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Object-scene semantics
correlation analysis for image
emotion classification

Zibo Zhou, Zhengjun Zhai*, Huimin Chen and Sheng Lu

Northwestern Polytechnical University, Xi’an, China

Introduction: Image emotion classification (IEC), which predicts human
emotional perception from images, is a research highlight for its wide
applications. Recently, most existing methods have focused on predicting
emotions by mining semantic information. However, the “affective gap” between
low-level pixels and high-level emotions constrains semantic representation and
degrades model performance. It has been demonstrated in psychology that
emotions can be triggered by the interaction between meaningful objects and
their rich surroundings within an image. Inspired by this, we propose an Object-
Scene Attention Fusion Network (OSAFN) that leverages object-level concepts
and scene-level reasoning as auxiliary information for enhanced emotional
classification.
Methods: The proposed OSAFN designs two different strategies to extract
semantic information. Specifically, concepts are selected by utilizing an
external concept extraction tool, and an Appraisal-based Chain-of-Thought
(Appraisal-CoT) prompting is introduced to guide large language models in
generating scene information. Next, two different attention-based modules
are developed for aligning semantic features with visual features to enhance
visual representations. Then, an adaptive fusion strategy is introduced for
integrating the results of both the object-semantic stream and the scene-
semantic stream. Additionally, a polarity-aware contrastive loss is proposed to
model the hierarchical structure of emotions, improving the discrimination of
fine-grained emotional categories.
Results and discussion: To evaluate the effectiveness of OSAFN, we conducted
numerical experiments on four affective datasets. The results demonstrate that
OSAFN achieves superior performance and represents a notable contribution in
the field of IEC.

KEYWORDS

human cognition, semantic attention, adaptive fusion, polarity-aware contrastive loss,
image emotion classification

1 Introduction

In recent years, with the rapid development of the Internet and the widespread
adoption of mobile devices, social networks have become an integral part of modern
life. Consequently, a large number of images have been generated and shared on-line by
users. The need to extract valuable information from this vast volume of visual data has
increased significantly. Image emotion classification (IEC), which simulates the process of
human emotional perception, aims to analyze and infer the emotional semantics of images.
Investigating image emotions facilitates a range of real-world applications, including
decision-making (Lerner et al., 2015), mental disease treatment (Angermeyer et al., 2010),
smart advertising (Sánchez-Núñez et al., 2020) etc.
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In the early stages, studies in IEC revealed mainly high-level
emotions from the global features of the entire images (Yang et al.,
2017; He and Zhang, 2018), neglecting the fact that emotions can
also be evoked by local regions. Relevant studies have attracted the
extensive attention of researchers. Some studies have focused on
using the object detection method to integrate object semantics
to infer emotions (Zhang J. et al., 2022; Zhang et al., 2021).
However, these methods often produce overlapping regions, which
introduces substantial noise into the process. Other studies focused
on using image saliency detection to extract local features of
the image (Song et al., 2018; Fan et al., 2017; Wu et al., 2020).
Since image saliency detection mainly distinguishes the differences
between the local and rest parts of the image, the salient area
does not necessarily represent emotion. Hence, we argue that
directly mapping holistic or regional features to emotion labels may
underestimate the wide affective gap between low-level pixels and
high-level emotions.

Complementing these technical approaches, psychological
insights provide a deeper understanding of how emotions are
elicited by images. Psychologist Frijda (2009) proposed the concept
of “emotional stimuli,” arguing that human emotions are shaped
both by individual objects and the broader scene in affective images.
Similarly, Barrett and Kensinger (2010) argued that the human
brain generates emotional experiences by combining information
about visual objects with contextual cues. Moreover, the work of
Lindquist et al. (2015) indicated that language plays a pivotal role
in the emotional cognitive process of the human brain. It acts as
a “glue” between emotion and sensory experience, which reflect
emotions explicitly through linguistic semantics and implicitly via
logical associations. Based on these psychological insights, we argue
that the incorporation of language provides a more precise and
interpretable medium to capture the correlation between objects
and scenes, thereby enhancing the emotion classification capability
of the IEC model.

Based on the above studies, we herein propose the Object-
Scene Attention Fusion Network (OSAFN), which aims to bridge
the gap between visual features and emotions by leveraging the
rich information encoded in language. Specifically, we utilize a
large language model (LLM) to generate scene information. Taking
into account the sensitivity of LLM, we design an Appraisal-based
Chain-of-Thought (Appraisal-CoT) prompt, which guides the
reasoning process of LLM and simulates human-like interpretation
of the scene. In addition, visual-scene attention is designed to
filter out irrelevant visual information and precisely locate scene-
related regions by the guidance of the generated description. Then,
while conventional object semantics do not have a clear correlation
with emotions, we adopt emotional concepts—which are highly
abstract and closely related to emotional content—as guidance for
object-level feature extraction. To take advantage of meaningful
concepts, we propose visual-object attention to locate visual objects
and align visual objects with concepts. Last, an adaptive fusion
strategy is proposed to compute the final image representation
based on object-level features and scene-level features. Since the
cross-entropy loss function imposes the same penalty on false
samples, it produces more errors for the model. To address
this issue, we design a polarity-aware contrastive loss function
based on the hierarchical structure of the emotion model. This

loss introduces a hierarchical penalty and enforces a hierarchy
constraint during contrastive learning, helping the model to better
distinguish between emotions at different levels. A large number of
experiments show that our framework performs well on six public
affective datasets: Flickr & Instagram (FI), Twitter I, Twitter II,
and EmotionROI.

In short, the contributions of this paper are as follows:

1) We propose a novel OSAFN framework for IEC. Unlike
existing methods that simply combine object and scene
information, OSAFN jointly designs two semantic feature
extraction modules. The object branch extracts emotional
concepts, while the scene branch generates psychologically
grounded descriptions with large language models. These
complementary features are integrated to effectively enhance
IEC performance.

2) We construct a CoT prompt to guide the LLM in
generating stepwise descriptions based on the appraisal
theory. The stepwise reasoning process improves the
model’s understanding of the emotional context within the
textual information.

3) We design a polarity-aware contrastive loss that leverages
the hierarchical structure of emotion labels, encouraging
learned representations to preserve class-level distinctions and
sentiment-level similarities in the embedding space.

The remainder of this paper is organized as follows. Section
2 reviews the existing methods of the IEC. Section 3 provides an
overview of the proposed method, including the model architecture
and loss functions used in the training procedure. In Section
4, conducted on public affective datasets, various experiments,
including comparisons, ablation studies, and visualizations, are
described. Finally, we present our conclusions and discuss future
directions in Section 5.

2 Related work

2.1 Image emotion classification

To date, Image emotion classification (IEC) is not a simple
task to find because observers may have a different perspective for
the same image, which inevitably leads to abstracting a distinct
perception. There are three methods that help researchers map low-
level visual features to high-level emotions, which are traditional
methods, mid-level methods, and deep learning methods.

2.1.1 Traditional methods
In the early days, researchers in IEC focused mainly on

utilizing manually designed approaches to extract low-level features
from images, such as color and shape, to classify emotions in
images. Siersdorfer et al. (2010) obtained 64-bit RGB histogram
features from the global color histogram of the images, then
divided the image into 16 equal blocks, extracting local color
histogram features from each block for emotion detection. Lu
et al. (2012) studied the emotional connotations of shape features
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such as roundness and angles, inferring image emotions from
these low-level features. Furthermore, inspired by the influence of
art, Zhao et al. (2014) designed features based on art regulation,
such as balance, movement, harmony, and color classification, and
used these features to train support vector machines for emotion
recognition. However, human emotion cannot be triggered directly
by low-level features in the images. The approach mentioned above
has only good performance in some small-scale datasets, which are
still difficult to establish a robust relationship between low-level
features and emotional semantics.

2.1.2 Mid-level methods
Since there is a huge gap between low-level features and

high-level semantics, many researchers have started to build
mid-level representations to express the emotion of the image.
Borth et al. (2013) introduced Adjective Noun Pairs (ANPs)
and proposed a visual concept detector called Sentibank. Images
were fed into Sentibank to obtain visual concepts with associated
detection probabilities. Ali et al. (2017) employed two pre-
trained neural networks to extract object-level and scene-level
semantics from images and subsequently trained linear mixture
models using these semantic features to predict emotional label
distributions. Similarly, Zhang et al. (2020) applied object detection
techniques to identify multiple objects within each image and used
Bayesian networks to model the associations among these semantic
combinations and emotional states.

Compared to low-level visual features, mid-level semantic
features are more interpretable to humans and exhibit stronger
correlations with emotional content. However, a semantic
gap remains, and existing learning frameworks have not
demonstrated substantial improvements over traditional emotion
recognition methods.

2.1.3 Deep learning methods
Both traditional and mid-level methods perform feature

extraction and train the model in separate steps. Unlike these two
methods, for end-to-end approaches, features are extracted through
deep learning models, with the features gradually optimized as the
model is trained. You et al. (2017) combined attention mechanisms
to infer emotion-related areas and correlated these local regions
with descriptive emotional attributes. Unlike previous works based
on global analysis, this represented the first shift in image emotion
classification from a global to a local approach. In addition, He
et al. (2019) proposed a multi-attention pyramid network aimed at
extracting local features from feature maps of various scales and
leveraging a self-attention mechanism to associate these features
for emotion inference. Psychological studies have shown that
image emotions are evoked by specific, meaningful content within
an image. Lan et al. (2023) proposed a hyper network emotion
fusion framework to model aesthetic and emotional features jointly
for better prediction. Similarly, he then introduced a dynamic
perception rectification algorithm to improve the balance between
quality and diversity in generative models through adaptive sample
reweighting (Lan et al., 2024). Besides, Zhou et al. (2025) designed
an emotion-aware image captioning model that integrates visual-
textual features and cross-modal attention for fine-grained emotion

recognition. Based on these observations, we propose a novel deep
learning method based on research in psychology to predict image
emotions. Specifically, we design various semantics information
to mine emotion-related regions, and fuse image features with
semantic features, combined with polarity-aware contrastive loss to
classify image emotions.

2.2 CoT prompting

A sequence of reasoning, called Chain of Thought (CoT),
helps break down complex problems into manageable subtasks.
Large language models (LLMs) exhibit enhanced performance
and improved interpretability as a consequence. CoT prompting
integrates prompt-based learning with systematic reasoning,
allowing LLMs to handle abstract or multi-step problems without
additional fine-tuning. Wei et al. (2022) constructed a chain
of thoughts prompt with a few shots that markedly improves
accuracy in arithmetic and logical tasks. Kojima et al. (2022) later
demonstrated that zero-shot reasoning in LLMs can be facilitated
by simple instructions like ’Let us consider step by step.’ Numerous
CoT prompts have been introduced in different studies, including
the automated generation of CoT demonstrations (Zhang Z. et al.,
2022) and the implementation of a meticulous search through
multiple rationale candidates using a tree search method (Yao
et al., 2023). In addition, LLMs can also address novel tasks using
CoT prompting, Coconut (Hao et al., 2024) presents a Chain-of-
Continuous-Thought, and CCoT (Cheng and Van Durme, 2024)
uses a Compressed CoT, producing content-rich and continuous
contemplation tokens.

Recently, CoT prompting has been utilized to address
emotional challenges. Wu et al. (2024) designed a deconstructed
reasoning framework to assist LLMs in obtaining emotion-cause
pairs via stepwise inference. PEAR (Li et al., 2025) presented a
CoT architecture that integrates visual and textual modalities for
enhanced interpretability in sentiment reasoning. Simultaneously,
current research (Li et al., 2024) improves the emotional generation
capacity of LLMs by integrating an emotional CoT, allowing models
to more effectively integrate affective elements during response
formulation. Although most of the research remains focused on
text-only tasks, these results illustrate the success of CoT prompting
in emotional computing.

In light of these findings, we introduce the Appraisal-based
Chain-of-Thought (Appraisal-CoT) methodology. This approach
is grounded in psychological theory and directs the model
through four cognitive dimensions: perception, goal, agency,
and synthesis during the description generation process, which
enhances the LLM’s comprehension and interpretation of the
emotional significance of visual scenes.

3 Method

Figure 1 illustrates the complete workflow of our proposed
network, which is designed with three modules: stimuli extraction,
semantic attention, and adaptive fusion. First, we design an
Appraisal-based Chain-of-Thought (Appraisal-CoT) prompt
to guide a Large Language Model (LLM) in generating scene
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FIGURE 1

Overview of the proposed OSAFN.

descriptions and employ DeepSentiBank to represent objects
through emotional concepts. Next, two different attention
strategies are designed to reinforce the visual feature from the
object and scene semantics, respectively. Finally, the final fused
representation is processed by the adaptive fusion module. In
addition, the proposed polarity-aware contrastive loss function
leverages the hierarchical structure inherent in emotion models
to address the challenge of distinguishing between similar
emotion classes.

3.1 Stimuli extraction

Image emotion classification (IEC) is more challenging than
traditional vision tasks (Yang et al., 2018b,a; Peng et al., 2016),
as emotions are abstract and ambiguous, making them difficult
to infer directly from images. Since language plays a crucial role
in emotion perception, we leverage an LLM to generate textual
descriptions that capture scene-level semantics. Meanwhile, we use
the DeepSentibank to extract emotional concepts that serve as
emotion-enhanced object features.

3.1.1 Object
Previous works (Zhou et al., 2017; Ahsan et al., 2017) have

shown that emotion can hardly be revealed at the object level.
Unlike these methods, the emotional concept from DeepSentibank
(Chen et al., 2014) provides us cues to reconsider the mining
of object semantics. Initially, Borth et al. (2013) used the 24
emotions from Plutchik’s model (Plutchik, 1980) to search Flickr

and YouTube, collecting about 316,000 images and videos. They
then extracted adjective–noun pairs (ANPs) from the associated
text tags, retaining 3,244 concepts such as “beautiful flowers” and
“sad eyes” after filtering. Then, they retrieved images for each
ANP and removed those with too few samples, creating the VSO
dataset containing 1,553 ANPs and corresponding images. Building
on this, Chen et al. collected 2,089 ANPs and 867,919 images
to construct a new dataset for training DeepSentibank. Its final
fully connected layer contains 2,089 neurons, each representing
one ANP. Given an input image, DeepSentibank outputs the
probability distribution across all 2,089 concepts, providing mid-
level emotional representations that allow emotion inference
without directly viewing the image. For each emotion concept,
feature extraction is carried out using the RoBERTa model (Liu
et al., 2019), which is based on the BERT model language masking
method (Devlin et al., 2019), and trains the system to predict
purposely hidden content within otherwise unannotated language
instances. The object-level features Ta = {t1, . . . , tk, . . . , tl} ∈ R

l×dt

are obtained, where l is the number of emotion concepts that we
select, dt is the embedding dimension, and tk represents the features
of the concept k.

3.1.2 Scene
When viewing an image, an observer typically reconstructs the

depicted scene by simulating contextual events and interpreting
human actions. Inspired by this cognitive process, we incorporate
both the event details and the human behaviors as essential
components of the scene-level context. However, descriptions
generated by conventional VQA models (Liu et al., 2023b)
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FIGURE 2

A template of an Appraisal-CoT prompt.

often lack sufficient contextual depth and nuanced semantic
understanding. We argue that such flat descriptions are insufficient
to capture the implicit emotional states conveyed in complex
scenes. Fortunately, appraisal theory (Lazarus, 1991) provides
a psychological perspective on how people generate emotions:
emotions arise not only from external events but also from
individuals’ evaluations of the personal relevance, significance, and
degree of perceived control over its outcome of an event. Based
on this principle, we propose Appraisal-CoT, a chain-of-thought
prompting strategy that guides a large language model (LLM)
through step-by-step cognitive evaluations to produce richer and
more accurate descriptions of the emotional landscape within an
image. The overall Appraisal-CoT of this is illustrated in Figure 2.
Similarly to the concept encoding process, we denote the scene
description as X, the feature is calculated as follows:

Ts = RoBERTa(E) ∈ R
e×dt (1)

where

E = Embedding(Tokenizer(X)) (2)

is Roberta’s tokenizer that encodes description into a fixed-length
sequence. e is the maximum length of the sequence and dt is
the embedding dimension. The output Ts represents the final
scene-level features.

3.2 Semantic attention

3.2.1 Visual-object attention
While the concepts from DeepSentibank capture emotion-

related content to some extent, more informative and visually
grounded semantics are needed to guide attention and enhance
feature complementarity. In practice, for each image, the pre-
trained ResNet50 (Deng et al., 2009) is used to capture local

details and salient regions, the extract visual features V =
{v1, . . . , vj, . . . , vm} ∈ R

m×dv is obtained, where m is the number of
regions, dv is the feature dimension of each region, and vj represents
the j-th region of local features in the feature map. We first apply
global average pooling to the visual feature map V :

vavg = 1
m

m∑
j=1

vj (3)

Then, we pass the pooled features through a two-layer fully
connected network to explore which visual regions are most
relevant to emotion expression:

β = σ (W1(Relu(W2vavg))) (4)

where W1 ∈ R
m×r and W2 ∈ R

r×dv represent parameter matrices,
r is the reduction ratio that controls the dimension of the hidden
layer in the attention computation. Last, each patch vector in
vj ∈ R

m×dv is multiplied by its corresponding weight βj ∈ [0, 1],
producing the enhanced visual features:

v
′
j = β · vj (5)

Our goal is to automatically find this kind of correlations
between emotional concepts and image regions. Thus, multi-
head attention is used to locate emotion-related regions for each
emotion concept, we compute attention weights for each concepts,
where the softmax function normalizes the importance scores and
ensures a balanced contribution between modalities. Specifically,
two low-rank projection matrices are used to project the two
feature vectors (i.e., visual features v

′
j and concept features tj )

into a d-dimensional common space. Then they are fused with
element-wise multiplication:

αjk = softmax

(
v
′
jWv (tkUk)√

d

)
(6)
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where Wv ∈ R
dv×d and Uk ∈ R

dt×d represent parameter matrices.√
d denotes the scaling factor. Then, for each visual feature, we

calculate the weighted average of all visual features for the word
tk using the attention score αjk as follows:

Va =
m∑

j=1

αjk · tk (7)

where Va ∈ R
m×dv represents the object-level feature.

3.2.2 Visual-scene attention
Our goal is to add scene semantic into visual features,

which obtain non-explicit abstract information from the scene
description. Unlike emotional concepts that are relatively
independent, scene descriptions often include interrelated details
about actions and events, which makes it essential to capture
their internal dependencies. Therefore, for each image, the visual
encoder of the pre-trained CLIP (Radford et al., 2021) is used to
capture strong contextual relationships, the extracted visual feature
V = {vcls, v1, . . . , vk, . . . , vn} ∈ R

(n+1)×dv is obtained, where n is
the number of patches, dv is the feature dimension of each patch,
and vk represents the k-th patch feature in the feature map. First,
we use a self-attention mechanism to help the model understand
how different parts of the image relate to each other, the equation
is as follows:

V
′ = Attentionself (WV) (8)

Where W is is the learnable matrix. Next, we apply cross-attention
to model the interaction between the text and the image. Here, we
regard enhanced visual features V ′

as query, and scene features Ts
as key and value. The equation is as follows:

Vs = Attentioncross(V
′
, Ts, Ts) (9)

where Vs ∈ R
m×dv represent scene-level feature.

3.3 Adaptive fusion

Through the above steps, object-level and scene-level features
can be obtained. However, as many images on social networks
may lack notable objects and instead depend on the context of
the scene to express emotions, we feed two features into the
adaptive fusion module for effective fusion. Due to the different
contributions of object-level and scene-level features, the proposed
adaptive fusion module is designed to capture the discriminative
information of the modalities features by adaptively tuning the
balanced weight instead of setting up a fixed weight. Specifically,
the final representation Z of fused features is assembled by:

Z = μkVa + (1 − μk)Vs (10)

where the adaptive balanced weight μk ∈ (0, 1) is computed by:

μk = σ (VaWz + VsUz) (11)

where the parameter matrices Uz and Uz ∈ R
d×d, and they are

both learned through the learning process. In addition, σ (·) is the
sigmoid function.

FIGURE 3

Mikel’s emotion wheel.

3.4 Polarity-aware contrastive loss

Psychological theory (Mikels et al., 2005) indicates that
emotion labels are organized hierarchically. For example, Mikel’s
emotion wheel (Ekman, 1992) is shown in Figure 3, amusement,
contentment, awe, and excitement fall into positive emotions,
while fear, anger, disgust, and sadness fall into negative emotions.
We observe that emotion categories with the same polarity tend
to exhibit higher semantic similarity, making them harder to
distinguish than those with opposite polarities. To address this
issue, we propose a polarity-aware contrastive loss that uses the
hierarchical structure of labels to better category the sample space.

Specifically, at the class level, a positive sample is randomly
selected from the same emotion class as the anchor within the
batch, while a negative sample is drawn from a different category
that shares the same emotion polarity as the anchor. The class-level
contrastive loss is defined as:

Lcls =
∑
i∈I

−1
|Pcls(i)|

∑
p∈Pcls(i)

log
exp(zi · zp/τ )∑

a∈Ai
exp(zi · za/τ )

(12)

where I denotes the set of anchor indices within a mini-batch,
and Zi ∈ R

d represents the feature embedding of the i-th anchor
sample. Pcls(i) is the set of class-level positive samples that share
the same emotion category as the anchor. Ai is the set of all
candidate samples used for contrastive comparison with anchor i,
typically composed of all other samples in the batch excluding the
anchor itself, and τ is a temperature hyperparameter controlling
the sharpness of the softmax distribution.

At the polarity level, the positive sample is selected from a
different emotion category that shares the same sentiment polarity
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TABLE 1 Statistic of the involved image emotions datasets.

Dataset Sum Positive Negative Classes

Twitter I 1269 769 500 2

Twitter II 603 470 133 2

Flickr & Instagram 23308 16430 6878 8

EmotionROI 1980 660 1320 6

as the anchor, while the negative sample is drawn from a category
with the opposite polarity. The polarity-level contrastive loss is
defined as:

Lpol =
∑
i∈I

−1
|Ppol(i)|

∑
p∈Ppol(i)

log
exp(zi · zp/τ )∑

a∈Ai
exp(zi · za/τ )

(13)

where Ppol(i) is the set of polarity-level positive samples that share
the same sentiment polarity with the anchor but belong to different
emotion categories.

We combine the class-level and polarity-level losses into a
multi-level hierarchical contrastive loss:

LCon = 1
2

(Lcls + Lpol) (14)

Finally, we add the standard cross-entropy loss LCEto form the
complete objective:

L = LCon + LCE (15)

4 Experiment

4.1 Dataset

Affective datasets for experiments are collected from social
media, including Twitter I (You et al., 2015), Twitter II (Borth et al.,
2013), EmotionROI (Peng et al., 2015), FI (You et al., 2016), Details
of the datasets are shown in Table I.

Twitter I contains 1,269 images labeled with positive or negative
emotions based on the two-polarity model. This dataset is built on a
binary emotion model, where each image is annotated by five AMT
participants. Each participant selects one emotion label (positive or
negative), and the label receiving at least three votes is assigned as
the emotion annotation for the image.

Like the Twitter I dataset, Twitter II was annotated using
the AMT approach with three rounds of labeling: text-based,
image-based, and text–image-based. In each round, three AMT
participants were invited, and an image was labeled as “agreed” if at
least two participants selected the same label. Through this process,
the dataset retained 470 positive images and 133 negative images.

The images of EmotionROI are collected from Flickr by
searching the six categories that are Ekman’s 6 basic emotions
(anger, disgust, joy, fear, sadness, and surprise). In addition to
providing emotion distribution labels, the dataset also includes
valence–arousal (VA) scores. To ensure that the selected images
evoke emotions through low-level visual features, Peng et al.
removed images containing obvious facial expressions or explicit
emotional text from the dataset. One thousand nine hundred

and eighty images are finally assembled in total, of which 330
images were collected in each emotion category. As with the FI
dataset, the different splits of the EmotionROI dataset are labeled
as EmotionROI 6 and EmotionROI 2, respectively.

The Flickr & Instagram (FI) dataset is collected from Flickr
and Instagram based on the Mikels emotion model. first collected
three million weakly labeled emotional images from Flickr and
Instagram, then screened and filtered them based on label
consistency and class balance. Images in the FI dataset were
annotated by Amazon Mechanical Turk (AMT) participants, with
each image assigned to five workers. Each worker selected one
emotion from eight categories, and a label was assigned to the image
only if at least three workers agreed on the same category. Due
to its large volume and relatively low label noise, the FI dataset is
one of the most used datasets for emotion classification tasks. The
different split types of FI are marked as FI 8 and FI 2, respectively.

4.2 Training setup

The entire network is optimized from end to end in the affective
datasets using the polarity-sensitive contrastive loss function
proposed in the previous section. Following previous work (Zhou
et al., 2025), FI and EmotionROI are split into 80% training, 5%
validation, and 15% testing, while Twitter I and II are split into 80%
training and 20% testing. In addition, data augmentation including
random rotation, gaussian blur, and color enhancement are used
during the training process. All images are resized to 224 × 224. To
preserve the main image information during data augmentation,
10% of the image width is randomly cropped from the left or right
side if the aspect ratio is greater than 1, while 10% of the image
height is randomly cropped from the top or bottom side if the
aspect ratio is less than 1. The backbone of OSAFN is the ViT-B
/ 32 encoder pre-trained on the COCO (Lin et al., 2014) dataset
and ResNet50 pre-trained on the ImageNet dataset. In the object
branch, the feature map from the last convolutional layer is used,
resulting in 49 feature vectors of dimension 2048 for each image.

Based on extensive observations and prior studies, we found
that the top five emotional concepts detected by DeepSentibank
provide a more accurate and expressive description of image
content. Accordingly, we selected the top five adjective-noun
pairs for each image to serve as emotional concepts. For scene-
level semantics, we employ GPT-4o guided by our Appraisal-CoT
prompting strategy to generate descriptive captions. To ensure
consistency in feature dimensions across modalities, all semantic
information, including emotional concepts and scene descriptions,
is encoded using the same RoBERTa-base model.

We train the model using the AdamW optimizer with a batch
size of 64 for 50 epochs. The learning rate starts at 1e-4, with linear
warm-up for the first 5 epochs and decay by 0.2 every 5 epochs.
The weight decay is set to 1e-2. All experiments were performed
using PyTorch on two NVIDIA RTX 4090D GPUs with 48GB of
CPU memory.

4.3 Comparison

To validate the effectiveness of our proposed framework,
we compare it with a series of state-of-the-art methods. The
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experiments are carried out in four benchmark settings, including
FI (8-class and 2-class), EmotionROI (6-class and 2-class), Twitter
I, and Twitter II. Detailed information on these methods is
introduced as follows:

1) SOLVER (Yang et al., 2021) built an emotion graph to
extract emotional relationships between different objects and
explored the correlation between objects and the scene for
emotion classification.

2) Yang et al. (2023) explored the relationship between concept
and emotion using a knowledge graph, and proposed a multi-
task learning deep model to improve emotion recognition.

3) MDAN (Xu et al., 2022) proposed a two-branch architecture
to leverage emotion hierarchy and the correlation between
different affective levels and semantic levels. It also
introduced a novel emotion category model based on
psychological knowledge.

4) SimEmotion (Deng et al., 2022) was a language-supervised
model that effectively leveraged the rich semantics of the
image and text of CLIP, which combines the multi-modal
features to drive the model to gain stronger emotional
discernment with language prompts.

5) EERCA-ViT (Wang et al., 2023) enhanced ViT-based emotion
recognition by combining region-level excitation and context-
aware learning through a two-branch architecture with
specialized attention modules.

6) CMANet (Yang et al., 2024) was designed to utilize concepts
to extract visual and semantic features, respectively. Two
fusion strategies are applied to achieve complementation
between visual and semantic features.

7) MASANet (Cen et al., 2024) was dedicated to
integrating specific uni-modal tasks for multi-modal
joint emotion analysis by introducing prior knowledge from
textual domains.

8) VSCNet (Zhang H. et al., 2024) combined spatial attention
with an affective region discovery branch to enhance
emotional feature extraction.

9) OEAN (Zhang J. et al., 2024) combined object-guided visual
attention and semantic modeling of object-emotion mappings,
and fused both modalities via a BiGRU to improve image
emotion classification.

Comparisons between OSAFN and baseline methods are
presented in Table 2. It can be seen that our method achieved
comparable experimental results. Methods such as SOLVER and
OEAN focus on utilizing detected objects to mine emotional
region directly. Although object-level features help capture fine
details, they may fail when emotions come from a scene rather
than a specific object. In contrast, our model combines both
object and scene understanding, achieving stronger performance in
such settings.

Next, both CMANet and Yang’s method leverage emotional
concepts to mine emotional regions. However, these methods
overlook the emotion that may arise from the interaction between
visual and semantic features. By considering abstract emotional
concepts and scene descriptions in images, our method enables a
more comprehensive learning of semantic information, leading to
better results.

Then, we also compare with semantic-enhanced methods,
including EERCA-ViT, MDAN, and VSCNet, which focus on
refining visual features through multimodal feature fusion.
However, these methods often lack explicit modeling of the affective
reasoning process. EERCA-ViT applies dual-branch attention to
filter contextual noise but fails to incorporate high-level semantic
interpretation. MDAN and VSCNet integrate image and text
features, but the relationship between emotion and features is
unclear. Compared to these methods, our method not only
enhances visual representations but also enriches the semantic
representation by introducing multi-level textual information
based on psychological theory, which makes the result achieve
superior performance in four datasets.

In addition, MASANet and SimEmotion introduce a textual
description to guide emotional understanding of the model.
However, these methods are based on designed or fixed templates,
which limits their flexibility and generalization. In contrast, we
design a psychologically grounded CoT prompt, which encourages
the model to generate image description toward an emulation of
human-like contemplation. This guided reasoning helps our model
capture deeper emotional meaning, As a result, with a wealth of
language knowledge, we achieve a better performance (improved
by 0.63%) than SimEmotion.

Above all, the proposed OSAFN consistently outperforms
the state-of-the-art methods on four visual emotion datasets,
demonstrating the effectiveness and robustness of our method.

4.4 Ablation

In this section, we conduct several experiments to verify
the effectiveness of Appraisal-CoT, visual-object attention, visual-
scene attention, adaptive fusion, and polarity-aware contrastive
loss, respectively.

4.4.1 Effects of Appraisal-CoT
To verify the contribution of Appraisal-CoT, we performed

an ablation study on three vision-language models: GPT-4o
(OpenAI, 2023), Qwen-VL (Bai et al., 2023), and LLaVA-1.6 (Liu
et al., 2023a) For each model, we compare the results generated
with standard captioning prompts (e.g., Describe the scene in
the image) and our proposed Appraisal-CoT prompt, which
incorporates step-by-step reasoning based on cognitive emotion
theory. As shown in Table 3, the Appraisal-CoT significantly
improves emotional understanding by guiding structured cognitive
reasoning. Furthermore, Figure 4 further illustrates two captions
from GPT-4o under different prompt settings. Captions generated
using standard prompts often include redundant and emotion-
irrelevant details (e.g., “tall candlestick,” “large rock”). In contrast,
our generative captions made full use of emotional attributes and
achieved better performance.

4.4.2 Effects of visual encoder
Table 4 presents the performance of our model with

different visual encoders. The results clearly show that
models equipped with ViT-based backbones surpass those
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TABLE 2 A comparison with state-of-the-art methods.

Method FI(8) FI(2) EROI(6) EROI(2) Twitter I Twitter II

Yang et al. 65.46 - 55.38 - - -

EERCA-ViT 71.18 92.54 66.50 89.39 - -

SOLVER 72.34 - 62.12 - 85.27 83.19

VSCNet 73.04 - 62.86 - 85.32 -

OEAN 73.40 - 64.12 91.92 92.86 90.08

CMAnet 73.51 89.86 62.24 83.38 85.95 -

MDAN 76.35 91.01 60.66 83.96 - -

MASANet 79.16 95.07 73.23 91.75 92.16 88.70

SimEmotion 80.33 95.42 70.54 90.40 89.76 84.21

Ours 80.96 95.51 73.59 92.81 92.89 90.16

Results are reported as classification accuracy (%) in four affective datasets. EROI represents EmotionROI dataset in the table. The best results are marked in bold, and the second-best results
are marked with underscores.

FIGURE 4

A template of Appraisal-CoT prompt.

using CNN-based frameworks, indicating that our model
can effectively adapt to various visual backbones. Beyond
the benefits of attention mechanisms in capturing scene
information, future IEC tasks may further benefit from exploring
alternative architectures or enhancements to achieve greater
language-supervised improvements.

4.4.3 Effects of individual branches
To further explore the effectiveness of each branch in our

proposed network, we individually evaluate the classification
performance of the object-level branch and the scene-level branch
and compare them with the full model using the adaptive fusion
module. The results are shown in Table 5. It can be observed
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that the using scene description solely achieves slightly higher
accuracy than emotional concepts, which demonstrates scene-
level semantics generated by the CoT-guided description exhibit a
significant correlation with emotions. The object-only branch also
performs reasonably well, capturing affective cues from emotional
concepts. The proposed adaptive fusion method combines both
branches and achieves the best performance across all datasets.

4.4.4 Effects of adaptive fusion
Previous works often fused features using simple concatenation

or average summation. To conduct a more thorough study, we first
replace the proposed adaptive fusion with a weighted summation
of Va and Vs, which is defined as:

Z = λVa + (1 − λ)Vs (16)

where λ ranges from 0.1 to 0.9 to ensure that Va and Vs contribute
simultaneously. The experimental results with different λ values are
shown in Figure 5. The highest accuracy is achieved with λ = 0.9 on
FI (class 8), λ = 0.8 on EmotionROI (class 6), and λ = 0.7 on Twitter
I. It can be seen that larger values of λ generally lead to better results,
with the FI dataset benefiting more from higher λ values compared
to the other datasets. This suggests that object features play a crucial
role in classification, particularly for the FI dataset. However, when
λ approaches 0.9, performance drops for EmotionROI and Twitter
I due to the reduced semantic contribution from the scene features.
We also evaluate concatenation fusion. As shown in Table 6, since
the contribution of each feature may vary, using a fixed weight in
summation or direct concatenation ignores this variation, leading
to suboptimal results. Moreover, λ in the weighted summation is
manually set and remains constant for all images, which explains
why even the best weighted summation scores are lower than those
of adaptive fusion. Overall, weighted summation performs slightly
better than concatenation.

TABLE 3 A comparison of results utilizing different prompt.

Model Standard captioning Appraisal-CoT

GPT-4o 78.21 80.96

Qwen-VL 77.34 80.88

LLaVA-1.6 75.98 80.63

Results are reported as classification accuracy (%) on FI datasets.

4.4.5 Effects of polarity-aware contrastive loss
To validate the effectiveness of our proposed polarity-aware

contrastive loss, we perform comparative experiments by replacing
it with two widely used loss functions: focal loss (Lin et al., 2017)
and center loss (Wen et al., 2016). The results are summarized
in Table 7. Specifically, focal loss is combined with standard
cross-entropy to address class imbalance by down-weighting easy
samples and emphasizing hard samples during training. Center
loss, on the other hand, is introduced to enhance intra-class
compactness by pulling samples of the same class closer to their
corresponding class centers in the feature space. Although both
focal loss and center loss offer certain improvements in feature
discrimination, their performance remains inferior to that of our
polarity-aware contrastive loss, achieving only 78.7% and 79.2% in
the FI(8) dataset, respectively. This gap highlights the advantage of
explicitly modeling the hierarchical structure of emotion categories,
as our loss function does, to guide the learning process in emotion
classification tasks.

To further illustrate the effectiveness of the proposed polarity-
aware contrastive loss Lpc, we also visualize the precision on each
emotion via confusion matrices, where Figure 6a shows the results
with the cross-entropy loss and Figure 6b shows the results with
our proposed loss on the FI dataset. As depicted in Figure 6a,
categories such as Amusement vs. Excitement, Anger vs. Sadness,
and Awe vs. Contentment are prone to misclassifications. By
applying our polarity-aware contrastive loss, Figure 6b indicates
that the accuracy for Amusement improves from 85% to 88%, while
the confusion between Amusement and Excitement is reduced
from 6% to 5%. Similarly, improvements can be observed for
other categories, such as Awe and Contentment. These results
confirm that our loss function penalizes frequent confusions more
strongly. In addition, Figures 6c, d show the corresponding results
on the EmotionROI dataset. In Figure 6c, significant confusions
are observed between Anger and Surprise, as well as between
Joy and Surprise. In contrast, with the use of Lpc (Figure 6d),
the confusion between Anger and Surprise drops from 13% to
10%, while the classification accuracies for Disgust, Fear, and
Joy improve from 73% to 77%, 68% to 70%, and 72% to 75%,
respectively. This improvement is attributed to Lpc’s mechanism of
adaptively down-weighting well-classified samples and amplifying
penalties on misclassified ones, effectively mimicking a human-
like learning focus on hard samples. Last, it can be seen that
the accuracy for anger and fear remains lower than that of other
emotions. This is not primarily due to the model itself, but to
the intrinsic features of the FI and EmotionROI datasets, where
visual features of anger and fear are highly similar and result in

TABLE 4 A comparison of results utilizing different vision encoders.

Visual encoder FI(8) FI(2) EROI(6) EROI(2) Twitter I Twitter II

ResNet50 79.04 93.04 71.71 88.14 89.28 87.41

ViT-B/16 80.31 94.84 73.02 91.92 90.86 89.05

ViT-L/14 83.91 96.77 75.27 94.19 93.22 90.94

ViT-L/14@336 84.13 96.88 76.77 94.95 92.86 90.92

Ours 80.96 95.51 73.59 92.81 92.89 90.16
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TABLE 5 A comparison of single-branch and fused-branch performance.

Method FI(8) FI(2) EROI(6) EROI(2) Twitter I Twitter II

Object only 77.64 92.13 70.02 89.31 90.84 87.71

Scene only 78.59 93.15 71.78 90.52 91.21 88.24

Ours 80.96 95.51 73.59 92.81 92.89 90.16

FIGURE 5

Accuracies with different values of λ in weighted summation.

TABLE 6 A comparison of results utilizing different fusion strategies.

Method FI(8) FI(2) EROI(6) EROI(2) Twitter I Twitter II

Weighted summation fusion 78.98 93.98 71.49 90.12 90.37 88.34

Concatenation fusion 77.36 93.01 70.25 89.57 89.78 87.59

Ours 80.96 95.51 73.59 92.81 92.89 90.16

TABLE 7 A comparison of results utilizing different loss functions.

Method FI(8) FI(2) EROI(6) EROI(2) Twitter I Twitter II

Focal Loss + CE 78.78 93.68 71.88 91.04 89.62 87.97

Center Loss + CE 79.21 93.41 72.11 90.72 89.98 88.12

Ours 80.96 95.51 73.59 92.81 92.89 90.16

overlapping feature distributions. With the integration of semantic
features and the proposed loss function, we observe performance
gains for these two categories compared with using visual features
alone, indicating that our method alleviates category confusion and
achieves more robust classification performance.

4.5 Visualization

The effectiveness of the proposed network has been rigorously
evaluated through a series of comprehensive comparative analyzes
and detailed ablation studies. As we are motivated by the
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FIGURE 6

Confusion matrices for classification results from OSAFN applied to each dataset. (a, b) display results using cross-entropy loss and our proposed
loss function with the FI dataset, respectively. Similarly, (c, d) illustrate the corresponding results for the EmotionROI dataset.

psychological evidence that emotions are evoked by specific,
meaningful content within an image, in this section, we try to
intuitively illustrate the effect of the visual attention mechanism,
we visualize the attention scores of concepts via heatmap in
Table 8. Red denotes the visual features of the local region that
have higher correlation with the concept. It can be seen that
the heatmap of the relevant concept covers the corresponding
region exactly, which illustrates that the proposed visual attention
approach can achieve the location of the weakly supervised
emotional region. Taking the last image as an example, the
“group of people” represents an object, “carnival” denotes human
activity, “lively and energetic” describes a scene attribute, and

“laughing and smiling” infers a facial expression, suggesting
the heatmap of relevant regions very accurately covers the
corresponding emotional attributes. Furthermore, the attention
maps for scene descriptions are shown in Table 9, where red
denotes the local scene regions with higher correlation to the
corresponding scene description generated by GPT-4o. It can
be observed that the highlighted regions in the heatmaps align
well with the contextual information, demonstrating that the
proposed Appraisal-Cot prompting can effectively locate relevant
emotional regions, which complements the information from
emotional concepts and provides deeper insight into scene-level
visual information. In addition, to provide a more intuitive
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TABLE 8 Attention maps corresponding to different emotional concepts.

Images reprinted with permission from “Building a Large Scale Dataset for Image Emotion Recognition: The Fine Print and The Benchmark” by Quanzeng You, Jiebo Luo, Hailin Jin, and
Jianchao Yang, licensed under ©2016 Association for the Advancement of Artificial Intelligence (AAAI), [Source: AAAI Conference Proceedings].

TABLE 9 Attention maps corresponding to scene descriptions.

Image Heatmap Description

A young woman sits relaxed against a green wall, smiling peacefully, radiating calmness and
contentment, as natural surroundings highlight her joyful and serene.

Mourners gather solemnly around a casket, expressions heavy with grief, loss, and sorrow, as
comforting gestures reveal the deep emotional pain and shared mourning of a funeral ceremony.

Three friends smile outdoors, capturing joy, warmth, and shared happiness in a relaxed moment
together

Images reprinted with permission from “Building a Large Scale Dataset for Image Emotion Recognition: The Fine Print and The Benchmark” by Quanzeng You, Jiebo Luo, Hailin Jin, and
Jianchao Yang, licensed under ©2016 Association for the Advancement of Artificial Intelligence (AAAI), [Source: AAAI Conference Proceedings].

explanation of the proposed method, Table 10 presents examples
of emotional concepts and scene descriptions for several images.
As shown in the first and second images, the ANPs are highly

abstract, closely aligned with visual content, and more effective
in expressing emotions. In the last image, due to the limited
variety of ANPs and the constraints imposed by the emotional
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TABLE 10 Examples of images with emotional concepts (ANPs) and
sentence descriptions (Description).

Image ANPs Description

Smiling_Dog
Dirty_Mouth
Happy_Dog
Muddy_Dog
Friendly_Dog

A golden dog
relaxes peacefully
on soft grass,
radiating calm and
comfort, enjoying a
carefree moment in
nature.

Classic_Race
Tough_Race
Classic_Sport
Classic_Cars
Young_Driver

Two focused racers
lean aggressively
through a sharp
turn, embodying
thrill, speed, and
fierce
determination to
win.

Peaceful_Park
Sunny_Winter
Little_Boy
Playful_Kids
Favorite_Dress

A solitary woman
sits in an autumn
park, absorbed in
quiet thoughts,
embodying calm
introspection and
gentle melancholy.

Images reprinted with permission from “Building a Large Scale Dataset for Image Emotion
Recognition: The Fine Print and The Benchmark” by Quanzeng You, Jiebo Luo, Hailin Jin,
and Jianchao Yang, licensed under ©2016 Association for the Advancement of Artificial
Intelligence (AAAI), [Source: AAAI Conference Proceedings].

concept dataset, certain emotional concepts, such as “Little_Boy”
and “Playful_Kids,” do not fully align with the actual image
content, which affects their descriptive accuracy. In contrast, scene
descriptions can better connect to the emotional context. These
examples demonstrate the complementary nature of the two types
of description.

5 Conclusion

This paper proposed the novel OSAFN (Object-Scene
Attention Fusion Network) for introducing object and scene-
aware semantics as auxiliary information into image emotion
classification (IEC) tasks. We leveraged emotional concepts to
capture object-level affective cues and designed an Appraisal-
based Chain-of-Thought (Appraisal-CoT) prompt to guide large
language models in generating scene descriptions, achieving a
complementary information of visual content. Two dedicated
attention modules, visual object attention and visual scene
attention, were used to learn fine-grained relationships between
semantic and visual features. Finally, an adaptive fusion weighted
the two streams, and a polarity-aware contrastive loss emphasized
difficult samples while respecting the hierarchical structure
of emotions. Extensive experiments on four public emotion
datasets demonstrated consistent performance gains over state-
of-the-art methods, validating that psychologically informed
semantic assistance narrows the affective gap between pixel-level
appearance and high-level emotions. One limitation is that both

emotional concepts and image descriptions are ultimately text
driven; they may under-represent abstract artworks or images
lacking explicit semantic entities. In future work, we will explore
emotion analysis for such semantics-sparse images and investigate
lightweight prompting strategies to reduce LLM inference cost
while preserving reasoning quality.
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