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Musculoskeletal pain is increasingly understood as a product of disrupted multisensory
integration rather than a direct consequence of tissue damage alone. Among
the sensory systems involved in shaping body representation and modulating
pain, the vestibular system remains largely overlooked. Beyond its classical role
in balance and spatial orientation, vestibular input contributes to embodiment,
self-location, and bodily self-consciousness—processes that are frequently
altered in chronic pain conditions. Neuroimaging and clinical evidence reveal
a striking overlap between vestibular integration regions and the so-called pain
neuromatrix, suggesting shared cortical substrates for vestibular and nociceptive/
pain processing. Moreover, vestibular dysfunction is associated with disembodiment
phenomena such as depersonalization and derealization, which mirror sensory
distortions observed in chronic pain syndromes. Experimental studies demonstrate
that vestibular stimulation—via caloric or electric modalities—can modulate pain
perception, influence somatosensory integration, and recalibrate distorted body
representations. This perspective paper synthesizes current findings at the intersection
of vestibular neuroscience, pain modulation, and embodiment, proposing that the
vestibular system could constitute a critical but underrecognized component in
musculoskeletal health. Incorporating vestibular pathways into pain models may,
therefore, improve our understanding of chronicity and open novel therapeutic
avenues for neuromodulation.

KEYWORDS

vestibular stimulation, pain modulation, embodiment, multisensory integration,
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Introduction

Pain in musculoskeletal disorders is not solely a reflection of tissue injury but often
emerges from complex interactions between sensory input, cognitive appraisal, and body
representation, especially when it comes to chronic pain (Wang and Frey-law, 2024).
Contemporary pain neuroscience emphasizes the brains central role in shaping pain
perception and modulating somatic experience through multisensory integration (Wang and
Frey-law, 2024). One particularly underexplored but potentially crucial system in this
integrative network is the vestibular system.

Beyond its classical role in balance and spatial orientation (Cullen, 2019), the vestibular
system contributes to higher-order processes including self-location, bodily self-consciousness,
and embodiment (Hitier et al., 2014; Mast et al., 2014). These functions are mediated through
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multisensory interactions in key cortical areas such as the
temporoparietal junction (TP]), insula, and posterior parietal cortex
(Lopez and Blanke, 2011)—regions that also play a pivotal role in pain
processing (Wang and Frey-law, 2024). The overlap between vestibular
integration centers and the so-called “pain neuromatrix” (Moseley,
2003) suggests a potential modulatory role of vestibular input on pain
perception and embodiment.

Vestibular dysfunction has been associated with depersonalization,
derealization, and altered body schema (Kolev et al., 2014; Jauregui
Renaud, 2015; Elyoseph et al., 2023), which are phenomena that bear
striking resemblance to the sensory distortions often reported in
chronic pain states (Wang and Frey-law, 2024). Furthermore,
experimental evidence demonstrates that vestibular stimulations such
as caloric stimulation or galvanic vestibular stimulation (GVS; also
recently referred to as electric vestibular stimulation- EVS) can
modulate pain perception (André et al., 2001; Le Chapelain et al.,
2001; Ramachandran et al., 2007b; McGeoch and Ramachandran,
2008; McGeoch et al., 2008; Ferre et al., 2015b; Spitoni et al., 2016;
Wilkinson et al., 2017), modulate tactile thresholds (Ferre et al., 2011,
2012, 2013, 2014), and even restore altered body representations in
both healthy individuals and clinical populations (André et al., 2001;
Le Chapelain et al., 2001; Rode et al., 2012).

In this perspective paper, we explore the intersection of vestibular
neuroscience, pain modulation, and embodiment mechanisms.
We propose that the vestibular system constitutes a missing link in our
understanding of pain and bodily disintegration in musculoskeletal
disorders. By integrating insights from neurophysiology, cognitive
neuroscience, and clinical research, we aim to open new perspectives
on how vestibular inputs can influence and potentially alleviate pain
and body schema disruptions in musculoskeletal health.

Vestibular system and body
representation

The transient modulation of body representation related to the
body schema can rapidly be achieved through visuo-proprioceptive
integration (Blanke, 2012). In the Pinocchio illusion for instance, as
their vision is obstructed, individuals perceive their own nose as
growing longer when the tendons of their biceps are vibrated.
Conversely, when vibrations target the triceps, then participants feel
their nose being pushed inside their heads, underlining a need for the
brain to make sense of incongruous information (Lackner, 1988).
Another commonly used paradigm for self-consciousness and body
ownership is the so called rubber hand illusion (Botvinick and Cohen,
1998). In this case, participants perceive a fake hand as their own
when they see it being brushed in sync with their hidden real hand.
Moreover, embodiment illusions do not limit themselves to some
specific body parts, as entire body illusions can be elicited as well.
Indeed, following the same temporal, spatial and anatomical
constraints (Ehrsson, 2012), illusions such as “full body” (Petkova
etal, 2011), “out of body” (Ehrsson, 2007; Lenggenhager et al., 2007),
“swapping bodies” (Petkova and Ehrsson, 2008) can also be produced.
These paradigms provide evidence that brain’s involvement in body
representation and self-consciousness is very plastic and can be easily
modified through sensory integration processes.

Interestingly, vestibular patients often report depersonalization
and derealization symptoms (Kolev et al., 2014; Jauregui Renaud,
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2015; Elyoseph et al., 2023). Depersonalization is described by
feelings of unreality, detachment, or the sensation of being an
external observer when it comes to one’s thoughts, emotions, physical
sensations, or actions. Derealization, on the other hand, relates to
feelings of unreality or detachment concerning one’s surrounding
(Guze, 1995). Such vestibular patients describe experiences such as
“not being in control of self” or reporting “their body feeling strange”
(Smith and Darlington, 2013), suggesting feelings of disembodiment
when vestibular dysfunction occurs (Lopez et al., 2008). Furthermore,
although quite rare, neurological patients with lesion sites found
where vestibular inputs are highly integrated, such as at the right TPJ,
can experience out-of-body experiences (Blanke et al., 2004; Lopez
and Elziere, 2018). Indeed, self-location and the first-person
perspective rely on the integration of visual and somatic inputs along
vestibular signals (Blanke, 2012), suggesting the vestibular
information helps in anchoring the visuo-spatial perspective to the
body (Pavlidou et al., 2018). Moreover, further supporting this view,
a rare case report demonstrated that direct subcortical stimulation of
the left TPJ during awake craniotomy elicited reproducible out-of-
body experiences (Bos et al, 2016). This case illustrates that
disrupting vestibulo-cortical processing alone can transiently alter
self-location, reinforcing the notion that the vestibular system is
fundamentally involved in the neural mechanisms underlying
embodiment and bodily self-awareness.

Additionally, vestibular-specific stimulations modulate body
schema and size perception in both patients and healthy
individuals (Lopez et al., 2018). For instance, such stimulations
can modify the shape as well as the spatial orientation of phantom
limbs (André et al., 2001; Le Chapelain et al., 2001), temporally
alleviate enlarged and distorted face perception (Rode et al,
2012), restore body misrepresentation in patients with
somatoparaphrenia (Spitoni et al., 2016) and improvement in
hemi-spatial neglect (Karnath and Dieterich, 2006; Sturt and
Punt, 2013). In healthy participants, despite contrasting results,
vestibular stimulations such as GVS modulate the effect of the
rubber hand illusion (Lopez et al., 2010; Ferre et al., 2015a; Ponzo
et al.,, 2018). Furthermore, vestibular stimulations also modify
shape and size of healthy limbs. This is all the more important,
knowing that distorted body perceptions are often linked to pain
(Boesch et al., 2016), as discussed next.

Neuroimaging data reveal that crucial brain regions engaged in
vestibular processing overlap with areas associated with multisensory
integration and mechanisms related to embodiment (Ehrsson et al.,
2004; Tsakiris et al., 2008; Olivé et al., 2015; Ehrsson, 2019). The
primary cortical convergence for these processes predominantly
occurs at the TPJ (Figures 1A-C), encompassing the posterior insula,
posterior parietal cortex, and premotor cortex. Additionally, insights
into the involvement of the right TPJ and posterior insula in the sense
of body ownership are gained from studies involving neurological
patients with abnormal ownership senses, such as Somatoparaphrenia
(Figure 1C). In addition to the right TPJ, posterior parietal cortex and
posterior insula, a growing body of work identifies area OP2 in the
parietal operculum as the central hub of the human vestibular cortex.
Meta-analytic, task-based and connectivity studies show that OP2 is
the only cortical site consistently activated by all forms of vestibular
stimulation, displays vestibular-specific responses dissociable from
other input, and possesses sub-regional networks that integrate
vestibular, somatosensory and visual information while predicting
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Fink et al., 2003

FIGURE 1

permission from Elsevier.

Tsakiris et al., 2007

Bottini et al., 2002

Some overlapping brain regions for vestibular processing and body parts ownership. (A) Left anodal GVS/right cathodal GVS (excitation of the right and
inhibition of the left vestibular apparatus) induces a significant BOLD signal increase in the right posterior insula, superior temporal gyrus and anterior
inferior parietal cortex. After (B) In a positron emission tomography study, ownership of a fake hand (proprioceptive drift toward the rubber hand) was
positively correlated to BOLD signal in the right posterior insula. After (C) A 77 year-old right-handed woman suffering from somatoparaphrenia for her
left hand (which she attributed to her niece) had a hemorrhagic lesion involving the white matter underlying the right insula, superior temporal gyrus,
parietal operculum, and the precentral and postcentral gyri. After Figure and caption reprinted from Lopez et al. (2010), Copyright (2010), with

both healthy and pathological states (Zu Eulenburg et al., 2012; Raiser
et al.,, 2020; Huber et al., 2021; Ibitoye et al., 2023).

Therefore, by examining the literature on (1) cortical integration
during vestibular stimulations (Figure 1A), (2) brain activity in
embodiment experiments (Figure 1B), and (3) post-stroke imaging in
patients with body schema impairments (Figure 1C), it can be inferred
that there is a strong overlap of brain regions between vestibular
processing and body ownership. Considering the above, the vestibular
system seems to be decisively implicated in embodiment mechanisms
and increasing data link vestibular integration to body schema
construction (Lopez and Blanke, 2007; Schwabe and Blanke, 2008;
Lopez et al., 2010, 2012b; Blanke, 2012; Lopez, 2013, 2016; Mast et al.,
2014; Peiffer et al., 2014; Lenggenhager and Lopez, 2015).

Pain modulation via vestibular
pathways

Just like for the vestibular system, it is fascinating to see that
neuroanatomical investigations reveal the absence of a single cortical
area dedicated to pain. As there is no single vestibular integration
center (Lobel et al., 1998; Bense et al., 2001; Stephan et al., 2005; Lopez
and Blanke, 2011) (Figure 2, left panel), there is no “pain center”
within the human brain (Figure 2, right panel). Indeed, many brain
areas are implicated in the emergence of pain and it is worth noting
that an important activation variability exists between and within
individuals depending on pain states and perception (Crawford et al.,
2023). That being said and acknowledged, some brain areas seem
more often involved than others and represent a cerebral core network
referred to as the “pain neuromatrix” (Moseley, 2003) (Figure 2, right
panel), in reference to Melzack’s ‘Neuromatrix theory’ (Melzack, 1990,
1996). As reported by Moseley (2003) the thalamus, the anterior
cingulate cortex (ACC), but also insular, frontal, premotor and
primary sensory and motor, as well as the posterior parietal cortices
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are the principal brain components of the pain neuromatrix (Figure 2,
right panel).

Interestingly, all regions found within the pain neuromatrix are
also largely modulated with vestibular-specific stimulations (Lobel
etal,, 1998; Bense et al., 2001; Stephan et al., 2005; Lopez and Blanke,
2011; Lopez et al., 2012a; Hitier et al., 2014; Habig et al., 2023)
(Figure 2, left panel), implicating important cortical overlap and
shared information processing within multisensory integration
centers (Balaban, 2011).

Moreover, ultra-high-field imaging now delineates a coherent
vestibulo-autonomic-nociceptive circuit with a vestibular-only cortical
core. Resting-state 7 T fMRI places the vestibular nuclei (Ve) in strongest
functional coupling with thalamus, parietal operculum OP2 and
posterior insula, while second-order links reach a brain-stem
autonomic-nociceptive cluster that includes the lateral/medial
parabrachial nuclei, medullary reticular formations and periaqueductal
gray; connectivity to the raphe complex is minimal (Cauzzo et al., 2022).
Parallel 7T diffusion-tractography uncovers an almost mirror-
symmetric structural scaffold: Ve fibers course through the inferior olive
and fastigial/lobule X, then ascend to thalamus, insula and cingulate, and
extend to the parabrachial-PAG axis, again sparing raphe projections
(Singh et al., 2022). Critically, task fMRI that directly contrasts galvanic
vestibular with equally salient nociceptive stimulation confirms OP2 as
a vestibular-selective node, whereas OP1/3/4 and anterior insula respond
preferentially to nociception; only the nociceptive condition reorganizes
whole-brain functional networks, underscoring the continuous,
background nature of vestibular processing. A recent systematic review
of pain imaging adds that cerebellar lobules IV-VI and Crus [—regions
receiving monosynaptic input from Ve and fastigial nuclei—integrate
sensorimotor, affective and cognitive dimensions of pain (Li et al., 2024)
underlying a “mysterious” cerebellar role in pain modulation. Together,
these converging functional, structural and task-based data trace a
pathway that is vestibular-specific at OP2, but merges with autonomic
and nociceptive systems downstream, providing a mechanistic
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FIGURE 2

Cortical overlap between vestibular and pain integration regions. Left panel: Brain activation (yellow/red) and deactivation (blue) maps during galvanic
vestibular stimulation (GVS), across all stimulation frequencies. Activation clusters include the supramarginal gyrus, lateral sulcus, superior temporal
gyrus, anterior and posterior insula, inferior/middle frontal gyri, anterior cingulate cortex, and precentral sulcus. Deactivations appear in bilateral
precuneus, precentral gyrus, middle occipital and temporal gyri, parahippocampal regions, and medial/superior frontal areas. Figure reprinted from
Stephan et al. (2005), Copyright (2005), with permission from Elsevier. Right panel: fMRI activation during thermal pain stimulation, illustrating core
regions of the pain neuromatrix: thalamus, anterior cingulate and insular cortices, frontal, premotor, and sensorimotor areas. Figure reprinted from
Moseley (2003), Copyright (2003). Reproduced with permission from Elsevier.

Frontal cortex ACC & insular

Thalamus
Premotor cortex

Sensorimotor cortex

framework for the frequent co-occurrence of dizziness, anxiety and pain
and suggesting testable circuit-level targets for neuromodulatory therapy
(Figure 3).

Thus, given that impressive vestibulo-autonomic-nociceptive
network (Cauzzo et al.,, 2022; Singh et al., 2022; Li et al., 2024) but also
the large overlap between the pain neuromatrix, embodiment networks,
and the vestibular cortical regions (Figure 3), stimulating the vestibular
system could help with relieving pain by gate controlling or “masking
pain processing” as hypothesized by Ramachandran et al. (2007b).

Indeed, as hypothesized by Harris (1999), the literature reports
that strong vestibular stimulations such as caloric stimulation can
relieve pain (André et al, 2001; Le Chapelain et al, 2001;
Ramachandran et al., 2007b; McGeoch and Ramachandran, 2008;
McGeoch et al., 2008; Ferre et al., 2015b; Spitoni et al., 2016; Wilkinson
etal., 2017). Moreover, such vestibular stimulations help in relieving
central poststroke pain (Ramachandran et al., 2007a; McGeoch et al.,
2008) considered by some as the “most distressing, and intractable of
pain syndromes “which normally are “largely refractory to medical and
surgical treatments” (Henry et al., 2008). In these central pain states,
caloric stimulation is thought to modulate multisensory cortical areas
such as the posterior insula and parietal cortex involved in both
nociceptive perception and vestibular integration (Ramachandran
et al., 2007a, 2007b; McGeoch and Ramachandran, 2008; McGeoch
et al., 2008; Naryshkin et al., 2023). Other mechanisms have been
hypothesized where other parts of the brain such as the ACC would
be modulated to inhibit the pain perception (McGeoch and
Ramachandran, 2008; Spitoni et al., 2016). Besides patients, caloric
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vestibular stimulations also inhibit laser-induced experimental
nociceptive inputs in healthy participants (Ferre et al., 2015b).

Electric vestibular-specific stimulations are also known to activate
the insular cortex (Bucher et al., 1998; Lobel et al., 1998; Bense et al.,
2001; Stephan et al., 2005), which could potentially initiate anti-
nociceptive effects through its physiological action on insular
nociceptive networks.

Vestibular influence on
somatosensory integration

Pain is often also uncorrelated with the actual state of the tissues
(Moseley and Vlaeyen, 2015). Pain also emerges, most of the time, as
a brain response to perceived bodily danger (Moseley and Flor, 2012),
pushing one to seek a solution to real or potential harm.

In the case of musculoskeletal pain, the way proprioception is
integrated is often altered (Hiansel et al., 2011). This condition is
frequently associated with reduced proprioceptive acuity and diminished
bodily awareness (Tong et al., 2017), forcing the brain to, in some
instances, reweight the proprioceptive gains between different body parts
(Brumagne et al., 2004; Goossens et al., 2019). Altered proprioceptive
inputs can modulate integrative processes inducing plastic changes both
at the dorsal horn of the spinal cord and at the cortical level (Brumagne
etal,, 2019) potentially causing cortical maps reorganizations responsible
for lingering pain inadaptations (Tsao et al., 2008, 2011; Moseley and
Vlaeyen, 2015; Schabrun et al., 2015, 2016, 2017).
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Pain Neuromatrix

FIGURE 3

rather than an exhaustive depiction of all known projections.

Schematic comparison of simplified pain and vestibular neuromatrices. The left panel depicts the principal cortical, subcortical, and brainstem regions
comprising the pain neuromatrix (red), while the right panel illustrates the major components of the vestibular neuromatrix (blue). Areas and pathways
shared by both networks are readily identifiable, including the anterior cingulate cortex (ACC), posterior parietal cortex, supplementary motor area
(SMA), premotor cortex, thalamus, periaqueductal gray (PAG), cerebellum, and brainstem nuclei. Arrows indicate major connections between nodes
within each network. This schematic is a simplified representation designed to emphasize key anatomical similarities and shared connectivity patterns,

Vestibular Neuromatrix

The secondary somatosensory cortex as well as the insula and the
retroinsular cortex all receive vestibular inputs (Bottini et al., 2001;
Lopez and Blanke, 2011; Lopez et al., 2012a). Thus, theres overt
overlap between tactile, proprioceptive, and vestibular cortical maps
providing a neurophysiological explanation for vestibular influence
on somatic inputs. Indeed, vestibular stimulations have been found to
enhance or restore subtle somatosensory stimuli awareness in both
healthy participants (Ferre et al., 2011, 2012, 2013, 2014) and
neurological patients (Vallar et al., 1990, 1993; Bottini et al., 1995;
Kerkhoff et al., 2011; Schmidt et al., 2013).

Therefore, these studies underline the importance of vestibular-
somatic interactions. Thus, vestibular inputs could be useful in
reweighting proprioceptive inputs and helping with somatic acuity
and awareness which seems to be impaired due to musculoskeletal
dysfunction and pain. By enhancing the integration of proprioceptive
and tactile inputs, engaging the vestibular system may help preserve
the topographic specificity of cortical sensorimotor representations.
This is particularly relevant for preventing “smudging”—a
phenomenon marked by increased overlap between cortical
representations of adjacent body parts (Tsao et al., 2011; Schabrun
et al., 2017). Through its role in promoting adaptive plasticity and
multisensory integration, vestibular stimulation could therefore
reduce the risk of maladaptive reorganization and help prevent the
transition from acute to chronic pain states (Senkowski and
Heinz, 2016).

Therapeutic perspectives

The current literature provides a strong theoretical backbone
supporting that vestibular stimulation could be a potent approach
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for modulating embodiment and pain mechanisms. Thus, the
rehabilitation process might benefit from utilizing tools such as
Caloric vestibular stimulations or GVS. For instance, vestibular
stimulation might serve as a useful tool to help enhance the
integration of somatosensory cues. Moreover, GVS was reported to
enhance visual capture and modulate proprioceptive cues during
rubber hand experiments (Lopez et al., 2010). A growing pool of
pain modulation techniques capitalize on multisensory integration,
particularly through visuo-proprioceptive and visuo-tactile
channels, to recalibrate distorted body representations and reduce
pain. Notable examples include mirror box therapy (Ezendam et al.,
2009), which uses mirrored visual feedback to resolve sensorimotor
incongruence in phantom limb pain (Chan et al., 2007) or Complex
Regional Pain Syndrome (McCabe et al., 2003), graded motor
imagery (Bowering et al, 2013), which progresses through
imagined movement and mirror therapy to normalize cortical
excitability, and immersive virtual reality paradigms (Li et al., 2011)
that re-anchor bodily self-consciousness through first-person visual
feedback. Devices like the “Mirage” box (Newport and Gilpin, 2011;
Preston and Newport, 2011; Gilpin et al., 2015) further exploit
dynamic visual distortions to modulate body size perception and
pain intensity (Preston and Newport, 2011; MacIntyre et al., 2019).
These approaches are all based on the premise that modifying how
the body is visually and proprioceptively experienced can influence
cortical representations and, by extension, nociceptive processing.
Despite their promise, such interventions may not fully address
deeper multisensory disintegration—especially when vestibular
input, a key contributor to self-location and embodiment, is
disregarded. Integrating vestibular stimulations alongside these
therapies could reinforce their effects by stabilizing body schema
and enhancing central coherence across sensory modalities. For
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example, applying GVS during mirror therapy might enhance
proprioceptive anchoring and reduce conflicting sensory signals,
potentially yielding greater pain relief and embodiment restoration.
Similarly, combining GVS with VR-based interventions could
augment presence and agency by engaging vestibulo-cortical
circuits critical for self-location and bodily awareness. Thus,
vestibular input may serve as a neuromodulatory scaffold, priming
the nervous system for more effective integration of visual, tactile,
and proprioceptive cues.

While movement-based vestibular stimulation could also hold
therapeutic potential, our particular focus on vestibular-specific
stimulations herein stems from the need to first establish a
mechanistically precise and experimentally controlled link between
vestibular input and embodiment and pain modulation. GVS for
instance provides a well-characterized method to selectively activate
the vestibular system without engaging concurrent motor or
proprioceptive systems, allowing us to isolate vestibular
contributions and implement robust sham-controlled designs. This
level of experimental control is crucial at this first stage, where the
primary objective would be to demonstrate a more causal
interaction. That said, the insights gained from GVS-based
paradigms could provide a foundational framework for the
development of movement-based vestibular interventions. Once the
underlying mechanisms are clarified, natural stimulation approaches
could indeed represent a more accessible and ecologically valid
means of harnessing vestibular pathways for pain modulation in
clinical populations.

Besides what we have already covered, the vestibular system is
also linked with autonomic system functions (Yates and Bronstein,
2005; Yates et al., 2015; Rajagopalan et al., 2017). It has been shown
to impact autonomic reflexes such as the vestibulo-sympathetic
reflex (Samoudi et al., 2012) modulating blood pressure, heart rate,
and cerebral blood flow (Yamamoto et al., 2005; Cohen et al., 2013;
Yakushin et al., 2014; Yates et al., 2015). Furthermore, the otolithic
system is known to play a major role in regulating circadian
rhythms, homeostasis and body composition possibly due to
vestibulo-hypothalamic connections (Fuller et al., 2002). Also,
through limbic system connections (Balaban, 2004), the vestibular
system plays a role in regulating emotions, affective processes and
disorders (Mast et al., 2014; Miller, 2016; Rajagopalan et al., 2017)
such as anxiety (Balaban and Thayer, 2001), and mood (Winter
et al.,, 2012, 2013). Finally, the vestibular system is also related to
sleep (Besnard et al, 2018) which is often disturbed by
musculoskeletal pain (Keeffe and Fullen, 2011). All the above-
mentioned points are important parameters to consider when
treating musculoskeletal problems and should therefore
be further investigated.

Despite the growing body of evidence linking vestibular
stimulation to pain modulation and embodiment, key translational
steps remain missing. Most notably, systematic assessments of
vestibular function in chronic musculoskeletal pain populations are
lacking. It remains unclear whether subtle vestibular deficits—
perhaps subclinical—are present in these patients and contribute to
sensory disintegration or distorted body representations. Identifying
such deficits could help stratify patients who might benefit most from

vestibular-based interventions. Future studies should include
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standardized vestibular testing. Tests such as Vestibular Evoked
myogenic Potentials (e.g., OVEMPs, CVEMPs; Rosengren et al.,
2010), video Head Impulse tests (MacDougall et al., 2009; Alhabib
and Saliba, 2017; Halmagyi et al., 2017) or perceptual thresholds (Rey
et al., 2016; Kobel et al., 2021) could be used in pain cohorts to
determine whether vestibular dysfunction is a contributing factor or
therapeutic target. Additionally, combining vestibular stimulation
with current multisensory therapies in controlled trials will be critical
to establish causal efficacy and guide clinical adoption. These steps
are essential for moving beyond theoretical
plausibility toward potential personalized, vestibular-informed

rehabilitation approaches.

Conclusion

The vestibular system, long considered primarily a mediator of
balance and spatial orientation, is emerging as a pivotal contributor
to higher-order bodily functions such as embodiment and pain
modulation. Growing evidence suggests that vestibular inputs
influence body representation, somatosensory integration, and
emotional experience—domains that are profoundly altered in
chronic pain conditions. The overlap between vestibular integration
and pain-related cortical networks points to a potential powerful, yet
underrecognized, modulatory role of the vestibular system in
musculoskeletal health. Incorporating vestibular pathways into the
conceptual framework of pain neuroscience not only has the potential
to deepen our understanding of pain chronification but also opens
new therapeutic avenues. Vestibular neuromodulation, through
caloric or electric stimulations may offer a novel adjunct strategy for
restoring sensorimotor coherence and alleviating pain. Future
research should aim to further elucidate the mechanisms by which
vestibular signals interact with the pain matrix and assess the clinical
efficacy of vestibular-based interventions in chronic pain syndromes.
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