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In deep neural network (DNN) models, the weighted summation, or multiply-
and-accumulate (MAC) operation, is an essential and heavy calculation task,
which leads to high power consumption in current digital processors. The
use of analog operation in complementary metal-oxide-semiconductor (CMOS)
very-large-scale integration (VLSI) circuits is a promising method for achieving
extremely low power-consumption operation for such calculation tasks. In this
paper, a time-domain analog weighted-sum calculation model is proposed
based on an integrate-and-fire-type spiking neuron model. The proposed
calculation model is applied to multi-layer feedforward networks, in which
weighted summations with positive and negative weights are separately
performed, and two timings proportional to the positive and negative ones
are produced, respectively, in each layer. The timings are then fed into the
next layers without their subtraction operation. We also propose VLSI circuits
to implement the proposed model. Unlike conventional analog voltage or
current mode circuits, the time-domain analog circuits use transient operation in
charging/discharging processes to capacitors. Since the circuits can be designed
without operational amplifiers, they can operate with extremely low power
consumption. We designed a proof-of-concept (PoC) CMOS circuit to verify
weighted-sum operation with the same weights. Simulation results showed that
the precision was above 4-bit, and the energy efficiency for the weighted-
sum calculation was 237.7 Tera Operations Per Second Per Watt (TOPS/W),
more than one order of magnitude higher than that in state-of-the-art digital
AI processors. Our model promises to be a suitable approach for performing
intensive in-memory computing (IMC) of DNNs with moderate precision very
energy-efficiently while reducing the cost of analog-digital-converter (ADC)
overhead.

KEYWORDS

time-domain analog computing, weighted sum, spike-based computing, deep neural
networks, multi-layer perceptron, artificial intelligence hardware, AI processor, matrix-
vector multiplication

1 Introduction

Artificial neural networks (ANNs) or deep neural networks (DNNs), such as
convolutional deep neural networks (CNNs) (LeCun et al., 2002) and fully connected
multi-layer perceptrons (MLPs) (Cireşan et al., 2010), have shown excellent performance
on various intelligent tasks, such as object detection and image classification (Cireşan
et al., 2010; Krizhevsky et al., 2012; LeCun et al., 2015). However, DNNs require an
enormous number of parameters and computational capability, resulting in much heavier
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computation and data movements, which leads to high power
consumption in current digital computers, and even in highly
parallel coprocessors such as graphics processing units (GPUs).
To implement ANNs at edge devices such as mobile phones and
personal service robots, very low power consumption operation is
required.

In ANN models, the weighted summation, or multiply-and-
accumulate (MAC) operation, is an essential and heavy calculation
task (Shukla et al., 2019), and dedicated complementary metal-
oxide-semiconductor (CMOS) very-large-scale integration (VLSI)
processors have been developed to accomplish it (Chen et al., 2020).
As an implementation approach other than digital processors, the
use of analog operation in CMOS VLSI circuits is a promising
method for achieving extremely low power-consumption operation
for such calculation tasks (Hasler and Marr, 2013; Fick et al., 2017;
Mahmoodi and Strukov, 2018; Bavandpour et al., 2020).

From the perspective of computing architecture, it is well
known that traditional von Neumann-based architectures require
the movement of weights and intermediate computing results
between memory and processing units, resulting in extra latency
and energy consumption, which is further aggravated in the
data-intensive applications of DNNs (Horowitz, 2014; Sze et al.,
2017). To reduce or eliminate power consumption and latency
of data movement over memory, in-memory computing (IMC)
with SRAM or memristive devices, which act as analog memory, is
becoming a promising paradigm for accelerating DNNs. Analog in-
memory computing (AIMC), which combines analog computation
with the IMC architecture, can provide better energy efficiency
by performing MACs in parallel-also known as matrix-vector
multiplications (MVMs)-within the memory array in a single step
(Verma et al., 2019; Valavi et al., 2019; Jiang et al., 2020; Jia
et al., 2021a; Prezioso et al., 2015; Shafiee et al., 2016; Tsai et al.,
2018; Khaddam-Aljameh et al., 2022). Typically, an AIMC core
executes analog MVMs for a single ANN layer, multiplying the
stationary weight matrix stored in the core with the activation
vector applied at its input. SRAM-based implementations cannot
hold the whole weight of larger networks fully on-chip because of
their large areas for storing multi-bit weights (Jia et al., 2021b).
As a result, off-chip weight buffers are needed to store network
weights and transfer them partially to AIMC cores, which further
reduces energy efficiency. Additionally, SRAM’s volatility means
that on-chip weights are lost when power is turned off. Analog non-
volatile memory (NVM) technologies, such as resistive memory
and flash memory, offer multiple bits per device, high density, and
non-volatility, making it possible to store entire network weights
on-chip. This has led to an emerging trend in NVM-based analog
AI systems, where an increasing number of AIMC cores or tiles are
deployed to efficiently conduct inference tasks (Wan et al., 2022;
Fick et al., 2022; Le Gallo et al., 2023; Ambrogio et al., 2023).

Despite the exciting opportunities for energy-efficient ANN
processing, AIMC-based AI systems also present unique challenges
that must be addressed to realize their full potential. Beyond
the limitations in computation accuracy, a critical challenge is
the additional need for digital-to-analog converters (DACs) and
analog-to-digital converters (ADCs) to transfer intermediate data
between layers or tiles in digital form and to interface with digital
peripheral circuits when MAC computations are performed in the
current or voltage domain. These converters significantly limit the

energy efficiency and scalability of AIMC systems (Shafiee et al.,
2016; Marinella et al., 2018; Tsai et al., 2018; Verma et al., 2019; Jia
et al., 2021a). To mitigate or overcome the limitations of DACs and
ADCs, AIMC cores are increasingly adopting time-domain (TD)
computing for MAC operations and interfacing with digital systems
through digital-to-time converters (DTCs) and time-to-digital
converters (TDCs) (Bavandpour et al., 2019a,b, 2021; Yang et al.,
2019; Freye et al., 2022; Wu et al., 2022; Al Maharmeh et al., 2023;
Choi et al., 2023). TD computing offers better technology scaling
than voltage- and current-domain approaches (Al Maharmeh et al.,
2020; Freye et al., 2024; Al Maharmeh et al., 2024), while DTCs
and TDCs are generally more energy- and area-efficient than DACs
and ADCs (Chen et al., 2022; Khaddam-Aljameh et al., 2022).
Most TD schemes represent data using pulse-width modulation
(PWM) or delay. In multi-core TD AIMC systems, time-based
communication-where pulses are transmitted directly from tile to
tile or layer to layer in an analog manner-is emerging as another
key trend (Lim et al., 2020; Narayanan et al., 2021; Jiang et al.,
2022; Seo et al., 2022; Nägele et al., 2023; Ambrogio et al., 2023).
Because of the elimination of most DTCs and TDCs, system
energy efficiency can be further improved. However, the TD analog
computation is inherently susceptible to analog non-idealities, such
as process, voltage, and temperature (PVT) variations, limiting
the computation precision. Regarding accuracy, it is now widely
recognized that 4-8 bits provide stable inference performance for
most mainstream applications (Gupta et al., 2015; McKinstry et al.,
2018; Choi et al., 2018), and this level of precision can typically be
achieved through carefully designed analog circuits.

Successful DNNs are based on the second-generation artificial
neuron model, which processes real-valued data and utilizes
nonlinear activation functions (Roy et al., 2019). Most DNN
architectures require signed computations. Since the rectified
linear unit (ReLU) activation function (Nair and Hinton, 2010) is
commonly used and the inputs of the first layer can be normalized
as non-negative, IMC architectures have primarily been explored
for two-quadrant MACs. However, to accommodate a wider range
of applications, the AIMC system needs to support four-quadrant
MACs (Khaddam-Aljameh et al., 2022; Le Gallo et al., 2023;
Ambrogio et al., 2023; Le Gallo et al., 2024).

The time-domain weighted-sum calculation model was initially
proposed based on the third-generation neuron model-spiking
neurons inspired by the behavior of biological neurons (Maass,
1997a,b, 1999), to implement real-valued MACs in ANNs. In the
model, inputs and outputs are encoded as spike timings, and
weights are represented by the rising slope of the post-synaptic
potential (PSP).

Subsequent research has simplified and expanded this model
under the assumption of operation in analog circuits with transient
states (Morie et al., 2016, 2010; Tohara et al., 2016). However, they
have been limited to one-quadrant weighted-sum models where all
weights for a single neuron share the same sign, and these studies
did not address how to apply their models to neural networks.
The proposed analog circuit, consisting of multiple input resistive
elements and a capacitor (an RC circuit), enables extremely low-
power operation, with energy consumption potentially reduced to
the order of 0.1 fJ per operation. Throughout this paper, we refer
to this VLSI implementation approach as “time-domain analog
computing with transient states (TACT).” Unlike conventional
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weighted-sum operations in analog voltage or current modes,
the TACT approach is well-suited for achieving much lower
power consumption in CMOS VLSI implementations of ANNs.
In this work, we extend the model to address the above-described
challenges associated with NVM-based AIMC AI systems. Our
primary contributions are summarized as follows.

1) We extend the time-domain one-quadrant MAC calculation
model to four-quadrant one, where signed inputs are encoded
using a differential pair of spikes, and signed weights are
implemented through a dummy weights scheme. The output
is represented by a pair of spikes, with their timing difference
proportional to the MAC result, enabled by the added dummy
weights. Since both inputs and outputs are encoded in a timing
format, the AIMC core can be seamlessly integrated with
efficient DTCs and TDCs.

2) We theoretically demonstrate how MAC output spikes can be
directly transferred to the next layer, potentially eliminating
the need for DTCs and TDCs between tiles. Additionally, we
provide a clear explanation of the challenges associated with
spike transfer in this process.

3) We propose two sets of analog circuits, each consisting of
multiple input resistive elements and a capacitor (an RC
circuit), to implement the four-quadrant MAC computation.
Additionally, we describe a proof-of-concept (PoC) CMOS
circuit equivalent to the RC circuit, with a preliminary
estimation suggesting that the energy efficiency could reach
hundreds of TOPS/W (Tera Operations Per Second Per Watt)
and the precision could be four bit or higher.

4) We propose architectures for an analog NVM-based AIMC core
and system. In the core, signed weights can be implemented
using either a complementary scheme or a differential scheme,
depending on how dummy weights are introduced. At the
system level, tile-to-tile communication is achieved through
spike-based transmission in an analog manner.

2 Spike-based time-domain
weighted-sum calculation model

2.1 Time-domain weighted-sum
calculation with same-signed weights

A simple spiking neuron model, also known as an integrate-
and-fire-type (IF) neuron model, is shown in Figure 1 (Maass,
1999). In this model, a neuron receives spike pulses via synapses. A
spike pulse only indicates the input timing, and its pulse width and
amplitude do not affect the following processing. A spike generates
a temporal voltage change, which is called a post-synaptic potential
(PSP), and the internal potential of the n-th neuron, Vn(t), is equal
to the spatiotemporal summation of all PSPs. When Vn(t) reaches
the firing threshold θ , the neuron outputs a spike, and Vn(t) then
settles back to the steady state.

Based on the model proposed in Maass (1997a), a simplified
weighted-sum operation model using IF neurons is proposed. The
time span Tin is defined, during which only one spike is fed from
each neuron, and it is assumed that a PSP generated by a spike from
neuron i increases linearly with slope ki from the timing of the spike
input, ti, as shown in Figure 1.

A required weighted-sum operation is that normalized
variables xi (0 ≤ xi ≤ 1, i = 1, 2, · · · , N) are multiplied by weight
coefficients ai, and the multiplication results are summed regarding
i, where N is the number of inputs. This weighted-sum operation
can be performed using the rise timing of PSPs in the IF neuron
model. Input spike timing ti is determined based on xi using the
following relation:

ti = Tin(1 − xi), (1)

xi = (1 − ti

Tin
). (2)

Coefficients ai are transformed into the PSP slopes ki:

ki = λai, (3)

where λ is a positive constant. If the firing time of the neuron is
defined as tν , we easily obtain the equation

N∑
i=1

ki(tν − ti) = θ . (4)

If we define the following parameters:

β =
N∑

i=1

ai, (5)

we obtain

N∑
i=1

ai · xi = θ/λ + β(Tin − tν)
Tin

, (6)

= θ

λTin
+ β(1 − tν

Tin
). (7)

Here, we assume that all the weights in the calculation have the
same sign, i.e., ai ≥ 0 or ai ≤ 0 for all i. This is different from the
previous similar work in which only the sum of weights is restricted
to be positive for firing (Zhang et al., 2021). When all inputs are
minimum (∀i xi = 0), the left side of Equation 6 is zero. Then, the
output timing tν is given by

tmin
ν = θ

λβ
+ Tin. (8)

On the other hand, when all inputs are maximum (∀i xi = 1),
the left side of Equation 6 is β , and the output timing tν is given by

tmax
ν = θ

λβ
. (9)

The time span during which tν can be output is [tmax
ν , tmin

ν ], and
its interval is

Tout ≡ tmin
ν − tmax

ν = Tin. (10)

Thus, the time span of output spikes is the same as that of input
spikes, Tin.

In this model, since the normalization of the sum of ai
(β = 1) is not required [unlike in the previous work (Maass,
1997a, 1999; Tohara et al., 2016)], the calculation process becomes
much simpler. When implementing the time-domain weighted-
sum operation, setting the threshold potential θ properly is the key
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FIGURE 1

IF neuron model for weighted-sum operation: schematic of the model and weighted-sum operation using the rise timing of PSPs.

to making the operation work appropriately. As shown in Figure 1,
the earliest output spike timing has to be later than the latest input
spike timing Tin; that is, tmax

ν ≥ Tin. Thus,

θ ≥ λβTin. (11)

Also, we can rewrite Equation 11 as

θ = λβTin + δ, (12)

δ = ε(λβTin), (13)

where ε ≥ 0 is an arbitrarily small value. By substituting
Equations 12, 13 into Equations 8, 9, we obtain

tmin
ν = (2 + ε)Tin, (14)

tmax
ν = (1 + ε)Tin, (15)

where εTin is considered as a time slot between input and output
timing spans, as shown in Figure 1, and ε determines the length of
the slot.

2.2 Time-domain weighted-sum
calculation with different-signed weights

We propose a time-domain weighted-sum calculation model
with two spiking neurons, one for all the positive weights and the
other for all the negative ones. We apply Equation 6 to each neuron,
and the two results are summed as the final result of the original
weighted sum. Here, we show the details of the model.

Let a+i and a−i indicate the positive and negative weights,
respectively. We define

β+ =
N+∑
i=1

a+i ≥ 0, β− =
N−∑
i=1

a−i ≤ 0. (16)

Where N+ and N− are the numbers of positive and negative
weights, respectively:

N = N++N−,
N∑

i=1

ai =
N+∑
i=1

a+i +
N−∑
i=1

a−i , β = β++β−. (17)

Thus, assuming λ = 1, Equation 4 is rewritten for the positive
and negative weighted-sum operations as

N+∑
i=1

a+i (t+ν − ti) = θ+, (18)

N−∑
i=1

a−i (t−ν − ti) = θ−, (19)

where θ+(> 0), θ−(< 0), and t+ν and t−ν indicate the threshold
values and output timings for the positively and negatively
weighted-sum operation, respectively. We obtain

N+∑
i=1

a+i · xi = θ+ + β+(Tin − t+ν )
Tin

, (20)

N−∑
i=1

a−i · xi = θ− + β−(Tin − t−ν )
Tin

. (21)
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Therefore, we can obtain the original weighted-sum result:

N∑
i=1

ai · xi = ∑N+
i=1 a+i · xi +

∑N−
i=1 a−i · xi

= θ++θ−+βTin−(β+t+ν +β−t−ν )
Tin

. (22)

Let us define a dummy weight a0 as the difference between both
absolute values of β±:

a0 = −(β+ + β−). (23)

If β+ ≥ −β−, then a0 ≤ 0 and this dummy weight is
incorporated into the negative weight group, and vice versa. This
dummy weight is related to a zero input, x0 = 0, which means
t0 = Tin. By using the dummy weight, we can make the absolute
values of β± identical (β = 0), and we define

βo = β+ = −β−. (24)

Also, according to Equations 12, 13, the absolute values of θ+

and θ− can be the same, and θ+ + θ− = 0. Therefore, Equation 22
can be rewritten as

N∑
i=1

ai · xi = βo(t−ν − t+ν )
Tin

. (25)

3 Time domain neural network model

3.1 Neuron model

The typical neuron model of ANNs is shown in Figure 2a,
which has N inputs xi with weights wi and a bias b;

y = f (
N∑

i=1

wi · xi + b), (26)

where y is the output of the neuron, and f is an activation function.
We can consider the bias as a weight whose input is always unity
and regard the 0 index weight as the bias throughout this paper.
Therefore, our time-domain weighted-sum calculation model with
the dummy weight can be applied to this neuron model, as shown
in Figure 2b. According to Equation 25,

N∑
i=0

wi · xi = β(t−ν − t+ν )
Tin

. (27)

Based on Equation 27, we propose another model, shown in
Figure 2c, in which each synapse has two sets of inputs and weights;
one is (xi, wi) and the other is (0,−wi). In this model, it is not
necessary to add a dummy weight because the summation of
positive weights is equal to the absolute one of negative weights
automatically, i.e., β = ∑N

i=0 ‖wi‖.
As the activation function f , we often use the rectified linear

unit called “ReLU” (Nair and Hinton, 2010), which is defined
as follows:

f (x) = ReLU(x) =
{

x if x ≥ 0,

0 otherwise
. (28)

We can implement the ReLU function by comparing the output
timings t−ν and t+ν in the time-domain weighted-sum calculation
as follows:

f (
N∑

i=0

wi · xi) = ReLU(
β(t−ν − t+ν )

Tin
) = β(t−ν − t+ν )

Tin
(29)

where, if t−ν > t+ν , the difference between the two timing values
is regarded as the output transferred to neurons in the next layer,
and if t−ν < t+ν , we set t−ν and t+ν to be identical to make the
output zero because of the negative weighted-sum result. Its circuit
implementation will be shown later.

3.2 Neural network model

In this section, we extend our time-domain neuron model
shown in Figure 2c to the neural network and theoretically
show the intermediate timing transfer mechanisms between
layers. We first apply the procedure to a two-layer MLP, which
has one hidden layer and two sets of input and weight for
each neuron shown in Figure 3, as an example, and then
generalize it.

In this MLP, according to Equation 27, the weighted-sum
result of the j-th neuron in the hidden layer labeled as n
can be

N∑
i=0

w(n)
ij · xi =

β
(n)
j

Tin
(t(n)−

vj − t(n)+
vj ), (30)

where β
(n)
j = ∑N

i=0 ‖w(n)
ij ‖, t(n)−

vj and t(n)+
vj are the timings

generated at the j-th neuron in the n-th layer. The output y(p)
k of

the k-th neuron in the output layer labeled as p(= n + 1) is

y(p)
k = ∑N

j=1 w(p)
jk · f (

∑N
i=0 w(n)

ij · xi) + b(p)
k

= ∑N
j=1 w(p)

jk · f (
β

(n)
j

Tin
(t(n)−

vj − t(n)+
vj )) + b(p)

k

= ∑N
j=0 w(p)

jk · β
(n)
j

Tin
(t(n)−

vj − t(n)+
vj ), (31)

where ReLU is used as the activation function, and the bias b(p)
k =

w(p)
0k is represented in the time-domain model by

b(p)
k = w(p)

0k · 1

= w(p)
0k · β

(n)
0

Tin
(t(n)−

v0 − t(n)+
v0 ), (32)

in which t(n)+
v0 = Tin is paired to w(p)

0k , t(n)−
v0 = 0 is paired to −w(p)

0k
and β

(n)
0 = 1 as there is no input to the bias.

In the MLP shown in Figure 3, we transfer the output timings
t(n)+
vj and t(n)−

vj generated in layer n to the neurons in layer p and
perform the time-domain weighted-sum operation. The timings
t(p)+
vk and t(p)−

vk are assumed to be produced at the k-th neuron

of layer p. We relate timing t(n)+
vj to weight w(p)

jk and t(n)−
vj to

−w(p)
jk . We also assume here N = 3 and that w(p)

1k ≥ 0, w(p)
2k <

0, w(p)
3k ≥ 0, b(p)

k ≥ 0, and θ
(p)+
k = −θ

(p)−
k , where θ

(p)+
k and θ

(p)−
k
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FIGURE 2

Neuron model: (a) typical neuron model; (b) neuron model for time-domain weighted-sum operation with a dummy weight, wn+1; (c) neuron model
for time-domain weighted-sum operation in which each synapse has two sets of inputs and weights that one set is (xi, wi) and the other is (0,−wi) or
(ti, wi) and (Tin,−wi) according to Equation 2.

FIGURE 3

General neural network model with two inputs and outputs for
time-domain weighted-sum calculation with positive and negative
weights.

are the threshold values for positively and negatively weighted-
sum operations, respectively. Thus, according to Equation 4, we
can obtain

w(p)
1k (t(p)+

vk − t(n)+
v1 ) + (−w(p)

2k )(t(p)+
vk − t(n)−

v2 )

+w(p)
3k (t(p)+

vk − t(n)+
v3 ) + b(p)

k (t(p)+
vk − t(n)+

v0 ) = θ
(p)+
k (33)

(−w(p)
1k )(t(p)−

vk − t(n)−
v1 ) + w(p)

2k (t(p)−
vk − t(n)+

v2 )

+(−w(p)
3k )(t(p)−

vk − t(n)−
v3 ) + (−b(p)

k )(t(p)−
vk − t(n)−

v0 ) = θ
(p)−
k (34)

By adding Equation 33 to Equation 34 on the left and right
sides, respectively, the following relationship is obtained:

N=3∑
j=0

‖w(p)
jk ‖ · (t(p)+

vk − t(p)−
vk ) +

N=3∑
j=0

w(p)
jk · (t(n)−

vj − t(n)+
vj ) = 0. (35)

Thus, we can obtain the following simple expression:

N=3∑
j=0

w(p)
jk · (t(n)−

vj − t(n)+
vj ) = (t(p)−

vk − t(p)+
vk ) ·

N=3∑
j=0

‖w(p)
jk ‖. (36)

Therefore, we generalize the number of neurons N = 3 to N
again, and replace Equation 36 with Equation 31. Then, the output
y(p)

k in Equation 31 can finally be

y(p)
k = ∑N

j=1 w(p)
jk · ReLU(

∑N
i=0 w(n)

ij · xi) + b(p)
k

= (t(p)−
vk − t(p)+

vk ) · ∑N
j=0 ‖w(p)

jk ‖ · β
(n)
j

Tin
. (37)

As a result, for neurons in the hidden layer n, we apply the time-
domain weighted-sum operation to generate the timing t(n)+

vj and

t(n)−
vj for the positively and negatively weighted-sum calculation

from the input layer, respectively. Then, these timings are directly
transferred to neurons in the next layer p, and timing t(p)+

vj and

t(p)−
vj are obtained. Finally, we calculate the final outputs of the MLP

using Equation 37 without calculating the middle layers’ weighted-
sum results using Equation 27.

We summarized the above mathematical time-domain
operations in general MLPs graphically as shown in Figure 4.
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FIGURE 4

Summary of the general scheme of the time-domain weighted-sum neural network model.

We refer to the “sum of the weights” as the “sum of the weights’
absolute values” in the remainder of this paper. Note that the
weights in the middle and output layers are replaced by the
products of the original weight and the sum of the neuron’s
weights in the previous layer during the time-domain process. We
indicated the sum of the new reconfigured weights by B instead
of the aforementioned β , which indicated the sum of the original
weights, as follows:

β
(1)
j =

∑
i=0

‖w(1)
ij ‖, (38)

B(2)
j =

∑
i=0

β
(1)
j ‖w(2)

ij ‖, (39)

· · ·
B(n)

j =
∑
i=0

B(n−1)
j ‖w(n)

ij ‖. (40)

Note the bias of neuron j in layer n, whose index i = 0, is
indicated as B(n−1)

0 w(n)
0j , in which B(n−1)

0 ≡ 1. Therefore, the new
weight connected from neuron i in layer n − 1 to neuron j in layer
n becomes B(n−1)

i w(n)
ij . Then we can have the original weighted-

sum result of the j−th neuron in the n−th layer indicated by y(n)
j

expressed as follows:

y(n)
j =

B(n)
j

Tin
(t(n)−

νj − t(n)+
νj ) (41)

3.3 Numerical simulations of neural
networks

We performed numerical simulations to verify our weighted-
sum calculation model. First, in order to verify our model
for weighted-sum calculation with different-signed weights, we
conducted a simulation to perform a weighted-sum calculation
with 501 pairs of inputs and weights that consisted of 249 positive
and 252 negative weights. We added a dummy weight to make the
sum of positive weights equal to the absolute sum of the negative
ones. Figure 5 shows the simulation results of the time-domain
weighted-sum calculation with a dummy weight wn+1. The results
show that the weighted summation can be calculated correctly with
different negative and positive firing timing inputs, each set of
which are multiplied by the corresponding signed weights.

Then, we applied our model to a four-layer MLP (784-100-100-
100-10) to classify the MNIST digit character set. We trained the
MLP and then performed inference according to Equation 41 with
the obtained weights, which were either binary (Courbariaux et al.,
2015) or floating-point values. As described above, output spike
timings at each neuron in the previous layer were directly conveyed
to the neurons in the next layer without obtaining weighted-sum
results in the middle layers. We found that we obtained the same
weighted-sum calculation results in the last layer and also the
same recognition precisions in both NNs as in the numerically
calculated ones.

Frontiers in Neuroscience 07 frontiersin.org

https://doi.org/10.3389/fnins.2025.1656892
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Wang et al. 10.3389/fnins.2025.1656892

FIGURE 5

Simulation results for the time-domain weighted-sum calculation
model applied to the neuron shown in Figure 2b: (a) PSP of
positively weighted-sum operation with 249 inputs in which
Tin = 1, λ = 1, ε = 0.01, β+ = 24.01, and θ+ = 24.25. The output
spike timing is t+ν = 1.6356. (b) PSP of negatively weighted-sum
operation with 253 inputs in which
w0 = −0.06, wn+1 = −2.819, Tin = 1, λ = 1, , ε = 0.01, β− = −24.01,
and θ− = −24.25. The output spike timing is t−ν = 1.8321. Thus, the
result of the weighted-sum calculation is ‖β±‖(t−ν − t+ν )/Tin = 4.718.

4 Issues about time-domain
weighted-sum models toward VLSI
implementation

We have established our time-domain weighted-sum neural
network model in a general form and summarized it in Figure 4,
and conducted numerical simulations that verified the effectiveness
in pre-trained ANN models in Section 3. In this section, we will
discuss some issues about the model when implemented in analog
VLSI circuits.

4.1 Weights and biases

In the general time-domain weighted-sum neural network
model as shown in Figure 4 and Equation 41, the weights must be
reconfigured as B(n−1)

i w(n)
ij in order to generate two timings whose

interval is proportional to the original weighted-sum result, which
results in the same recognition accuracy as the original ANN. The
reconfigured weights correspond to the PSP slope in the IF neuron
model. The slope will be greatly increased with the reconfiguration,
which may result in very high potentials that do not satisfy the
hardware system criteria. To solve this problem, we introduced a

scaling factor �(n) for the n-th layer as shown in Figure 6, to adjust
the PSP slope to a reasonable level. Note that every neuron in the
same layer has the same scaling factor.

Then the reconfigured weight becomes Bs(n−1)
i w(n)

ij /�(n), where

Bs(n−1)
i represents the scaled sum of weights in the previous layer

n − 1, and the scaled sum of the reconfigured weights in layer n,
which is also interpreted as the total PSP slope, is expressed as

Bs(1)
j = 1

�(1)

∑
i=0

‖w(1)
ij ‖, (42)

Bs(2)
j = 1

�(2)

∑
i=0

Bs(1)
j ‖w(2)

ij ‖, (43)

· · ·
Bs(n)

j = 1
�(n)

∑
i=0

Bs(n−1)
j ‖w(n)

ij ‖ (44)

so we can obtain

Bs(1)
j = 1

�(1) β
(1)
j , (45)

Bs(2)
j = 1∏(2)

l=1 �(l)
B(2)

j , (46)

· · ·
Bs(n)

j = 1∏(n)
l=1 �(l)

B(n)
j (47)

Note that the bias b(n)
j is reconfigured as

b(n)
j = Bs(n−1)

0 w(n)
0j /�(n), (48)

where Bs(n−1)
0 = 1∏(n−1)

l=1 �(l)
. Accordingly, the original weighted-

sum result is expressed as

y(n)
j =

(n)∏
l=1

�(l)
Bs(n)

j

Tin
(t(n)−

νj − t(n)+
νj ) =

B(n)
j

Tin
(t(n)−

νj − t(n)+
νj ) (49)

From Equations 49, 41, we can find that the difference between
timing t(n)−

νj and t(n)+
νj remains the same before and after the

scaling operations.
So far we have shown the general scaling process toward the

weights’ reconfiguration. Next, we will show some special cases that
can simplify the weights’ reconfiguration. Suppose that

∑
i�=0

‖w(n)
i1 ‖ =

∑
i�=0

‖w(n)
i2 ‖ = · · · =

∑
i�=0

‖w(n)
ij ‖, (50)

‖w(n)
01 ‖ = ‖w(n)

02 ‖ = · · · = ‖w(n)
0j ‖ (51)

meaning that the bias and the sum of the original weights of
every neuron in layer n are equal to each other, such as in
the BinaryConnect NN model (Courbariaux et al., 2015), whose
weights and biases are binary values. Let the scaling factor �(n) be

�(1) = β
(0)
j ,

�(2) = β
(1)
j ,

· · ·
�(n) = β

(n−1)
j (52)
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FIGURE 6

Weights scaling: a scaling factor �(n) , expressed in Equation 52, is introduced for the n-th layer to adjust the reconfigured large PSP slope shown in
Figure 4 to a reasonable level. After scaling, the slopes are expressed as Bs(n−1)

i w(n)
ij /�(n) , where Bs(n−1)

i represents the scaled sum of weights in the

previous layer n − 1 and is scaled by �(n−1).

where β
(l)
j denotes the sum of the weights of the layer l(=

0, 1, 2 · · · n) expressed as follows:

β
(0)
j = 1,

β
(1)
j =

∑
i�=0

‖w(1)
ij ‖ + 1

β
(0)
j�=0

‖w(1)
0j ‖,

β
(2)
j =

∑
i�=0

‖w(2)
ij ‖ + 1

β
(1)
j�=0

‖w(2)
0j ‖,

· · ·
β

(n)
j =

∑
i�=0

‖w(n)
ij ‖ + 1

β
(n−1)
j�=0

‖w(n)
0j ‖, (53)

where β
(n)
j=0 = 1. Note that β

(n)
1 = β

(n)
2 = · · · = β

(n)
j under

the assumption of Equations 50, 51. Then we can generate the
desired timings using only the original weights w(n)

ij , i �= 0 shown in
Figure 7a, without reconfiguring the weights (not biases included)
as B(n−1)

i w(n)
ij , i �= 0 shown in Figure 4. However, the bias b(n)

j must
be reconfigured as

b(n)
j = 1

β
(n−1)
j

· w(n)
0j (54)

Accordingly, the original weighted-sum result will be

y(n)
j =

∏(n)
l=1 β(l)

Tin
(t(n)−

νj − t(n)+
νj ) (55)

where β(l) denotes the identical value of the sum of weights among
neurons in layer l.

In modern deep neural networks with deep layers and a large
number of parameters, several experiments using models without
bias demonstrated that there was an accuracy degradation of 3.9%
and 4% in CIFAR10 and CIFAR100 datasets, respectively (Wang
et al., 2019). Such degradation of less than 5% is supposed to be
acceptable when deploying DNNs to resource-constrained edge
devices, in which trade-offs between accuracy, latency, and energy
efficiency need to be carefully considered (Shuvo et al., 2022; Ngo
et al., 2025).

We also trained a four-layer MLP (784-100-100-100-10) with
and without biases on the datasets MNIST and Fashion-MNIST
and compared the results in both the floating-point and binary
weight connect models, as shown in Figure 8. The results showed
that the accuracies with and without biases were comparable.
Therefore, in certain cases, the bias can be removed so that
the reconfiguration cost of the bias shown in Equations 48, 54
is saved.

We have shown a case in which the weights and biases were
restricted to the condition shown in Equations 50, 51 so that
the cost of the weights’ reconfiguration can be saved. Next, we
propose a method to satisfy the restriction in Equation 50 for a
more general ANN model to save the weights’ reconfiguration
shown in Figure 7b. Note that we discuss the method in the
model without biases for simplicity. We add a dummy weight
to every neuron in layer n to make the sum of the weights
identical. We regard the identical value in layer n as β(n). The
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(b)

(a)

FIGURE 7

Derivations from the general time-domain weighted-sum process in
MLPs whose weights (biases not included) involved in the
time-domain process, i.e., B(n−1)

j w(n)
ij , i �= 0, are scaled to the original

weights, w(n)
ij , i �= 0: (a) the models with biases: the biases are scaled

as
β (n−1)

0

β (n−1)
i �=0

· w(n)
0j under the assumption of Equations 50, 51

accompanying the weights’ scaling operation; (b) the models
without biases: we add an extra dummy weight
d(n)

j = β (n) −∑
i ‖w(n)

ij ‖ whose two input timings are the same, i.e., the
input is 0, for neuron j in layer n to make the sum of weights of every
neuron in layer n identical, which is marked as β (n) .

dummy weight to neuron j in layer n, indicated as d(n)
j , is

allocated as:

d(n)
j = β(n) −

∑
i

‖w(n)
ij ‖ (56)

Note that the input timings for the dummy weights d(n)
j and

−d(n)
j are identical, such as Tin, meaning a 0 input.

4.2 Output timing difference

From Equations 40, 41, we can find that the coefficients applied
to the output timing difference are increased monotonically as the
layer goes deeper. It has generally been observed that the outputs of
every neuron, i.e., the weighted-sum results, converge at a certain
range in a well-trained ANN. Therefore, we figure out that the
timing difference decreases monotonically as the layer goes deeper.
This effect essentially results from our calculating the positively
signed and negatively signed weighted sums separately.

We demonstrate the timing difference issue by means of a
case study in which we perform the time domain weighted-sum
inference in a well-trained four-layer MLP (784-100-100-100-10).
We collected the distributions of the output timing differences in
every layer of the MLP when performing evaluation on the 10,000-
sample test data in MNIST. Figure 9a shows the distributions where
the histograms show only 100 of the total 10,000 samples, but
the standard deviations σ are calculated over the total samples.
The output timing differences, σ , of the 1st, 2nd, 3rd and 4th
layers are 5.89e−8 s, 5.91e−9 s, 8.42e−10 s, and 1.08e−10 s,
respectively, under the assumption of Tin = 1 μs. If we assume
that the resolution time step is 10 ns by taking the noise of
analog circuits into account, the great majority of the timing
differences in the 2nd and the subsequent layers are less than
the time resolution. Therefore, such a time-domain multi-layer
model cannot be implemented into analog VLSI directly. We also
conducted an experiment to evaluate the noise tolerance of the
above model. In the experiment, we injected noise with different
standard deviations σ to the output timing t−ν and t+ν , and evaluated
the MLP recognition accuracy. The results are shown in Figure 10a.
We can find that the accuracy deteriorates when the noise level is
around 0.5 ns near the distribution σ of the 3rd layer. The model
does not work when σ is over 5 ns near that of the 2nd layer.

In order to solve the problem of decreasing output timing
difference, we can introduce an amplification component into
our model, which can amplify the timing difference just before
the timings are transferred to the next layer. To examine
the effectiveness of this amplification function, we performed
experiments in which we amplified the timing difference with
different gains and evaluated the recognition accuracy with the
critical noise injected. The results are shown in Figure 10b. We
also plotted the output timing difference distributions in every
layer under different amplifying gain conditions. Figure 10c shows
the distribution standard deviations, and Figure 9b shows the
histograms with a gain of 10. Note that in these experiments, we
simply set the same amplification gains in every layer without
optimizing the gains. We found that the recognition accuracy is
comparable to that in the model without noise injected if we
select a gain to make the output timing difference distribution
σ of the last layer larger than the critical noise level, such as 10
ns. However, for more robustness, the distribution σ is supposed
to be much larger than the resolution time step so that the gain
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FIGURE 8

The MLP recognition accuracy comparison between models with and without bias on (a) MNIST dataset and (b) Fashion-MNIST dateset. The MLP
models are the BinaryConnect model and the general floating-point connection model.

can be 8–10. We verified the effectiveness of the amplification
function and established the time-domain weighted-sum model
with amplification components. In VLSI circuits, we can introduce
a time-difference-amplifier (TDA) (Abas et al., 2002; Asada et al.,
2018) component to amplify the output timing difference.

5 Circuits and architectures for
TACT-based neural networks

As a VLSI implementation of our time-domain weighted-sum
calculation based on the TACT approach, we propose an RC circuit
in which a capacitor is connected by multiple resistors, as shown in
Figure 11a. Theoretical estimations have indicated that this circuit
can perform weighted-sum calculations with extremely low energy
consumption (Tohara et al., 2016; Wang et al., 2016).

In CMOS VLSI implementation, resistance R can be replaced
by a p-type MOS field-effect transistor (pMOSFET), as shown
in Figure 11b. The approximately linear slope k is generated
by capacitance C and ON resistance of a pMOSFET with a
step voltage input Vin, where we use step voltages instead of
spike pulses as inputs. Each resistance should have a rectification
function to prevent an inverse current. The rectification function
is automatically realized by the FET operation as follows. When
a pMOSFET receives a step-voltage input, the terminal voltage of
the input is higher than that at C, and therefore, the input-side
terminal of the pMOSFET is the “source,” and the capacitor-side
terminal is the “drain.” In this state, if the gate-source voltage
(Vgs) of the pMOSFET is set to exceed its threshold voltage, the
pMOSFET turns on, and C is charged up. On the other hand, when
a pMOSFET receives no input, the terminal voltage of the input

is lower than that at C, and therefore the source-drain position
in the pMOSFET is reversed; i.e., the input-side terminal of the
pMOSFET is “drain,” and the capacitor-side terminal is “source.”
In this state, if the Vgs of the pMOSFET is set not to exceed its
threshold voltage, the pMOSFET turns off, and the charges stored at
C do not flow back to the input side. An operating example is shown
in Figure 11c, in which the synapse pMOSFET without input (i.e.,
the input voltage is 0V here), denoted as S2, is strongly off because
its gate-source voltage is positive.

5.1 Architectures

We propose a circuit architecture of a neural network
based on our established weighted-sum calculation model
which is suitable for our TACT approach, accommodating
both positive and negative weights. The architecture is shown
in Figure 12 and is composed of a crossbar synapse array
acting as resistive elements, the neuron part functioning as
thresholding and nonlinear activation, and the configuration part
controlling synapses.

Figure 12a shows a two-layer MLP architecture described in
Figure 3 whose input layer is modeled in Figure 2c in which each
synapse has two sets of inputs and weights. Another type of input
layer architecture of the MLP is shown in Figure 12b, as described
in Figure 2b.

In Figure 12a, there are two inputs for each synapse circuit,
which are ti as the signal input and tdmy as a dummy input in the
first layer, and t+νi and t−νi in the subsequent layers. Pairs of positive
and negative timings are directly connected to the next layer
without subtracting the negatively signed weighted results from the
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(a) (b)

FIGURE 9

The distribution of the output timing difference, t−ν − t+ν , in every layer of the 784-100-100-100-10 four-layer MLP model Tin is assumed to be 1 μs:
(a) the original distributions; (b) the distributions in which the timing differences are amplified with a gain of 10.

positively signed weighted results according to the theory explained
in Section 3.2 and Figure 4. In the synapse array, the horizontal
and vertical lines are referred to as “axons” of the previous neurons
and “dendrites” of the post neurons, respectively. Suppose that each
axon line has M synapse circuits, and each dendrite line receives
N synapse outputs. A synapse cell is designed with two resistive
elements and two pairs of switches. A set of two identical resistances
represents the weight value. The resistive elements are expected
to be replaced by resistance-based analog memories to store the
multi-bit weights (Sebastian et al., 2020). We can assume that the
upper-side axon is for t+νi and the other is for t−νi, and the left-
side dendrite is for a positive weight connection while the other
is for a negative one. The two switches are exclusively controlled
according to the corresponding sign of weights, which is controlled
by the weight control circuit. By contrast, there is one input and
one weight for each synapse in the input layer shown in Figure 12b,
while a row of dummy cells with a dummy input is added to
the synapse array conceptually according to Section 3.1. The
resistances (di) of the dummy cell are theoretically set according to
Equation 56.

In AIMC, the most common implementation of a signed weight
wi is using a differential scheme with two subweights w+

i and w−
i

such that

wi = w+
i − w−

i , (57)

in which one is for positive weighted-sum and another is for
negative one (Xiao et al., 2023; Aguirre et al., 2024). Here, we treat
the following signed weight configuration as a special differential
scheme (Yamaguchi et al., 2020; Kingra et al., 2022):

wi =
{

w+
i − 0 where w−

i is disabled, indicating wi ≥ 0,

0 − w−
i where w+

i is disabled, indicating wi ≤ 0
. (58)

Subtraction to obtain the final weighted-sum result is
commonly performed in either differential mode or common
mode. In differential mode, the operation is carried out at two
separate nodes within the peripheral circuitry (Guo et al., 2017;
Joshi et al., 2020; Yamaguchi et al., 2020; Sahay et al., 2020). In
common mode, the subtraction is performed at a single node based
on Kirchhoff’s law, using either bipolar (Wan et al., 2022; Aguirre
et al., 2024) or unipolar inputs (Wang et al., 2021; Khaddam-
Aljameh et al., 2022; Le Gallo et al., 2023). It’s worth noting
that common-mode subtraction with unipolar inputs generally
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(a)

(b) (c)

FIGURE 10

Noise tolerance examinations in the four-layer MLP: (a) recognition accuracy of the model without timing difference amplification evaluated under
different noise levels; (b) recognition accuracy under the different amplification gain conditions with the critical noise injected; (c) the output timing
difference distributions in every layer under different amplifying gain conditions.

FIGURE 11

Synapse circuit: (a) step voltage input and a resistance-capacitance (R-C) circuit in which a pMOSFET acts as resistance R, and parasitic capacitance
of interconnection and the gate capacitance of MOSFETs act as C in a VLSI circuit; (b) approximately linear response of the step voltage input at
timing ti with a slope determined by gate voltage Vki. (c) an operating example for explanation of the pMOSFET synapse’s rectification function.

requires a bi-directional peripheral circuit, capable of providing two
voltages: one higher and one lower than the common node voltage.

Signed inputs for 4-quadrant computation can be implemented
by applying opposite polarity voltage (Marinella et al., 2018;
Le Gallo et al., 2024) or using differential pairs when the input is
unipolar (Schlottmann and Hasler, 2011; Bavandpour et al., 2019a).
Additionally, signed computations without adopting the above two
designs need multiple phase modulations, like two phases in Kingra
et al. (2022) for 2-quadrant MAC and four phases in Le Gallo et al.
(2023) for 4-quadrant MAC.

With respect to the signed weight representation in our
approaches, the configuration in Figure 12b is regarded as the
special differential scheme described in the expression Equation 58,
and that in Figure 12a restricts the two subweights to be

identical. We term the latter configuration as a complementary
scheme, distinguishing it from the general differential scheme.
With respect to the signed input representation, we adopt
differential pairs as in Bavandpour et al. (2019a). Our model
with the complementary scheme can perform four-quadrant
MAC computation in a single modulation without bipolar or bi-
directional peripheral requirements.

The neuron part shown in Figure 12a consists of a thresholding
block, such as a comparator, a ReLU block, and a post-processing
block (PPB) after the ReLU block. ReLU block with input and
output timings is shown in Figure 13a. The relationships between
inputs and outputs are illustrated in Figure 13b, in which both
output timings are set identical to t+νi when t+νi > t−νi. The truth
table is shown in Figure 13c and accordingly the ReLU activation
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a

b

FIGURE 12

TACT-based MLP architecture. (a) A two-layer MLP architecture described in Figure 3 whose input layer is modeled in Figure 2c in which each
synapse has two set of inputs and weights. (b) Another type of input layer architecture of the MLP that there is one input and one weight for each
synapse while a row of dummy cells with a dummy input are added.

function can easily be implemented by logic gates, as shown in
Figure 13d. With such circuits, the nonlinear activation function
ReLU can be implemented with low energy consumption operation.
The PPB can be either a TDA circuit or a set of TDC and DTC
to address the issue of timing difference shrinkage discussed in

Section 4.2. The TDA is introduced to transmit the timings to the
next layer directly in an analog manner, and the TDC and DTC are
introduced to communicate intra-layers digitally. We leave the PPB
implementation with high performance, such as high precision and
low power, to be an open design problem in this paper.
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FIGURE 13

ReLU block: (a) symbol of the block; (b) timing chart of the ReLU function; (c) true table and (d) circuit implementation by simple logic gates.

We summarize the main differences of our complementary
weight approach with respect to the previous similar
research (Bavandpour et al., 2019a; Sahay et al., 2020), which
are also partially inspired by our model (Morie et al., 2016; Tohara
et al., 2016; Wang et al., 2018), as follows:

• Input and output information are encoded as the timing of
step voltages, rather than using a PWM scheme.

• The response to every input step voltage in the output line
is continuous until the firing threshold of the post-neuron,
instead of being discrete.

• We represent signed weights using a complementary scheme,
where the two sub-weights are identical, rather than using a
differential scheme.

5.2 Circuits

In order to evaluate the energy consumption and computation
precision of our TACT-based circuit, we designed a PoC CMOS
circuit equivalent to the RC circuit to perform the one-column
(i.e., N inputs and 1 output) signed weighted-sum calculation
whose synapses are in a complementary scheme. The resistive
elements in the synapses are replaced by pMOSFETs. The
comparator function in the neuron part is implemented by an
S-R latch.

We propose SRAM-based synapse circuits to implement an
IMC circuit for the computation shown in Figure 14a. It consists

of a 1-bit standard 6T SRAM to save the sign of a weight, a pair
of pMOSFETs assigned as M1 and M2 serving as the value of the
weight, and four pMOSFETs assigned as M3- M6 functioning as
switches controlled by the SRAM state. M1 and M2 are identical
transistors and are biased with the same gate voltage, implementing
the concept of complementary dummy weight introduced in the
previous chapter. They serve as current sources operating in the
subthreshold saturation region, showing a high impedance. M3-
M6 switch the current to the dendrite line determined by the
weight’s sign according to the diagram shown in Figure 12a. As a
PoC circuit, we implemented the BinaryConnect NN (Courbariaux
et al., 2015) by limiting all the biases of the synapse pMOSFETs to
be the same.

The main design parameters and simulation conditions are
summarized in Table 1. We used the predictive technology model
(PTM) 45 nm SPICE model for the design and simulation. Both
the gate length and width of the synapse pMOSFET were 0.45 μm.
Based on the size of the synapse pMOSFET, we estimated the
parasitic capacitance of the axon line and the dendrite line based on
65 nm SRAM-based IMC circuits (Kneip and Bol, 2021). As a result,
the parasitic capacitance of the axon line per cell, denoted as Cal, is
around 0.88 fF, and the parasitic capacitance of the dendrite line per
cell, denoted as Cdl, is around 0.87 fF. Vgs of the synapse pMOSFET
is fixed at –0.34 V so that one synapse current Is is around 11.5 nA
under typical conditions. We set the typical supply voltage of the
synapse array and the neuron part to be 1.1 and 0.75 V, respectively.
And the threshold (VTH) of the post-neuron (i.e., the S-R latch) is
around 0.4 V typically.
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FIGURE 14

SRAM based synpase circuit and the main analog nonidealities (ANIs): (a) SRAM based synpase circuit; (b) Main ANIs of the synapse circuit (c) Output
timing jitters induced by the ANIs (d) Main ANIs summary.

With respect to the computation precision, we set the full-scale
time window (Tin) to be 640 ns, and the effective number of bit
(ENOB) to be 4 bit as the design target. Then the total capacitance
of the dendrite line (CDL) for MAC computation can be obtained by

CDL = NIsTin

VTH
. (59)

CDL includes the total parasitic capacitance of the dendrite
lines, NCdl, the input capacitance of the post neuron, Ci, and an
extra load capacitor (Cl) which is needed under the given Tin and
Is conditions.

Analog computation suffers from analog nonidealities
(ANIs) (Kneip and Bol, 2021). These ANIs limit the computation
precision, leading to a degradation of the inference accuracy. We
sketch the main ANIs on our synapse circuit shown in Figure 14b.
All these ANIs may cause the output jitters illustrated in Figure 14c
resulting in computation errors. We summarize them in Figure 14d
classifying them by their stochastic or deterministic nature.

TABLE 1 Simulation conditions.

Item Unit Values

Technology – PTM 45 nm

Dimension of the synapse
pMOSFET

μm L = 0.45 W = 0.45

Process corner – tt ss ff

Vth of pMOSFET V –0.423 –0.452 –0.392

Temperature ◦C 27 –30 90

Vgs of the pMOSFET V fixed to –0.34

Drain current of the
pMOSFET

nA 11.5 4.3 27.8

Because time domain computation is sensitive to PVT
variations (Seo et al., 2022) and local device mismatch is dominant
than the intrinsic noise (Kneip and Bol, 2021; Gonugondla et al.,
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FIGURE 15

TACT-based time-domain weighted-sum simulation results: (a) operational waveforms in a Monte Carlo simulation; (b) Monte Carlo simulation
results of the positive or negative dendrite line firing timings t+υ /t−υ and their difference �tυ = t+υ − t−υ vs. the number of MAC’s inputs (Nin); (c)
comparison of the simulated PVT variations between t+υ /t−υ and �tυ ; (d) simulated weighted-sum linearily and its PVT variation in which the max
peak-to-peak (�tυpp) is 8.33 ns in the case of Nin = 50; (e) the distribution of the 50-inputs weighted-sum results (�tυ ) which is well divided into 16
levels based on the predefined 4-bit output time resolution.

2021), we mainly considered the local mismatch and the PVT
variations here.

We conducted Monte Carlo simulations to evaluate the errors
induced by the local mismatches. A set of Monte Carlo simulation
waveforms is shown in Figure 15a, and the standard deviations (σ )
vs. the number of the inputs, N, are shown in Figure 15b. The
results showed that the σ scales roughly as 1√

N
leading to higher

precision for larger N (Bavandpour et al., 2019a).
Our approach is expected to have good immunity to the PVT

variations. The error induced by PVT variation in both the synapse
array and neuron part is common to both positive and negative
dendrite lines, and thus can be canceled from the point of view
of the timing difference. To verify the PVT variation tolerance, we
conducted a simulation for N = 50 with process and temperature
(PT) corners shown in Table 1, and changed the supply voltage
of the neuron part to 0.65, 0.75, and 0.85 V. We supposed that
the gate voltage of the synapse pMOSFET changed along with

the supply voltage of the synapse part, and thus the Vgs of it is
fixed. One MAC PVT simulation result is shown in Figure 15c.
The synapse current Is changed largely across the PT variations
shown in Table 1, resulting in large variation of the single dendrite
line output timings t+ν /t−ν . However, the variation of the difference
between them was much smaller. We also checked the weighted-
sum linearity against the ideal 16 levels with 1LSB = 40 ns under
the PVT simulations. The simulated linearity result is shown in
Figure 15d, indicating good linearity with the max peak-to-peak
variation of 8.33 ns. Finally, we incorporated the PVT and Monte
Carlo simulation results into a distribution shown in Figure 15e,
indicating that the ENOB = 4 was well achieved. We summarized
the potentially achievable MAC computation precision with the
number of inputs increased to 256, as shown in Table 2.

With respect to energy consumption, an input voltage charges
up the parasitic capacitance of the axon line, Cal, and then charges
the capacitance CDL via synapse pMOSFET. Therefore, total energy
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TABLE 2 The MAC computation precision.

Item Unit Simulation
results

Estimation results

Number of inputs – 50 100 256

Full-scale time
window (Tin)

ns 640

Peak-to-peak of
t−ν − t+ν caused by
PVT

ns 8.33 5.89 1.4

Standard deviation
(σ ) of t−ν − t+ν
caused by mismatch

ns 3.61 ∗3.12 1.99

ENOB computed by
1 σ

bit 5.3 5.7 6.3

ENOB computed by
3 σ

bit 4.4 4.7 5.4

∗Simulation value.

consumption due to the dendrite line (DL) charge and discharge,
EDL, is expressed by EDL = CDLV2

TH , and it was 80.59 fJ when
VTH = 0.3 V and 143.27 fJ when VTH = 0.4 V. And the total
energy consumption per DL due to the axon line (AL) charge and
discharge, EAL, is expressed by EAL = NCalV2

dd, and it was 53.24 fJ,
where Vdd = 1.1 V.

As for the neuron part, which consists of an S-R latch and the
output buffer, the energy consumption, ENP, was about 216.91 fJ
when the supply voltage was 0.75 V, and decreased to about 76.49 fJ
when the supply voltage is 0.65 V.

As a result, overall energy consumption was 210.32 fJ per MAC
with N = 50 when the supply voltage of the neuron part was 0.65 V.
This implies that the energy efficiency is 237.74 TOPS/W (Tera-
Operations Per Second per Watt). This efficiency is comparable to
the state of the art of the analog MAC macros (Seo et al., 2022;
Choi et al., 2023). We summarized the potentially achievable energy
efficiency with the number of inputs increased to 256, as shown in
Table 3.

Our purpose is to show the potential energy efficiency and
computation precision of the TACT-based circuit, so we don’t
perform further design space exploration for optimizing the
performance of the proposed circuit.

6 Discussion

We discuss some possible improvements on our PoC circuit
design here.

In our design of the PoC circuit, we use a relatively long time
window, i.e., 640 ns, to guarantee a moderate time resolution of 4–
7 bits. The single MAC operation time is 1,300 ns, which consists of
20 ns for the neuron part reset and 640 ns for the input and output
window, respectively. To improve the system latency, we can utilize
massively parallel MAC operations to compensate for the relatively
slow single MAC computation thanks to our simple readout circuit,
which is area-efficient to make one column one readout possible,
like in Khaddam-Aljameh et al. (2022) and Wan et al. (2022). At
the system level, applying a pipeline scheme that uses the output
timing window as the input window for subsequent computation

can also be an effective approach (Lim et al., 2020; Seo et al., 2022;
Ambrogio et al., 2023).

We also designed a relatively large capacitance for the DL,
which could degrade the area efficiency of the AIMC system. The
total DL capacitance, CDL, is about 895 fF when the number of
inputs is 50, as shown in Table 3. Because the wiring parasitic
capacitance of the dendrite line per cell, Cdl, is around 0.87 fF,
an extra load capacitor, Cl, will be about 850 fF, leading to
area inefficiency in the neuron part. According to Equation 59,
shortening the full-scale time window, decreasing the total
integration current, or setting a higher VTH will help minimize the
capacitance to improve area efficiency. Regarding the decrease of
the total integration current, we can make use of sparsity-aware
optimization such as weight pruning. The sparsity, which we refer
to as the ratio of zero weights to total weights, is typically 20%–
50% (Sze et al., 2017; Deng et al., 2020). Suppose the sparsity is
40%, then CDL will be about 540 fF. To further minimize neuron
part area overhead, we can also implement capacitors using a multi-
layer metal-oxide-metal (MoM) structure lying on top of transistors
in the synapse cell (Valavi et al., 2019; Seo et al., 2022). Typically,
the capacitance is 1–3 fF per cell area. By this means, Cl can be
optimized to about 340 fF and such capacitance can be efficiently
implemented by a MOSCAP (Bavandpour et al., 2019a).

Shortening the full-scale time window also helps minimize
CDL, but it will lead to a degradation of the computation
precision. Because it involves improving the system latency and
lowering the energy consumption of the neuron part, we are
interested in estimating the results. When the number of inputs
is increased to 256, the ENOB can be up to 5.4 bits, as shown
in Table 2. If we keep the ENOB target as four bits, the full-
scale time window can be shortened to about 250 ns. CDL will
be decreased to about 1,100 fF, and Cl can be minimized to a
level under 100 fF, given that the weights’ sparsity is 40%, Is is
11.5 nA, and VTH = 0.4 V. Accordingly, the energy consumption
of the DL, EDL, and the neuron part, ENP, is optimized to
about 176.6 and 29.9 fJ, respectively. This indicates an energy
efficiency of 534.3 TOPS/W. We compare our work with the
previous AIMC designs shown in Table 4. Our work shows a
favorable performance.

When deploying DNNs to resource-constrained edge devices,
trade-offs between accuracy, model size, latency, and energy
efficiency need to be optimized, which is typically achieved by
means of algorithm—hardware codesigns (Shuvo et al., 2022; Ngo
et al., 2025).

Our future work includes the design and fabrication of a fully
parallel MVM AIMC core or macro and the measurement of DNN
inference accuracy, latency, energy efficiency on more realistic
datasets such as CIFAR-10 and CIFAR-100. With respect to NN
model optimization for the hardware, the improvement of the
accuracy of the NN model without bias, discussed in Section 4.1,
will also be an important effort.

7 Conclusions

We introduced a time-domain four-quadrant MAC calculation
model where signed inputs are encoded using a differential pair
of spikes, and signed weights are implemented through a dummy
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TABLE 3 The energy consumption breakdown and the energy efficiency of one MAC computation.

Item Unit Simulation results Estimation results

Number of inputs – 50 100 256

Energy consumption due to the axon line charge and discharge

Total capacitance of the AL per DL fF 44 88 225.28

Supply voltage in synapse part V 1.1

Energy consumption of the AL per DL fJ 53.24 106.48 272.59

Energy consumption due to the dendrite line charge and discharge

Total capacitance of one DL fF 895.44 1788.94 4576.66

Firing threshold of the neuron part V 0.4 0.3 0.3 0.3

Energy consumption of one DL fJ 143.27 80.59 161.00 411.90

Energy consumption in the neuron part

Supply voltage in neuron part V 0.75 0.65 0.65 0.65

Energy consumption of one DL fJ 216.91 76.49 76.49 76.49

Energy efficiency

Total energy consumption of one MAC fJ 413.42 210.32 343.97 760.97

Energy/synapse operation fJ 8.27 4.21 3.44 2.97

Energy efficiency TOPS/W 120.94 237.74 290.72 336.41

TABLE 4 Performance summary and comparison with previous AIMC designs.

Item This work Bavandpour
et al.
(2019a)

Lim et al.
(2020)

Seo et al.
(2022)

Wu et al.
(2022)

Wan
et al.
(2022)

Le Gallo
et al.
(2023)

Memory type SRAM NOR flash SRAM Analog memory SRAM RRAM PCM

Technology 45 nm 55 nm 28 nm 28 nm 28 nm 130 nm 14 nm

Computing method Time-domain & charge accumulation Time-domain Voltage Current

MVM core size [row×column], precision [bit], energy efficiency (EE) [TOPS/W], computation time [ns]

Core size 256 × 1 50 × 1 100 × 100/
500 × 500

27 × 8 28 × 28 64 × 256 256 × 256 256 × 256

Input precision Timing (ENB 4-6b) Pulse width
(ENB 6b)

Pulse width
(ENB 3-7b)

Analog 4b/8b 4b 8b

Weight precision 1b/Analog Analog 4b 5b 4b/8b Analog Analog

Output precision Timing (ENB 4-6b) Pulse width
(ENB 6b)

Pulse width
(analog)

Pulse width
(analog)

Digital
14b/22b

Digital
6b

Digital
8b

EE [TOPS/W] 534.3 (4b) 237.7 85/135 7.1 (system) 332.7 85–112 (4b/4b/14b) 16 2.48

Computation time [ns] 500 (4b) 1,300 50–200 150* 740 105.6 4,000 520–1,518

Results Estimated Simulated Simulated Simulated Measured Measured Measured Measured

Readout

Circuit S-R Latch TDC Amp&
Comparator

VTC TDC column ADC CCO-based
ADC

Compactness © © × © © © ©
Cycles or modulation
steps for one
MVM computation

Single Single Multiple Multiple Multiple Multiple Four

Processing w/o ADC © × © © × × ×

Other features

Signed MAC 4-quadrant 2-quadrant 2-quadrant 2-quadrant 4-quadrant 4-quadrant 4-quadrant

PVT tolerance © © × © NA NA NA

*Estimated value. **Colored as favorable features of this work.
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weights scheme. The output is represented by a pair of spikes, with
their timing difference proportional to the MAC results, enabled
by the added dummy weights. Since both inputs and outputs
are encoded in a timing format, the AIMC core with this model
can be seamlessly integrated with efficient DTCs and TDCs. We
proposed architectures for our TACT-based MLP with the weights
configured in a complementary scheme. We demonstrated a
proof-of-concept (PoC) CMOS circuit equivalent to the previously
proposed RC circuit, with preliminary simulation suggesting that
the energy efficiency could reach hundreds of Tera Operations Per
Second Per Watt (TOPS/W) and the precision could be four bit
or higher.

Our proposed time-domain weighted-sum calculation
model promises to be a suitable approach for intensive
in-memory computing (IMC) of deep neural networks (DNNs)
with moderate multi-bit inputs/outputs and weights, and
avoiding or reducing the cost of ADC overhead so as to
ultimately run the DNNs energy efficiently on edge devices for
inference tasks.
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Cireşan, D. C., Meier, U., Gambardella, L. M., and Schmidhuber, J. (2010). Deep, big,
simple neural nets for handwritten digit recognition. Neural Comput. 22, 3207–3220.
doi: 10.1162/NECO_a_00052

Courbariaux, M., Bengio, Y., and David, J.-P. (2015). “Binaryconnect: training deep
neural networks with binary weights during propagations,” in Advances in Neural
Information Processing System, 28 (Red Hook, NY: Curran Associates).

Deng, L., Li, G., Han, S., Shi, L., and Xie, Y. (2020). Model compression and
hardware acceleration for neural networks: a comprehensive survey. Proc. IEEE 108,
485–532. doi: 10.1109/JPROC.2020.2976475

Fick, L., Blaauw, D., Sylvester, D., Skrzyniarz, S., Parikh, M., Fick, D., et al.
(2017). “Analog in-memory subthreshold deep neural network accelerator,” in
2017 IEEE Custom Integrated Circuits Conference (CICC) (Austin, TX: IEEE), 1–4.
doi: 10.1109/CICC.2017.7993629

Fick, L., Skrzyniarz, S., Parikh, M., Henry, M. B., and Fick, D. (2022). “Analog
matrix processor for edge AI real-time video analytics.” in 2022 IEEE International
Solid-State Circuits Conference (ISSCC), Vol. 65 (San Francisco, CA: IEEE), 260–262.
doi: 10.1109/ISSCC42614.2022.9731773

Freye, F., Lou, J., Bengel, C., Menzel, S., Wiefels, S., Gemmeke, T., et al. (2022).
Memristive devices for time domain compute-in-memory. IEEE J. Explor. Solid-State
Comput. Devices Circuits 8, 119–127. doi: 10.1109/JXCDC.2022.3217098

Freye, F., Lou, J., Lanius, C., and Gemmeke, T. (2024). “Merits of time-
domain computing for vmm-a quantitative comparison,” in 2024 25th International
Symposium on Quality Electronic Design (ISQED) (San Francisco, CA: IEEE), 1–8.
doi: 10.1109/ISQED60706.2024.10528682

Gonugondla, S. K., Sakr, C., Dbouk, H., and Shanbhag, N. R. (2021).
Fundamental limits on energy-delay-accuracy of in-memory architectures in inference
applications. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 41, 3188–3201.
doi: 10.1109/TCAD.2021.3124757

Guo, X., Bayat, F. M., Bavandpour, M., Klachko, M., Mahmoodi, M., Prezioso,
M., et al. (2017). “Fast, energy-efficient, robust, and reproducible mixed-signal
neuromorphic classifier based on embedded nor flash memory technology,” in 2017
IEEE International Electron Devices Meeting (IEDM) (San Francisco, CA: IEEE), 6–5.
doi: 10.1109/IEDM.2017.8268341

Gupta, S., Agrawal, A., Gopalakrishnan, K., and Narayanan, P. (2015). “Deep
learning with limited numerical precision,” in International Conference on Machine
Learning (Lille: JMLR.org), 1737–1746.

Hasler, J., and Marr, B. (2013). Finding a roadmap to achieve large neuromorphic
hardware systems. Front. Neurosci. 7:118. doi: 10.3389/fnins.2013.00118

Horowitz, M. (2014). “1.1 computing’s energy problem (and what we can do about
it),” in 2014 IEEE international solid-state circuits conference digest of technical papers
(ISSCC) (San Francisco, CA: IEEE), 10–14. doi: 10.1109/ISSCC.2014.6757323

Jia, H., Ozatay, M., Tang, Y., Valavi, H., Pathak, R., Lee, J., et al. (2021a). “15.1
a programmable neural-network inference accelerator based on scalable in-memory
computing,” in 2021 IEEE International Solid-State Circuits Conference (ISSCC),
Vol. 64 (San Francisco, CA: IEEE), 236–238. doi: 10.1109/ISSCC42613.2021.9365
788

Jia, H., Ozatay, M., Tang, Y., Valavi, H., Pathak, R., Lee, J., et al. (2021b). Scalable and
programmable neural network inference accelerator based on in-memory computing.
IEEE J. Solid-State Circuits 57, 198–211. doi: 10.1109/JSSC.2021.3119018

Jiang, H., Huang, S., Li, W., and Yu, S. (2022). Enna: An efficient neural network
accelerator design based on adc-free compute-in-memory subarrays. IEEE Trans.
Circuits Syst. I: Regul. Papers 70, 353–363. doi: 10.1109/TCSI.2022.3208755

Jiang, Z., Yin, S., Seo, J.-S., and Seok, M. (2020). C3sram: an in-memory-computing
sram macro based on robust capacitive coupling computing mechanism. IEEE J.
Solid-State Circuits 55, 1888–1897. doi: 10.1109/JSSC.2020.2992886

Joshi, V., Le Gallo, M., Haefeli, S., Boybat, I., Nandakumar, S. R., Piveteau, C., et al.
(2020). Accurate deep neural network inference using computational phase-change
memory. Nat. Commun. 11:2473. doi: 10.1038/s41467-020-16108-9

Khaddam-Aljameh, R., Stanisavljevic, M., Mas, J. F., Karunaratne, G., Brändli, M.,
Liu, F., et al. (2022). Hermes-core—a 1.59-tops/mm 2 pcm on 14-nm cmos in-memory
compute core using 300-ps/lsb linearized cco-based adcs. IEEE J. Solid-State Circuits
57, 1027–1038. doi: 10.1109/JSSC.2022.3140414

Kingra, S. K., Parmar, V., Sharma, M., and Suri, M. (2022). Time-multiplexed
in-memory computation scheme for mapping quantized neural networks on
hybrid cmos-oxram building blocks. IEEE Trans. Nanotechnol. 21, 406–412.
doi: 10.1109/TNANO.2022.3193921

Kneip, A., and Bol, D. (2021). Impact of analog non-idealities on the design space
of 6t-sram current-domain dot-product operators for in-memory computing. IEEE
Trans. Circuits Sys. I: Regul. Papers 68, 1931–1944. doi: 10.1109/TCSI.2021.3058510

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). “Imagenet classification with
deep convolutional neural networks,” in Advances in Neural Information Processing
System (Red Hook, NY: Curran Associates), 25.

Le Gallo, M., Hrynkevych, O., Kersting, B., Karunaratne, G., Vasilopoulos,
A., Khaddam-Aljameh, R., et al. (2024). Demonstration of 4-quadrant analog
in-memory matrix multiplication in a single modulation. Npj Unconv. Comput. 1:11.
doi: 10.1038/s44335-024-00010-4

Le Gallo, M., Khaddam-Aljameh, R., Stanisavljevic, M., Vasilopoulos, A., Kersting,
B., Dazzi, M., et al. (2023). A 64-core mixed-signal in-memory compute chip based on
phase-change memory for deep neural network inference. Nat. Electron. 6, 680–693.
doi: 10.1038/s41928-023-01010-1

LeCun, Y., Bengio, Y., Hinton, G. (2015). Deep learning. Nature 521, 436–444.
doi: 10.1038/nature14539

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P. (2002). Gradient-based learning
applied to document recognition. Proc. IEEE 86, 2278–2324. doi: 10.1109/5.726791

Lim, J., Choi, M., Liu, B., Kang, T., Li, Z., Wang, Z., et al. (2020). “AA-ResNet:
energy efficient all-analog resnet accelerator,” in 2020 IEEE 63rd International Midwest
Symposium on Circuits and Systems (MWSCAS) (Springfield, MA: IEEE), 603–606.
doi: 10.1109/MWSCAS48704.2020.9184587

Maass, W. (1997a). Fast sigmoidal networks via spiking neurons. Neural Comput. 9,
279–304. doi: 10.1162/neco.1997.9.2.279

Maass, W. (1997b). Networks of spiking neurons: the third generation of neural
network models. Neural Netw. 10, 1659–1671. doi: 10.1016/S0893-6080(97)00011-7

Maass, W. (1999). Computing with spiking neurons. Pulsed Neural Netw. 2, 55–85.
doi: 10.7551/mitpress/5704.003.0006

Mahmoodi, M. R., and Strukov, D. (2018). “An ultra-low energy internally analog,
externally digital vector-matrix multiplier based on nor flash memory technology,” in
Proceedings of the 55th Annual Design Automation Conference (New York, NY: ACM),
1–6. doi: 10.1145/3195970.3195989

Marinella, M. J., Agarwal, S., Hsia, A., Richter, I., Jacobs-Gedrim, R., Niroula, J., et al.
(2018). Multiscale co-design analysis of energy, latency, area, and accuracy of a reram
analog neural training accelerator. IEEE J. Emerg. Sel. Top. Circuits Syst. 8, 86–101.
doi: 10.1109/JETCAS.2018.2796379

McKinstry, J. L., Esser, S. K., Appuswamy, R., Bablani, D., Arthur, J. V., Yildiz,
I. B., et al. (2018). Discovering low-precision networks close to full-precision
networks for efficient embedded inference. arXiv [preprint] arXiv:1809.04191.
doi: 10.48550/arXiv.1809.04191

Morie, T., Liang, H., Tohara, T., Tanaka, H., Igarashi, M., Samukawa, S., et al.
(2016). “Spike-based time-domain weighted-sum calculation using nanodevices for
low power operation,” in 2016 IEEE 16th International Conference on Nanotechnology
(IEEE-NANO) (Sendai: IEEE), 390–392. doi: 10.1109/NANO.2016.7751490

Morie, T., Sun, Y., Liang, H., Igarashi, M., Huang, C.-H., Samukawa, S., et al.
(2010). “A 2-dimensional si nanodisk array structure for spiking neuron models,” in
Proceedings of 2010 IEEE International Symposium on Circuits and Systems (Paris:
IEEE), 781–784. doi: 10.1109/ISCAS.2010.5537456

Nägele, R., Finkbeiner, J., Stadtlander, V., Grözing, M., and Berroth, M.
(2023). Analog multiply-accumulate cell with multi-bit resolution for all-analog AI
inference accelerators. IEEE Trans. Circuits Syst. I: Regul. Papers 70, 3509–3521.
doi: 10.1109/TCSI.2023.3268728

Nair, V., and Hinton, G. E. (2010). “Rectified linear units improve restricted
Boltzmann machines,” in Proceedings of the 27th International Conference on Machine
Learning (ICML-10) (Madison, WI: Omnipress), 807–814.

Narayanan, P., Ambrogio, S., Okazaki, A., Hosokawa, K., Tsai, H., Nomura, A.,
et al. (2021). Fully on-chip mac at 14 nm enabled by accurate row-wise programming
of pcm-based weights and parallel vector-transport in duration-format. IEEE Trans.
Electron Devices 68, 6629–6636. doi: 10.1109/TED.2021.3115993

Ngo, D., Park, H.-C., and Kang, B. (2025). Edge intelligence: a review of deep
neural network inference in resource-limited environments. Electronics 14:2495.
doi: 10.3390/electronics14122495

Prezioso, M., Merrikh-Bayat, F., Hoskins, B. D., Adam, G. C., Likharev,
K. K., Strukov, D. B., et al. (2015). Training and operation of an integrated
neuromorphic network based on metal-oxide memristors. Nature 521, 61–64.
doi: 10.1038/nature14441

Roy, K., Jaiswal, A., and Panda, P. (2019). Towards spike-based machine intelligence
with neuromorphic computing. Nature 575, 607–617. doi: 10.1038/s41586-019-1677-2

Sahay, S., Bavandpour, M., Mahmoodi, M. R., and Strukov, D. (2020). Energy-
efficient moderate precision time-domain mixed-signal vector-by-matrix multiplier
exploiting 1t-1r arrays. IEEE J. Explor. Solid-State Comput. Devices Circuits 6, 18–26.
doi: 10.1109/JXCDC.2020.2981048

Schlottmann, C. R., and Hasler, P. E. (2011). A highly dense, low power,
programmable analog vector-matrix multiplier: The FPAA implementation. IEEE J.
Emer. Sel. Top. Circuits Syst. 1, 403–411. doi: 10.1109/JETCAS.2011.2165755

Frontiers in Neuroscience 21 frontiersin.org

https://doi.org/10.3389/fnins.2025.1656892
https://doi.org/10.1109/CICC53496.2022.9772826
https://doi.org/10.1109/CICC57935.2023.10121209
https://doi.org/10.48550/arXiv.1805.06085
https://doi.org/10.1162/NECO_a_00052
https://doi.org/10.1109/JPROC.2020.2976475
https://doi.org/10.1109/CICC.2017.7993629
https://doi.org/10.1109/ISSCC42614.2022.9731773
https://doi.org/10.1109/JXCDC.2022.3217098
https://doi.org/10.1109/ISQED60706.2024.10528682
https://doi.org/10.1109/TCAD.2021.3124757
https://doi.org/10.1109/IEDM.2017.8268341
https://doi.org/10.3389/fnins.2013.00118
https://doi.org/10.1109/ISSCC.2014.6757323
https://doi.org/10.1109/ISSCC42613.2021.9365788
https://doi.org/10.1109/JSSC.2021.3119018
https://doi.org/10.1109/TCSI.2022.3208755
https://doi.org/10.1109/JSSC.2020.2992886
https://doi.org/10.1038/s41467-020-16108-9
https://doi.org/10.1109/JSSC.2022.3140414
https://doi.org/10.1109/TNANO.2022.3193921
https://doi.org/10.1109/TCSI.2021.3058510
https://doi.org/10.1038/s44335-024-00010-4
https://doi.org/10.1038/s41928-023-01010-1
https://doi.org/10.1038/nature14539
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/MWSCAS48704.2020.9184587
https://doi.org/10.1162/neco.1997.9.2.279
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.7551/mitpress/5704.003.0006
https://doi.org/10.1145/3195970.3195989
https://doi.org/10.1109/JETCAS.2018.2796379
https://doi.org/10.48550/arXiv.1809.04191
https://doi.org/10.1109/NANO.2016.7751490
https://doi.org/10.1109/ISCAS.2010.5537456
https://doi.org/10.1109/TCSI.2023.3268728
https://doi.org/10.1109/TED.2021.3115993
https://doi.org/10.3390/electronics14122495
https://doi.org/10.1038/nature14441
https://doi.org/10.1038/s41586-019-1677-2
https://doi.org/10.1109/JXCDC.2020.2981048
https://doi.org/10.1109/JETCAS.2011.2165755
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Wang et al. 10.3389/fnins.2025.1656892

Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R., and Eleftheriou, E. (2020).
Memory devices and applications for in-memory computing. Nat. Nanotechnol. 15,
529–544. doi: 10.1038/s41565-020-0655-z

Seo, J.-O., Seok, M., and Cho, S. (2022). “Archon: a 332.7 tops/w 5b variation-
tolerant analog cnn processor featuring analog neuronal computation unit and analog
memory,” in 2022 IEEE International Solid-State Circuits Conference (ISSCC), Volume
65 (San Francisco, CA: IEEE), 258–260. doi: 10.1109/ISSCC42614.2022.9731654

Shafiee, A., Nag, A., Muralimanohar, N., Balasubramonian, R., Strachan, J. P.,
Hu, M., et al. (2016). ISAAC: a convolutional neural network accelerator with in-
situ analog arithmetic in crossbars. ACM SIGARCH Comput. Archit. News 44, 14–26.
doi: 10.1145/3007787.3001139

Shukla, S., Fleischer, B., Ziegler, M., Silberman, J., Oh, J., Srinivasan, V., et al. (2019).
A scalable multi-teraops core for AI training and inference. IEEE Solid-State Circuits
Lett. 1, 217–220. doi: 10.1109/LSSC.2019.2902738

Shuvo, M. M. H., Islam, S. K., Cheng, J., and Morshed, B. I. (2022). Efficient
acceleration of deep learning inference on resource-constrained edge devices: a review.
Proc. IEEE 111, 42–91. doi: 10.1109/JPROC.2022.3226481

Sze, V., Chen, Y.-H., Yang, T.-J., and Emer, J. S. (2017). Efficient processing
of deep neural networks: a tutorial and survey. Proc. IEEE 105, 2295–2329.
doi: 10.1109/JPROC.2017.2761740

Tohara, T., Liang, H., Tanaka, H., Igarashi, M., Samukawa, S., Endo, K., et al. (2016).
Silicon nanodisk array with a fin field-effect transistor for time-domain weighted sum
calculation toward massively parallel spiking neural networks. Appl. Phys. Express
9:034201. doi: 10.7567/APEX.9.034201

Tsai, H., Ambrogio, S., Narayanan, P., Shelby, R. M., and Burr, G. W. (2018). Recent
progress in analog memory-based accelerators for deep learning. J. Phys. D Appl. Phys.
51:283001. doi: 10.1088/1361-6463/aac8a5

Valavi, H., Ramadge, P. J., Nestler, E., and Verma, N. (2019). A 64-tile 2.4-mb
in-memory-computing cnn accelerator employing charge-domain compute. IEEE J.
Solid-State Circuits 54, 1789–1799. doi: 10.1109/JSSC.2019.2899730

Verma, N., Jia, H., Valavi, H., Tang, Y., Ozatay, M., Chen, L.-Y., et al. (2019). In-
memory computing: advances and prospects. IEEE Solid-State Circuits Mag. 11, 43–55.
doi: 10.1109/MSSC.2019.2922889

Wan, W., Kubendran, R., Schaefer, C., Eryilmaz, S. B., Zhang, W., Wu, D., et al.
(2022). A compute-in-memory chip based on resistive random-access memory. Nature
608, 504–512. doi: 10.1038/s41586-022-04992-8

Wang, L., Ye, W., Dou, C., Si, X., Xu, X., Liu, J., et al. (2021). Efficient and robust
nonvolatile computing-in-memory based on voltage division in 2t2r rram with input-
dependent sensing control. IEEE Trans. Circuits Syst. II: Express Briefs 68, 1640–1644.
doi: 10.1109/TCSII.2021.3067385

Wang, Q., Tamukoh, H., and Morie, T. (2016). “Time-domain weighted-
sum calculation for ultimately low power vlsi neural networks,” in International
Conference on Neural Information Processing (Cham: Springer), 240–247.
doi: 10.1007/978-3-319-46687-3_26

Wang, Q., Tamukoh, H., and Morie, T. (2018). A time-domain analog weighted-
sum calculation model for extremely low power vlsi implementation of multi-
layer neural networks. arXiv [preprint]. arXiv:1810.06819.doi: 10.48550/arXiv:1810.
06819

Wang, S., Zhou, T., and Bilmes, J. (2019). “Bias also matters: bias attribution for
deep neural network explanation,” in International Conference on Machine Learning
(Long Beach, CA), 6659–6667.

Wu, P.-C., Su, J.-W., Chung, Y.-L., Hong, L.-Y., Ren, J.-S., Chang, F.-C., et al.
(2022). “A 28nm 1mb time-domain computing-in-memory 6t-sram macro with
a 6.6 ns latency, 1241gops and 37.01 tops/w for 8b-mac operations for edge-
AI devices,” in 2022 IEEE International Solid-State Circuits Conference (ISSCC),
Volume 65 (San Francisco, CA: IEEE), 1–3. doi: 10.1109/ISSCC42614.2022.9731
681

Xiao, T. P., Feinberg, B., Bennett, C. H., Prabhakar, V., Saxena, P., Agrawal, V., et al.
(2023). On the accuracy of analog neural network inference accelerators. IEEE Circuits
Syst. Mag. 22, 26–48. doi: 10.1109/MCAS.2022.3214409

Yamaguchi, M., Iwamoto, G., Nishimura, Y., Tamukoh, H., and Morie, T.
(2020). An energy-efficient time-domain analog cmos binaryconnect neural network
processor based on a pulse-width modulation approach. IEEE Access 9, 2644–2654.
doi: 10.1109/ACCESS.2020.3047619

Yang, J., Kong, Y., Wang, Z., Liu, Y., Wang, B., Yin, S., et al. (2019). “24.4 sandwich-
ram: an energy-efficient in-memory bwn architecture with pulse-width modulation,”
in 2019 IEEE International Solid-State Circuits Conference-(ISSCC) (San Francisco, CA:
IEEE), 394–396. doi: 10.1109/ISSCC.2019.8662435

Zhang, M., Wang, J., Wu, J., Belatreche, A., Amornpaisannon, B., Zhang, Z.,
et al. (2021). Rectified linear postsynaptic potential function for backpropagation in
deep spiking neural networks. IEEE Trans. Neural Netw. Learn. Syst. 33, 1947–1958.
doi: 10.1109/TNNLS.2021.3110991

Frontiers in Neuroscience 22 frontiersin.org

https://doi.org/10.3389/fnins.2025.1656892
https://doi.org/10.1038/s41565-020-0655-z
https://doi.org/10.1109/ISSCC42614.2022.9731654
https://doi.org/10.1145/3007787.3001139
https://doi.org/10.1109/LSSC.2019.2902738
https://doi.org/10.1109/JPROC.2022.3226481
https://doi.org/10.1109/JPROC.2017.2761740
https://doi.org/10.7567/APEX.9.034201
https://doi.org/10.1088/1361-6463/aac8a5
https://doi.org/10.1109/JSSC.2019.2899730
https://doi.org/10.1109/MSSC.2019.2922889
https://doi.org/10.1038/s41586-022-04992-8
https://doi.org/10.1109/TCSII.2021.3067385
https://doi.org/10.1007/978-3-319-46687-3_26
https://doi.org/10.48550/arXiv:1810.06819
https://doi.org/10.1109/ISSCC42614.2022.9731681
https://doi.org/10.1109/MCAS.2022.3214409
https://doi.org/10.1109/ACCESS.2020.3047619
https://doi.org/10.1109/ISSCC.2019.8662435
https://doi.org/10.1109/TNNLS.2021.3110991
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

	Spike-based time-domain analog weighted-sum calculation model for extremely low power VLSI implementation of multi-layer neural networks
	1 Introduction
	2 Spike-based time-domain weighted-sum calculation model
	2.1 Time-domain weighted-sum calculation with same-signed weights
	2.2 Time-domain weighted-sum calculation with different-signed weights

	3 Time domain neural network model
	3.1 Neuron model
	3.2 Neural network model
	3.3 Numerical simulations of neural networks

	4 Issues about time-domain weighted-sum models toward VLSI implementation
	4.1 Weights and biases
	4.2 Output timing difference

	5 Circuits and architectures for TACT-based neural networks
	5.1 Architectures
	5.2 Circuits

	6 Discussion
	7 Conclusions
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	References


	Figure 1: 
	Figure 2: 
	Figure 3: 
	Figure 4: 
	Figure 5: 
	Figure 6: 
	Figure 7: 
	Figure 8: 
	Figure 9: 
	Figure 10: 
	Figure 11: 
	Figure 12: 
	Figure 13: 
	Figure 14: 
	Figure 15: 


