Boldface indicates results that remain significant after correction for multiple comparisons (α = 0.05/20 total tests).
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Besides the corpus size, another important factor is the different 
tokenization strategy used by LLMs for Chinese and English. In 
BERT-Chinese and related models, tokens almost invariably 
correspond to single Chinese characters, reflecting the logographic 
nature of the writing system and the absence of explicit word 
boundaries. In contrast, English LLMs such as BERT-base-uncased 
typically operate at the word or subword level, with most tokens 
representing entire words or common morphemes. As a result, the 
distance metrics computed from contextual embeddings in Chinese 
are based on transitions between characters, whereas in English, they 
are calculated primarily over word-level units.

This discrepancy in tokenization has important implications for 
the interpretation of embedding-derived features. In Chinese, 
cumulative distance metrics index fine-grained semantic transitions 
at the character level, potentially capturing local integration processes 
during sentence comprehension. By contrast, in English, these metrics 
aggregate over broader linguistic units, corresponding to coarser 
semantic or syntactic transitions. Consequently, the neural correlates 
of such metrics may reflect different aspects of language processing 
across the two languages, thereby complicating direct cross-linguistic 
comparisons of EEG-embedding relationships. Future research may 
benefit from harmonizing tokenization schemes or adopting 
alternative linguistic units (e.g., word-level embeddings for both 
languages) to facilitate more direct comparisons of semantic distance 
metrics and their neural correlates.

Beyond these technical differences, inherent language traits may 
also play a crucial role. Native English and Chinese speakers employ 
distinct reading strategies as a function of their respective language 
systems. Chinese script is logographic, with each character generally 
mapping to a morpheme and often a monosyllabic word, whereas 
English is alphabetic, with more transparent grapheme-to-phoneme 
correspondence and multi-letter word units. This distinction leads 
Chinese reading to rely more heavily on holistic visuospatial 
processing and morphemic/semantic integration, whereas English 
reading emphasizes phonological decoding (Li et al., 2022). These 
processing differences may underlie the more robust gamma-band 
effects observed in Chinese data: the greater visual and semantic 
complexity of Chinese characters could impose increased demands on 
distributed neural synchronization, particularly when semantic 
divergence or unpredictability (as indexed by embedding distances or 
surprisal) is high. Together, these factors highlight the need for future 
cross-linguistic work to systematically control for both technical and 
linguistic variables in order to clarify the universality and language-
specificity of neural correlates of contextual embedding features.

5 Limitations

The limited sample size and text- and dataset- specific effects 
necessitates for replication with larger and more diverse cohorts. Also, 
while embedding-derived features offer rich insights, their cognitive 
interpretations remain indirect, canonical frequency bands support 
multiple, sometimes overlapping, cognitive operations, and that 
sentence-level embedding distances and norms represent relatively 
coarse summaries of the underlying processing. Furthermore, the 
focus on Chinese characters (a logographic system) limits 
generalizability; cross-linguistic studies are needed with extrapolation 
with alphabetic languages. Current study may also benefit from 

combing reading models such as E-Z reader. Comparative studies are 
needed to validate the universality of vector-based neural coding. The 
current study did not apply corrections for multiple comparisons, and 
the fitting of 20 linear mixed models (LMMs) may have reduced the 
reliability of the findings. Another limitation of the present analysis is 
the inclusion of highly correlated predictors (e.g., Total Euclidean 
Distance and Total Manhattan Distance, r = 0.99917) in the same 
model. While this approach allows for direct comparison of different 
distance metrics, it also introduces multicollinearity, which can inflate 
the standard errors of the coefficients and result in instability of 
significance estimates. Consequently, the interpretation of individual 
effects for these predictors should be made with caution, and the 
results primarily reflect the shared variance captured by these 
correlated measures.

Future studies could empirically validate embedding-derived 
metrics as objective indices of sentence difficulty and integrate them into 
stimulus design workflows in psycholinguistics. Building on these 
neural–linguistic associations, embedding-derived metrics such as 
cumulative surprisal or embedding-distance norms can be adopted as 
quantitative proxies for sentence difficulty when crafting psycholinguistic 
materials. Rather than relying solely on intuitive judgments, researchers 
could sample sentences at graded surprisal levels (e.g., low, medium, 
high) or along continuous ranges of Euclidean or cosine distance, 
ensuring that each condition imposes a predictable cognitive load.

6 Conclusion

This study offers preliminary evidence that features from 
contextual embeddings (as well as some other NLP features), 
particularly those capturing semantic divergence and geometric 
complexity, correlate with gamma band power during sentence 
reading. Future research should expand on these findings by 
integrating multimodal neural data and advanced NLP metrics to 
refine our understanding of the brain’s vector-based language encoding.
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