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Altered periodic and aperiodic 
activities in patients with 
disorders of consciousness
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Introduction: Disorders of consciousness (DoC), including unresponsive 
wakefulness syndrome (UWS) and minimally conscious state (MCS), are primarily 
diagnosed behaviorally. Recent evidence indicates that loss of consciousness 
manifests as irregularities in neural oscillatory activity across delta, theta, and 
alpha frequency bands. However, conventional spectral analysis often conflates 
periodic oscillations with aperiodic 1/f components, potentially obscuring 
consciousness-related dynamics.
Methods: To elucidate the mechanistic basis of spectral alterations in 
consciousness impairment, we  compared oscillatory and aperiodic activity 
patterns in the electroencephalogram (EEG) of patients with different 
consciousness levels. We  further examined the spatiotemporal variability of 
these neural signatures and rigorously evaluated their discriminative power for 
state classification using support vector machine (SVM) analysis.
Results: While periodic and aperiodic activities are independent, our results 
indicate that both components exhibit significant differences between groups 
at both local and global scales. Critically, higher spatial and temporal variability 
of aperiodic features (spectral exponent) were correlated with preserved 
consciousness. When distinguishing UWS from MCS, the combination of 
periodic and aperiodic features significantly improved classification performance 
compared to using either metric alone.
Discussion: Our findings demonstrate that both periodic oscillations and 
aperiodic activity provide valuable information about consciousness levels. 
Critically, the spatiotemporal dynamics of the aperiodic component serve as 
a key marker of brain state. This underscores the necessity of accounting for 
aperiodic activity in mechanistic studies and clinical assessments of DoC.
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1 Introduction

Disorders of consciousness (DoC) are often the outcomes of severe brain injuries, 
manifesting as a wide-ranging spectrum of conditions. Among them, the vegetative state (VS), 
also referred to as unresponsive wakefulness syndrome (UWS) (Laureys et al., 2010; Jennett 
and Plum, 1972), represents a state where patients are completely devoid of awareness. In 
contrast, patients in the minimally conscious state (MCS) exhibit intermittent but distinct 
signs of external awareness (Giacino et al., 2002). In clinical practice, accurately distinguishing 
between UWS and MCS is of utmost significance as it serves as the foundation for formulating 
suitable treatment strategies. The differential diagnosis between these states is predominantly 
grounded in behavioral assessments. Currently, the Coma Recovery Scale—Revised (CRS-R) 
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stands as the gold-standard tool for this purpose (Kalmar and Giacino, 
2007). However, recent developments suggest that relying solely on 
behavioral evaluation might not be  sufficient. Brain-imaging 
technologies have revealed that around 15–25% of patients who seem 
unresponsive clinically exhibit residual signs of awareness (Cruse 
et al., 2011; King et al., 2013; Owen et al., 2006). Among the various 
neuroimaging tools, electroencephalogram (EEG) is a widely 
applicable, less expensive, and suitable procedure that provides direct 
and immediate information about the consciousness states.

Growing evidence highlights the distinct roles of EEG signatures 
in DoC, as demonstrated by studies spanning spectral analysis (Schiff 
et al., 2014; Lutkenhoff et al., 2020; Wutzl et al., 2021). The most robust 
findings center on spectral power alterations across canonical 
frequency bands: delta (1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), and 
beta (15–30 Hz). DoC patients exhibit elevated delta and theta power 
alongside suppressed alpha power compared to healthy controls, with 
this alpha suppression serving as a characteristic marker of impaired 
consciousness (Lechinger et al., 2013; Sitt et al., 2014; Naro et al., 
2016). Notably, patients in MCS show significantly higher alpha power 
than those in UWS, particularly in the central, parietal, and occipital 
regions (Bai et al., 2021b). Furthermore, the changes in consciousness 
levels may be linked to the shift of dominant spectral peaks within the 
electroencephalogram (EEG), as illustrated by the “ABCD” model 
(Schiff, 2016; Edlow et al., 2020). This model organizes EEG power 
spectra into four broad categories. The EEG patterns corresponding 
to these different categories offer crucial insights into the degree of 
thalamocortical deafferentation and aid in the diagnosis of 
consciousness levels. Notably, the behavioral diagnosis of unresponsive 
wakefulness syndrome (UWS) or minimally conscious state (MCS) 
can be associated with more than one spectral category. For example, 
a patient with UWS may display either A-type or B-type dynamics. On 
the other hand, not all EEG spectrals fit with ABCD categories. These 
factors impede the application of this model in the clinical field.

The vast majority of the narrowband analysis presumes that 
spectral power implies oscillatory power and overlook the existence 
of aperiodic activity. In fact, the neural power spectrum encompasses 
not only oscillatory activity but also the aperiodic 1/f component. 
Recent methodological advancements have revealed that band-limited 
variations in oscillatory power can be swayed by alterations in the 
aperiodic exponent (Donoghue et al., 2020, 2021). Put simply, the 
detected changes in neural power might not mirror actual changes in 
the periodic signal; instead, they could be due to changes in aperiodic 
features, or a combination of both. Furthermore, aperiodic activity, 
which has frequently been regarded as either noise or a bothersome 
variable, actually has significant demographic and clinical correlations, 
as well as physiological implications (Voytek et al., 2015; Roche et al., 
2019; Salvatore et al., 2024; Pani et al., 2022). For example, aperiodic 
analysis can detect baseline neurophysiological changes that reflect 
overall alterations in cortical excitability, synaptic activity, and 
metabolic demands (Deodato and Melcher, 2024). These factors are 
closely associated with the maintenance or transformation of 
consciousness states. Recent research has demonstrated that the 
characteristics of aperiodic electroencephalogram (EEG) carry 
information related to consciousness, such as the depth of anesthesia 
and sleep stage (Favaro et al., 2023; Widmann et al., 2025; Kreuzer 
et  al., 2020). Nevertheless, the diagnostic potential of aperiodic 
features in evaluating the consciousness levels of DoC patients 
remains largely unexplored.

To address this gap, the present study aims to systematically 
evaluate the diagnostic value of both periodic and aperiodic EEG 
components in distinguishing between patients with UWS and 
MCS. We  hypothesize that both components are associated with 
consciousness states. To test this, we decompose the original neural 
spectrum of scalp EEG into periodic and aperiodic components and 
obtain corresponding features. We then explore the differences in 
these components between UWS and MCS patients on both global 
and regional scales, with particular attention to their spatial and 
temporal variability. Finally, we  examine the utility of both 
components in distinguishing between patients with different 
consciousness levels using multiple machine learning algorithms. 
Ultimately, this work seeks to establish a novel biomarker framework 
derived from the neural power spectrum, providing a more 
mechanistic basis for the diagnosis and stratification of DoC.

2 Materials and methods

2.1 Participants

Electroencephalogram (EEG) data were collected from 47 patients 
with DoC (22 males; mean age 42 ± 15.13 years) recruited from 
Department of Neurosurgery at Tianjin Kanghui Hospital, including 
etiological subtypes of 18 anoxic brain injury cases, 12 traumatic brain 
injuries, and 12 cerebrovascular accidents. The study protocol received 
approval from the institutional Ethics Committee, with written informed 
consent obtained from all legal guardians. Exclusion criteria comprised 
disease duration <1 month, scalp lesions, or intracranial metallic implants. 
Concurrent with EEG recordings, a certified neurologist systematically 
evaluated consciousness levels using the Coma Recovery Scale-Revised 
(CRS-R). To ensure diagnostic accuracy, each patient underwent a 
minimum of four behavioral assessments, with final diagnoses 
determined by optimal behavioral responses. The temporal proximity 
between EEG recordings and behavioral assessments was maintained 
within a one-week window. Based on CRS-R performance, participants 
were stratified into two clinical subgroups: UWS (n = 27) and MCS 
(n = 20). Statistical analyses revealed no significant inter-group differences 
in age, gender distribution, etiology profiles, or disease chronicity. 
Comprehensive demographic and clinical characteristics are summarized 

TABLE 1  Comparison of socio-demographic and clinical data between 
patients with UWS and MCS.

Subject 
characteristics

UWS MCS p-value

Age (years) (mean ± SD) 46.22 ± 13.58 48.9 ± 12.04 0.42

Gender (number) Male: 19 Male: 14 1

Female: 8 Female: 6

Etiology (number) A: 5 A: 2 0.102

H: 7 H: 8

T: 12 T: 6

O: 3 O: 4

Time since injury 

(month) (mean ± SD)

10.67 ± 8.11 6.55 ± 4.29 0.23

A, s anoxia; H, hemorrhage; T, trauma; O, other causes; SD, standard deviation.
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in Table 1. Written informed consent was obtained from legally authorized 
representatives of DoC patients.

2.2 Data recording and preprocessing

All participants underwent resting—state EEG recordings that 
lasted for a minimum of 15 min. These recordings were carried out 
using a Neurosoft EEG system, which adopted a 30—channel 
electrode configuration following the international 10–20 system. The 
electrode sites included FP1, FP2, F3, F4, F7, F8, C3, C4, T7, T8, P3, 
P4, P7, P8, O1, O2, FZ, CZ, PZ, OZ, FT7, FT8, FC3, FC4, CP3, CP4, 
TP7, TP8, FCZ, and CPZ. Additionally, bilateral mastoid reference 
electrodes (A1/A2) were utilized. Before data acquisition, automated 
impedance checks ensured all channels remained below 5 kΩ, with 
signals sampled at 500 Hz. The raw EEG data underwent sequential 
preprocessing to optimize signal integrity. Machine learning-based 
Artifact Subspace Reconstruction (ASR) was then applied to 
dynamically identify and correct transient high-amplitude artifacts 
(e.g., electrode pops or movement-induced bursts) by statistically 
modeling clean EEG subspaces and reconstructing corrupted 
segments. Subsequently, Independent Component Analysis (ICA) 
employing the Infomax algorithm decomposed the multichannel 
signals into spatially independent components. Artifact-related 
components were automatically classified via the ICLABEL toolbox, 
which leverages a pretrained neural network to assign probabilistic 
labels. The cleaned data were reconstructed and re-referenced to the 
average reference.

Following automated processing, a certified neurophysiology 
technician performed visual inspection to manually discard epochs 
with residual non-physiological artifacts. For each participate, over 
5 min of artifact-free data were retained. The validated signals were 
partitioned into consecutive 10-s non-overlapping epochs for 
downstream analysis. The entire preprocessing pipeline was executed 
using the EEGLAB toolbox (v2022.1).

2.3 Data analysis

The multitaper method (MTM) was employed to estimate the 
power spectral density (PSD) of the preprocessed EEG across 
electrodes and epochs, following Thomson’s orthogonal taper 
approach (Thomson, 1982). Compared to other approaches like 
Welch’s method, MTM offers three key advantages: it achieves a 
superior balance between frequency resolution and variance 
reduction via multiple orthogonal tapers, avoiding the frequency 
resolution loss from Welch’s signal segmentation; it is more robust 
to non-stationary EEG fluctuations (e.g., irregular slow waves in 
patients) by minimizing segment-boundary artifacts and leakage, 
unlike Welch’s rigid segmentation; and it enhances SNR for 
low-amplitude neural signals, critical for detecting subtle group 
differences. The MTM was implemented using the pmtm function 
in MATLAB (R2022b). Analysis was performed on non-overlapping 
5-s windows, a duration selected to ensure stationarity while 
maintaining sufficient frequency resolution for capturing neural 
oscillatory dynamics. We employed a time-half bandwidth product 
of NW = 4, yielding 7 orthogonal Slepian tapers. This configuration 
provides an optimal balance between spectral leakage suppression 

and variance control, in accordance with established practices in 
multitaper spectral analysis (Babadi and Brown 2014; Prerau et al., 
2017). No detrending was applied prior to spectral estimation. The 
NFFT size was set to the default value of 4,096. Finally, the 
individual tapered estimates were combined using Thomson’s 
adaptive weighting method to optimize the bias-variance tradeoff, 
which is the default procedure in the pmtm function when a single 
output is requested. All spectral estimates were conducted within a 
frequency range of 0.1 to 30 Hz, considering that the gamma band 
has been rarely considered in DOC studies and no discrimination 
between UWS and MCS was reported (Bai et al., 2021a,b).

The FOOOF Python package was then utilized to parametrize the 
neural power spectra by decomposing them into periodic oscillatory 
components and aperiodic 1/f-like dynamics. The aperiodic 
component was modeled as an exponential function: 
( ) ( )χ= − +logL f b k F , where b represents the broadband “offset,” k 

denotes the “knee” and the “exponent” χ  quantifying the slope of the 
1/f decay. Within the 0.1–30 Hz range, the algorithm was fitted using 
the fixed aperiodic mode with peak width limits of [0.5, 12], max_n_
peaks = 3, min_peak_height = 0.01, and peak_threshold = 0.01. The 
goodness-of-fit of the final model was assessed by computing 
frequency-wise differences between the raw spectra and the final 
model fits, as well as by calculating the R-squared value. For further 
analysis, all models achieved R2 values exceeding 0.95, which is in 
accordance with previous studies (Wang et al., 2022, 2024). Both the 
aperiodic offset and exponent were extracted for each participant and 
subsequently used in statistical analyses.

Following the removal of the aperiodic component, the three 
dominant peak parameters (periodic metrics) of the neural spectrum 
were obtained, including the central frequency (CF), power over the 
aperiodic component (PW), and bandwidth (BW) of the peak. These 
parameters were also derived using multitaper-based PSD for further 
comparison. All periodic and aperiodic metrics were computed for 
each epoch and electrode independently. For each participant, the 
metrics were averaged to evaluate the oscillatory and aperiodic 
dynamics at both global (whole brain) and local (regional) spatial 
scales. Additionally, the temporal and spatial variability of these 
metrics was investigated by calculating the coefficients of variation 
(CV), defined as the ratio of the standard deviation to the mean value 
of the metrics across epochs or electrodes.

2.4 Statistical analysis

First, group differences in demographic characteristics (age, 
gender, etiology, and disease duration) were examined. Categorical 
variables (gender and etiology) were analyzed using chi-square tests, 
while continuous variables (age and disease duration) were assessed 
via one-way analysis of variance (ANOVA). For group comparisons 
of EEG metrics, Wilcoxon signed-rank tests were applied to channel-
averaged data. To address channel-wise comparisons across 30 
electrodes, p-values were adjusted for multiple comparisons using 
the false discovery rate (FDR) correction. Additionally, Spearman’s 
rank correlation analysis was performed to evaluate associations 
between metrics showing significant group differences and CRS-R 
scores. All statistical analyses were conducted in SPSS 25.0  
(SPSS Inc., Chicago, IL, USA), with a significance threshold of 
α = 0.05.
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2.5 Classification

To further evaluate the ability of periodic or aperiodic features in 
distinguishing between UWS and MCS patients, we conducted the 
classification analysis using a support vector machine approach. To 
reduce the workload of classification, only the global-scale features 
(features averaged across all channels) with significant group 
differences (p < 0.05) were selected as the input of the classifiers. A 
double repeated stratified cross-validation framework was employed 
to ensure robust evaluation reliability of the classification model. First, 
we implemented 10 repetitions of 5-fold stratified cross-validation 
during the hyperparameter tuning phase with a grid search strategy. 
The dataset is partitioned into 5 mutually exclusive subsets of equal or 
comparable size, referred to as folds. In each experimental cycle, the 
model is trained on 4 folds and validated on the remaining fold. This 
process iterates 5 times, with the final performance metric calculated 
as the mean across all 5 iterations. Each “fold” maintains the sample 
ratio of each category as closely as possible to the class proportion in 
the original dataset. After identifying the optimal parameter 
configuration, an independent validation phase was conducted using 
50 repetitions of 5-fold cross-validation to reduce stochastic variability 
induced by random data partition. Finally, the averaged accuracy, 
sensitivity, specificity and Area Under the Curve (AUC) were 
calculated to assess the classification performance.

3 Results

Figures  1A,B illustrated the grand-averaged full-scalp power 
spectra with only periodic or aperiodic component reserved, 
respectively for UWS and MCS group, respectively. Compared to the 
patients with UWS, the MCS patients exhibited lower delta and higher 
alpha oscillation power with the second peak shifting right. While for 
aperiodic activity, the MCS patients showed higher power especially 
within the range from 5 to 30 Hz.

To better characterize the alterations of periodic and aperiodic 
activities with consciousness levels, we  compared the corresponding 
parameters for both components between the two groups on a global 

scale, shown in Figure  2 and Table  2. The MCS group (Mean: 2.10, 
SD:0.55) exhibited significant higher center frequency (p = 0.042) than 
the UWS group (Mean: 1.79, SD:0.32). On the contrary, the UWS patients 
(Mean: 0.79, SD:0.13) have higher peak power (p = 0.027) than those with 
MCS (Mean: 0.72, SD:0.17). No significant difference was observed for 
the bandwidth between groups (p = 0.287). In the raw power spectra, the 
MCS group showed increased relative power in theta (p = 0.0027), alpha 
(p = 0.0004) and beta (p = 0.029) bands compared with UWS, while an 
opposite trend was found in delta band (p = 0.0004). While in the periodic 
spectrum, only the delta and alpha bands (p = 0.034) showed significant 
group differences. Considering that the loss of consciousness may have 
different effects on the spectral slope (exponent) in low and high 
frequency bands, we compared the aperiodic metrics within different 
frequency ranges. In the broad frequency range of 0.1–30 Hz, the 
exponents were significantly reduced (p = 0.015) in the MCS patients 
(Mean: 1.05, SD: 0.27) compared to those with UWS (Mean: 1.29, SD: 
0.37). A similar but more obvious change of exponents can be found in 
the 0.1–13 Hz range. While in the 13–30 Hz range, no significant 
difference was found. For the offsets, results showed no group differences 
in all the frequency range. Thus, further analysis was mainly performed 
within the 0.1–13 Hz range.

In addition, we conducted pairwise group comparisons on a local 
scale for different channels or brain areas. Though the MCS group 
showed higher mean center frequency and lower mean peak power in 
most channels than UWS, no significant difference was found in any 
channel after post-correction. Similar to the spatial distribution of raw 
spectrum, the human brain was more likely to show higher delta 
periodic power in the frontal area and alpha periodic power in the 
occipital area for both UWS and MCS patients. Significant decrease of 
delta power could be found in the whole brain except the frontal area 
from UWS to MCS. The alpha power also exhibited significant 
differences in most channels especially in the occipital area (Figure 3). 
In the 0.1–13 Hz range, the UWS group displayed the highest 
exponents in the frontal area and the lowest values in the occipital 
area. Similar spatial distribution could be found for the MCS group. 
Post hoc comparisons showed that UWS and MCS differed 
significantly in exponent at the whole brain with the strongest 
difference found at the central area (Figure 4).

FIGURE 1

The periodic (A) and aperiodic (B) components of the power spectral density averaged across the individuals with UWS or MCS. The shaded areas 
indicate the standard deviation of power across the frequencies.
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FIGURE 2

Differences of periodic (A) and aperiodic (B) metrics on global scale (averaged across the channels) between patients with UWS and MCS. * denotes 
p < 0.05, ** denotes p < 0.005 and np denotes p > 0.05.

TABLE 2  Comparison of channel-averaged spectral features.

Features UWS MCS U value p-value

CF 1.79 ± 0.317 2.104 ± 0.55 175 0.042

PW 0.79 ± 0.131 0.716 ± 0.171 373 0.027

BW 1.254 ± 0.222 1.334 ± 0.258 220 0.287

Delta raw power 0.719 ± 0.091 0.572 ± 0.135 443 0.0002

Theta raw power 0.163 ± 0.054 0.226 ± 0.066 126 0.002

Alpha raw power 0.049 ± 0.026 0.099 ± 0.049 89 0.0001

Beta raw power 0.069 ± 0.069 0.103 ± 0.083 168 0.029

Delta periodic power 0.293 ± 0.117 0.208 ± 0.084 387 0.012

Theta periodic power 0.363 ± 0.198 0.397 ± 0.163 241 0.540

Alpha periodic power 0.123 ± 0.084 0.199 ± 0.099 159 0.017

Beta periodic power 0.221 ± 0.173 0.196 ± 0.114 268 0.974

0.1–13 Hz offset 0.763 ± 0.363 0.635 ± 0.392 300 0.53

0.1–30 Hz offset 0.793 ± 0.373 0.671 ± 0.384 294 0.61

13–30 Hz offset 1.387 ± 0.888 1.39 ± 1.027 277 0.89

0.1–13 Hz exponent 1.06 ± 0.255 0.767 ± 0.26 424 0.00096

0.1–30 Hz exponent 1.289 ± 0.365 1.05 ± 0.265 383 0.015

13–30 Hz exponent 1.769 ± 0.855 1.63 ± 0.808 294 0.61
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As the metrics were uniformly distributed among brain regions, 
we further explored the spatial variability of periodic and aperiodic 
metrics using spatial CV, shown in Figure 5. There were no significant 
differences of CV values between UWS and MCS patients for 
parameters CF, PW and BW, whereas the delta power showed higher 
spatial CVs (p < 0.005) in MCS patients than those in UWS. The MCS 
group showed higher spatial variability of exponents than UWS in 
both 0.1–13 Hz and 13–30 Hz range, whereas the CVs of exponents 
in the 0.1–30 Hz range did not differ between groups. We further 
investigate the temporal fluctuation of the metrics on global and local 

scales. No significant group differences were found for the periodic 
parameters and offset. While increased temporal variability of 
exponents was observed in the 0.1–13 Hz and 0.1–30 Hz range. On 
local scale, both UWS and MCS group showed the highest CVs in the 
posterior area. Significant increase of temporal CVs can be found in 
the whole brain after post-correction (Figure 6).

To assess the relationships between the periodic or aperiodic 
activities with the behavioral performance of DoC patients, we estimated 
the Spearman correlations between the abovementioned metrics and 
CRS-R scores on local and global scales, respectively. As expected, a 

FIGURE 3

The scalp topography of raw and periodic (relative) power in different groups. (A) Delta band; (B) alpha band. The third column exhibits the difference 
between UWS and MCS group, with the white stars marked the channels with significant group differences (p < 0.05, FDR corrected).

https://doi.org/10.3389/fnins.2025.1657792
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Cai et al.� 10.3389/fnins.2025.1657792

Frontiers in Neuroscience 07 frontiersin.org

positive correlation between center frequency and CRS-R score was 
found on global scale (r = 0.35, p = 0.034), with the C3 channel (left 
central area) only showed significant correlation on the local scale. 
While the peak power was negatively correlated with the CRS-R score 
(r = −0.314, p = 0.034) only on a global scale. The delta/alpha power 
showed significant correlations with CRS-R score especially in the 
posterior area, though an opposite trend can be observed. While for the 
aperiodic metrics, the exponent also had a negative correlation with the 
CRS-R score (r = −0.34, p = 0.019) (Figure 7). On the contrary, the 
temporal CVs were positively correlated with the behavioral 

performance (r = 0.4, p = 0.006), with the strongest correlation found in 
the central and parietal areas. The individuals with higher spatial CVs 
of exponent (r = 0.31, p = 0.033) and delta power (r = 0.35, p = 0.015) 
were also more likely to have better behavioral performance (Figure 8).

Finally, we  assessed the diagnostic utility of global features in 
detecting consciousness levels using an SVM classifier. Among aperiodic 
metrics with significant intergroup differences, the temporal CVs of the 
spectral exponent within the 0.1–13 Hz frequency band demonstrated the 
strongest classification performance, yielding an accuracy of 70.6% and 
an AUC of 0.782. For periodic features, the spatial CVs of delta power 

FIGURE 4

The scalp topography of spectral exponents in different groups. The third column exhibits the difference between UWS and MCS group, with the white 
stars marked the channels with significant group differences (p < 0.05, FDR corrected).

FIGURE 5

The spatial variability of periodic (A) and aperiodic (B) metrics in the patients with UWS and MCS. * denotes p < 0.05, ** denotes p < 0.005 and np 
denotes p > 0.05. SCV, spatial CV.
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achieved the optimal classification results, with an accuracy of 70.0% and 
an AUC of 0.762. However, both features demonstrate poor ability in 
detecting MCS, manifested by the low sensitivity value (44.5 and 47.7%) 
when the highest accuracy was obtained. Significantly, integrating both 
periodic and aperiodic features enhanced classification performance, 
achieving an accuracy of 78.2% and an AUC of 0.861. Moreover, the 
identification power of MCS was remarkably elevated with a sensitivity of 
77.7% (see Table 3).

4 Discussion

This study aimed to explore the roles of the aperiodic and 
periodic components of the scalp EEG in detecting consciousness 
levels. Our results revealed a significant difference in periodic activity 

(denoted by the center frequency, peak power of the periodic power 
spectra and alpha power) between the patients with UWS and 
MCS. Compared to the UWS group, the MCS group demonstrated 
significantly lower exponents especially on the whole brain. 
Moreover, enhanced spatial and temporal variability of the exponents 
could be  observed from UWS to MCS. Combing periodic and 
aperiodic parameters could improve the diagnosis performance in 
distinguishing UWS and MCS compared to that with only periodic 
features. These results indicate the non-negligible role of aperiodic 
components of brain activity in assessing residual consciousness. Our 
results revealed significantly lower delta power but higher alpha 
power with the traditional approach in MCS group compared to the 
UWS group. This is consistent with the previous spectral studies that 
linked enhanced delta and suppressed alpha activities with low 
consciousness level (Sitt et al., 2014; Stefan et al., 2018; Lehembre 

FIGURE 6

The temporal variability of periodic and aperiodic metrics in the patients with UWS and MCS. (A) The temporal variability of the metrics global scale. 
(B) The scalp topography of CVs for exponents in different groups. * denotes p < 0.05, ** denotes p < 0.005 and np denotes p > 0.05. TCV: spatial CV. 
All the channels showed significant group differences (p < 0.05, FDR corrected) of CVs for exponents.
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et al., 2012). In addition, this study showed increased power in the 
theta band in UWS patients compared with MCS, which is in 
accordance with the previous studies that reported positive 
correlations between power and consciousness state (Piarulli et al., 
2016). However, after removing the aperiodic component, only the 
oscillatory power in delta and alpha band showed significant group 
differences. This suggests that the apparent changes in narrowband 
power could be attributed to both the reductions in true oscillatory 
power and changes in aperiodic exponent. The strong correlation 
between loss of consciousness and elevated delta power is attributed 
to widespread cortical deactivation during the ‘down states’ of slow 
oscillations (Frohlich et al., 2021). Supporting this, a recent model 
study proposed that abnormal delta rhythms in DoC arise from 
altered neuronal firing patterns and reduced synaptic weights (Wang 

et  al., 2025). Conversely, diminished alpha power reflects the 
characteristic global cortical suppression observed in severe diffuse 
postanoxic injury (Colombo et al., 2023).

Beyond the decreased delta power, we  observed significant 
increase of center frequency and decrease of peak power from UWS 
to MCS. Moreover, both metrics showed significant correlations with 
the CRS-R score. Such correlations have also been reported for the 
peak frequency of the raw spectrum in a previous study. According to 
a visual categorization of EEG in DoC named “ABCD” model, the 
power spectrum could reflect the levels of structural or functional 
deafferentation that occur in patients with DoC (Timofeev et al., 2001; 
Frohlich et al., 2022). For instance, the UWS patients with dominant 
frequency <1 Hz (A type) could suggest complete deafferentation of 
thalamocortical connectivity. While the EEG power spectrum with a 
peak in the 5–9 Hz range or higher frequency ranges are associated 
with preserved thalamocortical projections. This form of shift can also 
be linked to the transitions from UWS to MCS or higher consciousness 
levels. Overall, the alterations of periodic spectrum also support the 
conclusion that the loss of consciousness are accompanied by the 
trend of EEG slowing (Lutkenhoff et al., 2020).

Despite historical neglect, the EEG spectral exponent is increasingly 
recognized as a marker of altered consciousness (Maschke et al., 2025). 
Beyond periodic activity differences between UWS and MCS, 
we observed significantly higher aperiodic exponents in UWS patients, 
reflecting steeper spectral decay—a distinct form of EEG slowing. As 
spectral exponents are theorized to index neural E/I balance (Gao et al., 
2017; Wiest et al., 2023), and consciousness requires optimal E/I ratios 
(Gao et al., 2017; McKeon et al., 2024; Lord et al., 2023), severe brain 
injury may disrupt this balance (increased inhibition/reduced 
excitation). This shift could push the brain away from criticality, 
steepening spectral slopes. Additional biophysical factors—including 
active membrane currents and dendritic calcium spikes—may further 
shape EEG spectra by altering synaptic kinetics (Gao et  al., 2020; 
Reimann et al., 2013; Suzuki and Larkum, 2017; Brake et al., 2024). 
Critically, exponent decreases from UWS to MCS occurred globally 
across all channels, suggesting whole-brain alterations in E/I balance or 
synaptic function. This effect was more pronounced in the 0.1–13 Hz 
range, indicating heightened sensitivity of low-frequency aperiodic 
activity to consciousness states. Such frequency-specific aperiodic-
periodic interactions may explain why conventional power spectra often 
reveal changes in delta, theta, and alpha bands.

In addition to the comparison of spectral parameters averaged 
across channels or epochs, we  also explored the spatiotemporal 
variabilities of these metrics. Our results showed significant increased 
spatial variability of delta power and spectral exponent with 
consciousness levels. This is in line with a previous study that reported 
reduced stability of brain hubs and heterogeneity of brain dynamics 
with the loss of consciousness (López-González et  al., 2021). A 
possible explanation is that the local dynamics are strongly determined 
by the structural connections in low-states of consciousness, while 
local dynamics in conscious state can dissociate from their structural 
constrains and presented a diversity across the brain regions (Panda 
et al., 2022; Luppi et al., 2023). Moreover, positive correlation between 
the temporal variability of spectral exponent and consciousness levels 
or behavioral performance could be found in this study. This could 
be associated with the finding that the brains of unresponsive patients 
showed primarily less complex patterns and had smaller chances to 
transition between patterns (Demertzi et al., 2019; Cavanna et al., 

FIGURE 7

Relation between the periodic or aperiodic metrics and CRS-R score 
of the patients on global scale (left panel) and local scale (right 
panel). The white stars marked the channels with significant 
correlations.
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2018; Cai et al., 2020; Bai et al., 2021a,b). Indeed, a previous study has 
reported the existence of spatial and temporal hierarchical differences 
of neural activity within the macaque cortex, which is modulated by 
the loss of consciousness (i.e., anesthesia). Such disruption of brain 
hierarchy corresponds to poor and rigid, structurally driven brain 
dynamics (Signorelli et al., 2021).

Furthermore, we  investigated the diagnostic power of 
periodic and aperiodic features in detecting consciousness levels. 
Our results showed that both periodic and aperiodic metrics 
could effectively discriminate MCS from UWS with much better 
performance than that of a coin toss, while the aperiodic features 
yield better classification performance (higher accuracy and 
AUC) than the periodic features on the whole. This suggest that 

the aperiodic activities exhibit stronger modulation than 
oscillatory components under loss of consciousness and contains 
richer information about conscious states. Among all the 
aperiodic features, the temporal variability of spectral exponent 
demonstrates superior classification performance, strongly 
supporting its potential as a diagnostic biomarker for conscious 
states. Interestingly, the combination of periodic and aperiodic 
features could achieve better performance than those with only 
periodic or aperiodic features, especially in the detecting of MCS 
patients. This highlights the distinct physiological significance of 
periodic and aperiodic activity in DoC.

Several limitations of the current study should be acknowledged. 
First, although our sample size is comparable to those of previous EEG 

FIGURE 8

Relation between the spatial or temporal variability of metrics and CRS-R score of the patients. (A) Temporal CVs of exponents on global and local 
scale; (B) spatial CVs of exponents and delta power.

TABLE 3  Classification performance obtained with the periodic or aperiodic features on global scale.

Features ACC SEN SPE AUC

Delta relative power 65.0 51.7 74.7 0.697

Alpha relative power 66.9 60.3 71.8 0.701

CF 65.1 36.5 86.3 0.680

PW 62.9 43.2 77.3 0.702

Exponent (0.1–13 Hz) 67.5 56.2 76.0 0.760

TCV of exponent (0.1–13 Hz) 70.6 44.5 89.9 0.782

SCV of exponent (0.1–13 Hz) 68.1 48.7 82.4 0.754

SCV of exponent (13–30 Hz) 67.3 68.0 67.0 0.693

SCV of delta relative power 70.0 47.7 86.5 0.762

Combined features 78.2 77.7 78.3 0.861
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studies involving patients with DoC (Liu et al., 2023; Toppi et al., 
2024), the relatively limited number of participants may affect the 
generalizability of the classification model. Future studies with larger, 
multi-center cohorts are required to validate our findings and build 
more robust and generalizable models for the diagnosis of patients 
with DoC.

Second, the present study separated the DOC patients into 
UWS and MCS, without accounting for more nuanced clinical 
and behavioral subtypes, such as MCS* patients (Thibaut et al., 
2021), UWS patients who demonstrate covert auditory 
localization (Carrière et  al., 2020; Aubinet et  al., 2019), or 
individuals exhibiting cognitive-motor dissociation (Bodien 
et al., 2024). Such heterogeneity may introduce variability within 
groups and obscure more subtle electrophysiological differences 
between these functionally distinct subpopulations. Although the 
proposed periodic and aperiodic features show promise for 
discrimination between UWS and MCS, their ability to 
distinguish these finer-grained phenotypes remains unexplored. 
Future studies with larger, phenotypically refined cohorts are 
needed to evaluate whether these EEG biomarkers can support 
more precise subtyping and individualized prognosis.

Finally, relying solely on frequency-domain features provides 
limited insight into the mechanisms of consciousness and may also 
limit the accuracy and generalizability of classification models. To 
achieve a more comprehensive understanding of DoC and improve 
predictive performance, future studies should integrate advanced 
computational approaches—such as dynamic causal modeling or 
time-resolved network analysis (e.g., Panda et al., 2023), alongside 
multimodal integration with structural neuroimaging, to enhance 
explanatory and predictive power in DoC.

5 Conclusion

This study provides insight into the roles of periodic and aperiodic 
activities in characterizing DoC. Our results revealed that the EEG 
spectral changes with the altered consciousness levels are not only 
driven by the periodic oscillations but also the aperiodic activities, 
which may demonstrate performance in distinguishing between UWS 
and MCS. In addition to the temporal or spatial averaged metrics, the 
spatiotemporal variability of aperiodic activities also contains 
important information about the consciousness states. These findings 
may advance the mechanistic understanding of DoC and provide new 
insights for the detecting of residual consciousness.

Data availability statement

The raw data supporting the conclusions of this article will 
be made available by the authors, without undue reservation.

Ethics statement

The studies involving humans were approved by Tianjin Kanghui 
Hospital Ethics Committee. The studies were conducted in accordance 
with the local legislation and institutional requirements. The 
participants provided their written informed consent to participate in 
this study.

Author contributions

LC: Validation, Methodology, Writing  – original draft. YL: 
Writing – original draft, Visualization, Software. ZC: Data curation, 
Writing  – original draft. YD: Data curation, Conceptualization, 
Writing – review & editing.

Funding

The author(s) declare that financial support was received for the 
research and/or publication of this article. This work was supported 
in part by the National Natural Science Foundation of China under 
Grant 62201380 and 82371197.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Generative AI statement

The authors declare that no Gen AI was used in the creation of 
this manuscript.

Any alternative text (alt text) provided alongside figures in this 
article has been generated by Frontiers with the support of artificial 
intelligence and reasonable efforts have been made to ensure accuracy, 
including review by the authors wherever possible. If you identify any 
issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

References
Aubinet, C., Panda, R., Larroque, S. K., Cassol, H., Bahri, M. A., Carrière, M., 

et al. (2019). Reappearance of command-following is associated with the recovery 
of language and internal-awareness networks: A longitudinal multiple-case report. 
Front. Syst Neurosci, 13. doi: 10.3389/fnsys.2019.00008

Babadi, B., and Brown, E. N. (2014). A Review of Multitaper Spectral Analysis. 
IEEE Transactions on Biomedical Engineering, 16:1555–1564.

Bai, Y., He, J., Xia, X., Wang, Y., Yang, Y., Di, H., et al. (2021a). Spontaneous 
transient brain states in EEG source space in disorders of consciousness. 
NeuroImage 240:118380. doi: 10.1016/j.neuroimage.2021.118407

Bai, Y., Lin, Y., and Ziemann, U. (2021b). Managing disorders of consciousness: the 
role of electroencephalography. J. Neurol. 268, 4033–4065. doi: 
10.1007/s00415-020-10095-z

https://doi.org/10.3389/fnins.2025.1657792
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://doi.org/10.3389/fnsys.2019.00008
https://doi.org/10.1016/j.neuroimage.2021.118407
https://doi.org/10.1007/s00415-020-10095-z


Cai et al.� 10.3389/fnins.2025.1657792

Frontiers in Neuroscience 12 frontiersin.org

Bodien, Y. G., Allanson, J., Cardone, P., Bonhomme, A., Carmona, J., Chatelle, C., et al. 
(2024). Cognitive motor dissociation in disorders of consciousness. N. Engl. J. Med. 391, 
598–608. doi: 10.1056/NEJMoa2400645

Brake, N., Duc, F., Rokos, A., Arsenau, F., Shahiri, S., Khadra, A., et al. (2024). A 
neurophysiological basis for aperiodic EEG and the background spectral trend. Nat. 
Commun. 15:521. doi: 10.1038/s41467-024-45922-8

Cai, L., Wei, X., Wang, J., Yi, G., Lu, M., and Dong, Y. (2020). Characterization of 
network switching in disorder of consciousness at multiple time scales. J. Neural Eng. 
17:026024. doi: 10.1088/1741-2552/ab79f5

Carrière, M., Aubinet, C., Bahri, M. A., Larroque, S. K., Martial, C., Panda, R., et al. 
(2020). Auditory localization should be considered as a sign of minimally conscious state 
based on multimodal findings. Front. Neurol. 11:619. doi: 10.1093/braincomms/fcaa195

Cavanna, F., Vilas, M. G., Palmucci, M., and Tagliazucchi, E. (2018). Dynamic 
functional connectivity and brain metastability during altered states of consciousness. 
NeuroImage 180, 383–395. doi: 10.1016/j.neuroimage.2017.09.065

Colombo, M. A., Comanducci, A., Casarotto, S., Derchi, C.-C., Annen, J., 
Viganò, A., et al. (2023). Beyond alpha power: EEG spatial and spectral gradients 
robustly stratify disorders of consciousness. Cereb. Cortex 33, 7193–7210. doi: 
10.1093/cercor/bhad031

Cruse, D., Chennu, S., Chatelle, C., Bekinschtein, T. A., Fernández-Espejo, D., 
Pickard, J. D., et al. (2011). Bedside detection of awareness in the vegetative state: a 
cohort study. Lancet 378, 2088–2094. doi: 10.1016/S0140-6736(11)61224-5

Demertzi, A., Tagliazucchi, E., Dehaene, S., Deco, G., Barttfeld, P., Raimondo, F., et al. 
(2019). Human consciousness is supported by dynamic complex patterns of brain signal 
coordination. Science. Advances 5:eaat7603. doi: 10.1126/sciadv.aat7603

Deodato, M., and Melcher, D. (2024). Aperiodic EEG predicts variability of visual 
temporal processing. J. Neurosci. 44:e1810232024. doi: 10.1523/
JNEUROSCI.2308-23.2024

Donoghue, T., Haller, M., Peterson, E. J., Varma, P., Sebastian, P., Gao, R., et al. (2020). 
Parameterizing neural power spectra into periodic and aperiodic components. Nat. 
Neurosci. 23, 1655–1665.

Donoghue, T., Schaworonkow, N., and Voytek, B. (2021). Methodological 
considerations for studying neural oscillations. Eur. J. Neurosci. 55, 3502–3527. doi: 
10.1038/s41593-020-00744-x

Edlow, B. L., Claassen, J., Schiff, N. D., and Greer, D. M. (2020). Recovery from 
disorders of consciousness: mechanisms, prognosis and emerging therapies. Nat. Rev. 
Neurol. 17, 135–156. doi: 10.1038/s41582-020-00428-x

Favaro, J., Colombo, M. A., Mikulan, E., Sartori, S., Nosadini, M., Pelizza, M. F., et al. 
(2023). The maturation of aperiodic EEG activity across development reveals a 
progressive differentiation of wakefulness from sleep. NeuroImage 277:120233. doi: 
10.1016/j.neuroimage.2023.120264

Frohlich, J., Crone, J. S., Johnson, M. A., Lutkenhoff, E. S., Spivak, N. M., Dell'Italia, J., 
et al. (2022). Neural oscillations track recovery of consciousness in acute traumatic brain 
injury patients. Hum. Brain Mapp. 43, 1804–1820. doi: 10.1002/hbm.25725

Frohlich, J., Toker, D., and Monti, M. M. (2021). Consciousness among delta waves: a 
paradox? Brain 144, 2257–2277. doi: 10.1093/brain/awab095

Gao, R., Peterson, E. J., and Voytek, B. (2017). Inferring synaptic excitation/inhibition 
balance from field potentials. NeuroImage 158, 70–78. doi: 10.1016/j.neuroimage.2017.06.078

Gao, R., van den Brink, R. L., Pfeffer, T., and Voytek, B. (2020). Neuronal timescales 
are functionally dynamic and shaped by cortical microarchitecture. eLife 9:e61277. doi: 
10.7554/eLife.61277

Giacino, J. T., Ashwal, S., Childs, N., Cranford, R., Jennett, B., Katz, D. I., et al. (2002). 
The minimally conscious state. Neurology 58, 349–353. doi: 10.1212/wnl.58.3.349

Jennett, B., and Plum, F. (1972). Persistent vegetative state after brain damage. Lancet 
299, 734–737. doi: 10.1016/S0140-6736(72)90242-5

Kalmar, K., and Giacino, J. T. (2007). The JFK coma recovery scale—revised. 
Neuropsychol. Rehabil. 15, 454–460. doi: 10.1080/09602010443000425

King, J.-R., Sitt, J. D., Faugeras, F., Rohaut, B., El Karoui, I., Cohen, L., et al. (2013). 
Information sharing in the brain indexes consciousness in noncommunicative patients. 
Curr. Biol. 23, 1914–1919. doi: 10.1016/j.cub.2013.07.075

Kreuzer, M., Stern, M. A., Hight, D., Berger, S., Schneider, G., Sleigh, J. W., et al. 
(2020). Spectral and entropic features are altered by age in the electroencephalogram in 
patients under Sevoflurane anesthesia. Anesthesiology 132, 1003–1016. doi: 
10.1097/ALN.0000000000003182

Laureys, S., Celesia, G. G., Cohadon, F., Lavrijsen, J., León-Carrión, J., Sannita, W. G., 
et al. (2010). Unresponsive wakefulness syndrome: a new name for the vegetative state 
or apallic syndrome. BMC Med. 8:68. doi: 10.1186/1741-7015-8-68

Lechinger, J., Bothe, K., Pichler, G., Michitsch, G., Donis, J., Klimesch, W., et al. (2013). 
CRS-R score in disorders of consciousness is strongly related to spectral EEG at rest. J. 
Neurol. 260, 2348–2356. doi: 10.1007/s00415-013-6982-3

Lehembre, R., Marie-Aurélie, B., Vanhaudenhuyse, A., Chatelle, C., Cologan, V., 
Leclercq, Y., et al. (2012). Resting-state EEG study of comatose patients: a connectivity 
and frequency analysis to find differences between vegetative and minimally conscious 
states. Funct. Neurol. 27, 41–47.

Liu, Y., Zeng, W., Pan, N., Xia, X., Huang, Y., and He, J. (2023). EEG complexity 
correlates with residual consciousness level of disorders of consciousness. BMC Neurol. 
23:140. doi: 10.1186/s12883-023-03167-w

López-González, A., Panda, R., Ponce-Alvarez, A., Zamora-López, G., Escrichs, A., 
Martial, C., et al. (2021). Loss of consciousness reduces the stability of brain hubs and 
the heterogeneity of brain dynamics. Commun. Biol. 4:1277. doi: 10.1038/
s42003-021-02537-9

Lord, L.-D., Carletti, T., Fernandes, H., Turkheimer, F. E., and Expert, P. (2023). 
Altered dynamical integration/segregation balance during anesthesia-induced loss of 
consciousness. Front. Netw. Physiol. 3:1243018. doi: 10.3389/fnetp.2023.1279646

Luppi, A. I., Vohryzek, J., Kringelbach, M. L., Mediano, P. A. M., Craig, M. M., 
Adapa, R., et al. (2023). Distributed harmonic patterns of structure-function dependence 
orchestrate human consciousness. Commun. Biol. 6:117. doi: 
10.1038/s42003-023-04474-1

Lutkenhoff, E. S., Nigri, A., Rossi Sebastiano, D., Sattin, D., Visani, E., Rosazza, C., 
et al. (2020). EEG power spectra and subcortical pathology in chronic disorders of 
consciousness. Psychol. Med. 52, 1491–1500. doi: 10.1017/S003329172000330X

Maschke, C., Belloli, L., Manasova, D., Sitt, J. D., and Blain-Moraes, S. (2025). The role 
of etiology in the identification of clinical markers of consciousness: comparing EEG 
alpha power, complexity, and spectral exponent. Cereb. Cortex 35:bhaf254. doi: 
10.1093/cercor/bhaf254

McKeon, S. D., Perica, M. I., Parr, A. C., Calabro, F. J., Foran, W., Hetherington, H., 
et al. (2024). Aperiodic EEG and 7T MRSI evidence for maturation of E/I balance 
supporting the development of working memory through adolescence. Dev. Cogn. 
Neurosci. 66:101390. doi: 10.1016/j.dcn.2024.101373

Naro, A., Bramanti, P., Leo, A., Cacciola, A., Bramanti, A., Manuli, A., et al. (2016). 
Towards a method to differentiate chronic disorder of consciousness patients’ awareness: 
the low-resolution brain electromagnetic tomography analysis. J. Neurol. Sci. 368, 
178–183. doi: 10.1016/j.jns.2016.07.016

Owen, A. M., Coleman, M. R., Boly, M., Davis, M. H., Laureys, S., and Pickard, J. D. 
(2006). Detecting awareness in the vegetative state. Science 313:1402. doi: 
10.1126/science.1130197

Panda, R., López-González, A., Ibáñez-Molina, A. J., Garces, P., Soto, D., Belkhiria, C., 
et al. (2023). Whole-brain analyses indicate the impairment of posterior integration and 
thalamo-frontotemporal broadcasting in disorders of consciousness. Hum. Brain Mapp. 
44, 5232–5251. doi: 10.1002/hbm.26386

Panda, R., Thibaut, A., Lopez-Gonzalez, A., Escrichs, A., Bahri, M. A., Hillebrand, A., 
et al. (2022). Disruption in structural–functional network repertoire and time-resolved 
subcortical fronto-temporoparietal connectivity in disorders of consciousness. eLife 
11:e77462. doi: 10.7554/eLife.77462

Pani, S. M., Saba, L., and Fraschini, M. (2022). Clinical applications of EEG power 
spectra aperiodic component analysis: a mini-review. Clin. Neurophysiol. 143, 1–13. doi: 
10.1016/j.clinph.2022.08.010

Piarulli, A., Bergamasco, M., Thibaut, A., Cologan, V., Gosseries, O., and Laureys, S. 
(2016). EEG ultradian rhythmicity differences in disorders of consciousness during 
wakefulness. J. Neurol. 263, 1746–1760. doi: 10.1007/s00415-016-8196-y

Prerau, M. J., Brown, R. E., Bianchi, M. T., Ellenbogen, J. M., and Purdon, P. L. (2017). 
Sleep Neurophysiological Dynamics Through the Lens of Multitaper Spectral Analysis. 
Bianchi 32, 60–92.

Reimann, M. W., Anastassiou, C. A., Perin, R., Hill, S. L., Markram, H., and Koch, C. (2013). 
A biophysically detailed model of neocortical local field potentials predicts the critical role of 
active membrane currents. Neuron 79, 375–390. doi: 10.1016/j.neuron.2013.05.023

Roche, K. J., Leblanc, J. J., Levin, A. R., O’Leary, H. M., Baczewski, L. M., and 
Nelson, C. A. (2019). Electroencephalographic spectral power as a marker of cortical 
function and disease severity in girls with Rett syndrome. J. Neurodev. Disord. 11:15. doi: 
10.1186/s11689-019-9275-z

Salvatore, S. V., Lambert, P. M., Benz, A., Rensing, N. R., Wong, M., Zorumski, C. F., 
et al. (2024). Periodic and aperiodic changes to cortical EEG in response to 
pharmacological manipulation. J. Neurophysiol. 131, 529–540. doi: 10.1152/jn.00445.2023

Schiff, N. D. (2016). “Mesocircuit mechanisms underlying recovery of consciousness 
following severe brain injuries: model and predictions” in Brain function and 
responsiveness in disorders of consciousness, Eds. Martin M. Monti, Walter G. Sannita. 
Springer, Cham. 195–204. doi: 10.1007/978-3-319-21425-2_15

Schiff, N. D., Nauvel, T., and Victor, J. D. (2014). Large-scale brain dynamics in disorders of 
consciousness. Curr. Opin. Neurobiol. 25, 7–14. doi: 10.1016/j.conb.2013.10.007

Signorelli, C. M., Uhrig, L., Kringelbach, M., Jarraya, B., and Deco, G. (2021). 
Hierarchical disruption in the cortex of anesthetized monkeys as a new signature of 
consciousness loss. NeuroImage 227:117638. doi: 10.1016/j.neuroimage.2020.117618

Sitt, J. D., King, J.-R., El Karoui, I., Rohaut, B., Faugeras, F., Gramfort, A., et al. (2014). 
Large scale screening of neural signatures of consciousness in patients in a vegetative or 
minimally conscious state. Brain 137, 2258–2270. doi: 10.1093/brain/awu141

Stefan, S., Schorr, B., Lopez-Rolon, A., Kolassa, I.-T., Shock, J. P., Rosenfelder, M., et al. 
(2018). Consciousness indexing and outcome prediction with resting-state EEG in 
severe disorders of consciousness. Brain Topogr. 31, 848–862. doi: 
10.1007/s10548-018-0643-x

https://doi.org/10.3389/fnins.2025.1657792
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://doi.org/10.1056/NEJMoa2400645
https://doi.org/10.1038/s41467-024-45922-8
https://doi.org/10.1088/1741-2552/ab79f5
https://doi.org/10.1093/braincomms/fcaa195
https://doi.org/10.1016/j.neuroimage.2017.09.065
https://doi.org/10.1093/cercor/bhad031
https://doi.org/10.1016/S0140-6736(11)61224-5
https://doi.org/10.1126/sciadv.aat7603
https://doi.org/10.1523/JNEUROSCI.2308-23.2024
https://doi.org/10.1523/JNEUROSCI.2308-23.2024
https://doi.org/10.1038/s41593-020-00744-x
https://doi.org/10.1038/s41582-020-00428-x
https://doi.org/10.1016/j.neuroimage.2023.120264
https://doi.org/10.1002/hbm.25725
https://doi.org/10.1093/brain/awab095
https://doi.org/10.1016/j.neuroimage.2017.06.078
https://doi.org/10.7554/eLife.61277
https://doi.org/10.1212/wnl.58.3.349
https://doi.org/10.1016/S0140-6736(72)90242-5
https://doi.org/10.1080/09602010443000425
https://doi.org/10.1016/j.cub.2013.07.075
https://doi.org/10.1097/ALN.0000000000003182
https://doi.org/10.1186/1741-7015-8-68
https://doi.org/10.1007/s00415-013-6982-3
https://doi.org/10.1186/s12883-023-03167-w
https://doi.org/10.1038/s42003-021-02537-9
https://doi.org/10.1038/s42003-021-02537-9
https://doi.org/10.3389/fnetp.2023.1279646
https://doi.org/10.1038/s42003-023-04474-1
https://doi.org/10.1017/S003329172000330X
https://doi.org/10.1093/cercor/bhaf254
https://doi.org/10.1016/j.dcn.2024.101373
https://doi.org/10.1016/j.jns.2016.07.016
https://doi.org/10.1126/science.1130197
https://doi.org/10.1002/hbm.26386
https://doi.org/10.7554/eLife.77462
https://doi.org/10.1016/j.clinph.2022.08.010
https://doi.org/10.1007/s00415-016-8196-y
https://doi.org/10.1016/j.neuron.2013.05.023
https://doi.org/10.1186/s11689-019-9275-z
https://doi.org/10.1152/jn.00445.2023
https://doi.org/10.1007/978-3-319-21425-2_15
https://doi.org/10.1016/j.conb.2013.10.007
https://doi.org/10.1016/j.neuroimage.2020.117618
https://doi.org/10.1093/brain/awu141
https://doi.org/10.1007/s10548-018-0643-x


Cai et al.� 10.3389/fnins.2025.1657792

Frontiers in Neuroscience 13 frontiersin.org

Suzuki, M., and Larkum, M. E. (2017). Dendritic calcium spikes are clearly 
detectable at the cortical surface. Nat. Commun. 8:276. doi: 
10.1038/s41467-017-00282-4

Thibaut, A., Panda, R., Annen, J., Martial, C., Carrière, M., Wanner, L., et al. (2021). 
Preservation of brain activity in unresponsive patients identifies MCS star. Ann. Neurol. 
90, 89–92.

Thomson, D. J. (1982). Spectrum estimation and harmonic analysis. Proceedings of the 
IEEE, 70, 1055–1096.

Timofeev, I., Grenier, F., and Steriade, M. (2001). Disfacilitation and active inhibition 
in the neocortex during the natural sleep-wake cycle: an intracellular study. Proc. Natl. 
Acad. Sci. 98, 1924–1929. doi: 10.1073/pnas.98.4.1924

Toppi, J., Quattrociocchi, I., Riccio, A., D'Ippolito, M., Aloisi, M., Colamarino, E., 
et al. (2024). EEG-derived markers to improve prognostic evaluation of disorders 
of consciousness. IEEE J. Biomed. Health Inform. 28, 6674–6684. doi: 
10.1109/JBHI.2024.3445118

Voytek, B., Kramer, M. A., Case, J., Lepage, K. Q., Tempesta, Z. R., Knight, R. T., et al. 
(2015). Age-related changes in 1/f neural electrophysiological noise. J. Neurosci. 35, 
13257–13265. doi: 10.1523/JNEUROSCI.2332-14.2015

Wang, J., Deng, B., Wang, J., Yang, Y., and Liu, C. (2025). The abnormal delta rhythm 
mechanism in disorders of consciousness: intrinsic neuronal properties and network 
dynamics. Neurocomputing 620:129206. doi: 10.1016/j.neucom.2024.129206

Wang, Z., Liu, A., Yu, J., Wang, P., Bi, Y., Xue, S., et al. (2024). The effect of aperiodic 
components in distinguishing Alzheimer's disease from frontotemporal dementia. 
Geroscience 46, 751–768. doi: 10.1007/s11357-023-01041-8

Wang, Z., Mo, Y., Sun, Y., Hu, K., Peng, C., Zhang, S., et al. (2022). Separating the 
aperiodic and periodic components of neural activity in Parkinson's disease. Eur. J. 
Neurosci. 56, 4889–4900. doi: 10.1111/ejn.15774

Widmann, S., Ostertag, J., Zinn, S., Pilge, S., García, P. S., Kratzer, S., et al. (2025). Aperiodic 
component of the electroencephalogram power spectrum reflects the hypnotic level of 
anaesthesia. Br. J. Anaesth. 134, 392–401. doi: 10.1016/j.bja.2024.09.027

Wiest, C., Torrecillos, F., Pogosyan, A., Bange, M., Muthuraman, M., Groppa, S., et al. 
(2023). The aperiodic exponent of subthalamic field potentials reflects excitation/inhibition 
balance in parkinsonism. eLife 12:e82468. doi: 10.7554/eLife.82467

Wutzl, B., Golaszewski, S. M., Leibnitz, K., Langthaler, P. B., Kunz, A. B., Leis, S., et al. 
(2021). Narrative review: quantitative EEG in disorders of consciousness. Brain Sci. 
11:697. doi: 10.3390/brainsci11060697

https://doi.org/10.3389/fnins.2025.1657792
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://doi.org/10.1038/s41467-017-00282-4
https://doi.org/10.1073/pnas.98.4.1924
https://doi.org/10.1109/JBHI.2024.3445118
https://doi.org/10.1523/JNEUROSCI.2332-14.2015
https://doi.org/10.1016/j.neucom.2024.129206
https://doi.org/10.1007/s11357-023-01041-8
https://doi.org/10.1111/ejn.15774
https://doi.org/10.1016/j.bja.2024.09.027
https://doi.org/10.7554/eLife.82467
https://doi.org/10.3390/brainsci11060697

	Altered periodic and aperiodic activities in patients with disorders of consciousness
	1 Introduction
	2 Materials and methods
	2.1 Participants
	2.2 Data recording and preprocessing
	2.3 Data analysis
	2.4 Statistical analysis
	2.5 Classification

	3 Results
	4 Discussion
	5 Conclusion

	 References

