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Introduction: Approximate numerical comparison is often influenced by various 
non-numerical sensory cues, yet whether they act via uniform inhibition (inhibitory 
control theory) or cue-weighted integration (sensory integration theory) remains 
debated.
Methods: To clarify this theoretical controversy, the present study tested a cue-
specific, temporally staged account by orthogonally manipulating numerosity 
with a holistic, highweight cue (convex hull) and a basic, lower-weight cue 
(average dot size) while recording fronto-central ERPs (P2, N450). Twenty-five 
adults performed a rapid dot array comparison under four congruency conditions.
Results: Behavior showed clear convex-hull dominance: accuracy was high 
whenever convex hull aligned with numerosity and dropped when it conflicted, 
regardless of dot-size consistency; response times were unchanged. ERPs 
revealed a two-stage dynamic: the early P2 selectively tracked dot-size 
congruency (larger for dot-size–congruent trials), consistent with automatic 
integration of basic features, whereas the later N450 scaled with conflict structure 
and cue weight (fully congruent < dot-size–congruent < fully incongruent < 
convex-hull–congruent/dot-size–incongruent), with no latency differences.
Discussion: These converging results support a time-resolved, weightsensitive 
mechanism in which basic features bias integration early and holistic configurations 
dominate later choice and recruit control when misaligned. The account reconciles 
sensory-integration and inhibitory-control views and motivates further tests of 
how cue–cue and cue–number conflicts shape numerical decisions.
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1 Introduction

In everyday life, humans frequently need to make rapid numerical judgments and 
comparisons, such as selecting the shorter checkout line at a supermarket or determining which 
box of fruit offers more content for the same price (Feigenson et al., 2004; Halberda et al., 2008). 
This ability to estimate and compare quantities without precise counting primarily relies on the 
Approximate Number System (ANS), which supports the formation and comparison of imprecise 
numerical representations (Hyde and Spelke, 2011; Liang et al., 2022; Morín et al., 2025).

However, approximate numerical comparison is not based purely on abstract numerosity. 
A substantial literature shows that multiple non-numerical sensory cues—such as convex hull 
(the smallest region enclosing all items), average dot size (the mean area per item), total 
surface area, and density—reliably influence numerical judgments (Gebuis and Reynvoet, 
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2012a,b; Leibovich et al., 2017; Piazza et al., 2018; Tomlinson et al., 
2020). When these cues covary with numerosity (e.g., the array with 
more dots also has a larger convex hull), accuracy is typically high; 
when they conflict with numerosity, accuracy can drop close to 
chance, a robust “congruency effect” (Clayton et al., 2015). This has 
fueled debate about how numerical representations interact with 
sensory cues.

Two prominent accounts offer different mechanistic emphases 
(Leibovich et al., 2017). The inhibitory control theory (also known as 
the Competing Processes Account) proposes that successful numerical 
judgments require active suppression of task-irrelevant or inconsistent 
sensory cues; by analogy with Stroop tasks, incongruent cues recruit 
additional control resources (Clayton and Gilmore, 2015), and 
individuals with stronger inhibitory control tend to show smaller 
congruency effects (Gilmore et al., 2013; Qi et al., 2025). In contrast, 
the sensory integration theory argues that numerical judgments 
emerge from the weighted integration of multiple cues without 
invoking a distinct inhibitory process; more diagnostic cues carry 
greater decision weight and thus bias choices (Gebuis and van der 
Smagt, 2011; Leibovich et  al., 2017; Hofmann et  al., 2024). 
Neuroimaging evidence indicates that non-numerical cues are 
processed even when numerosity is task-relevant, consistent with 
automatic integration (Gebuis and Reynvoet, 2013).

Although both accounts have empirical support and each explains 
aspects of how sensory cues relate to numerosity, they share a 
simplifying assumption that leaves the processing story incomplete: 
they tend to treat “sensory cues” as a homogeneous class and to 
assume a single-stage mechanism (Henik et al., 2017; Leibovich et al., 
2017). The sensory-integration view emphasizes cue-weighted 
accumulation but underplays that a cue’s “weight” partly reflects its 
position in the visual hierarchy—basic features versus holistic 
configurations (Salti et al., 2017; Sanford et al., 2024). This hierarchical 
distinction has temporal implications: primary features are typically 
encoded more rapidly than higher-order configurations, so differences 
in cue weight are likely to map onto distinct encoding timelines and 
impose a temporal structure on integration itself (Burr and Ross, 2008; 
Piazza et al., 2018). Conversely, the inhibitory-control view highlights 
the need to override misleading cues but tends to under-specify two 
issues: high-weight cues often facilitate numerosity judgments when 
aligned, and the cost of overriding a cue plausibly scales with its 
weight rather than being uniform across cues (Clayton et al., 2015; 
Shilat et al., 2021; Sanford et al., 2024).

Taken together, these considerations motivate a cue-grounded 
complementarity: rapidly encoded basic features may support early, 
largely automatic, feature-based integration, whereas holistic 
configurations—typically computed later and suggested in prior work 
to receive greater decision weight—may exert a stronger influence on 
choice. When such configurations misalign with numerosity or other 
cues, they could elicit response competition and control recruitment, 
potentially beyond conflicts induced by basic features.

To make this complementarity testable, we targeted two cues that 
instantiate distinct computational and representational regimes: 
convex hull as a higher-weight holistic configuration, and average dot 
size as a basic lower-weight feature. We selected these cues because 
convex hull is a well-established dominant cue in approximate 
numerosity judgments, whereas average dot size is a tractable 
representative cue among strongly covarying alternatives (total surface 
area, density). This choice permits clean orthogonalization with 

numerosity and with each other, improving internal validity and 
allowing any temporal dissociation to be attributed to cue type rather 
than task demands (Salti et al., 2017; Sanford et al., 2024; Lorenzi et al., 
2025). It also affords a principled link from computation to timing: 
basic features can support early feature-based integration, whereas 
holistic, higher-weight configurations are more likely to induce later 
conflict and control recruitment, yielding temporally dissociable 
signatures that single-stage accounts are less well positioned to explain.

Building on this cue selection, we combined behavioral measures 
with event-related potentials (ERPs) and orthogonally manipulated the 
congruency between numerosity and two non-numerical cues (convex 
hull, average dot size). This manipulation yielded four conditions that 
instantiate both cue-numerosity and cue-cue conflicts. Given this 
conflict-based design, the fronto-central midline could provide the 
most informative window, where early attentional selection and feature 
integration (fronto-central P2) and conflict monitoring and control 
recruitment (fronto-central N450) are reliably observed (Szűcs and 
Soltész, 2012; Gebuis et  al., 2016). In contrast, occipito-parietal 
electrodes are typically leveraged to probe early perceptual stages of 
numerosity encoding (often via posterior components such as P2p; 
Hyde and Spelke, 2009, 2011; Fornaciai et al., 2017), which were not the 
target processes of the present study. We therefore adopted a hypothesis-
driven fronto-central ROI and focused on two ERP components:

	(1)	 The early P2 (approximately 200 ms) has been associated with 
perceptual attention and feature detection and is sensitive to 
basic visual properties in numerical tasks (Balconi and Carrera, 
2011; Cohen Kadosh et  al., 2011; Gebuis and Reynvoet, 
2012a,b; Hyde and Spelke, 2011; Soltész and Szűcs, 2014).

	(2)	 The later N450 (approximately 360–450 ms) has been linked to 
conflict processing and control recruitment in Stroop-like 
paradigms, with incongruent trials typically eliciting larger 
amplitudes than congruent trials (West, 2003; West et al., 2005; 
Larson et al., 2014; Liu et al., 2014). In numerical cognition, 
N450 modulations have likewise been observed when 
non-numerical cues conflict with numerical information 
(Szűcs and Soltész, 2012). In the present study, we therefore 
treat the N450 as an index of conflict monitoring and control 
engagement rather than as a direct readout of inhibition 
efficacy or error likelihood (e.g., Huang and Chen, 2020).

By jointly analyzing behavioral performance and the P2/N450 
components under orthogonal manipulations of cue congruency, 
we ask whether early activity—particularly the P2—tracks congruency 
for a basic, lower-weight feature (average dot size) in a manner 
consistent with cue-weighted sensory integration, and whether later 
activity—the N450—scales with conflict when a higher-weight, 
holistic configuration (convex hull) is misaligned with numerosity or 
with another cue, as would be expected under selective recruitment 
of control.

2 Method

2.1 Participants

Twenty-seven undergraduate students (12 female, 13 male; age 
range = 19–23 years; M = 20.56, SD = 1.56) were recruited via campus 
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advertisements. The target sample size was determined a priori using 
G*Power 3.1 (α = 0.05, 1 − β = 0.80) for a within-subject medium 
effect (Cohen’s d = 0.65) based on prior ERP work using 
numerosity-cue congruency manipulations. Inclusion criteria were: 
normal or corrected-to-normal vision (visual acuity≥1.0), no color-
vision deficiency; right-handedness (Edinburgh Handedness 
Inventory, LQ > 80); no history of neurological or psychiatric 
disorders or substance abuse; and no prior participation in similar 
numerical cognition tasks. Two participants were excluded due to 
excessive EEG artifacts (>30% trials), yielding a final sample of 25 
participants (11 female; age = 20.48 ± 1.52 years). All participants 
provided written informed consent. The study protocol was approved 
by the local ethics committee and adhered to the Declaration 
of Helsinki.

2.2 Design

This study employed an approximate numerical comparison task 
where participants made quick judgments about which of two dot 
arrays contained more dots without counting (e.g., Gebuis et al., 2016; 
Inglis and Gilmore, 2013). The experiment followed a single-factor 
within-subjects design.

The independent variable was the congruency between sensory 
cues and numerical information, comprising four levels: Fully 
Congruent (FC), Fully Incongruent (FI), Convex-Hull Congruent but 
average dot size incongruent (CHC), and Dot-Size Congruent but 
convex hull incongruent (DSC) (see Figure 1). In the FC condition, 
the numerically larger array featured both a larger convex hull and 
larger average dot sizes (diameters). In the FI condition, the 
numerically smaller array had both a larger convex hull and larger 
average dot sizes. In the CHC condition, the numerically larger array 
had a larger convex hull but smaller average dot sizes. In the DSC 
condition, the numerically larger array had larger average dot sizes but 
a smaller convex hull. The dependent variables included behavioral 
measures (accuracy and response time) and ERP amplitudes for P2 

and N450 components, chosen a priori to index early feature-based 
processing and later control engagement, respectively, as motivated in 
the Introduction.

2.3 Materials

Stimuli were generated with a specialized MATLAB toolbox (De 
Marco and Cutini, 2020) that allows independent control of 
numerosity and non-numerical visual cues in dot arrays. Across trials, 
numerosity ratios were held near 1.2 (Weber fraction ≈ 0.2) using the 
pairs 18 vs. 22, 20 vs. 24, and 24 vs. 28, each equally represented across 
the four congruency conditions.

To instantiate the hypothesized dissociation between basic 
features and holistic configurations while maintaining internal 
validity, we orthogonally manipulated two cues—convex hull and 
average dot size—and balanced other image statistics that commonly 
covary with numerosity. Specifically: (1) Convex hull: the convex-hull 
ratio (larger/smaller) was matched across congruent and incongruent 
sets (r  = 1.20 ± 0.10; range 1.05–1.45). Per-array hull area was 
approximately 50 ± 9 deg.2 (range 35–65 deg.2) across conditions. (2) 
Average dot size: individual dot diameters were sampled from 
non-overlapping ranges to produce perceptually distinct “small” 
(0.20°-0.30°) and “large” (0.40°-0.50°) sets while avoiding dot overlap 
within arrays. For each array, average dot size was defined as the mean 
dot diameter. (3) Balanced nuisance cues: total surface area, mean 
inter-dot distance, and global luminance were kept within narrow 
ranges across conditions (total surface area = 2.37 ± 1.30 deg.2; 
inter-dot distance = 0.95° ± 0.12°; display luminance = 124.1 ± 2.1 
8-bit), minimizing unintended diagnostic information.

Arrays were displayed within two circular apertures 
(diameter = 10° of visual angle) centered at ±7.5° from fixation 
(center-to-center separation = 15°), leaving a 5° blank gap between 
inner edges. This geometry supported simultaneous perception of 
both arrays while discouraging saccades. Dots were white on a black 
background. Stimuli were presented on a 22-inch LCD monitor 

FIGURE 1

Four levels of congruency between sensory cues and numerical information.
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(1920 × 1,080, 60 Hz) at a 60 cm viewing distance; one pixel subtended 
~0.024° of visual angle.

For reproducibility, we  provide the MATLAB code used to 
generate the stimuli: https://doi.org/10.17605/OSF.IO/7RU2B.

2.4 Procedure

The experiment was implemented in E-Prime 3.0 and conducted 
in a sound-attenuated, electromagnetically shielded chamber. After 
providing informed consent, participants underwent head 
measurements and EEG setup, received standardized task instructions, 
and completed 20 practice trials (practice data were excluded 
from analyses).

Each trial comprised a central fixation cross (500  ms), 
simultaneous presentation of the two arrays (400  ms), and a 
response window on a blank screen until response was made or 
2,500 ms elapsed (Figure 2). Participants were instructed to respond 
as quickly and accurately as possible while avoiding counting. The 
400  ms presentation duration was chosen to minimize the 
opportunity for serial counting and encourage approximate 
judgments, consistent with prior work (e.g., Gebuis et al., 2016; 
Inglis and Gilmore, 2013). Responses were made with the index 
fingers resting lightly on the “F” and “J” keys (“F” = “more dots on 
the left,” “J” = “more dots on the right”) to minimize unnecessary 
movements and motor artifacts.

Each congruency condition contained 150 trials, for a total of 600 
trials. Trials from the four conditions were randomly intermixed, and 
the side of the numerically larger array (left/right) was counterbalanced 
across the session. The experiment was divided into four blocks of 150 
trials with self-paced breaks between blocks. Participants were 
encouraged to rest and blink during the breaks to maintain fixation 
quality during task blocks. The overall session, including setup and 
breaks, lasted approximately 60 min.

2.5 EEG recording

Electroencephalographic (EEG) was recorded with a 
Compumedics Neuroscan system (SynAmps 2 amplifiers) using a 

64-channel Quik-Cap arranged according to the extended 10–20 
system. AFz served as ground; the online reference was the left 
mastoid (M1). Vertical electrooculogram (VEOG) was recorded from 
electrodes above and below the left eye; horizontal electrooculogram 
(HEOG) from electrodes at the outer canthi. Electrode impedances 
were kept below 5 kΩ. Signals were digitized at 1000 Hz with an online 
band-pass of 0.01–40 Hz (24 dB/octave).

EEG preprocessing and artifact rejection were performed in 
EEGLAB (v2022.0; Delorme and Makeig, 2004). Data were 
re-referenced offline to the average of bilateral mastoids (M1 and M2). 
Continuous EEG was segmented from 1,000 ms before stimulus onset 
to 2000 ms after stimulus onset, with the 100 ms pre-stimulus interval 
serving as the baseline correction period. Independent Component 
Analysis (ICA) was applied together with ADJUST 1.1.1 (Mognon 
et al., 2011) and ICLabel (Pion-Tonachini et al., 2019) to identify and 
remove components reflecting ocular, muscular, and line-noise 
artifacts. Residual epochs exceeding ±100  μV or containing clear 
ocular deflections (as indicated by HEOG/VEOG or corresponding 
ICA components) were rejected.

Guided by the hypotheses and prior work linking fronto-central 
activity to feature integration and conflict monitoring in Stroop-like 
manipulations, we defined a priori a fronto-central ROI comprising 
FCz, FC1, and FC2. Two ERP components were quantified as mean 
amplitudes within canonical time windows: P2: 100–250 ms (peak 
~200 ms), indexing early attentional/feature-related processing; N450: 
250–500 ms (peak ~360 ms), indexing conflict monitoring/control 
engagement. Focusing analyses on midline fronto-central sites, which 
are topographically distinct from lateral sensorimotor areas, 
minimized overlap with response-related activity and reduced 
multiple-comparison burdens, thereby providing a direct test of the 
time-resolved predictions.

2.6 Data analysis

Behavioral and EEG preprocessing: For behavioral data, reaction 
times were computed on correct trials only; anticipations (<200 ms) 
and timeouts responses (>2,500 ms) were excluded a priori, resulting 
in an average trimming of approximately 2.8% per participant (about 
17 trials). Accuracy was computed as the proportion correct per 

FIGURE 2

Experimental procedure.
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congruency condition after the same anticipations/timeouts were 
removed. For EEG, artifact correction combined ICA-based 
component removal with amplitude-based epoch rejection (±100 μV). 
On average, 8.6% of trials were excluded per participant during EEG 
preprocessing (51 trials). Because these behavioral and EEG exclusions 
partially overlapped, the final dataset for ERP averaging retained 
approximately 91% of all trials (about 546 of 600 trials per participant), 
i.e., an overall exclusion of roughly 9%.

To verify that trial exclusions did not disrupt balance across 
numerosity pairs, a repeated measures ANOVA on valid-trial 
counts across the Congruency × Numerosity-Pair cells revealed no 
significant main effect of Pair, ( ) = =2,48 0.781, 0.463F p , and no 
Congruency × Pair interaction, ( ) = =6,144 0.854, 0.535F p , 
indicating that the retained dataset remained pair-balanced across 
congruency conditions.

In formal analyses, we conducted one-way repeated-measures 
ANOVAs with four levels of congruency (FC, FI, CHC, DSC) 
separately for accuracy, reaction time, and mean amplitudes of 
each ERP component (P2, N450) at the priori fronto-central ROI 
(FCz, FC1, FC2). For visualization, grand-average ERP waveforms 
and scalp topographies were plotted at component-relevant 
latencies, and behavioral distributions were summarized with 
violin plots.

All data supporting the findings of this study are openly 
available at: https://doi.org/10.17605/OSF.IO/7RU2B.

3 Results

3.1 Behavioral results

First, we  analyzed the effect of sensory cue congruency on 
accuracy (ACC) and reaction time (RT) in the approximate numerical 
comparison task.

A repeated measures ANOVA on ACC across the four congruency 
conditions revealed a significant main effect of condition, 
( ) η= < =23,72 17.934 0.001, 0.359pF p . Bonferroni post-hoc 

comparisons showed that participants’ ACC was significantly higher 
in the FC condition ( )= =0.82, 0.11M SD  and CHC condition 
( )= =0.81, 0.13M SD  compared to the FI condition 
( )= = <0.63, 0.11, 0.001M SD ps  and DSC condition 
( )= = <0.65, 0.10, 0.001M SD ps . No significant differences were found 
between FC and CHC conditions or between FI and DSC conditions 
(ps > 0.05), as shown in Figure 3.

A repeated measures ANOVA on mean RT for correct trials 
showed no significant differences across the four congruency 
conditions, ( ) = =3,72 0.192, 0.903F p . RT in the FC condition 
( )= =637, 112M SD , FI condition ( )= =642, 115M SD , CHC 
condition ( )= =635, 118M SD , and DSC condition 
( )= =640, 114M SD  did not differ significantly.

3.2 ERP results

A single-factor repeated measures ANOVA on P2 component 
amplitude revealed a significant main effect of congruency condition, 
( ) η= < =23,72 30.247, 0.001, 0.285pF p . Post-hoc comparisons 

indicated that P2 amplitudes in the FC condition 

( )= =4.95, 0.36M SD  and DSC condition ( )= =4.04, 0.40M SD  were 
significantly larger than those in the FI condition 
( )= =2.03, 0.33M SD  and CHC condition ( )= =2.37, 0.36M SD , 

< 0.001ps . No significant differences were observed between FC and 
DSC conditions or between FI and CHC conditions >( 0.05ps ). In 
other words, P2 amplitudes from smallest to largest followed the 
pattern: FI = CHC < DSC = FC. See Figure  4A for waveforms, 
Figure 4B for P2 topographical maps.

To further assess whether variation in numerosity pairs across 
congruency conditions could bias P2, a repeated measures ANOVA 
on P2 amplitude stratified by numerosity pair (18–22, 20–24, 24–28) 
across the four congruency conditions found no significant main 
effect of Pair, ( ) = =2,48 0.625, 0.547F p , and no Pair × Congruency 
interaction, ( ) = =6,144 0.782, 0.598F p , indicating that P2 amplitude 
differences were not driven by the total number of dots on 
the screen.

A single-factor repeated measures ANOVA on N450 
component amplitude demonstrated a significant main effect of 
congruency condition, ( ) η= < =23,72 54.843, 0.001, 0.426pF p . 
Post-hoc comparisons showed that the CHC condition 
( )= − =5.34, 0.55M SD  elicited the largest negative amplitude, 
which was significantly greater than those in the FI condition 
( )= − =3.52, 0.49M SD  and DSC condition ( )= − =2.71, 0.42M SD , 

< 0.001ps . The negative amplitude in the FI condition was also 
significantly larger than those in both the DSC ( )= <0.045 0.05p  
and FC conditions ( )= = <0.11, 0.24, 0.001M SD p . Additionally, the 
amplitude in the DSC condition was significantly larger than that 
in the FC condition ( )< 0.001p . In summary, N450 amplitudes 
from smallest to largest followed the pattern: 
FC < DSC < FI < CHC. See Figure  4C for N450 topographical  
maps.

To characterize the temporal properties of these components 
across congruency conditions, we also examined peak latency. For 
each participant and condition, peak latency was extracted within the 
P2 (100–250 ms) and N450 (250–500 ms) windows and submitted to 
single-factor repeated measures ANOVAs. Neither analysis revealed a 
significant main effect of congruency: P2 latency, 

FIGURE 3

ACC across four congruency conditions. Violin plots depict the 
distribution of ACC; the horizontal thick solid line within each violin 
marks the median, and the thin dashed horizontal lines above and 
below mark the lower (25th percentile) and upper (75th percentile) 
quartiles—that is, the boundaries of the interquartile range. The violin 
outline indicates the kernel density of ACC values along the accuracy 
scale.
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( ) = =3,72 0.925, 0.447F p ; N450 latency, ( ) = =3,72 1.186, 0.323F p , 
indicating that congruency effects were expressed in component 
amplitude rather than in peak timing.

4 Discussion

This study tested whether non-numerical cues influence 
numerical comparison through a single homogeneous pathway or 
through cue-specific, temporally staged processes. By varying 
numerosity with a holistic, high-weight cue (convex hull) and a basic, 
lower-weight cue (average dot size) and targeting fronto-central ERPs, 
we  found a clear temporal and functional dissociation. Behavior 
tracked convex-hull congruency (accuracy: FC=CHC > FI=DSC; RTs 
unchanged), the early P2 indexed dot-size congruency 
(FI=CHC < DSC=FC), and the later N450 scaled with cross-cue 
conflict and peaked when convex hull supported numerosity but 
average dot size opposed it (FC < DSC < FI < CHC). Together, these 
findings reveal staged processing—early automatic, feature-based 
integration followed by later conflict monitoring and control 
recruitment—and bridge sensory-integration and inhibition accounts 

by showing that cue weights and their entry times jointly shape 
numerical decisions.

4.1 Convex hull dominance without speed 
costs

The accuracy pattern provides clear behavioral evidence for 
differential cue weighting in approximate numerical comparison. 
When convex hull was congruent with numerosity (FC, CHC), 
accuracy was high; when convex hull was incongruent (FI, DSC), 
accuracy dropped markedly, irrespective of dot-size congruency 
(FC=CHC > FI=DSC). This asymmetry is consistent with sensory-
integration accounts in which cues contribute to choice in proportion 
to their diagnostic value or reliability (Gebuis and Reynvoet, 2012a,b; 
Leibovich et al., 2017). As a holistic descriptor of the spatial extent of 
the array, convex hull appears to carry greater decision weight than 
average dot size and thus exerts a dominant influence on judgments 
(Sanford et al., 2024; Shilat et al., 2021). Notably, the fact that dot-size 
congruency failed to rescue performance when convex hull opposed 
numerosity (DSC) further supports the idea that low-weight features 

FIGURE 4

Grand-average ERP waveforms and scalp topographies for the four conditions. (A) Stimulus-locked waveforms from a fronto-central ROI (average of 
Fz, FCz, and Cz; baseline −100 to 0 ms; negative voltage plotted upward). Color code: FC (blue), CHC (red), FI (yellow), and DSC (purple). The 
components of interest are the P2 (100–250 ms; peak around 200 ms) and the N450 (250–500 ms; peak around 360 ms); (B) Scalp topographies of 
the mean voltage in the P2 window for each condition, showing a fronto-central positivity; (C) Scalp topographies of the mean voltage in the N450 
window, showing a fronto-central negativity with the same graded amplitude pattern. Black dots mark electrode positions; color bars are in μV and 
share the same scale within each row.
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have limited leverage over choice when high-weight, configuration-
level cues point the other way.

The contrast between CHC and DSC offers additional insight into 
how cue weights may shape control recruitments. When the higher-
weight cue (convex hull) aligns with numerosity (CHC), performance 
remains strong, suggesting that any interference from the lower-
weight feature (average dot size) is comparatively easy to manage. By 
contrast, when the higher-weight cue misaligns (DSC), accuracy 
declines even though the lower-weight cue favors the correct response, 
consistent with the notion that overriding a high-weight distractor is 
harder than suppressing a low-weight one (Clayton and Gilmore, 
2015; Gaspelin and Luck, 2018; Leong et al., 2017; Theeuwes, 2010). 
Formally, the Expected Value of Control framework (Shenhav et al., 
2013, 2017) provides a useful normative lens: control intensity should 
scale with the anticipated benefit of exerting control, which depends 
on both payoff and the probability of successful override. In our task, 
CHC likely affords higher expected benefit (suppressing a low-weight 
distractor is more likely to succeed), consistent with higher accuracy; 
DSC affords lower expected benefit (overriding a high-weight 
distractor is less likely), consistent with reduced accuracy. 
Nevertheless, behavioral data alone cannot establish weight-
dependent control; we return to this question using ERP evidence to 
probe when and how control is engaged (see Section 4.2).

Response times did not differ significantly across conditions, 
indicating that the convex-hull dominance effect primarily manifested 
in decision quality rather than decisional speed under our brief 
(400 ms) simultaneous displays. In relation to Shilat et al. (2021), both 
studies converge on a robust role for convex hull in numerical 
judgments. Our null RT differences may reflect several design choices 
that limit strategic slowing and serial sampling: orthogonalized cue 
manipulations, tightly matched numerosity ratios (about 1.2), 
randomly intermixed conditions, and a short exposure intended to 
discourage counting. It is also possible that RT was less sensitive than 
accuracy to cue-driven interference at this difficulty level or that our 
study was powered to detect accuracy but not modest RT effects. 
Future work combining formal decision modeling (e.g., drift–
diffusion) with manipulations of presentation duration and cue 
strength could clarify whether convex hull primarily reduces evidence 
quality (drift) versus alters decision thresholds, thereby clarifying 
when cue weighting impacts speed in addition to accuracy.

4.2 Time-resolved integration and conflict 
monitoring

The ERP pattern reveals a staged influence of sensory cues on 
numerical comparison that aligns with, yet refines, a cue-weighted 
integration account. Early activity (P2, ~200 ms) selectively tracked 
dot-size congruency, whereas later activity (N450, ~360–450 ms) 
scaled with the structure of conflict across cues and with numerosity.

Early stage: feature-driven sensitivity. At the fronto-central ROI, 
P2 amplitudes were larger when average dot size supported numerosity 
(FC, DSC) and smaller when average dot size opposed it (FI, CHC), 
independent of convex-hull congruency (FI=CHC < DSC=FC). This 
suggests that basic features exert an early, largely automatic influence 
on processing, consistent with rapid extraction of low-level attributes 
and their early entry into the decision process (Salti et  al., 2017; 
Sanford et al., 2024). Importantly, stratifying by numerosity pair ruled 

out trivial explanations based on the total number of dots on the 
screen. We are cautious not to claim that P2 reads out average dot size 
per se; rather, in the present design, dot-size congruency appears to 
be  the dominant determinant of early attentional/feature-related 
activity. This aligns with prior findings of P2 sensitivity to basic visual 
properties and with the expectation that basic features are encoded 
earlier than holistic configurations (Burr and Ross, 2008; Hyde and 
Spelke, 2011).

Later stage: graded conflict monitoring and control recruitment 
shaped by cue weight and alignment. The N450 showed a clear 
gradient (FC < DSC < FI < CHC): minimal conflict when all cues 
aligned; increasing engagement with misalignments; and maximal 
engagement when average dot size opposed numerosity while convex 
hull supported it (CHC). To interpret this asymmetry, we separate two 
partially dissociable sources of tension: cue-cue conflict (C-C; when 
convex hull and average dot size favor opposite responses, present in 
CHC and DSC) and cue-numerosity conflict (C–N; when sensory 
cues misalign with numerosity; partial in CHC and DSC, strongest in 
FI, absent in FC), together with an asymmetry in cue weights (convex 
hull > average dot size).

Within this conflict structure, the CHC condition jointly presents 
cue-cue conflict and partial cue-numerosity conflict but benefits from 
the high-weight cue (convex hull) aligning with the goal. Under these 
circumstances, an early feature-driven bias (from average dot size) 
must be overridden later by the higher-weight configuration and the 
task rule, yielding strong conflict monitoring and control signals 
(largest N450) while accuracy remains high. By contrast, DSC also 
contains cue-cue and partial cue-numerosity conflict, but here the 
high-weight cue misleads. If overriding a dominant but misleading 
cue is relatively unlikely to succeed, control engagement may 
be  attenuated compared with CHC, producing a smaller N450 
alongside reduced accuracy. Finally, FI lacks cue-cue conflict but 
imposes the strongest cue-numerosity conflict because both cues 
mislead; this elicits substantial—yet not maximal—N450 and 
low accuracy.

Framed within the Expected Value of Control perspective 
(Shenhav et al., 2013, 2017), these differences can be understood as 
reflecting the anticipated benefit and efficacy of exerting control given 
cue weights and alignment: when success is likely (overriding a 
low-weight distractor; CHC), control is strongly recruited; when 
success is doubtful (overriding a high-weight distractor; DSC) or 
when no internal cue-cue tension enforces a competing alternative 
(FI), control signals are comparatively smaller. We emphasize that this 
is a principled interpretation rather than a definitive mechanistic 
claim; single-trial and model-based analyses would be  needed to 
arbitrate among alternatives.

Two additional observations qualify this account. First, neither P2 
nor N450 peak latency differed across conditions, suggesting that 
congruency primarily modulated the strength, not the timing, of early 
feature processing and later conflict monitoring. Second, the neural-
behavioral asymmetry—maximal N450  in CHC despite high 
accuracy—underscores that N450 indexes conflict monitoring and 
control engagement rather than inhibition success or error likelihood 
per se, consistent with its role in Stroop-like tasks (e.g., Liu et al., 2014; 
Szűcs and Soltész, 2012).

Taken together with the behavioral dominance of convex hull 
(Section 4.1), the ERP results support a cue-grounded 
complementarity: basic features shape early processing (P2), whereas 
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holistic, higher-weight configurations dominate choice and recruit 
control when misaligned (N450). This time-resolved view integrates 
sensory-integration and inhibitory-control perspectives by linking cue 
weights to their likely order of availability and to the cost of resolving 
conflicts among cues and with the task goal.

In sum, we  outline a time-resolved, weight-sensitive account: 
basic features enter integration earlier (indexed by P2), whereas 
holistic configurations dominate later choice and recruit conflict 
monitoring when misaligned (indexed by N450). These mechanisms 
are complementary and yield testable predictions that call for single-
trial and model-based validation. Specifically, to strengthen and refine 
this account, future work can use single-trial regression to parse N450 
into contributions from cue–cue conflict, cue–number conflict, and 
the alignment of the higher-weight cue with the goal and relate these 
to trial-by-trial accuracy; manipulate presentation duration or feature-
onset asynchrony to test the “speed-of-availability” hypothesis; and 
integrate ERP with decision models (e.g., drift-diffusion with time-
varying drift weights) to link P2 and N450 to distinct 
computational stages.

4.3 Significance, limitations, and future 
directions

The main contribution is a time-resolved, weight-sensitive account 
that reconciles sensory-integration and inhibitory-control perspectives: 
cues of different weights enter and influence the decision process in an 
ordered fashion, with misalignment recruiting conflict monitoring/
control. Grounded in operational neural markers, this account outlines 
a bridge between normative control theories and evidence-accumulation 
models in multi-cue, single-decision contexts, and yields testable 
predictions (e.g., temporal manipulations and single-trial modeling of 
availability and reweighting). Potential implications for education or 
intervention (e.g., vigilance to high-weight but potentially misleading 
cues and selective control) remain preliminary and call for rigorous 
cross-task and cross-population validation.

Notwithstanding these contributions, several limitations point to 
clear avenues for future work. First, we orthogonally manipulated only 
two cues (convex hull and average dot size), and broader mapping 
across density, total area, connectivity, and spatial arrangement is 
needed to assess the generality and interactions of cue weights. 
Second, the numerosity ratio (~1.2) and exposure duration (400 ms) 
were relatively fixed, and null effects on RT and peak latencies may 
partly reflect constraints of task parameters and statistical power; 
larger samples, latency-sensitive methods (e.g., jackknife, fractional-
area, single-trial estimates), and parametric manipulations of cue 
strength, signal-to-noise ratio, and exposure duration can directly test 
the “speed-of-availability” hypothesis. Third, our analyses focused on 
a fronto-central ROI and scalp-level amplitudes without systematically 
probing posterior components or broader spatial distributions; future 
work should include occipito-parietal regions and posterior 
components (e.g., P2p) to examine hierarchical division of labor and 
assess or control motor-preparation influences (e.g., LRP) to rule out 
response-related confounds. Finally, our analyses were confined to 
scalp-level amplitudes and did not include source reconstruction; with 
a 64-channel montage and no individual structural MRIs, any inverse 
solution would be  exploratory with limited spatial precision. To 
improve spatial specificity, future studies should use high-density 

EEG/MEG with subject-specific head models and, where feasible, 
multimodal integration (EEG–fMRI/MEG).

5 Conclusion

Approximate number comparison is jointly shaped by cue weights 
and their temporal order of availability: basic features influence 
evidence integration earlier and more automatically, whereas holistic 
configurations dominate later choice and trigger conflict monitoring 
and control when misaligned. Converging behavioral and neural 
evidence supports this time-resolved, weight-sensitive account, 
offering a concise integration of sensory-integration and inhibitory-
control views and yielding testable predictions—via temporal 
manipulations and single-trial modeling—to further evaluate its 
generality and mechanisms.
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