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Bidirectional dynamic threshold
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Spiking Neural Networks (SNNs), inspired by neuroscience principles, have
gained attention for their energy efficiency. However, directly trained SNNs lag
behind Artificial Neural Networks (ANNs) in accuracy for complex tasks like object
detection due to the limited information capacity of binary spike feature maps.
To address this, we propose BD-SNN, a new directly trained SNN equipped
with Bidirectional Dynamic Threshold neurons (BD-LIF). BD-LIF neurons emit
+1 and –1 spikes and dynamically adjust their thresholds, enhancing the
network’s information encoding capacity and activation efficiency. Our BD-SNN
incorporates two new all-spike residual blocks, BD-Block1 and BD-Block2,
for efficient information extraction and multi-scale feature fusion, respectively.
Experiments on the COCO and Gen1 datasets demonstrate that BD-SNN
improves accuracy by 3.1% and 2.8% compared to the state-of-the-art
EMS-YOLO method, respectively, validating BD-SNN’s superior performance
across diverse input scenarios. Project will be available at https://github.com/
Ganpei576/BD-SNN.

KEYWORDS

RGB and event, spiking neural networks, neuromorphic computing, neuron model,
object detection

1 Introduction

Object detection is a challenging task in the field of computer vision, which
aims to determine the location and category of each object in images or videos,
forming the foundation for further analysis and processing. In recent years, ANNs have
achieved remarkable results in many fields including object detection. However, as model
complexity grows, these methods entail significant computational and memory demands,
posing challenges for deployment in real-time applications and resource-constrained
environments (Howard, 2017). Therefore, there is an urgent need to explore new methods
capable of delivering comparable object detection performance to existing ANN methods,
while significantly reducing computational costs. A promising approach is to train
SNNs directly with surrogate gradient (Srinivasan et al., 2020), which can achieve high
performance with few time steps and process both static images and event data efficiently.

With the development of artificial intelligence, SNN, known as the next generation
of neural networks (Maass, 1997), has attracted widespread attention due to its unique
advantages such as asynchronous discrete event drive, spike activation that is more in line
with physiological characteristics, and no floating-point multiplication operations during
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the operation process. SNNs employ spiking neurons as
computational units (Zador, 1997) and convey information
through binary spike signals. Information is transmitted via spikes
only when the neurons membrane potential, which denotes the
internal state variable of the spiking neuron and corresponds to the
membrane potential in biological neurons, reaches the excitation
threshold (Andrew, 2003). Therefore, during network inference,
the floating-point multiplication involved in weight computation
and neuron activation in SNNs can be substituted with addition,
enabling more efficient and faster computations compared to
ANNs (Merolla et al., 2014; Poon and Zhou, 2011). In addition,
event-driven computing methods can also show higher energy
efficiency on neuromorphic hardware (Davies et al., 2018; Akopyan
et al., 2015; Liu et al., 2019). Today, SNN has been widely used in
many fields, including object classification (Hu et al., 2024; Zhu
et al., 2024; Shan et al., 2024; Wu et al., 2023), detection (Kim et al.,
2020b,a; Li et al., 2022), and tracking (Liu et al., 2024; Zhang J.
et al., 2023), etc.

However, when dealing with complex regression tasks such
as object detection, the accuracy of directly trained SNNs is
inferior to that of ANNs (Zhang H. et al., 2023; Hopkins et al.,
2018). In object detection tasks, the network must not only
identify objects but also precisely delineate their boundaries,
necessitating robust feature representation capabilities (He et al.,
2019). SNNs encode information via spike emissions, but their
inherently discrete signal transmission constrains the networks
feature representation capabilities. Compared to the activation
feature maps of ANNs, the binary nature of spikes hinders the
smooth capture and representation of complex feature variations,
impairing the networks ability to discern subtle features and
potentially causing information loss (Guo et al., 2024). Recent
efforts to directly train deep SNNs for object detection using the
surrogate gradient method have achieved higher accuracy than
ANN-to-SNN conversion methods, requiring only four time steps
compared to hundreds (Su et al., 2023). However, a performance
gap persists when compared to ANNs with equivalent network
architectures. Some studies have sought to enhance network
performance by mitigating information loss in SNNs (Kim et al.,
2023; Guo et al., 2023, 2022; He et al., 2024). However, a systematic
analysis of this challenge in object detection tasks remains absent.

To address this issue, we employed information entropy theory
(Paninski, 2003) into the object detection task and showed that
the binary spike activation maps of SNNs carry substantially
less information than ANN activations, leading to reduced
accuracy. To tackle this challenge, we propose BD-SNN network,
designed to comprehensively express the information embedded
in input data for efficient object detection. The BD-SNN network
integrates two new full-spike residual blocks, BD-Block 1 and
BD-Block 2, alongside the new designed bidirectional dynamic
threshold neuron model (BD-LIF) employed as the activation
unit. Unlike LIF neurons used in traditional SNNs, BD-LIF
neurons emit spikes in two distinct modes, –1 and 1, enabling
the transmission of diverse information. Additionally, this neuron
model dynamically adjusts its spike threshold, with the threshold
varying in response to the depolarization rate of the membrane
potential (Azouz and Gray, 2000), mirroring the biological
principle of inverse proportionality between spike threshold and
depolarization rate. Experimental results indicate that the proposed

network outperforms those networks through existing ANN-to-
SNN conversion methods and direct SNN training methods in
terms of accuracy.

In summary, our main contributions are fourfold:

• Through theoretical analysis and experimental validation, we
identified the issue of limited information capacity in the
activation process of conventional binary spike neurons. The
information capacity of the LIF neuron activation map is
found to be 3 times lower than that of the ReLU activation
map.

• We propose the BD-SNN network, designed to enable
SNN-based object detection with enhanced information
representation. The network incorporates two new full-
spike residual blocks, BD-Block1 and BD-Block2, which are
designed to efficiently extract information and fuse multi-scale
features respectively.

• We developed a BD-LIF neuron model capable of emitting
spikes in two distinct forms, 1 and -1, while dynamically
adjusting its threshold. This model is integrated into the BD-
SNN network to enhance the information capacity of the spike
feature map.

• Experimental results on the COCO and Gen1 datasets
demonstrate that BD-SNN, trained with BD-LIF neurons,
enhances both information representation and reasoning
efficiency. On the COCO dataset, BD-SNN achieves
approximately 3.1% higher accuracy than other state-of-the-
art methods while requiring only three time steps instead
of four.

2 Related work

2.1 Learning strategies of spiking neural
networks

There are two main methods to obtain high-performance deep
SNNs. The first method involves converting a pre-trained ANN
into an SNN with an identical structure, which is called ANN-
SNN conversion (Bu et al., 2023; Rueckauer et al., 2017). However,
this method has some inherent defects that are difficult to solve.
First, models trained using this method require extended time
steps to approximate the accuracy of the activation values in the
original ANN (Bu et al., 2023). This prolongs model inference time
and escalates energy consumption, counteracting the low-energy
design principles of the SNN. Secondly, the limitations of the rate
coding scheme (Al-Hamid and Kim, 2020) cause this method to
forgo the rich temporal dynamics of the SNN (Deng et al., 2020;
Van Rullen and Thorpe, 2001), rendering it unsuitable for dynamic
datasets captured by event cameras. These limitations restrict both
the practical application and research potential of this method.

The second method is to train SNN using direct training
method (Zhou et al., 2024). This method optimizes the network
model by backpropagating simultaneously in the time and space
dimensions (Wu et al., 2018). The network trained with this
method significantly reduces the time steps required for inference
(Wu et al., 2019), thereby reducing energy consumption during
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inference. Furthermore, when processing dynamic datasets, the
direct training method’s ability to simultaneously optimize both
the time and space dimensions allows the trained model to better
handle time-varying inputs (Deng et al., 2020). and adapt to diverse
real-time application scenarios. These advantages have recently
drawn increasing attention to direct training method. In this study,
we chose the direct training method to optimize the network model,
aiming to fully leverage its advantages in inference efficiency and
dynamic data processing.

2.2 Energy efficient object detection
methods

Currently, mainstream deep learning-based object detection
frameworks can be broadly categorized into two types: two-stage
frameworks and one-stage frameworks. The two-stage framework
is represented by the RCNN series (Girshick et al., 2014). These
methods first generate region proposal boxes and subsequently
classify and regress them. One-stage frameworks, including the
YOLO series (Redmon and Farhadi, 2018), SSD (Wei et al.,
2016), and Transformer-based models (Dosovitskiy et al., 2021),
adopt a more direct approach by performing object detection and
classification within a single network. Although existing ANN-
based methods can achieve good target detection results, they all
have high energy consumption problems. In practical applications,
this high energy consumption limits its application in some
scenarios with high energy consumption requirements. Therefore,
more and more studies are trying to use SNN to provide an energy-
efficient target detection solution with high efficiency and low
energy consumption.

The initial approach to object detection using SNN adopted
ANN-SNN based conversion method (Kim et al., 2020b,a; Li et al.,
2022). This makes it take a long time to infer and is unsuitable
for dynamic datasets captured by event cameras. Additionally,
there are some hybrid architectures (Johansson, 2021; Lien and
Chang, 2022) try to use directly trained SNN backbones and ANN
detection heads for object detection, However, these detection
heads introduce additional floating point multiplication operations,
which destroy the spike-driven nature of SNNs, Moreover,
such architectures are incompatible with certain neuromorphic
hardware that exclusively supports spike-based operations (Davies
et al., 2018; Akopyan et al., 2015; Liu et al., 2019). It was only in the
past two years that fully directly trained deep SNN object detection
networks have been successfully developed. For instance, EMS-
YOLO (Su et al., 2023) represents one of the pioneering successes
in this domain. However, it still faces limitations in fully extracting
information from data, particularly in complex scenarios, leaving
room for further optimization of the models performance.

2.3 Information loss in spiking neural
networks

In order to improve the performance of SNN in different tasks,
extensive research efforts have focused on mitigating information
loss in SNNs, leading to the development of numerous methods

and strategies. One specific work (Kim et al., 2023) has analyzed
the distribution of temporal dynamic information in SNNs
during training by estimating the Fisher information of weights,
uncovering the impact of temporal information concentration on
SNN performance. In InfLoR-SNN (Guo et al., 2023), it is posited
that the reset mechanism of SNN membrane potentials overlooks
differences between potentials, leading to information loss. To
address this, a Soft Reset mechanism and a Membrane Potential
Rectifier are proposed to reduce errors. IM-Loss (Guo et al.,
2022) suggests that the spike quantization process in SNNs causes
information loss and diminished accuracy. To counteract this, it
introduces an information maximization loss function designed
to optimize information flow within SNNs. MSAT (He et al.,
2024) posits that the uniform response of a constant threshold
to varying inputs may result in information loss. To mitigate
this, it introduces a multi-stage adaptive threshold mechanism
to dynamically adjust membrane potential and input thresholds,
thereby reducing information loss.

While the aforementioned studies have advanced efforts to
mitigate information loss in SNNs, they still quantize membrane
potentials into binary spikes. Some works have attempted
to leverage non-binary, bidirectional spikes to enhance SNN
performance. For example, Spiking-YOLO (Kim et al., 2020b)
recognizes that the negative activation regions in leaky-ReLU-based
ANN networks occupy a substantial portion of the network, and
proposes neurons capable of emitting both positive and negative
activations to compensate for information loss during ANN-
to-SNN conversion. Similarly, Ternary Spike (Guo et al., 2024)
introduces ternary neurons that emit +1 and –1 spikes, carrying
richer information. It further proposes trainable spike amplitudes,
allowing the network to represent different information during
training and convert to standard ternary SNNs during inference.
Although these approaches employ bidirectional spiking neurons,
they do not provide a theoretical quantitative analysis of the
information-carrying capabilities of spiking neurons versus ANN
activations, nor do they quantitatively assess the contribution of
bidirectional spikes in reducing information loss during inference,
particularly for complex tasks such as object detection that require
rich information representation.

3 Methodology

3.1 Information loss in spiking neural
networks for object detection

While directly trained SNNs have demonstrated comparable
performance to ANNs with reduced power consumption in
tasks like object classification, their performance in object
detection remains suboptimal when compared to ANNs. We
posit that a key limitation lies in the binary spike feature
map’s insufficient capacity to convey the requisite information
for object detection and complex regression tasks, leading
to information loss and reduced accuracy. To verify our
hypothesis, we employed information entropy theory, integrating
it with the membrane potential dynamics at each layer during
binary spike neuron inference for theoretical analysis and
experimental verification.
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FIGURE 1

Schematic diagram of the process of obtaining the average membrane potential probability distribution from the network inference process.

TABLE 1 Information entropy of LIF and ReLU activation function in
different calculation ranges.

Calculation range H(FB) H(FR) H(FR)/H(FB)

Shallow layers 0.715 2.207 3.087

Middle layers 0.695 2.152 3.096

Deep layers 0.833 2.486 2.984

Global average 0.746 2.281 3.056

H(FB) denotes the information entropy of LIF neurons, while H(FR) denotes the information
entropy of the ReLU activation function.
Bold values highlight our findings regarding the information entropy under different
activation methods.

The information expression capabilities R(X) and R(Y) of
discrete random variables X and continuous random variables Y
can be quantified by the information entropy H(X) and H(Y)
of X and Y , respectively, which are expressed by the following
Equations 1, 2.

R(X) = H(X) = −
∑

i

P(xi) logb P(xi) (1)

R(Y) = H(Y) = −
∫ +∞

−∞
P(y) logb P(y) (2)

Here, P(xi) represents the probability of the random variable
X taking the value xi, P(y) denotes the probability density
function of Y , and b is the logarithmic base, typically set
to 2, indicating that the information is measured in bits.
Building upon the aforementioned formula, we investigated
the disparity in information capacity between binary spike
neurons and ReLU activation functions in activating feature
maps during inference, employing both qualitative analysis and
quantitative evaluation.

From a qualitative analysis perspective, the binary spike output
is restricted to two states, 0 and 1, which limits its information
entropy. Let FB denote the binary spike feature map, where FB ∈
BC×H×W . For each pixel, the output of the spike feature map is
binary (0 or 1), and thus the entropy of each pixel, H(FB), can be
expressed as Equation 3.

H(FB) = −P(0) log2 P(0) − P(1) log2 P(1) (3)

The output of the spike feature map is limited to two
discrete states, hindering its capacity to represent complex
information. Consequently, it is unable to effectively represent
multi-class data or dynamically changing information, leading to
information loss. In contrast, the output of the ReLU activation
function is a continuous, non-negative real value, allowing
it to convey richer information. Let FR represent the ReLU
activation feature map, where FR ∈ BC×H×W . Since each
pixel in the membrane potential map can assume any real
value, the entropy of the feature map activated by the ReLU
function is continuous within the non-negative range, necessitating
the use of a probability density function for its definition.
The entropy H(FR) of each pixel can thus be expressed as
Equation 4.

H(FR) = −P(0) log2 P(0) −
∫ +∞

0
P(x) log2 P(x) (4)

The probability density function P(x) for positive values must
be determined by statistically analyzing their distribution. While
the specific information content of the ReLU activation feature map
depends on the probability distribution of the membrane potential,
it can theoretically represent more information than the binary
spike feature map, as it outputs non-negative continuous values.

When performing quantitative calculations, in order to avoid
the sampling error caused by relying solely on the distribution of
values from a single layer’s membrane potential, we recorded the
membrane potential distributions layer by layer during network
inference, as illustrated in Figure 1. Subsequently, we divided the
membrane potential distributions into three groups, corresponding
to the shallow, middle, and deep layers of the network, and averaged
them separately to obtain average membrane potential probability
distributions for each depth. These averaged distributions were
then substituted into Equations 3, 4 to compute the information
entropy of the feature maps obtained using LIF neurons and ReLU
activation functions. The results are presented in Table 1, indicate
that when LIF neurons were used for activation, the average
information capacity per pixel was only 0.746 bits, whereas with
ReLU activation, it increased to 2.281 bits per pixel. Comparatively,
the information capacity of the ReLU-activated feature map was
3.056 times that of the binary spike feature map. This finding
underscores the limitations of binary spike feature maps in
information representation compared to ReLU-activated feature
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FIGURE 2

Network structure of BD-SNN. BD-SNN is mainly composed of the backbone and the detection head, which are mainly composed of BD-Block 1
and BD-Block 2.

maps, as quantizing real-valued membrane potentials into binary
spikes results in approximately threefold information loss.

3.2 Design of BD-SNN network

To effectively represent the information in the input features
and perform efficient object detection tasks, we propose the BD-
SNN network. The BD-SNN network can process both frame-based
RGB image data and event image data captured by event cameras
for inference, utilizing 1 or –1 spikes to enhance information
representation. This feature is mainly based on the design and
implementation of the bidirectional variable threshold spike
neuron (BD-LIF), the details of which are presented in Section 3.3.

3.2.1 Input representation
Static image inputs: Given the spatiotemporal nature of SNNs,

when the network input consists of frame-based RGB images, we
replicate the image across the time dimension, ensuring that it
serves as input at each time step. This method fully leverages the
spatiotemporal information processing capabilities of SNNs.

Event-based inputs: Event cameras operate fundamentally
differently from frame cameras. Each pixel in an event camera
can independently respond to changes in light and output these
changes in the form of an asynchronous event stream, representing
variations in the logarithmic brightness of the pixel. This enables an
exceptionally wide dynamic range and superior temporal resolution
in the microsecond range. When the logarithmic light level of a
pixel exceeds the threshold Vth, an event en = (xn, yn, tn, pn) is
generated. Here, xn and yn represent the pixel coordinates, tn is the
timestamp of the event, and the polarity pn ∈ {−1, 1} represents an
increase or decrease in light intensity.

Given a time window ζ , the asynchronous event stream E =
{en ∈ ζ : n = 1, . . . , N} represents sparse event points in 3D space.
In this work, we partition E into segments with a fixed time window
dt and map the event points to a 2D representation resembling

an image within each segment. The event image generated in each
segment is fed into the network as a time step during inference.

3.2.2 Network structure
As shown in Figure 2, BD-SNN consists of two main

components: the backbone for feature extraction and the detection
head for object detection. Upon input of the RGB or event
image into the network, it is first processed by an encoding layer,
which includes a convolutional layer and a normalization layer, to
convert the input into spikes. Subsequently, a series of BD-Blocks
perform information extraction and feature fusion on the resulting
spike activation map. Specifically, the BD-LIF neuron learns and
integrates weighted inputs from different layers, emitting positive
or negative spikes once the threshold is reached, based on the
accumulation of membrane potential. We used two different BD-
Blocks to extract and fuse features across different dimensions and
channels, thereby enhancing the network’s robustness. To address
the issue of non-differentiable spikes during backpropagation and
enable direct training of the network, we employ an alternative
gradient (Wu et al., 2018), expressed as Equation 5.

∂Xt,n
i

∂Vt,n
i

= sign
∥∥|vt,n

i | − vth < a
∥∥ (5)

where a is used to limit the range over which the gradient can
propagate.

For the object detection task of the SNN model, the main
challenge lies in accurately mapping the features extracted from
the spike sequence to continuous bounding box coordinate
representations. In this study, we feed the final membrane potential
of the neuron into the detector to generate anchor boxes of varying
scales. After applying Non-Maximum Suppression (NMS), we
obtain the category and bounding box coordinates for each object.

BD-SNN consists primarily of two core modules: BD-Block
1 and BD-Block 2. The operational details of BD-Block 1 are
depicted in Figure 3 BD-Block 1 is primarily used to extract features
from the spike map, maintaining the input size by performing
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FIGURE 3

BD-Block 1 internal operation details.

FIGURE 4

BD-Block 2 internal operation details.

two consecutive spike activations, convolutions, and normalization
operations. Residual connections are also introduced to enhance
gradient propagation, enabling more effective training of deeper
networks. In addition to the feature extraction function, BD-
Block 2 is also responsible for fusing multi-scale features and
downsampling the spike map. The specific operation details are
shown in Figure 4. BD-Block 2 adopts a CSP-inspired dual-branch
structure: one doubles the number of channels in the input spike
map and reduces its size by half through convolution operations,
while the other branch combines multi-scale features via pooling,
convolution, and channel concatenation, resulting in an output
with the same shape as the first branch. Finally, the outputs
from both branches are combined to produce the final output,
integrating multi-scale information.

Unlike EMS-Block (Su et al., 2023), which employs
conventional LIF neurons generating unidirectional binary

spikes with fixed thresholds, both BD-Block 1 and BD-Block 2 are
built upon our proposed BD-LIF neurons. BD-LIF introduces a
bidirectional spiking mechanism (outputting −1,+1 instead of
0, 1) and a learnable dynamic threshold adaptation strategy. These
neuron-level innovations significantly increase the information
capacity of the spike feature maps and alleviate activation
inefficiency in deeper layers.

3.3 Bidirectional dynamic threshold
neuron model

As analyzed in Section 3.1, the conversion of membrane
potentials into binary spikes introduces substantial quantization
errors, significantly limiting the network model’s expressive
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FIGURE 5

Schematic diagram of the operation of BD-LIF neurons.

capacity. To address this issue, we propose a bidirectional dynamic
threshold neuron model, termed BD-LIF. Unlike traditional LIF
neurons, BD-LIF emits a positive spike (+1) when the membrane
potential surpasses the threshold and a negative spike (–1) when it
drops below the negative of the threshold. This design improves the
information capacity of feature maps while avoiding floating-point
multiplications by using subtraction-based operations, preserving
the efficiency of spike-driven SNNs.

Furthermore, conventional LIF neurons typically employ a
fixed threshold for spike processing. However, the significant
variation in inputs across different layers in SNN can constrain
the excitation efficiency of neurons under a fixed threshold
scheme. In particular, at later time steps of the network, neurons
must accumulate a larger number of spikes to surpass the
fixed threshold, resulting in information loss and performance
degradation. Fortunately, Biological studies have shown that the
voltage threshold of biological neurons is not static but dynamically
variable. The spike threshold exhibits an inverse relationship with
the membrane depolarization rate preceding the spike (Azouz and
Gray, 2000), with dynamic threshold changes serving as a critical
characteristic of neuronal behavior (Bertrand et al., 2014). The
threshold adaptation mechanism of BD-LIF is modeled on this
crucial physiological finding. To enable neurons to adapt to the
substantial variability in membrane potential distributions across
different network layers, we introduced a trainable parameter, α.
Which acts as a sensitivity controller. It allows each layer of neurons
to learn, during training, how strongly its threshold should respond
to changes in membrane potential, effectively tuning the degree of
threshold adaptation and improving activation efficiency.

As shown in Figure 5, BD-LIF neurons update the membrane
potential by integrating both positive and negative spike
information across different time steps, while dynamically
adjusting their activation threshold. Once the membrane potential
surpasses the activation threshold, the neuron will emit either
positive or negative spikes accordingly. The detailed neuron model
is described by the following Equation 6.

Vt+1,n+1
i = τVt,n+1

i

(
1 − Xt,n+1

i

)
+

∑
j

Wn
ij X

t+1,n
j (6)

In this context, V(t,n+1)
i represents the membrane potential of

the i-th neuron in the (n + 1)-th layer at time step t, while τ

denotes the integral decay factor. The synaptic input is the sum
of the products of X(t+1,n)

j spikes and their corresponding synaptic
weights Wn

ij from the previous layer n. The neurons threshold
change pattern can be expressed as Equation 7.

V ′
th = Vth − α · tanh(ψ − b) (7)

In this equation, V ′
th represents the new membrane voltage

threshold derived from the original threshold Vth, while α is
a trainable parameter. Additionally, ψ = dVi

dt denotes the
depolarization rate of the membrane potential, b is a constant that
constrains the adjustment range of the membrane voltage to a
reasonable interval, and tanh is the hyperbolic tangent function,
which maps the depolarization rate of the membrane potential to
the range [−1, 1].

Since SNN models a discrete-time process, the calculation
method for the neuron depolarization rate ψ can be expressed as
follows Equation 8.

ψ = |�Vi|
�t

= |Vt
i − Vt−1

i |
�t

(8)

Where Vt
i represents the membrane voltage of the i-th neuron

at time step t.
Combining Equations 7, 8, the final activation expression of the

bidirectional variable threshold neuron (BD-LIF) can be expressed
as Equation 9.

Xt+1,n+1
i =

⎧⎪⎨
⎪⎩

1, if Vt+1,n+1
i ≥ V ′

th
−1, if Vt+1,n+1

i ≤ −V ′
th

0, otherwise
(9)

As shown in Figure 6, BD-LIF neurons can not only emit
both positive and negative spikes but also adaptively adjust their
thresholds according to input variations. For instance, in example
(a), when the membrane potential increases significantly at the
second time step, the neuron’s activation threshold decreases
accordingly. Conversely, when the membrane potential increase is
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FIGURE 6

Examples of BD-LIF neuron spike activation. (a–c) show how the threshold of the neuron changes with the membrane potential when the neuron
only fires positive spikes, fires positive and negative spikes in sequence, and fires only negative spikes, respectively.

TABLE 2 Information entropy of LIF and BD-LIF activation function in
different calculation ranges.

Calculation range H(FB) H(FL) H(FL)/H(FB)

Shallow layers 0.715 1.524 2.131

Middle layers 0.695 1.519 2.186

Deep layers 0.833 1.657 1.989

Global average 0.746 1.566 2.099

H(FB) denotes the information entropy of LIF neurons, while H(FL) denotes the information
entropy of the BD-LIF neurons.
Bold values highlight our findings regarding the information entropy under different
activation methods.

smaller at the third time step, the activation threshold of the neuron
increases.

We hypothesize that BD-LIF neurons enhance the information
capacity of spike-activated feature maps. Using the information
entropy theory-based method introduced in Section 3.1, we
further compare the information capacity of networks employing
BD-LIF neurons and conventional LIF neurons across shallow,
intermediate, and deep layers. As shown in Table 2, BD-LIF
neurons achieve an average information capacity of 1.57 bits/pixel,
which is 2.1 times higher than that of traditional LIF neurons.
This layer-wise analysis provides quantitative evidence that BD-LIF
neurons substantially enhance the feature expressiveness of SNNs
during inference.

4 Experiment

4.1 Implementation details

In order to thoroughly evaluate the effectiveness of the
proposed network, we performed experiments on both the
static COCO2017 dataset (Lin et al., 2014) and the dynamic
Gen1 dataset (De Tournemire et al., 2020) using the BD-
SNN network, and compared its performance with several other
state-of-the-art methods.

In all of our experiments, we set the number of detection heads
to 2 in order to ensure a fair comparison with prior work. For the
BD-LIF neurons, we set the reset potential Vres = 0, the initial
threshold Vth = 0.5 (Su et al., 2023), and the membrane potential
decay factor τ = 0.25. The model was trained on two NVIDIA
RTX2080Ti GPUs using Python 3.8 and the PyTorch 1.11 deep
learning framework, with the SGD optimizer and the cross-entropy
loss function. The learning rate was set to 1 × 10−2. The network
was trained on the COCO2017 dataset for 200 epochs with a batch
size of 8, while the model was trained on the Gen1 dataset for 100
epochs with a batch size of 16.

4.2 Quantitative evaluation

We conduct a comparative analysis of our network
against previous works, evaluating its performance on both
the frame-based COCO2017 dataset and the event-based
Gen1 dataset.

As shown in Table 3, on the COCO dataset, the previous best
method EMS-YOLO, which uses EMS-ResNet34 as the backbone,
achieves the highest mAP@0.5 of 0.501 and mAP@0.5:0.95 of
0.301. BD-SNN improves the performance to 0.532 and 0.327 with
fewer time steps, representing a effective improvement of 3.1%.
As shown in Table 4, on the Gen1 dataset, we trained our model
using the same number of time steps as the comparison method,
ultimately surpassing it by 2.8%. These experimental results show
the advantages of BD-SNN in terms of speed and accuracy.

4.3 Ablation studies

We performed ablation experiments to assess the impact of
the proposed BD-LIF components on both static and dynamic
datasets. Specifically, we conducted experiments on the COCO
and Gen1 datasets to evaluate the effects of BD-SNN using
traditional LIF neurons, neurons with bidirectional spike features
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TABLE 3 Results on the COCO dataset.

Architecture Model Param(M) Time step mAP@0.5 mAP@0.5:0.95

ANN Tiny-Yolo 4.3 / 0.258 -

ResNet18 11.2 / 0.478 0.299

ResNet34 21.8 / 0.497 0.319

SSD513 (Wei et al., 2016) 36.0 / 0.504 0.312

ANN-SNN
Conversion

SNN-VGG16 20.0 64 0.359 0.192

SNN-InceptionV3 23.9 64 0.413 0.237

Spiking-Yolo (Kim et al., 2020b) 10.2 3500 - 0.257

Bayesian Optim (Kim et al., 2020a) 10.2 5000 - 0.259

Spike Calib (Li et al., 2022) 17.1 512 0.454 0.259

Directly-trained
SNN

SpikeDet (Fan et al., 2025) 22.0 4 0.626 0.462

SG ResNet (Zhang H. et al., 2023) 22.5 4 0.484 0.296

EMS-YOLO (Su et al., 2023) 26.8 4 0.501 0.301

M-SpikeFormer (Yao et al., 2024) 75.0 4 0.503 -

BD-SNN (Ours) 27.0 3 0.532 0.327

“/” denotes that the attribute is not applicable to the corresponding method, while “-” indicates that the value is not reported in the reference.
Bold values emphasize the results obtained by our proposed method.

TABLE 4 Results on the Gen1 dataset.

Architecture Model Param(M) Time step mAP@0.5 mAP@0.5:0.95

ANN YOLOv3-tiny (Redmon, 2018) 10.2 / 0.312 -

Asynet (Messikommer et al., 2020) 11.4 / - 0.145

Aegnn (Schaefer et al., 2022) 20.0 / - 0.163

Inception+SSD (Iacono et al., 2018) - / - 0.301

MatrixLSTM (Cannici et al., 2020) 61.5 / - 0.310

SNN SpikeDet (Fan et al., 2025) 22.0 5 0.692 0.465

MobileNet-64+SSD 24.3 5 - 0.147

VGG-11+SSD 12.6 5 - 0.174

DenseNet121-24+SSD (Cordone et al.,
2022)

8.2 5 - 0.189

Spiking-Yolo (Kim et al., 2020b) 7.9 500 0.442 -

Tr-Spiking-Yolo (Yuan et al., 2024) 7.9 5 0.453 -

EMS-YOLO (Su et al., 2023) 14.4 5 0.541 0.311

SFOD (Fan et al., 2024) 11.9 5 - 0.321

BD-SNN(Ours) 14.5 5 0.569 0.326

“/” denotes that the attribute is not applicable to the corresponding method, while “-” indicates that the value is not reported in the reference.
Bold values emphasize the results obtained by our proposed method.

only, neurons with dynamic threshold features only, and neurons
incorporating both features simultaneously. The experimental
results are presented in Table 5. The results show that each
component of the BD-LIF neuron model contributes to the
enhancement of network performance. This further verifies that
the SNN network using the proposed BD-LIF neurons is more
competitive when processing traditional frame image data and
event data.

4.4 Qualitative analysis

To intuitively illustrate that BD-LIF enhances the information-
carrying capacity compared to traditional LIF neurons during the
network inference process, we analyzed the inference results of
networks utilizing different types of neurons on static datasets.
Specifically, we extracted several activation maps from the shallow
layers of the BD-SNN network and visualized these feature maps,

Frontiers in Neuroscience 09 frontiersin.org

https://doi.org/10.3389/fnins.2025.1661916
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Wu et al. 10.3389/fnins.2025.1661916

TABLE 5 Ablation study of BD-LIF on each characteristic.

Dataset Bidirectional spike Dynamic threshold Results

mAP@0.5 mAP@0.5:0.95

COCO 0.498 0.302

� 0.525 0.323

� 0.506 0.303

� � 0.532 0.327

Gen1 0.537 0.310

� 0.560 0.321

� 0.548 0.315

� � 0.569 0.326

FIGURE 7

Spike activation diagrams when the network uses different neurons. (a) Is the original image, (b) is the spike activation diagram when using LIF
neurons, and (c) is the spike activation diagram when using BD-LIF neurons. Images are from the COCO 2017 dataset (Lin et al., 2014).

as shown in Figure 7. It can be seen that, compared to traditional
LIF neurons, BD-LIF neurons can flexibly utilize two distinct spike
modes to represent key image details with greater precision. For
instance, in the third column, the network using LIF neurons failed
to accurately identify the body contours of the two individuals
in the image, leading to the loss of critical details. The network
employing BD-LIF neurons not only clearly delineated the body
contours of the two individuals through two distinct spike forms,
but also precisely captured the ski boundaries. These results
demonstrate that BD-LIF neurons enhance the network’s sensitivity
to fine details and complex features, thereby facilitating superior
performance in object detection tasks.

5 Conclusion

In this paper, we propose a Bidirectional Dynamic threshold
SNN named by BD-SNN, which is capable of emitting both 1
and –1 spikes to convey richer information during inference. This
addresses the challenge of limited feature information extraction
from neuronal membrane potentials in traditional SNN-based

object detection networks, thereby effectively enhancing detection
accuracy. Specifically, we designed two new all-spike residual
blocks, termed BD-Block, to efficiently extract information and fuse
features, and incorporated a new type of spiking neuron, BD-LIF,
within these blocks. This neuron can emit both 1 and –1 spikes
to enhance the information capacity of the spike activation feature
map, while also adaptively adjusting its threshold in a biologically
plausible manner to optimize activation efficiency. Experimental
results show that BD-SNN improves the accuracy of state-of-the-
art method (EMS-YOLO) by 3.1% and 2.8% on the COCO2017 and
Gen1 datasets, respectively. We believe that this work provides new
insights into enhancing SNN performance in object detection and
further expands the potential of spiking neurons for spatiotemporal
information processing.
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