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Introduction: Disorders of consciousness (DoC), including unresponsive
wakefulness syndrome (UWS) and minimally conscious state (MCS), are primarily
diagnosed behaviorally. Recent evidence indicates that loss of consciousness
manifests as irregularities in neural oscillatory activity across delta, theta, and
alpha frequency bands. However, conventional spectral analysis often conflates
periodic oscillations with aperiodic 1/f components, potentially obscuring
consciousness-related dynamics.

Methods: To elucidate the mechanistic basis of spectral alterations in
consciousness impairment, we compared oscillatory and aperiodic activity
patterns in the electroencephalogram (EEG) of patients with different
consciousness levels. We further examined the spatiotemporal variability of
these neural signatures and rigorously evaluated their discriminative power for
state classification using support vector machine (SVM) analysis.

Results: While periodic and aperiodic activities are independent, our results
indicate that both components exhibit significant differences between groups
at both local and global scales. Critically, higher spatial and temporal variability
of aperiodic features (spectral exponent) were correlated with preserved
consciousness. When distinguishing UWS from MCS, the combination of
periodic and aperiodic features significantly improved classification performance
compared to using either metric alone.

Discussion: Our findings demonstrate that both periodic oscillations and
aperiodic activity provide valuable information about consciousness levels.
Critically, the spatiotemporal dynamics of the aperiodic component serve as
a key marker of brain state. This underscores the necessity of accounting for
aperiodic activity in mechanistic studies and clinical assessments of DoC.

KEYWORDS

disorders of consciousness, electroencephalogram, power spectrum, aperiodic
activity, variability

1 Introduction

Disorders of consciousness (DoC) are often the outcomes of severe brain injuries,
manifesting as a wide-ranging spectrum of conditions. Among them, the vegetative state (VS),
also referred to as unresponsive wakefulness syndrome (UWS) (Laureys et al., 2010; Jennett
and Plum, 1972), represents a state where patients are completely devoid of awareness. In
contrast, patients in the minimally conscious state (MCS) exhibit intermittent but distinct
signs of external awareness (Giacino et al., 2002). In clinical practice, accurately distinguishing
between UWS and MCS is of utmost significance as it serves as the foundation for formulating
suitable treatment strategies. The differential diagnosis between these states is predominantly
grounded in behavioral assessments. Currently, the Coma Recovery Scale—Revised (CRS-R)
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stands as the gold-standard tool for this purpose (Kalmar and Giacino,
2007). However, recent developments suggest that relying solely on
behavioral evaluation might not be sufficient. Brain-imaging
technologies have revealed that around 15-25% of patients who seem
unresponsive clinically exhibit residual signs of awareness (Cruse
etal, 2011; King et al., 2013; Owen et al., 2006). Among the various
neuroimaging tools, electroencephalogram (EEG) is a widely
applicable, less expensive, and suitable procedure that provides direct
and immediate information about the consciousness states.

Growing evidence highlights the distinct roles of EEG signatures
in DoC, as demonstrated by studies spanning spectral analysis (Schiff
et al,, 2014; Lutkenhoff et al., 2020; Wutzl et al., 2021). The most robust
findings center on spectral power alterations across canonical
frequency bands: delta (1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), and
beta (15-30 Hz). DoC patients exhibit elevated delta and theta power
alongside suppressed alpha power compared to healthy controls, with
this alpha suppression serving as a characteristic marker of impaired
consciousness (Lechinger et al., 2013; Sitt et al., 2014; Naro et al,,
2016). Notably, patients in MCS show significantly higher alpha power
than those in UWS, particularly in the central, parietal, and occipital
regions (Bai et al., 2021b). Furthermore, the changes in consciousness
levels may be linked to the shift of dominant spectral peaks within the
electroencephalogram (EEG), as illustrated by the “ABCD” model
(Schiff, 2016; Edlow et al., 2020). This model organizes EEG power
spectra into four broad categories. The EEG patterns corresponding
to these different categories offer crucial insights into the degree of
thalamocortical deafferentation and aid in the diagnosis of
consciousness levels. Notably, the behavioral diagnosis of unresponsive
wakefulness syndrome (UWS) or minimally conscious state (MCS)
can be associated with more than one spectral category. For example,
a patient with UWS may display either A-type or B-type dynamics. On
the other hand, not all EEG spectrals fit with ABCD categories. These
factors impede the application of this model in the clinical field.

The vast majority of the narrowband analysis presumes that
spectral power implies oscillatory power and overlook the existence
of aperiodic activity. In fact, the neural power spectrum encompasses
not only oscillatory activity but also the aperiodic 1/f component.
Recent methodological advancements have revealed that band-limited
variations in oscillatory power can be swayed by alterations in the
aperiodic exponent (Donoghue et al., 2020, 2021). Put simply, the
detected changes in neural power might not mirror actual changes in
the periodic signal; instead, they could be due to changes in aperiodic
features, or a combination of both. Furthermore, aperiodic activity,
which has frequently been regarded as either noise or a bothersome
variable, actually has significant demographic and clinical correlations,
as well as physiological implications (Voytek et al., 2015; Roche et al.,
2019; Salvatore et al., 2024; Pani et al., 2022). For example, aperiodic
analysis can detect baseline neurophysiological changes that reflect
overall alterations in cortical excitability, synaptic activity, and
metabolic demands (Deodato and Melcher, 2024). These factors are
closely associated with the maintenance or transformation of
consciousness states. Recent research has demonstrated that the
characteristics of aperiodic electroencephalogram (EEG) carry
information related to consciousness, such as the depth of anesthesia
and sleep stage (Favaro et al., 2023; Widmann et al., 2025; Kreuzer
et al., 2020). Nevertheless, the diagnostic potential of aperiodic
features in evaluating the consciousness levels of DoC patients
remains largely unexplored.
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To address this gap, the present study aims to systematically
evaluate the diagnostic value of both periodic and aperiodic EEG
components in distinguishing between patients with UWS and
MCS. We hypothesize that both components are associated with
consciousness states. To test this, we decompose the original neural
spectrum of scalp EEG into periodic and aperiodic components and
obtain corresponding features. We then explore the differences in
these components between UWS and MCS patients on both global
and regional scales, with particular attention to their spatial and
temporal variability. Finally, we examine the utility of both
components in distinguishing between patients with different
consciousness levels using multiple machine learning algorithms.
Ultimately, this work seeks to establish a novel biomarker framework
derived from the neural power spectrum, providing a more
mechanistic basis for the diagnosis and stratification of DoC.

2 Materials and methods
2.1 Participants

Electroencephalogram (EEG) data were collected from 47 patients
with DoC (22 males; mean age 42 +15.13 years) recruited from
Department of Neurosurgery at Tianjin Kanghui Hospital, including
etiological subtypes of 18 anoxic brain injury cases, 12 traumatic brain
injuries, and 12 cerebrovascular accidents. The study protocol received
approval from the institutional Ethics Committee, with written informed
consent obtained from all legal guardians. Exclusion criteria comprised
disease duration <1 month, scalp lesions, or intracranial metallic implants.
Concurrent with EEG recordings, a certified neurologist systematically
evaluated consciousness levels using the Coma Recovery Scale-Revised
(CRS-R). To ensure diagnostic accuracy, each patient underwent a
minimum of four behavioral assessments, with final diagnoses
determined by optimal behavioral responses. The temporal proximity
between EEG recordings and behavioral assessments was maintained
within a one-week window. Based on CRS-R performance, participants
were stratified into two clinical subgroups: UWS (1 =27) and MCS
(n = 20). Statistical analyses revealed no significant inter-group differences
in age, gender distribution, etiology profiles, or disease chronicity.
Comprehensive demographic and clinical characteristics are summarized

TABLE 1 Comparison of socio-demographic and clinical data between
patients with UWS and MCS.

Subject UWS MCS p-value
characteristics
Age (years) (mean * SD) 46.22 £ 13.58 489 + 12.04 0.42
Gender (number) Male: 19 Male: 14 1
Female: 8 Female: 6
Etiology (number) A:5 A:2 0.102
H:7 H:8
T:12 T: 6
0:3 0:4
Time since injury 10.67 £ 8.11 6.55 +4.29 0.23
(month) (mean + SD)

A, s anoxia; H, hemorrhage; T, trauma; O, other causes; SD, standard deviation.
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in Table 1. Written informed consent was obtained from legally authorized
representatives of DoC patients.

2.2 Data recording and preprocessing

All participants underwent resting—state EEG recordings that
lasted for a minimum of 15 min. These recordings were carried out
using a Neurosoft EEG system, which adopted a 30—channel
electrode configuration following the international 10-20 system. The
electrode sites included FP1, FP2, F3, F4, F7, E8, C3, C4, T7, T8, P3,
P4, P7,P8, 01, 02, FZ, CZ, PZ, OZ, FT7, FT8, FC3, FC4, CP3, CP4,
TP7, TP8, FCZ, and CPZ. Additionally, bilateral mastoid reference
electrodes (A1/A2) were utilized. Before data acquisition, automated
impedance checks ensured all channels remained below 5 k€2, with
signals sampled at 500 Hz. The raw EEG data underwent sequential
preprocessing to optimize signal integrity. Machine learning-based
Artifact Subspace Reconstruction (ASR) was then applied to
dynamically identify and correct transient high-amplitude artifacts
(e.g., electrode pops or movement-induced bursts) by statistically
modeling clean EEG subspaces and reconstructing corrupted
segments. Subsequently, Independent Component Analysis (ICA)
employing the Infomax algorithm decomposed the multichannel
signals into spatially independent components. Artifact-related
components were automatically classified via the ICLABEL toolbox,
which leverages a pretrained neural network to assign probabilistic
labels. The cleaned data were reconstructed and re-referenced to the
average reference.

Following automated processing, a certified neurophysiology
technician performed visual inspection to manually discard epochs
with residual non-physiological artifacts. For each participate, over
5 min of artifact-free data were retained. The validated signals were
partitioned into consecutive 10-s non-overlapping epochs for
downstream analysis. The entire preprocessing pipeline was executed
using the EEGLAB toolbox (v2022.1).

2.3 Data analysis

The multitaper method (MTM) was employed to estimate the
power spectral density (PSD) of the preprocessed EEG across
electrodes and epochs, following Thomson’s orthogonal taper
approach (Thomson, 1982). Compared to other approaches like
Welch’'s method, MTM offers three key advantages: it achieves a
superior balance between frequency resolution and variance
reduction via multiple orthogonal tapers, avoiding the frequency
resolution loss from Welch’s signal segmentation; it is more robust
to non-stationary EEG fluctuations (e.g., irregular slow waves in
patients) by minimizing segment-boundary artifacts and leakage,
unlike Welch’s rigid segmentation; and it enhances SNR for
low-amplitude neural signals, critical for detecting subtle group
differences. The MTM was implemented using the pmtm function
in MATLAB (R2022b). Analysis was performed on non-overlapping
5-s windows, a duration selected to ensure stationarity while
maintaining sufficient frequency resolution for capturing neural
oscillatory dynamics. We employed a time-half bandwidth product
of NW = 4, yielding 7 orthogonal Slepian tapers. This configuration
provides an optimal balance between spectral leakage suppression
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and variance control, in accordance with established practices in
multitaper spectral analysis (Babadi and Brown 2014; Prerau et al.,
2017). No detrending was applied prior to spectral estimation. The
NFFT size was set to the default value of 4,096. Finally, the
individual tapered estimates were combined using Thomson’s
adaptive weighting method to optimize the bias-variance tradeoff,
which is the default procedure in the pmtm function when a single
output is requested. All spectral estimates were conducted within a
frequency range of 0.1 to 30 Hz, considering that the gamma band
has been rarely considered in DOC studies and no discrimination
between UWS and MCS was reported (Bai et al., 2021a,b).

The FOOOF Python package was then utilized to parametrize the
neural power spectra by decomposing them into periodic oscillatory
components and aperiodic 1/f-like dynamics. The aperiodic
component was modeled as an exponential function:
L( f ) =b- log(k +F Z), where b represents the broadband “offset,” k
denotes the “knee” and the “exponent” y quantifying the slope of the
1/f decay. Within the 0.1-30 Hz range, the algorithm was fitted using
the fixed aperiodic mode with peak width limits of [0.5, 12], max_n_
peaks = 3, min_peak_height = 0.01, and peak_threshold = 0.01. The
goodness-of-fit of the final model was assessed by computing
frequency-wise differences between the raw spectra and the final
model fits, as well as by calculating the R-squared value. For further
analysis, all models achieved R? values exceeding 0.95, which is in
accordance with previous studies (Wang et al., 2022, 2024). Both the
aperiodic offset and exponent were extracted for each participant and
subsequently used in statistical analyses.

Following the removal of the aperiodic component, the three
dominant peak parameters (periodic metrics) of the neural spectrum
were obtained, including the central frequency (CF), power over the
aperiodic component (PW), and bandwidth (BW) of the peak. These
parameters were also derived using multitaper-based PSD for further
comparison. All periodic and aperiodic metrics were computed for
each epoch and electrode independently. For each participant, the
metrics were averaged to evaluate the oscillatory and aperiodic
dynamics at both global (whole brain) and local (regional) spatial
scales. Additionally, the temporal and spatial variability of these
metrics was investigated by calculating the coeflicients of variation
(CV), defined as the ratio of the standard deviation to the mean value
of the metrics across epochs or electrodes.

2.4 Statistical analysis

First, group differences in demographic characteristics (age,
gender, etiology, and disease duration) were examined. Categorical
variables (gender and etiology) were analyzed using chi-square tests,
while continuous variables (age and disease duration) were assessed
via one-way analysis of variance (ANOVA). For group comparisons
of EEG metrics, Wilcoxon signed-rank tests were applied to channel-
averaged data. To address channel-wise comparisons across 30
electrodes, p-values were adjusted for multiple comparisons using
the false discovery rate (FDR) correction. Additionally, Spearman’s
rank correlation analysis was performed to evaluate associations
between metrics showing significant group differences and CRS-R
scores. All statistical analyses were conducted in SPSS 25.0
(SPSS Inc., Chicago, IL, USA), with a significance threshold of
a=0.05.
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2.5 Classification

To further evaluate the ability of periodic or aperiodic features in
distinguishing between UWS and MCS patients, we conducted the
classification analysis using a support vector machine approach. To
reduce the workload of classification, only the global-scale features
(features averaged across all channels) with significant group
differences (p < 0.05) were selected as the input of the classifiers. A
double repeated stratified cross-validation framework was employed
to ensure robust evaluation reliability of the classification model. First,
we implemented 10 repetitions of 5-fold stratified cross-validation
during the hyperparameter tuning phase with a grid search strategy.
The dataset is partitioned into 5 mutually exclusive subsets of equal or
comparable size, referred to as folds. In each experimental cycle, the
model is trained on 4 folds and validated on the remaining fold. This
process iterates 5 times, with the final performance metric calculated
as the mean across all 5 iterations. Each “fold” maintains the sample
ratio of each category as closely as possible to the class proportion in
the original dataset. After identifying the optimal parameter
configuration, an independent validation phase was conducted using
50 repetitions of 5-fold cross-validation to reduce stochastic variability
induced by random data partition. Finally, the averaged accuracy,
sensitivity, specificity and Area Under the Curve (AUC) were
calculated to assess the classification performance.

3 Results

Figures 1A,B illustrated the grand-averaged full-scalp power
spectra with only periodic or aperiodic component reserved,
respectively for UWS and MCS group, respectively. Compared to the
patients with UWS, the MCS patients exhibited lower delta and higher
alpha oscillation power with the second peak shifting right. While for
aperiodic activity, the MCS patients showed higher power especially
within the range from 5 to 30 Hz.

To better characterize the alterations of periodic and aperiodic
activities with consciousness levels, we compared the corresponding
parameters for both components between the two groups on a global

10.3389/fnins.2025.1657792

scale, shown in Figure 2 and Table 2. The MCS group (Mean: 2.10,
SD:0.55) exhibited significant higher center frequency (p = 0.042) than
the UWS group (Mean: 1.79, SD:0.32). On the contrary, the UWS patients
(Mean: 0.79, SD:0.13) have higher peak power (p = 0.027) than those with
MCS (Mean: 0.72, SD:0.17). No significant difference was observed for
the bandwidth between groups (p = 0.287). In the raw power spectra, the
MCS group showed increased relative power in theta (p = 0.0027), alpha
(p =0.0004) and beta (p = 0.029) bands compared with UWS, while an
opposite trend was found in delta band (p = 0.0004). While in the periodic
spectrum, only the delta and alpha bands (p = 0.034) showed significant
group differences. Considering that the loss of consciousness may have
different effects on the spectral slope (exponent) in low and high
frequency bands, we compared the aperiodic metrics within different
frequency ranges. In the broad frequency range of 0.1-30 Hz, the
exponents were significantly reduced (p = 0.015) in the MCS patients
(Mean: 1.05, SD: 0.27) compared to those with UWS (Mean: 1.29, SD:
0.37). A similar but more obvious change of exponents can be found in
the 0.1-13 Hz range. While in the 13-30 Hz range, no significant
difference was found. For the offsets, results showed no group differences
in all the frequency range. Thus, further analysis was mainly performed
within the 0.1-13 Hz range.

In addition, we conducted pairwise group comparisons on a local
scale for different channels or brain areas. Though the MCS group
showed higher mean center frequency and lower mean peak power in
most channels than UWS, no significant difference was found in any
channel after post-correction. Similar to the spatial distribution of raw
spectrum, the human brain was more likely to show higher delta
periodic power in the frontal area and alpha periodic power in the
occipital area for both UWS and MCS patients. Significant decrease of
delta power could be found in the whole brain except the frontal area
from UWS to MCS. The alpha power also exhibited significant
differences in most channels especially in the occipital area (Figure 3).
In the 0.1-13 Hz range, the UWS group displayed the highest
exponents in the frontal area and the lowest values in the occipital
area. Similar spatial distribution could be found for the MCS group.
Post hoc comparisons showed that UWS and MCS differed
significantly in exponent at the whole brain with the strongest
difference found at the central area (Figure 4).

A B
= — UWS
0.8 b — MCS
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5 51
z 04 S
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0 10 20 30 0 10 20 30
Frequency(Hz) Frequency(Hz)
FIGURE 1
The periodic (A) and aperiodic (B) components of the power spectral density averaged across the individuals with UWS or MCS. The shaded areas
indicate the standard deviation of power across the frequencies.
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FIGURE 2
Differences of periodic (A) and aperiodic (B) metrics on global scale (averaged across the channels) between patients with UWS and MCS. * denotes
p < 0.05, ** denotes p < 0.005 and np denotes p > 0.05.

TABLE 2 Comparison of channel-averaged spectral features.

Features uws MCS U value p-value
CF 1.79 £ 0.317 2.104 £ 0.55 175 0.042
PW 0.79 £0.131 0.716 £ 0.171 373 0.027
BW 1.254 £0.222 1.334 +£0.258 220 0.287
Delta raw power 0.719 £ 0.091 0.572 +£0.135 443 0.0002
Theta raw power 0.163 + 0.054 0.226 + 0.066 126 0.002
Alpha raw power 0.049 +0.026 0.099 + 0.049 89 0.0001
Beta raw power 0.069 + 0.069 0.103 +0.083 168 0.029
Delta periodic power 0.293+0.117 0.208 + 0.084 387 0.012
Theta periodic power 0.363 +0.198 0.397 +£0.163 241 0.540
Alpha periodic power 0.123 + 0.084 0.199 + 0.099 159 0.017
Beta periodic power 0.221 +0.173 0.196 +0.114 268 0.974
0.1-13 Hz offset 0.763 +0.363 0.635 +0.392 300 0.53
0.1-30 Hz offset 0.793 £0.373 0.671 £ 0.384 294 0.61
13-30 Hz offset 1.387 +0.888 1.39 + 1.027 277 0.89
0.1-13 Hz exponent 1.06 + 0.255 0.767 +0.26 424 0.00096
0.1-30 Hz exponent 1.289 £ 0.365 1.05 +0.265 383 0.015
13-30 Hz exponent 1.769 + 0.855 1.63 + 0.808 294 0.61
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FIGURE 3
The scalp topography of raw and periodic (relative) power in different groups. (A) Delta band; (B) alpha band. The third column exhibits the difference
between UWS and MCS group, with the white stars marked the channels with significant group differences (p < 0.05, FDR corrected).

As the metrics were uniformly distributed among brain regions,
we further explored the spatial variability of periodic and aperiodic
metrics using spatial CV, shown in Figure 5. There were no significant
differences of CV values between UWS and MCS patients for
parameters CE, PW and BW, whereas the delta power showed higher
spatial CV's (p < 0.005) in MCS patients than those in UWS. The MCS
group showed higher spatial variability of exponents than UWS in
both 0.1-13 Hz and 13-30 Hz range, whereas the CV's of exponents
in the 0.1-30 Hz range did not differ between groups. We further
investigate the temporal fluctuation of the metrics on global and local

Frontiers in Neuroscience

scales. No significant group differences were found for the periodic
parameters and offset. While increased temporal variability of
exponents was observed in the 0.1-13 Hz and 0.1-30 Hz range. On
local scale, both UWS and MCS group showed the highest CVs in the
posterior area. Significant increase of temporal CVs can be found in
the whole brain after post-correction (Figure 6).

To assess the relationships between the periodic or aperiodic
activities with the behavioral performance of DoC patients, we estimated
the Spearman correlations between the abovementioned metrics and
CRS-R scores on local and global scales, respectively. As expected, a
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FIGURE 4

The scalp topography of spectral exponents in different groups. The third column exhibits the difference between UWS and MCS group, with the white
stars marked the channels with significant group differences (p < 0.05, FDR corrected).
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The spatial variability of periodic (A) and aperiodic (B) metrics in the patients with UWS and MCS. * denotes p < 0.05, ** denotes p < 0.005 and np

positive correlation between center frequency and CRS-R score was
found on global scale (r = 0.35, p = 0.034), with the C3 channel (left
central area) only showed significant correlation on the local scale.
While the peak power was negatively correlated with the CRS-R score
(r=-0.314, p = 0.034) only on a global scale. The delta/alpha power
showed significant correlations with CRS-R score especially in the
posterior area, though an opposite trend can be observed. While for the
aperiodic metrics, the exponent also had a negative correlation with the
CRS-R score (r=—0.34, p =0.019) (Figure 7). On the contrary, the
temporal CVs were positively correlated with the behavioral
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performance (r = 0.4, p = 0.006), with the strongest correlation found in
the central and parietal areas. The individuals with higher spatial CVs
of exponent (r = 0.31, p = 0.033) and delta power (r = 0.35, p = 0.015)
were also more likely to have better behavioral performance (Figure 8).

Finally, we assessed the diagnostic utility of global features in
detecting consciousness levels using an SVM classifier. Among aperiodic
metrics with significant intergroup differences, the temporal CVs of the
spectral exponent within the 0.1-13 Hz frequency band demonstrated the
strongest classification performance, yielding an accuracy of 70.6% and
an AUC of 0.782. For periodic features, the spatial CVs of delta power
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FIGURE 6
The temporal variability of periodic and aperiodic metrics in the patients with UWS and MCS. (A) The temporal variability of the metrics global scale.
(B) The scalp topography of CVs for exponents in different groups. * denotes p < 0.05, ** denotes p < 0.005 and np denotes p > 0.05. TCV: spatial CV.
All the channels showed significant group differences (p < 0.05, FDR corrected) of CVs for exponents.

achieved the optimal classification results, with an accuracy of 70.0% and
an AUC of 0.762. However, both features demonstrate poor ability in
detecting MCS, manifested by the low sensitivity value (44.5 and 47.7%)
when the highest accuracy was obtained. Significantly, integrating both
periodic and aperiodic features enhanced classification performance,
achieving an accuracy of 78.2% and an AUC of 0.861. Moreover, the
identification power of MCS was remarkably elevated with a sensitivity of
77.7% (see Table 3).

4 Discussion

This study aimed to explore the roles of the aperiodic and
periodic components of the scalp EEG in detecting consciousness
levels. Our results revealed a significant difference in periodic activity
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(denoted by the center frequency, peak power of the periodic power
spectra and alpha power) between the patients with UWS and
MCS. Compared to the UWS group, the MCS group demonstrated
significantly lower exponents especially on the whole brain.
Moreover, enhanced spatial and temporal variability of the exponents
could be observed from UWS to MCS. Combing periodic and
aperiodic parameters could improve the diagnosis performance in
distinguishing UWS and MCS compared to that with only periodic
features. These results indicate the non-negligible role of aperiodic
components of brain activity in assessing residual consciousness. Our
results revealed significantly lower delta power but higher alpha
power with the traditional approach in MCS group compared to the
UWS group. This is consistent with the previous spectral studies that
linked enhanced delta and suppressed alpha activities with low
consciousness level (Sitt et al., 2014; Stefan et al., 2018; Lehembre
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Relation between the periodic or aperiodic metrics and CRS-R score
of the patients on global scale (left panel) and local scale (right
panel). The white stars marked the channels with significant
correlations.

et al., 2012). In addition, this study showed increased power in the
theta band in UWS patients compared with MCS, which is in
accordance with the previous studies that reported positive
correlations between power and consciousness state (Piarulli et al.,
2016). However, after removing the aperiodic component, only the
oscillatory power in delta and alpha band showed significant group
differences. This suggests that the apparent changes in narrowband
power could be attributed to both the reductions in true oscillatory
power and changes in aperiodic exponent. The strong correlation
between loss of consciousness and elevated delta power is attributed
to widespread cortical deactivation during the ‘down states’ of slow
oscillations (Frohlich et al., 2021). Supporting this, a recent model
study proposed that abnormal delta rhythms in DoC arise from
altered neuronal firing patterns and reduced synaptic weights (Wang
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et al, 2025). Conversely, diminished alpha power reflects the
characteristic global cortical suppression observed in severe diffuse
postanoxic injury (Colombo et al., 2023).

Beyond the decreased delta power, we observed significant
increase of center frequency and decrease of peak power from UWS
to MCS. Moreover, both metrics showed significant correlations with
the CRS-R score. Such correlations have also been reported for the
peak frequency of the raw spectrum in a previous study. According to
a visual categorization of EEG in DoC named “ABCD” model, the
power spectrum could reflect the levels of structural or functional
deafferentation that occur in patients with DoC (Timofeev et al., 2001;
Frohlich et al., 2022). For instance, the UWS patients with dominant
frequency <1 Hz (A type) could suggest complete deafferentation of
thalamocortical connectivity. While the EEG power spectrum with a
peak in the 5-9 Hz range or higher frequency ranges are associated
with preserved thalamocortical projections. This form of shift can also
be linked to the transitions from UWS to MCS or higher consciousness
levels. Overall, the alterations of periodic spectrum also support the
conclusion that the loss of consciousness are accompanied by the
trend of EEG slowing (Lutkenhoff et al., 2020).

Despite historical neglect, the EEG spectral exponent is increasingly
recognized as a marker of altered consciousness (Maschke et al., 2025).
Beyond periodic activity differences between UWS and MCS,
we observed significantly higher aperiodic exponents in UWS patients,
reflecting steeper spectral decay—a distinct form of EEG slowing. As
spectral exponents are theorized to index neural E/I balance (Gao et al.,
2017; Wiest et al., 2023), and consciousness requires optimal E/I ratios
(Gao et al., 2017; McKeon et al., 2024; Lord et al., 2023), severe brain
injury may disrupt this balance (increased inhibition/reduced
excitation). This shift could push the brain away from criticality,
steepening spectral slopes. Additional biophysical factors—including
active membrane currents and dendritic calcium spikes—may further
shape EEG spectra by altering synaptic kinetics (Gao et al., 2020;
Reimann et al., 2013; Suzuki and Larkum, 2017; Brake et al., 2024).
Critically, exponent decreases from UWS to MCS occurred globally
across all channels, suggesting whole-brain alterations in E/I balance or
synaptic function. This effect was more pronounced in the 0.1-13 Hz
range, indicating heightened sensitivity of low-frequency aperiodic
activity to consciousness states. Such frequency-specific aperiodic-
periodic interactions may explain why conventional power spectra often
reveal changes in delta, theta, and alpha bands.

In addition to the comparison of spectral parameters averaged
across channels or epochs, we also explored the spatiotemporal
variabilities of these metrics. Our results showed significant increased
spatial variability of delta power and spectral exponent with
consciousness levels. This is in line with a previous study that reported
reduced stability of brain hubs and heterogeneity of brain dynamics
with the loss of consciousness (Lopez-Gonzélez et al., 2021). A
possible explanation is that the local dynamics are strongly determined
by the structural connections in low-states of consciousness, while
local dynamics in conscious state can dissociate from their structural
constrains and presented a diversity across the brain regions (Panda
etal, 2022; Luppi et al., 2023). Moreover, positive correlation between
the temporal variability of spectral exponent and consciousness levels
or behavioral performance could be found in this study. This could
be associated with the finding that the brains of unresponsive patients
showed primarily less complex patterns and had smaller chances to
transition between patterns (Demertzi et al., 2019; Cavanna et al.,

frontiersin.org


https://doi.org/10.3389/fnins.2025.1657792
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Caietal. 10.3389/fnins.2025.1657792
1.6p
k= e
g 1.2
il |
(=B
)
>|0~8 1=0.4
=0.006*
O or
= 0.4}
[ ®
0.0
4 8 12 16
CRS-R
B
O S O
-
5 0.6f 2 06 =035
g =¥ @ p=0.015*% ®
ox <
» 0.4 = 0.4
= ) % 0¢p°
I = O
% 02t oot @ ©
%) > O
- o0
0.0
0.0
4 8 12 16
CRS-R
FIGURE 8
Relation between the spatial or temporal variability of metrics and CRS-R score of the patients. (A) Temporal CVs of exponents on global and local
scale; (B) spatial CVs of exponents and delta power.

TABLE 3 Classification performance obtained with the periodic or aperiodic features on global scale.

Features ACC SEN SPE AUC
Delta relative power 65.0 51.7 74.7 0.697
Alpha relative power 66.9 60.3 71.8 0.701
CF 65.1 36.5 86.3 0.680
PW 62.9 43.2 77.3 0.702
Exponent (0.1-13 Hz) 67.5 56.2 76.0 0.760
TCV of exponent (0.1-13 Hz) 70.6 44.5 89.9 0.782
SCV of exponent (0.1-13 Hz) 68.1 48.7 82.4 0.754
SCV of exponent (13-30 Hz) 67.3 68.0 67.0 0.693
SCV of delta relative power 70.0 47.7 86.5 0.762
Combined features 78.2 77.7 78.3 0.861

2018; Cai et al., 2020; Bai et al., 2021a,b). Indeed, a previous study has
reported the existence of spatial and temporal hierarchical differences
of neural activity within the macaque cortex, which is modulated by
the loss of consciousness (i.e., anesthesia). Such disruption of brain
hierarchy corresponds to poor and rigid, structurally driven brain
dynamics (Signorelli et al., 2021).

Furthermore, we investigated the diagnostic power of
periodic and aperiodic features in detecting consciousness levels.
Our results showed that both periodic and aperiodic metrics
could effectively discriminate MCS from UWS with much better
performance than that of a coin toss, while the aperiodic features
yield better classification performance (higher accuracy and
AUC) than the periodic features on the whole. This suggest that
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the aperiodic activities exhibit stronger modulation than
oscillatory components under loss of consciousness and contains
richer information about conscious states. Among all the
aperiodic features, the temporal variability of spectral exponent
demonstrates superior classification performance, strongly
supporting its potential as a diagnostic biomarker for conscious
states. Interestingly, the combination of periodic and aperiodic
features could achieve better performance than those with only
periodic or aperiodic features, especially in the detecting of MCS
patients. This highlights the distinct physiological significance of
periodic and aperiodic activity in DoC.

Several limitations of the current study should be acknowledged.
First, although our sample size is comparable to those of previous EEG
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studies involving patients with DoC (Liu et al., 2023; Toppi et al.,
2024), the relatively limited number of participants may affect the
generalizability of the classification model. Future studies with larger,
multi-center cohorts are required to validate our findings and build
more robust and generalizable models for the diagnosis of patients
with DoC.

Second, the present study separated the DOC patients into
UWS and MCS, without accounting for more nuanced clinical
and behavioral subtypes, such as MCS* patients (Thibaut et al.,
2021), UWS patients who demonstrate covert auditory
localization (Carriere et al., 2020; Aubinet et al., 2019), or
individuals exhibiting cognitive-motor dissociation (Bodien
et al., 2024). Such heterogeneity may introduce variability within
groups and obscure more subtle electrophysiological differences
between these functionally distinct subpopulations. Although the
proposed periodic and aperiodic features show promise for
discrimination between UWS and MCS, their ability to
distinguish these finer-grained phenotypes remains unexplored.
Future studies with larger, phenotypically refined cohorts are
needed to evaluate whether these EEG biomarkers can support
more precise subtyping and individualized prognosis.

Finally, relying solely on frequency-domain features provides
limited insight into the mechanisms of consciousness and may also
limit the accuracy and generalizability of classification models. To
achieve a more comprehensive understanding of DoC and improve
predictive performance, future studies should integrate advanced
computational approaches—such as dynamic causal modeling or
time-resolved network analysis (e.g., Panda et al., 2023), alongside
multimodal integration with structural neuroimaging, to enhance
explanatory and predictive power in DoC.

5 Conclusion

This study provides insight into the roles of periodic and aperiodic
activities in characterizing DoC. Our results revealed that the EEG
spectral changes with the altered consciousness levels are not only
driven by the periodic oscillations but also the aperiodic activities,
which may demonstrate performance in distinguishing between UWS
and MCS. In addition to the temporal or spatial averaged metrics, the
spatiotemporal variability of aperiodic activities also contains
important information about the consciousness states. These findings
may advance the mechanistic understanding of DoC and provide new
insights for the detecting of residual consciousness.
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