? frontiers ‘ Frontiers in Neuroscience

® Check for updates

OPEN ACCESS

EDITED BY
Amirreza Yousefzadeh,
University of Twente, Netherlands

REVIEWED BY
Mehrzad Karamimanesh,

Shiraz University of Technology, Iran
Pablo Ituero Herrero,

Polytechnic University of Madrid, Spain

*CORRESPONDENCE
Yinan Wang
wangyinan@nudt.edu.cn

fThese authors have contributed equally to
this work

RECEIVED 09 July 2025
AccepTED 02 September 2025
PUBLISHED 26 September 2025

CITATION

Wu J, Lu L, Wang VY, Li Z, Chen C, Li Q and
Chen K (2025) Efficient spiking convolutional
neural networks accelerator with
multi-structure compatibility.

Front. Neurosci. 19:1662886.

doi: 10.3389/fnins.2025.1662886

COPYRIGHT

© 2025 Wu, Lu, Wang, Li, Chen, Li and Chen.
This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that
the original publication in this journal is cited,
in accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

Frontiersin Neuroscience

TYPE Original Research
PUBLISHED 26 September 2025
pol 10.3389/fnins.2025.1662886

Efficient spiking convolutional
neural networks accelerator with
multi-structure compatibility

Jiadong Wu't, Lun Lu", Yinan Wang'*!, Zhiwei Li,
Changlin Chen?, Qingjiang Li' and Kairang Chen?

tCollege of Electronic Science and Technology, National University of Defense Technology, Changsha,
China, ?College of Electronics and Internet of Things, Chongging Polytechnic University of Electronic
Technology, Chongging, China

Spiking Neural Networks (SNNs) possess excellent computational energy
efficiency and biological credibility. Among them, Spiking Convolutional Neural
Networks (SCNNs) have significantly improved performance, demonstrating
promising applications in low-power and brain-like computing. To achieve
hardware acceleration for SCNNs, we propose an efficient FPGA accelerator
architecture with multi-structure compatibility. This architecture supports both
traditional convolutional and residual topologies, and can be adapted to diverse
requirements from small networks to complex networks. This architecture uses
a clock-driven scheme to perform convolution and neuron updates based on
the spike-encoded image at each timestep. Through hierarchical pipelining and
channel parallelization strategies, the computation speed of SCNNs is increased.
To address the issue of current accelerators only supporting simple network,
this architecture combines configuration and scheduling methods, including
grouped reuse computation and line-by-line multi-timestep computation to
accelerate deep networks with lots of channels and large feature map sizes.
Based on the proposed accelerator architecture, we evaluated two scales
of networks, named small-scale LeNet and deep residual SCNN, for object
detection. Experiments show that the proposed accelerator achieves a maximum
recognition speed of 1,605 frames/s at a 100 MHz clock for the LeNet network,
consuming only 0.65 mJ per image. Furthermore, the accelerator, combined
with the proposed configuration and scheduling methods, achieves acceleration
for each residual module in the deep residual SCNN, reaching a processing speed
of 2.59 times that of the CPU with a power consumption of only 16.77% of the
CPU. This demonstrates that the proposed accelerator architecture can achieve
higher energy efficiency, compatibility, and wider applicability.

KEYWORDS

spiking neural networks, spiking convolutional neural networks, artificial neural
networks, brain-like computing, hardware accelerator, FPGA

1 Introduction

Artificial neural networks (ANNs) have achieved revolutionary applications in
numerous fields, but their structure and capabilities still have a significant gap compared
to real biological neural networks, especially in terms of the high energy consumption
required during their computational processes (Javanshir et al., 2022). Compared to
traditional ANNS, spiking neural networks (SNNs) have a higher degree of biomimicry
to the human brain. SNNs express information through spike sequences. This enables
SNNs to process information in both temporal and spatial domains, and to achieve

01 frontiersin.org

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2025.1662886
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2025.1662886&domain=pdf&date_stamp=2025-09-26
mailto:wangyinan@nudt.edu.cn
https://doi.org/10.3389/fnins.2025.1662886
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2025.1662886/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Wu et al.

a closer fit to neural dynamics models (Deng et al, 2020;
Taherkhani et al., 2020). Due to the lack of effective learning
algorithms, in its early development, SNNs had poor performance
in multi-layer network structures, and related researches were
also limited to shallow networks with multilayer perceptron
(MLP) topological structures. However, the development and
prosperity of deep neural networks in the past decade have had
a significant impact on SNN research. Many structures, learning
algorithms and ideas of ANNs have been successively introduced
into SNNs. Among them, SNNs including convolution structure,
namely, spiking convolutional neural networks (SCNNs), as well
as learning algorithms such as ANN conversion method and
backpropagation method, have gradually become the hotspots in
the current research of SNNs. SCNNs are widely recognized to
be able to achieve deeper network layers with higher performance
like convolutional neural networks (CNNs). Sengupta et al. (2019)
successfully trained the SCNNs of VGG architecture and even
ResNet architecture through the method of ANN conversion
to SNN. Spatio-temporal backpropagation (STBP) is a back-
propagation algorithm effectively applied to multi-layer SCNN
direct training (Wu et al., 2018, 2019); based on the STBP method
(Zheng et al., 2021), threshold-dependent batch normalization
(tdBN) is proposed to implement direct training of ResNet-scale
SCNNs. In general, the current SCNNSs are gradually approaching
the existing deep ANNS in terms of network layers and scale. And
the network performance and application potential of SCNNs in
real-world scenarios have been significantly improved. However,
this also means that more and more computing resources are
needed for SCNNs, and the demand for efficiently running SCNNs
is also increasing.

arithmetic various

To improve the speed of SNNs,

neuromorphic hardware accelerators have been proposed
according to the characteristics of SNNs (Basu et al, 2022
Qu et al,, 2022), such as BrainScaleS (Pehle et al., 2022) from
Heidelberg University, TrueNorth (Merolla et al, 2014) from
IBM, Loihi (Davies et al., 2018) from Intel and so on. At present,
the network on chip (NoC) based multicore architecture is
widely used in this kind of neuromorphic hardware accelerators,
which is adopted to configure and simulate a large number of
neurons and synapses (Nguyen et al., 2021). The information
is passed inside the architecture through asynchronous event
flows. Such architectures are more often used for deploying
SNNs based on MLP structures, and are mainly used in the
research of neuroscience and brain science. From a practical
application perspective, even if some of these chips support
running convolutional operations, the architecture of these
neuromorphic chips can’t make full use of hardware resources
to speed up SCNNs with convolution operations due to the
incomplete match in terms of computer mechanisms and
network architectures (Zhang et al., 2021). In addition, with the
increase of SCNN layers, ASICs with this kind of architecture
require more complex neuron interconnection and asynchronous
event handling mechanisms, which will constrain the hardware
development cycle. Moreover, ASICs have long development
cycles and low flexibility, making it difficult for ASIC-based
accelerators to adapt to SCNNs, which is rapidly developing

and iterating.

Frontiersin Neuroscience

10.3389/fnins.2025.1662886

To address the above issues, some studies have designed
corresponding hardware accelerators for SCNNs. Zhang et al.
(2021) proposed a scalable, cost-efficient, and high-speed very
large-scale integration (VLSI) architecture by performing pipelined
convolutional operations on the snapshot of binary spike maps
at each time-step. Kang et al. (2019) used the events stream with
address event representation (AER) as the input for convolutional
operations and designed an SCNN inference accelerator based
on this. Ye et al. (2023) used an extended predictive correction
(EPC) optimization method to design the circuit of LIF neurons
to reduce computational complexity and hardware resources,
and based on this neuron circuit, they designed an SNN
accelerator supporting both MLP and CNN topologies. These
accelerators are implemented based on FPGAs. The flexible and
reconfigurable characteristics of FPGAs are more suitable for
rapidly iterating SNNs. However, the above accelerators still
have many shortcomings: existing SCNN FPGA accelerators are
mainly designed for running SNNs with MLP or traditional
convolutional topologies, but they lack effective support for
different convolutional types such as residual convolutional
networks; moreover, most existing accelerators can only run simple,
fixed network structures and lack efficient support solutions for
deep networks with large numbers of channels and feature map
sizes (e.g., networks for object detection), severely limiting the
application of accelerators in practical tasks.

To solve the above problems, a multi-structure compatible
SCNN hardware architecture is proposed in this paper for
more efficient acceleration of SCNNs. In response to the
problem that existing neuromorphic chips cannot well match
the convolutional topology of SCNNs, the architecture is based
on a clock-driven design, which through the current spike
image at each timestep calculates the convolutional results
and updates the neuron state. This combines the spiking
information format of SNNs with convolutional operations,
simplifying the control logic of convolution. The accelerator
is implemented on an FPGA and combines channel-wise
parallel and pipelined structures to achieve efficient acceleration.
Addressing the limited support for convolutional topologies in
existing SCNN accelerators, the proposed accelerator architecture
supports both traditional convolutional topologies and residual
convolutional topologies. Furthermore, to address the lack of
support schemes for complex networks in existing accelerators,
configuration and scheduling methods such as grouped reuse
computation and line-by-line multi-timestep computation
are proposed, based on our accelerator architecture. These
methods enable acceleration of deep networks with large
numbers of channels, feature map sizes, and even for object
detection networks.

In summary, the main contributions of this paper are as
follows:

1. A clock-driven accelerator architecture that achieves efficient
acceleration of SNNs with convolutional topologies.

2. The proposed acceleration structure can be flexibly configured
according to the network type, and it can support the current
mainstream convolutional networks and the network with
residual structures.

frontiersin.org

https://doi.org/10.3389/fnins.2025.1662886
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Wu et al.

3. The proposed methods of grouped reuse computation and line-
by-line multi-timestep computation address the challenges of
accelerating large networks with deep hierarchies, large numbers
of convolutional channels, and large feature map sizes, enabling
acceleration for more complex tasks such as object detection.

Experimental results demonstrate the performance of the
proposed accelerator architecture, which has achieved a process
speed of up to 1,605 FPS and an energy consumption of only
0.65 mJ per image for SCNNs with a LeNet structure, and for
deep residual SCNNs used in object detection, it has achieved
a processing speed 2.59 times that of the CPU for the residual
modules while the power consumption is only 16.77% of the CPU.

The paper is organized as follows. Section 2 introduces relevant
background knowledge on spiking neural networks. The specific
design of the SCNN hardware architecture is described in Section
3. Section 4 discusses the accelerator scheduling and configuration
strategies for different-sized networks. Then, in Section 5, we
evaluated the effectiveness of the proposed SCNN hardware
architecture and scheduling configuration strategies based on
traditional small networks and large residual networks. Finally,
Section 6 summarizes our work.

2 Backgrounds of SNNs

2.1 Spiking neural networks

There are two main characteristics in the structure of SNNs:
one is that the information is expressed by discrete spike sequences
with precise timing. The input and output of the network, as
well as the information transmitted between network layers, are
represented by spike sequences instead of continuous values in
traditional ANNs. Secondly, compared to ANNs, the neurons in
SNNs provide a more in-depth and detailed simulation of biological
neuronal behavior.

2.1.1 Information coding

Since the input of SNNs is represented by spike signal,
therefore, when applying SNNs to traditional images, each image
needs to be encoded into multiple spike sequences of several time
steps. And then input the spikes into SNNs in chronological order.
The commonly used coding method is rate coding (Gerstner et al.,
2014). In this method, the value to be expressed is converted into
the average rate of spike generation, i.e., the number of spikes
emitted within each sampling time window (Auge et al., 2021). The
specific distribution of the spikes within the sampling time window
can be done directly by means of equally spaced distribution; it
can be also done by means of random distribution according to a
probabilistic model, usually using the Poisson distribution model,
which is known as Poisson Coding. The schematic of Poisson
Coding is shown in Figure 1, taking an example that one pixel
value is encoded into a spike sequence of 10 time-steps. In this
graph, the emission of spike in each time step from t1 to t10
follows a Poisson distribution with normalized pixel values as the
probability. The energy consumption for information transmission
and computation in the network is significantly reduced by using
spikes to represent information (Nunes et al., 2022).

Frontiersin Neuroscience

10.3389/fnins.2025.1662886

FIGURE 1
Schematic diagram of poisson coding, where t1 — t10 denote the 10
time-steps of the spike sequence.

As the development of deep SNNs progresses, trainable coding
methods have been proposed and rapidly gained widespread
application. Trainable coding directly utilizes the first neuron
activation layer of the network as a coding layer. The real-valued
input images undergo convolutional operations, and then their
results are fed into a spiking neuron layer. The activated neurons
emit spikes, completing the spike coding of the original image (Wu
et al., 2024). For T timesteps of the SNN, the above computation
is repeated T times. The weights in the coding layer can be
trained along with the network, which makes trainable coding
show higher precision in deep network structures compared to
rate coding. However, under adversarial and interfering conditions,
the robustness of trainable coding is still not as good as rate
coding (Kim et al., 2022). Additionally, because trainable coding
is essentially a real-valued input layer of the network, it requires
higher energy consumption to implement and higher costs for
hardware deployment.

2.1.2 Neuron model

The input and output of traditional artificial neural network
neurons are continuous real values. The neurons perform weighted
sum operations on the input signal, and then output the signal
through a non-linear activation function (Yamazaki et al., 2022).
In SNNG, the behavior of spike neurons is mainly controlled by
membrane potential and activation threshold. The spike signal
received by the neuron dendrites changes the membrane potential
of the neuron. And when the membrane potential accumulated by
the neuron reaches the activation threshold, the neuron fires a spike
signal from the axon to the neuron at the next layer.

There are several specific neuron models for building SNNG.
Take the leaky integrate-and-fire (LIF) model (Gerstner and Kistler,
2002) used in this work as an example. The input signals X()
are integrated to the membrane potential V; in addition, the
membrane potential of LIF neurons also leaks and decreases over
time. The mathematical expression of this behavior is shown
in Equation 1:

av

T— =

dt reset — V+X(t) (1)

where t represents the time constant, which is a hyperparameter
of the neuron. And when the membrane potential V exceeds
the threshold voltage Vy,, the neuron’s output will emit a spike
(represented by the value 1 for spike emission, 0 for no spike) and
reset the membrane potential V to the reset voltage Viyeger.

frontiersin.org

https://doi.org/10.3389/fnins.2025.1662886
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Wu et al.

To facilitate calculation, in the training and inference of the
network, the Euler’s formula is used to approximate the above
continuous differential equation as a discrete difference equation.
And the continuous time is also discretized into several moments,
here referred to as timesteps. The differenced equation is shown in
Equation 2:

VI = V[t —1] + %(X[t] V14 V) @)

where 7 is taken to the power of 2 so that a shift operation can
be used instead of division. By using Equation 2, only shifters and
adders are needed to calculate the potential of neurons.

2.2 Spiking convolutional neural networks

With the rapid development of artificial intelligence in recent
years, the ideas of deep networks and convolutional structures
in CNNs have been introduced into SNNs. SCNNs retain the
convolutional structure of local connection and weight sharing
in CNNs, and uses the neurons in SNNs to activate the result
of convolution. In SCNNs, binary pixel information is used to
represent the presence or absence of spikes. SCNNs make it
possible to combine the performance of CNNs with the low power
characteristic of SNNs.

Like in CNNs, the
convolutional layers in SNNs play a role in extracting input

the convolutional layers spiking
features spatially, but their input signals are a set of spiking
sequences instead of continuous values. Assuming that the total
number of timesteps in the network is T, the original image needs
to be coded into spikes and then enters the spiking convolutional
layer as T spiking images. Therefore, the convolution operation
can be divided into convolving each of the T binary spiking images
separately, and the result of each calculation is passed to the
subsequent LIF neurons, as shown in Figure 2. The mathematical
representation of spiking convolution is shown in Equation 3:

X[¥,y, Co,tl = Y Y wlks, kyy Ciy Co) 5 s(x + ks +y + Ky, Cis 1)
Ci kyky

©)

where x' and) are the spatial position coordinate of
the calculated output feature map element, x and y are the
corresponding coordinate of the sliding window in the input
feature map, ky and ky are the coordinate of the convolution kernel
element, C; and Cy are the input channel and output channel index
of the convolutional layer, w is the convolution kernel weight, s is
the input spike, and X is the result of the spiking convolution, which
is also the input to the LIF neuron. Each element of the output
feature map is calculated by the corresponding LIF neuron. The
output feature map is also a binary spiking image, and is input to
the next layer.

Currently, the training of SCNNs mainly adopts two methods:
ANN conversion method and gradient descent method based on
surrogate function. Due to the fact that information in SNNs is
represented by spike sequences, it is necessary to solve the problem
in SNN training that the internal state variables and error functions
of SNNs are indifferentiable. For the ANN conversion method,

Frontiersin Neuroscience

10.3389/fnins.2025.1662886

the solution lies in conducting backpropagation in the designed
ANN firstly, and then converting the trained ANN into SNN with
similar structures. However, this method also has the limitations
such as only using the ReLU as the activation function, only using
average pooling, not allowing bias and so on. The core idea of
the second method is to approximate the indifferentiable spike-
neuron activation function in SNN with a similar but smooth and
differentiable surrogate function (Neftci et al., 2019; Guo et al,
2023). In recent years, the performance of these two training
algorithms has been continuously improved, so that the SCNNs
in recent years have achieved the performance comparable to
that of CNNs with a similar structure. This has also promoted
the development of SNNs toward deeper network structures and
higher performance.

For the hardware implementation of SNNs, event driven
methods are often used in early work based on MLP structure. This
method only updates the neuron state when the spike event arrives,
and requires more complex event sequencing and storage logic and
neuron state calculation logic (Naveros et al., 2017; Li et al., 2021).
And it is a challenge to implement the convolution operation based
on the sparse data structure of event flow. In recent years, some
studies have strived to solve the problems of high latency and low
performance in SNN hardware caused by sparse spike events. Xu
etal. (2025) designed an efficient data stream with multi bit weight
data movement to improve data sharing for computations spanning
across both time and space in the systolic array accelerator. The
SATO (Liu et al., 2024) accelerator achieves significant latency and
energy reduction by exploiting temporal-unrolled parallelism for
cross-timestep membrane potential accumulation and employing
a bucket-sort-based dispatcher for balanced workload distribution
and input spike reuse across PEs. By the method of algorithm-
hardware co-design, STELLAR (Mao et al., 2024) reduces the
time step through the few spikes backpropagation (FSBP) training
method, and improves the data reuse rate of hardware through
the spatiotemporal Row Stationary (stRS) dataflow. Another
study, COMPASS (Wang et al., 2024) combined dynamic inferred
spike sparsity with in-memory computation to improve the
computational efficiency of the SNN accelerator.

Unlike in the event-driven approach, in clock-driven SCNNs,
the state of each neuron is computed and updated at each time step
according to the input at that time (Wu et al,, 2023). It is similar
to the mechanism of updating the state of registers at each clock.
The input of each time step retains the original image structure,
only the pixel values are binarized. So, convolution operations can
be implemented easily on such input images. The clock-driven
approach reduces the complexity of the hardware implementation,
facilitates the implementation of larger networks, and also increases
the computational frequency.

3 Hardware architecture

3.1 Architecture overview

The overall architecture and dataflow of the accelerator is
shown in Figure 3. The accelerator consists of a spiking convolution
group, a fully connected group, a short-cut group, external
memory, control logic and configuration registers. The parts

frontiersin.org

https://doi.org/10.3389/fnins.2025.1662886
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Wu et al. 10.3389/fnins.2025.1662886
Weight
Wo |Wy |W2
W3 | Wy |Wg Output Feature Map
| W W3 Wy 2 0 -9
| _4° 17
Input "OJ"I"'I, 0‘,-"‘0:'
1000500% 0400 ’ Y
20200050080 ,0 1 000
000010 oCle®, ; 200
o0 Se%)) 1 ark
2970100000 70" — | »
: 0 g2" g0 1
Time Step: 0 1 2 2
FIGURE 2
The process of spiking convolution.
External Memory ———
l 1 . _l_ ______ - weight
Spiking Convol Spiking Convol | Ruly f[| oo
e i e i]
piking Convolution piking Convolution L+ Connected |
Group | Group 2 1 i
y Group i
[f ----- { LeNet
(traditional SCNN)
ResNet Control Logic

(residual SCNN)

& Registers

Spiking Convolution Group Fully Connected Group
EETTTTh
v ! 1
Spiking ' Max | Fully Connected
- :;T;;: . Convolution -’i Pooling ?‘.l;:,p(l)“ 1 Input Module 0
Module ¢ Module & Buffer 1
1
lecccee 4
Fully Connected
Short-cut Group Module 1
¥
Max Spiking I Output
+>| Pooling [~ ?:l;;%n ;l::l:fl:r +-»{ Convolution [~ FIFO | | Fully Connected
Module Module Module 2

FIGURE 3
The overall architecture and dataflow of the accelerator.

indicated by dashed lines are optional modules depending on
the different network structures. We configure the network based
on the widely used LeNet structure and ResNet structure in
current research to represent traditional convolution topologies
and residual convolution topologies, and build the corresponding
hardware accelerator. When configured as LeNet, the accelerator
includes a fully connected group (as shown in the purple part of
Figure 3); for ResNet structure, a short-cut group is introduced in
the accelerator (as shown in the yellow part in Figure 3).

The spiking convolution group includes an input buffer, a
spiking convolution module, a max pooling module, and an
output FIFO. The max pooling module is also an optional module
determined by the network structure. The fully connected group
consists of an input buffer, several fully connected modules (taking
3 as an example), and an output FIFO. The short-cut group

Frontiersin Neuroscience

05

includes an optional max pooling module, an output FIFO, an
input buffer, and a spiking convolution module. Note that the
input of the short-cut group comes from the input buffer in
the first spiking convolution group, and the output data will be
transmitted to the spiking convolution module in the last spiking
convolution combination to superimpose the calculation results of
the shortcut connection.

The external memory stores the input data, weight parameters,
and output data of the accelerator. The data transmission path and
weight transmission path are indicated by the orange and green
arrows in Figure 3, respectively. The control logic and registers
are used to control the operation of each module. Meanwhile, the
accelerator has a certain degree of programmability, and the partial
specifications of the network can be adjusted online by configuring
the registers through the external interface.

frontiersin.org

https://doi.org/10.3389/fnins.2025.1662886
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Wu et al.

10.3389/fnins.2025.1662886

External Control Signal External Control Signal
(@ (b)
Input Buffer Output
FIFO
Data
cot [o
& Logic S
(‘0\ = Reorder Padding — Reorder
c, Logic Logic i From Logic
Spike E Next Laat Spike
Input Moawe MO%lc [S Output
Spike — Spik rf'
pike
RAM L — %
o
Data window
FIGURE 4
The design of input buffer and output FIFO modules.
External Control Signal |
v
Spiking) Dataflow Control Logic Data Address Unit
Convolution
Module
SC PE Array LIF-Neurons Array
([1| PEO| [/ ——)
Weight |,) Neuron | [Neuron LIF
anne —
% PE | grAM : — State State s
From o AO & J\)) Update) (Bram)
Input [r To
Buffer 110/1 : Neuron | [Neuron Output
\ 1100 ~ PE Weight |Channel —> State State LIF rF FIFO
p) BRAM 1 1 —>
/,//“/ \ Update) \Bram) Q 2
R P / G,
0 Y e '
\ . Neuron | [Neuron
Weight [:> PE gelght Channel State State LIF
g RAM n :> n
Path) L Update) { Bram J
From Short-cut Group
FIGURE 5
The design of spiking convolution module.

3.2 Input buffer module and output FIFO
module

The input buffer module is mainly used to receive the input
feature map data and reorder it into the sliding window required for
convolution. Its design is shown in Figure 4a, where n represents
the number of data channels. It includes spike RAM, a data
window, control logic, as well as logic for address calculation,
data reordering, and padding functions. The input buffer module
receives data from the external memory or the previous stage’s
output FIFO. Due to the binary nature of the spikes, data can
be transmitted preferentially according to the channel dimension.
Therefore, the input feature map is traversed in the order of [C,X,
Y, T] (where C denotes the input channel dimension, X denotes the
width dimension, Y denotes the height dimension, and T denotes

Frontiersin Neuroscience

06

the timestep dimension) and stored in the spike RAM of the
input buffer. When the stored data is sufficient to start subsequent
calculations, the spike data is read out from the spike RAM and
rearranged according to the configured network structure, and
subsequently stored in the data window for next modules. When
the subsequent module is a convolution or pooling module, the
data window is configured as a two-dimensional register set with
the same size as the computation kernel; when the subsequent
module is a fully connected module, it is configured as a one-
dimensional input spike queue; the padding operation is also
completed during the data loading process within the input buffer
module; the address calculation logic is used to generate the read
and write addresses of the spike RAM. The control logic is used to
receive configuration information, enable signals, and other signals
transmitted by external control signals, and control other internal

frontiersin.org

https://doi.org/10.3389/fnins.2025.1662886
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Wu et al.

sub-modules to operate in the above-mentioned manner. All other
modules also have similar control logic, which will not be repeated
in the following content.

The output FIFO is used to cache the calculation results of the
previous module. It includes reorder logic, spike FIFO, and control
logic. When a line of data is cached, it transfers the data to the
next stage’s input buffer or external memory, as shown in Figure 4b.
The order of data transmission is consistent with that of the input
buffer module, and the output feature map is stored in the order
of [C,W,H,T]. Since only one line of data needs to be temporarily
stored, a FIFO structure can be directly used for caching, enabling
synchronous receiving and sending of data.

3.3 Clock-driven spiking convolution
module

The spiking convolution module mainly includes a spiking
convolution (SC) processing element (PE) array, an LIF neuron
array, data flow control unit and data address calculation unit,
as shown in Figure 5. Specifically, when configured as a residual
structure, the spiking convolution module of the short-cut group
does not include the LIF neuron array. The convolution module
adopts a parallel structure according to the output channel to speed
up the computation. It contains # independent computing threads
(n is the number of output channels). Each computing thread
consists of a convolution PE, an LIF neuron activator, a weight
BRAM, and a neuron-state BRAM.

The input of the spiking convolution module includes a data
input path connected to the data window of input buffer, a path
for receiving weight data transmitted from off-chip memory, and
a path for control signals from the accelerator’s control logic and
configuration registers. Besides, there is also a data output path in
this module that transmits the computational results to the output
FIFO. The general operating mechanism of the entire module is
described as follows.

Firstly, the control signals convey the specifications of the
network (such as the number of channels, feature map sizes, etc.)
into the spiking convolution module. Subsequently the weights of
the network are passed in from the weight path and stored in the
weight BRAM within the module. Then the input buffer fills the
input feature map into the data window, the spiking convolution
module reads the data in the data window by input channel and
broadcasts it to each computational thread. The convolution PE
retrieves the weights at the corresponding positions and performs
convolution calculations based on the incoming data. After the data
of all input channels are passed in, PE gets the final computation
result PE_O, which is output to the neuron unit to perform the
activation operation. The neuron calculates whether to fire a spike
based on the input. The activation results from all channels are
then output through the data output path. For residual structures,
a data input path for the computation result of short-cut group
is added in the last convolution module of the residual path. The
PE_O calculated by this module needs to be superimposed with
the computation result from the short-cut group before being input
into the LIF neuron for activation.

For the convolution operation in PE, since the input of
SCNN’s each layer is a binarized spiking image, the multiplicative

Frontiersin Neuroscience

10.3389/fnins.2025.1662886

accumulation operation of convolution can be transformed into
the accumulation operation of weights. Therefore, multiplication
operations are no longer required in the convolution process
of SCNNs, which simplifies the circuit and greatly reduces the
power consumption. The computational process is illustrated in
Figure 6. The spiking convolution module reads the weights of
the current layer from external memory and caches them in on-
chip BRAM. The corresponding weights in the BRAM are read
into the accumulator operand register based on the coordinates
of the input data. The weights are represented as 8-bit fixed-point
numbers or quantized to 8-bit integers (in this case, the read-out
weights need to be converted to fixed-point form through a de-
quantization unit). The values in the data window are used as the
gating signals for the corresponding weight, to choose whether the
operand entering the adder tree is the weight or 0. Subsequently,
the adder tree calculates the accumulated result, which is stored in
the accumulation result register until the final computation result
PE_O is generated.

In the output feature map of SCNNs, each pixel’s value is
obtained by the activation of a corresponding neuron. To reduce
the resource occupied by neurons, we designed a reuse strategy
for the neuron operation logic in the neuron module of the
convolutional layer, as shown in Figure 7. Only one neuron-state
update module is configured for each computational thread. When
PE_O arrives, the membrane potential value of the neuron at
the current output feature map’s coordinate is read from the
neuron-state BRAM to the neuron-state update module to calculate
its new membrane potential. If the membrane potential exceeds
the threshold, the neuron fires a spike and resets the membrane
potential. Use 1 or 0 to indicate whether the neuron is activated or
not, and the result of the activation is written to the corresponding
location in the output line buffer. At the same time, the neuron-
state update module saves the current membrane potential value
back into BRAM.

After calculating one pixel’s value of the output feature map, the
data window slides a step to calculate the pixel’s value at the new
coordinate. The above process is repeated until the calculation of
all input feature maps in the buffer is completed. That also means
the data processing of the t time-step is completed, and the input
buffer will load the spiking image of the next time-step and start
the processing of ¢ + 1 time-step.

Data flow control unit is mainly responsible for controlling
the data transfer between the components. While the data address
calculation unit is responsible for generating the coordinates of the
sliding window and the coordinates where the activation results are
written to output line buffer. And it is also responsible for providing
the retrieval address of weight BRAM and neuron state BRAM.

3.4 Max pooling and fully connected
modules

The max pooling module consists of a data window, pooling
PE, and control logic, as shown in Figure 8a. Depending on the
location of the max pooling module, its input path differs. For
the max pooling module in the residual structure, its input comes
from the bottom-right 2 x 2 portion of the data window in the
input buffer. For the max pooling module following the spiking

frontiersin.org

https://doi.org/10.3389/fnins.2025.1662886
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Wu et al. 10.3389/fnins.2025.1662886
(i
Input|Spike 1 PE
I~n | I
I IN SPIKE 0)
‘ Weight 1
00 |1]1 —
| 0—
1 11 4 : |
| IN SPIKE 1
1/0]1]0 | Weight 2
0111011 —
I 0 — . ~1 g X[t]
Sliding Window Weight H al v
: I~n To
: Neuron
| &
!) IN SPIKE n
WEIGHT| Weight! iWeight ‘Welgln n
BRAM | :Dequantization -
 {Unit 0
| I
FIGURE 6
The computation process of the convolution kernel of SCNNs, where n is the amount of data in the sliding window used in one computation. The
configuration of this work is to calculate the data in one row of the sliding window in one clock cycle, and that means for an m x n convolution
kernel, it takes m clock cycles to complete the convolution operation of one sliding window.

PE
1 Kernel
Vn=Vn+ ;(PE_O = Vn + Vrest

L PE_0(x0)

s
Regitser Vipcalculation

Vin Read & Write
Logic

o © O

Vin (6 = 1,%6,¥5) Vin(t, X0, o)

Output
Spike

Neuron V;,
Output BRAM

Fmap

FIGURE 7
The reuse strategy for the neuron operation logic.

convolution module in the LeNet structure, the convolutional
results are temporarily stored in a line buffer and then input into
the max pooling module.

Since the output of spiking neurons is represented by spikes, if
we use the average pooling, the spikes will be reconverted to floating
point numbers, which is inconsistent with the design idea of
SCNNS. So, we use max pooling. Max pooling of SCNNGs is easy for
hardware implementation because it only needs each PE performs
a bitwise OR operation on the data stored in the data window. The
pooling layer continues the design of parallel computing threads
in the convolutional layer. Each computing thread completes the
pooling operation of one output channel, and finally generates a
complete output feature map for the next layer’s components.

Frontiersin Neuroscience

Figure 8b shows the architecture design of the fully connected
(FC) module. It consists of an input spike queue, weight BRAM,
a FC PE array, a LIF neuron array, an output spike queue, and
control logic. Similar to the design of convolutional layers, a FC
module containing #n neurons can be considered as a convolutional
layer with n output channels, but the output feature map’s size of
each output channel is only one. Therefore, in the FC module, the
membrane potentials of neurons only need to be stored in their
registers, and there is no need to store the membrane potential of
different locations to the corresponding address of BRAM, as what
we do in the convolution layer. For the input feature map, it is
spread into a one-dimensional spike sequence stored in the input
spike queue. The FC module sequentially reads the pixel values
in the input buffer, and then takes them as the read enable of the
weight BRAM and the gating signals of the accumulation operation
for the PE on each output channel. Until all the pixels in the input
buffer are read, each PE passes the cumulative value of the weight
to the neuron array for activation to get the feature map stored
in output spike queue under at the current time step. Although
each pixel of the input feature map needs to be retrieved serially
in order to obtain the output result of one timestep, the processing
time of the fully connected module is still short due to the simple
computational logic of FC module and the low data volume after
two pooling’s dimensionality reduction.

4 Configuration and scheduling
methods of accelerator

4.1 Timestep pipeline computation for
small-scale SCNNs

For small networks, it is possible to directly implement all

network layers on-chip and store the weights of each layer as
well as the inputs of the network directly in the on-chip BRAM

frontiersin.org

https://doi.org/10.3389/fnins.2025.1662886
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Wu et al. 10.3389/fnins.2025.1662886
External Control Signal
(a) s Data
Pooling | wWindow [—> ﬁ;olmg fon.trol
ogic
Module 0 =
(0]
F o () Next
rom ata Poolin: -
. —) | O | NG Module
Module ! ~— a,
\ Data Dot
N |Window [[100UNS
. PE
S
| External Control Signal
(b) Fl.l“y LIF-
Connected i?r;PE Neurons
Module ? Array
() (i 2\
add en #| |FC —>| |LIE Spike
PEO 0 ——)
L —
o T f | &
2 / FC NI EIE Spike| o =
[:C = > 1 — 'xa‘ To
From ‘?, / PE1 \) @ Next
Last = L. L. 2, [[Module
= £
Module| | «»a 8
E Weight " 3 () :
5 BR;‘:A —_| |FC —| |LIF Spike
H i PEn n
|4 Rd en ﬁ N J \ J
U Weight
Path
FIGURE 8
The design of max pooling and fully connected modules

as well. Each computational module is specially designed based
on the specifications of the corresponding network layer, and
there will be no idle computational units, thus the utilization
efficiency of hardware resources can be improved. Since all modules
are implemented on-chip, these modules can be scheduled in a
pipeline to accelerate computation. Taking the LeNet structure as
an example, as shown in Figure 9. The network is structured as a
three-stage pipeline: the spiking convolution group 1 constitutes
the first stage of the pipeline. The spiking convolution group 2
constitutes the second stage of the pipeline, and the full connection
group comprises the remaining part of the pipeline. Between
each pipeline stage, input buffers and output FIFOs are used for
temporary data storage. Taking the first stage as an example, after
it finishes processing the input data of ¢ time-step, it passes the
processed data to the next stage and starts processing the input
of the t 4+ 1 time-step if the next level of the pipeline is free; if
the next stage is busy, it keeps waiting. With such scheduling, each
network layer can keep working after the pipeline is filled up, so that
the hardware resources can be used efficiently and the processing
performance of the hardware can be improved.

Frontiersin Neuroscience

09

For residual structures, the short-cut group shares the input
buffer with the spike convolution group 1, and the output data is
superimposed into the spike convolution group 2. Therefore, the
max pooling module in the short-cut group is in the first stage of
the pipeline together with the spike convolution group 1, while the
spiking convolution module in the short-cut group is in the second
stage. Similarly, the input buffers and output FIFOs of short-cut
group are used to cache data between these two pipeline stages.
To ensure that the computational results of the two parallel paths
align in the output feature map, both paths maintain consistent
coordinate of sliding window at each stage.

4.2 Layer-by-layer reconfigurable
computation for deep SCNNs

As the number of network layers increases, limited hardware
resources may not be sufficient to implement the entire network. In
such cases, only some layers of the network can be implemented
in hardware, and the whole computation is completed layer by

frontiersin.org

https://doi.org/10.3389/fnins.2025.1662886
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Wu et al.

Process Time

| SC Group 1 || SC Group 1 | SC Group 1 Stagel
t=0 t=1 t=2 =

2 / Sinod | SC Group 2 “ SC Group 2 ‘

3 ’ e t=0 t=1

o

2 0 FCl

& a=0)

Stage3

Time Step (t)
of Input

FIGURE 9

Schematic of timestep pipeline computation for small-scale SCNNs,
where the blocks in each stage indicate which module is working
and the data from which time step is processed.

layer through reconfiguration and reuse strategies, as shown in
Figure 10. This means that the computational modules in the
hardware need to support specifications such as the number
of channels and feature map sizes for each network layer. The
specification information of the layer being accelerated currently
is transmitted through the external interface, and then the
corresponding computational resources in the accelerator are
activated. The weights of the entire network need to be stored
in external memory first, and only the weights of the layer being
accelerated currently are read from DDR and stored in BRAM.

4.3 Grouped reuse computation for wide
SCNNs

Deep neural networks not only have lots of layers but also
include many wide convolutional layers with a large number
of channels. When applying the layer-by-layer reconfigurable
computation strategy discussed in the previous section, excessive
convolutional channels can still prevent a single layer from being
fully implemented in hardware. To address this issue, we propose a
scheduling strategy for convolutional operations based on grouped
loop unrolling. By grouped reusing computational resources within
each layer’s module, wide convolutional layers can operate within
hardware with limited resources.

In order to obtain usable computational results as quickly as
possible, the accelerator’s first-stage input buffer will cache all the
input channels of the input feature map coming from the external
memory. Subsequently, the first-stage spiking convolution layer,
based on the number of parallel computing threads N in the
hardware, divides the weights and the output feature map into %
groups on the output channel dimension (assuming the number of
output channels is N¢p).Then, the first group of weights is loaded,
and convolution calculation is performed by the method of loop
unrolling to obtain the result for the output feature map on channel
Co~N—1. After that, the data window of the input buffer returns
to the starting point to reload the data. And the weights for the
next group of output channels are read from the DDR into each
weight BRAM, to complete the convolution calculation for the

Frontiersin Neuroscience

10.3389/fnins.2025.1662886

output feature map on channel Cy~an—1. The process is illustrated
in Figure 11. This continues until the computation for all channels
of the output feature map is completed.

The accelerator incorporates two-stage pipelined spiking
convolutional layers. For the second-stage spiking convolutional
layer, in addition to the output channel based grouped reuse
described previously, it also needs to perform grouped calculations
in the input channel dimension. This is because the output from
the previous layer is generated in accordance with the grouping
of output channels. If the second convolutional layer waits for
the entire input feature map to be generated before starting
its calculations, it would result in prolonged pipeline stalls and
reduced hardware resource utilization efficiency.

For the second convolutional layer, its input data can be viewed
as divided into % groups along the input channel dimension
(assuming the number of input channels is N¢y). Meanwhile, the
weights are also further grouped based on the input channels on
the basis of previously grouping by the output channels, resulting
in a total of % X % groups. To facilitate explanation, gi(i =

0,1,..., % — 1) is used to represent each group of input feature
maps grouped by input channels, and k;(j = 0,1,..., % -1

is used to represent each group of output feature maps grouped
by output channels. When the input feature map gy is loaded,
the spiking convolutional layer also loads the corresponding
weights Wgo,kj(j = 0,1,...,% —
the spiking convolutional layer can proceed with the previously

1) for gp. Once gy is ready,

described output channel based grouped method, performing loop

unrolling calculations within the input channel range of gy. Each

computation thread produces kxg, | sets of intermediate results
N

(called Temp_PE_O_gp). Similarly, this process is repeated until all
of g; are completed, and the complete output feature map, namely
ko ~ knco _,, can be obtained. This entire process is illustrated in
Figure lg.

According to the spiking convolutional computation process
described by Equation 3, when the input feature map is not
grouped, the convolution result PE_Of(f = 0,1,...,N — 1) of
each computing thread corresponds to the spiking convolutional
computation result X[x',y, jf,] for the current sliding window
position and timestep; However, when performing convolution
calculations on the grouped input g;, the result Temp_PE_Oy, is
only a part of X, denoted as X;[x', ¥/, jf, t]. And their relationship is
expressed in Equation 4:

Xy if) =) Xilys 1])

From the above equation, we can see that the intermediate
calculation result Temp_PE_Oy, from PE cannot be directly used
for the activation result of LIF neuron. It needs to be temporarily
stored until the calculation result for the last group of input
feature maps gng | is generated. To achieve this, we utilize
the accumulatioﬁv relationship in Equation 4 and accumulate the
intermediate calculation results into the membrane potential value
of the neuron. Therefore, under the grouped reuse computation
method for wide SCNNs, the integrating equation for the LIF
neuron described in Equation 2 needs to be modified as shown in
Algorithm 1.

frontiersin.org

https://doi.org/10.3389/fnins.2025.1662886
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Wu et al.

10.3389/fnins.2025.1662886

EE

SRRERRN: -
-

Load in
configuration

FPGA

Data inﬁ weight ﬁ

ﬂData out

External Memory

FIGURE 10
Schematic of layer-by-layer reconfigurable computation for Deep SCNNs.

W[0~(N - 1)]

Input Fmap

PE O
=,

% Output Spike

&

1

— O = O
[y N [)

Ll
4L 0 :
[TH1]0
Uzld Thread| pg
N-1

Next
Round < ;

Input Fmap

DLF_

— O

Thread i
Thread

1

0 . 10

v) () |z I
CON~2N—1 Coo~N-1

v

OI=|O

FIGURE 11

Schematic of grouped reuse computation for wide SCNNss (first-stage of convolution), where N% = 2 is used as an example.

When each group of convolutional results is fed to the LIF
neuron, the new membrane potential is calculated according to the
above algorithm, thereby achieving the effect of temporarily storing
the intermediate results of the convolution. The leakage term of
the LIF neuron is only calculated when the first-group convolution
result X, arrives, and is not calculated for other intermediate
results. The activation results are calculated after the last group of
results arrives.

Frontiersin Neuroscience 11

4.4 Line-by-line multi-timestep
computation for large-size feature maps

Neural networks under complex tasks, in addition to the deeper
and wider network structures, there is also the characteristic of
larger feature map sizes, such as tasks like ImageNet (Deng et al.,
2009) image recognition and object detection. At this time, storing a
complete feature map on-chip would also consume more resources.

frontiersin.org

https://doi.org/10.3389/fnins.2025.1662886
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Wu et al. 10.3389/fnins.2025.1662886
H Wgo.ko
o 7
Input sliding P e o b —
window ; Temp PE O
Thread PE Weight w. o0k0 0 LIF
RAM "Y90,k0,0 :
. . Py Q 2 J i} CE—
11110
1/0]1 g
“d1{ofo r h N\ Temp PE O
Jo « Thread PE Weight w o0k0 N-1 LIF
N-1 BRAM *g0,k0O,N-1 —
N y & 4 v e
gLoopO: ko~ kq
Next Round of Wo1,k0
Loopl: go~ g1 A 4
Thread bl Weight) Temp_PE_O e
o | PE || ram Workoo | ° ‘[Lg LIE] | 4 [r—;‘[}H L
& -y — ~—— ,{
1[1[0] marT]
101@ P o LA
“41/0]0 Thread b (W ight | Temp_PE_O A -
g1 5, real (9} glk0_N-1 LIF 4
n-1| TE || Bram Workon-1 = ko
Input sliding b A= —
WAtk QLoopO: ko~ k4
FIGURE 12
Schematic of grouped reuse computation for wide SCNNs (second-stage of convolution), where % = N% = 2 is used as an example.

; N
reuse, the time step T, group number =g —
divided by input channels.

1: for t=0—-T—-1 do

2: if t =0 then

3: Vit—-1]=0

4: end if

5: for 1:8—>N%— do

6: if i =0 then

7: H[t, 1] =
(1—D)vlt=11+T(pe_olt, 1] + Vreset)

8: else

9: Hlt, il =H[t, i—1]+1pe_olt, 1]

10: end if

11: end for

12: end for

Output: membrane potential H[t] at the current
timestep after integrating is completed

Algorithm 1. Convolutional intermediate result staging algorithm
based on membrane potentials.

For SNNG, it is also necessary to consider the issue of saving the
state of neurons at each timestep. The spiking convolution module
in our accelerator is designed with dedicated RAM blocks to store
the membrane potential of each neuron corresponding to each pixel
position in the output feature map from the last timestep. These

Frontiersin Neuroscience

Input: the convolution results X'[i, t] under grouped old neuron state values are used to compute the activation result

for that position at the current timestep. When the size of the
output feature map is large, the number of neurons that need to
be stored also increases, which will require more RAM resources.
To address this issue, a scheduling strategy of line-by-line multi-
timestep computation is proposed in our work to enable networks
with large feature map sizes to be implemented on the accelerator
and to optimized the resource utilization efficiency.

The core idea of this method is shown in Figure 13. First, the
feature map in DDR is decomposed line by line into several sub-
feature maps of K rows(K is the size of the convolutional kernel);
the input buffer only needs to cache the data of one sub-feature
map, eliminating the need to store the entire feature map. Then,
following the timestep pipeline method designed in the previous
context, the first line of the output feature map is calculated;
subsequently, the remaining parts of the output feature map are
calculated line by line in the same manner. Additionally, there
are (K — S)(S is the stride of convolution) lines of overlapping
data between every two sub-feature maps; the BRAM can reuse
the repeated data through internal reordering logic during the data
input process, so there is no need to load the overlapping data when
loading a new sub-feature map. Each line of results is immediately
output to the input buffer of the next layer, and once the pipeline of
the next stage is filled, each line of input data can yield a new line
of results.

For the neuron states in SNNs, under this strategy, the neuron
state BRAM only needs to store the membrane potential values
corresponding to one line of pixels in the output feature map,
reducing the storage resource requirements for the neuron states.

frontiersin.org

https://doi.org/10.3389/fnins.2025.1662886
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Wu et al.

Input
Fmap

1 Get Next
Sub-Input
Fmap

DDR

Sub-Input Fmap u.u“ : | : l] |

T0 T 12
l Time-Stepped pipeline

calculation
A line of T L 1,
Output Fmap LLLLl I'I III lll

FIGURE 13
Schematic of line-by-line multi-timestep computation.

In this strategy, the input buffer needs to cache the data of the
sub-feature map at all time steps; while the convolution module
needs to complete the calculation of one line of the output feature
map at all time steps, so as to clear the neuron state BRAM and
use it entirely for the next line’s calculation. Therefore, for the
entire output feature map, the data is generated in the order of
[C, X, T, Y], so this method is called the line-by-line multi-timestep
computation strategy.

To further clarify the applicability proposed in this section,
Table 1 summarizes their target scenarios, providing a concise
reference for readers to understand when and how each strategy
is deployed.

5 Experiment and evaluation

The experiments in this paper are divided into two parts:
the accelerator testing and validation for small traditional
convolutional networks and for large residual networks. The former
configures the accelerator as a network with the LeNet structure
to verify the performance and energy efficiency of the accelerator
module architecture, as well as its applicability to basic networks
like small traditional convolutional networks. The latter configures
the accelerator as residual blocks within large residual networks
to validate the applicability of the accelerator’s configuration and
scheduling strategy to complex networks.

5.1 Testing and validation for small
traditional convolutional networks

5.1.1 Experimental setup

In this work, we take the LeNet model (Lecun et al., 1998)
as the prototype and configure two different scale networks,
defined as LeNet-Small and LeNet-Large. Their specific parameter
configurations are shown in Table 2. We input the encoded 28 x 28-
size spike images into the network according to the time step

Frontiersin Neuroscience

10.3389/fnins.2025.1662886

TABLE 1 Scheduling strategies and their applicable scenarios.

Scheduling strategies Applicable scenarios

Timestep pipeline computation Small-scale SCNNs

Layer-by-layer reconfigurable
computation

Deep SCNNs

Grouped reuse computation Wide SCNNs with large number of

channels

Line-by-line multi-timestep SCNN layers with large feature maps

TABLE 2 Configuration of the LeNet models.

Model Configuration*

LeNet-small Input (28 x 28)-6C5-P2-16C5-P2-F120-F84-Output (10)

LeNet-large Input (28 x 28)-64C5-P2-64C5-P2-F120-Output (10)

* nCs indicates that the layer is a convolutional layer containing # convolutional kernels of
size s x s; Ps indicates that the layer is a max pooling layer with s x s size; Fs indicates that the
layer is a fully connected layer containing s spiking neurons.

order. The 10 neurons in the output layer are used to represent
the classification result. After processing the input of all the time
steps, the category represented by the neuron, which has the
highest cumulative number of output pulses in the output layer, is
considered as the classification result.

In this work, we wrote the RTL code for the above hardware
architecture in System Verilog and implemented the two scales
of network mentioned before: LeNet-Small, LeNet-Large, using
Xilinx Zynq xz7z035 FPGA board. We used the Spiking Jelly (Fang
et al., 2023), an SNN framework, to train the network on the
host computer side. In this part, we used the gradient descent
method based on surrogate function to train SNNs directly, rather
than the ANN conversion method used in most work. So that we
can avoid the limitation that max pooling cannot be used in the
conversion method. In this method, during forward propagation,
the activation is represented by the step function Heaviside(x),
and during backward propagation, the derivative of the sigmoid
function ¢’(x) is used as the surrogate gradient function. The
mathematical expressions for the sigmoid function g(x) and its
derivative ¢’(x) are Equations 5, 6:

1

14 e—a@(—=Vi) (%)

g(x) = sigmoid(a(x — Vi) =

g (%) = a(1 — sigmoid(a(x — Vy,))sigmoid(a(x — Vi) (6)

where the parameter & = 4.0, such that the maximum value of their
gradient is 1.

For the datasets, we used the MNIST dataset (Lecun et al.,
1998) and the more complex version, Fashion-MNIST dataset (Xiao
et al,, 2017), to train and test our proposed architecture in this
section. This work uses Poisson encoding to convert each image
of these datasets into 10 time-step spiking images and input them
into the network.

frontiersin.org

Wu et al.

10.3389/fnins.2025.1662886

TABLE 3 Performance and energy consumption compared with other SNN/SCNN accelerators.

Hardware Clock Accuracy on Accuracy on Frame Power Energy/
platform frequency /MHz MNIST / % F-MNIST /% rate /FPS /W (mJ/pic)
This work Zynq7035 100 99.1 84.7 1,605 1.05 0.65
LeNet-small
This work Zynq7035 100 99.26 88.2 632 1.82 2.88
LeNet-large
Ju et al. (2020) Zynq ZCU102 150 98.94 / 164 4.6 28
Fang et al. (2020) Zynq 125 99.2 / 2,124 4.5 2.12
XCZU9EG
Intel Loihi / 98 / 671 3.77 5.62
(ASIC)
Zhangetal. (2021) | Zynq 7045 100 97.3 83.3 1,250 1.24 1.0
Ye etal. (2023) Kintex 7 100 99.1 90.3 826 0.98 119
XC7K325T
Ma etal. (2017) Darwin (ASIC) 25 93.8 / 6.25 0.02 3

The bold values in this table are only used to highlight the experimental data corresponding to the work of this paper, with no other special meanings.

TABLE 4 FPGA resource consumptions compared with other SNN/SCNN accelerators.

Model configurations* Bit width Register
This work 6C5-P2-16C5-P2-F120-F84-F10 | 8bit 40,703 15,365 60.5 /
LeNet-small
This work 48C5-P2-64C5-P2-F120-F10 8 bit 81,970 35,565 239.5 /
LeNet-large
Ju et al. (2020) 64C5-P2-64C5-P2-F128-F10 8 bit 107,273 67,278 264.5 /
Fang et al. (2020) 32C3-P2-32C3-P2-FC256-FC10 | 16 bit 155,951 233,516 282 1,794
Zhang et al. (2021) 16C3-16C3$2-16C3$2-F10 8 bit 87,172 147,832 32 74
Ye etal. (2023) 32C3-P2-32C3-P2-F256-F10 16 bit 80,172 138,658 245.5 /

* xCy(Sn) indicates that the layer is a convolutional layer containing x convolutional kernels of size y x y and the stride is # (if not marked, it is 1); Py indicates that the layer is a pooling layer

with y x y size; Fx indicates that the layer is a fully connected layer or output layer containing x spiking neurons. The bold values in this table are only used to highlight the experimental data

corresponding to the work of this paper, with no other special meanings.

5.1.2 Evaluation of experimental results

Table 3 summarizes the performance and power consumption
of the proposed SCNN accelerator architecture in this paper and
compares it with other recent work on SNN/SCNN accelerators.
The Intel Loihi and Darwin in the table are ASIC-based SNN
hardware accelerators, and the remaining Platforms are FPGA-
based SNN hardware accelerators. It can be seen that thanks
to the parallel and pipeline strategies adopted in this paper, the
LeNet-Small network achieved a recognition speed of 1,605 FPS at
100 Mhz clock frequency, while also achieving accuracy of 99.1%
and 84.6% in the MNIST and Fashion-MNIST, respectively. Its
power consumption was only 1.05 W. Compared with the work
of the same clock frequency (Zhang et al., 2021; Ye et al., 2023),
our LeNet-Small achieves higher recognition speed; although the
recognition speed of Fang et al. (2020) is faster, our power
consumption is only 23.56% of it, achieving the lowest energy
consumption on single image processing in the table.

For the LeNet-Large model, its accuracy in the MNIST is
improved to 99.26%, and the accuracy for Fashion-MNIST is
significantly improved to 88.2%; although this is at the expense of
part of recognition speed, its recognition speed still maintains 632
FPS, and the power consumption is only increased to 1.82 W. The

Frontiersin Neuroscience

14

energy consumption for single image processing in LeNet-Large is
still better than that of works such as Ju et al. (2020) and Ma et al.
(2017). Compared with other FPGA hardware and neuromorphic
chips for SNNs/SCNNs, the SCNN hardware architecture proposed
in this paper achieves competitive recognition rate and recognition
speed as well as energy consumption performance.

Table 4 summarizes the FPGA resource consumptions of
the proposed SCNN accelerator architecture in this paper
and compares it with other recent work on SNN/SCNN
accelerators. It can be seen that the architecture proposed
in this paper has excellent performance, while its hardware
resource consumption is significantly better than other FPGA
implementation schemes. Even for the larger network, LeNet-
Large, our resource consumption such as registers still has a
significant advantage over those with similar quantization bit
width and network size, such as the work of Ju et al. (2020).
In particular, our hardware design does not need to use the
DSP resources in FPGA as other high-speed solutions like
Zhang et al. (2021) and Fang et al. (2020) do. The proposed
SCNN hardware design facilitates the deployment of SCNNs
in low-cost FPGA and provides more space for integrating
other applications.

frontiersin.org

https://doi.org/10.3389/fnins.2025.1662886
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Wu et al. 10.3389/fnins.2025.1662886
‘. :
SpikingRes | 24*24*512*T| gpikingRes | 24*24*256*T | SpikingRes | 24*24*512*T
S2 SICI S1 3
A &
48*48*256*T ﬁ S
SpikingRes SpikingRes | 24*24*128*T 48%48%128*T 48*48*384*T | SpikingRes |48*48*256*T S
S . SICI UpSampl Concat sict
s = S—
96%96*28*T 2 Head
| &
SpikingRes
S2
4 SpikingRes SpikingRes
192*192*64*T S2 S1/S1C1
I
SpikingRes
S2 T
LIF | < i =
384*384%32*T =i =
Spiking
Coding CONV m— —
T C3 82
Input
768*768*3 Spiking Coding
FIGURE 14
The network structure of SpikingRes-YOLO.

5.2 Testing and validation for large residual
networks

5.2.1 Experimental setup

In this section of experiments, we designed a residual SNN
called SpikingRes-YOLO for object detection tasks as the network
model for this experiment. The structure of this model is shown
in Figure 14. This model references the design ideas of the existing
research called EMS-YOLO (Su et al,, 2023), which successfully
combines residual SNN with the YOLO framework to achieve
energy-efficient object detection. We simplified the residual block
of EMS-YOLO by combining the traditional residual structure, and
then designed SpikingRes, a residual block in the form of full-
spike input and output, to make it easier to realize in hardware.
Based on this network, we verified the applicability of the proposed
configuration and scheduling strategies to complex networks.
The configuration strategies for different SpikingRes modules are
shown in Table 5. The acceleration strategy for the entire network
is based on the layer-by-layer reconfigurable computation for deep
SCNN s to accelerate each SpikingRes module in the network one
by one. When accelerating modules with larger feature map sizes, a
line-by-line multi-timestep computation is used; for modules with
wider networks, a grouped reuse computation is used; and for the
remaining modules, a basic timestep pipeline computation method
is applied.

The network training was conducted on a workstation based
on an Intel Core i9-14900K CPU and a NVIDIA RTX4090D GPU,
using Pytorch and the SpikingJelly learning framework. For the
LIF neuron model in the network, this section of the experiment
uniformly sets the threshold voltage Vi, to 1, the time constant ©

Frontiersin Neuroscience

to 2, and the parameter « to 1. Similarly, gradient descent based on
the surrogate function was used for direct training.

The dataset used was the SeaDronesSee dataset (Varga et al.,
2022), which aims to study the use of drones in maritime scenarios
for search and rescue operations. The dataset consists of 5,630
high-resolution aerial images captured by drones (some examples
are shown in Figure 15), with a training set of 2,975 images,
a validation set of 859 images, and a test set of 1,796 images,
suitable for tasks such as object detection. This scenario has strict
requirements for the power consumption and volume of hardware,
and there is an urgent need for low-power object detection. It is
an ideal application scenario for object detection algorithms based
on SNNs. Considering the practical rescue needs in real-world
scenarios, we mainly focused on the three categories of targets
floaters wearing life jackets in the

(3

in the experiments: “boats",
sea", and “swimmers in the sea without life jackets" (as shown in
Figure 15).

In this section of the experiment, the accelerator was
configured with a ResNet structure. Its RTL codes were written in
SystemVerilog and mapped onto an FPGA board, Xilinx VCU118,
for synthesis and implementation. At the same time, the server
based on CPU platform is also tested for processing the SpikingRes
blocks as a benchmark. The server used had an Intel E5-2620 v4
CPU, with a clock speed of 2.1 GHz and a memory size of 141
GB. According to the specifications of each SpikingRes block, the
number of parallel computing threads for each module was set to
128, and the timestep was set to 3. The trained weights were all
stored in the DDR4 memory of the FPGA board, and the read and
write operations of DDR were completed using the Xilinx Memory
Interface Generator (MIG) IP. The quantization precision of the

frontiersin.org

https://doi.org/10.3389/fnins.2025.1662886
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Wu et al.

TABLE 5 Configuration of each SpikingRes block in SpikingRes-YOLO.

No. Input feature map size Output feature map size

10.3389/fnins.2025.1662886

Convolution layer

Weight matrix size

Computational

strategy
1 384*384*32 /1,728 KB 192*192%64 / 864 KB rconv0 32*32%3*3 /9 KB Line-by-line
multi-timestep
rconvl 32*64*3*3 / 18 KB computation
sconv 32*64*1*1 /2 KB
2 192*192%64 / 864 KB 96*96*128 / 432 KB rconv0 64*64*3*3 / 36 KB Line-by-line
multi-timestep
rconvl 64¥128*3*3/ 72 KB computation
sconv 64*128*1*1 /8 KB
3 96*96*128 / 432 KB 48*48*256 / 216 KB rconv0 128*128*3*3 / 144 KB Grouped reuse
computation
rconvl 128*256*3*3 / 288 KB
sconv 128*256*1*1 / 32 KB
4 48*48*256 / 216 KB 24*24*512 /108 KB rconv0 256*256*3*3 / 576 KB Grouped reuse
computation
rconvl 256*512*3*3 / 1152 KB
sconv 256*512*1*1/ 128 KB
5 24*24*512 /108 KB 24*24*256 / 54 KB rconv0 512*128*1*1/ 64 KB Grouped reuse
computation
rconvl 128*256*3*3 / 288 KB
sconv 512*256*1*1/ 128 KB
6 24*24*256 / 54 KB 24*24*512 /108 KB rconv0 256*256*3*3 / 576 KB Grouped reuse
computation
rconvl 256*512*3*3 / 1152 KB
sconv 256*512*1*1/ 128 KB
7 24*24*256 / 54 KB 24*24*128 / 27 KB rconv0 256*64*1*1 /16 KB Timestep pipeline
computation
rconvl 64*128*1*1 /8 KB
sconv 256%128*1*1/ 32 KB
8 4848384/ 324 KB 48%48%256 / 216 KB rconv0 384*128*1*1 /48 KB Grouped reuse
computation
rconvl 128*256*3*3 / 288 KB
sconv 384*256*1*1 / 96 KB

* The feature map sizes in the table are computed based on the timestep T' = 3, and the weight sizes are computed based on 8bit fixed-point numbers.

weights was set to 8-bit fixed-point numbers, including 1 bit for
the sign, 3 bits for the integer part, and 4 bits for the fractional
part. The clock frequency of the FPGA was set to 150 MHz. The
weights of the batch normalization (BN) layer were fused with that
of convolutional layer using the method in Zheng et al. (2021),
so the accelerator did not need to process the BN layer during
inference. Since the required timestep is very short and the neuron’s
membrane potential will be reset after exceeding the threshold
voltage, only a 4-bit fixed-point number is used here to represent
the intermediate state of the neuron (including 1 bit for the sign,
1 bit for the integer part, and 2 bits for the fractional part), to save
space in the neuron state BRAM.

5.2.2 Evaluation of experimental results

The effects of our accelerator on each SpikingRes block are
shown in Table 6. It can be seen that for most of the SpikingRes
blocks, the amount of operations is similar despite their different
specifications. The running time of the accelerator for these

Frontiersin Neuroscience

different SpikingRes blocks almost corresponds to their operations
amount. This indicates that the computational resources of the
accelerator are fully utilized under these proposed computational
strategies. The running time of each SpikingRes block is faster than
that of the CPU, except for the first SpikingRes block, which takes
longer than the other SpikingRes blocks due to the large image
size and the small number of channels, which makes part of the
computational resources unutilized.

And the overall comparison results of performance and power
consumption between the accelerator and CPU platform are shown
in Table 7. It can be seen that the average inference delay of
the accelerator is 36.02 ms, i.e., the average framerate of each
SpikingRes block is 27.76 FPS, which is 2.59 times that of the
CPU platform. The measured power consumption of the CPU
is 30 W; while the power consumption of the accelerator is
5.03 W, which is only 16.77% of that of the CPU. In terms
of accuracy, the error of the hardware accelerator designed in
this paper mainly comes from the fixed-point quantization of
weights and neuron states. As can be seen from Table 7, under

16 frontiersin.org

https://doi.org/10.3389/fnins.2025.1662886
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Wu et al. 10.3389/fnins.2025.1662886
Floater Swimmer boat
FIGURE 15
Examples of images and objects in the SeaDronesSee dataset.

TABLE 6 FPGA performance of accelerator on ResNet structure.

1 Line-by-line multi-timestep computation 6.57G 75.20 256.43
2 Line-by-line multi-timestep computation 6.57G 38.08 143.73
3 Grouped reuse computation 6.57 G 37.58 94.38
4 Grouped reuse computation 6.57 G 38.32 65.79
5 Grouped reuse computation 1.70 G 20.08 29.07
6 Grouped reuse computation 6.57G 3831 62.78
7 Timestep pipeline computation 020G 3.15 15.42
8 Grouped reuse computation 6.12G 37.43 78.86
Average / / 36.02 93.31

the condition of simulating by converting weights into 8-bit fixed-
point numbers and neuron states into 4-bit fixed-point numbers,
the network’s accuracy loss is less than 0.01, which is still within an
acceptable range.

The hardware resources consumed by the accelerator when
mapped to the FPGA are shown in Table 8. The accelerator only
uses 9.88% of the FPGA’s hardware resources. The DSPs are only
used in the calculation of BRAM addresses in the input buffer, and
are not used in the process of spiking convolution, significantly
reducing the demand for DSP resources.

Frontiersin Neuroscience

Our accelerator is specifically tailored for edge scenarios, where
deployment constraints (e.g., power budgets below 10W, compact
form factors) make GPU-based solutions impractical. In contrast,
edge devices (e.g., maritime drones in the SeaDronesSee task) often
rely on CPUs as the baseline due to their low cost and compatibility
with embedded systems—This is why we chose the CPU as the
benchmark. Our accelerator achieves a usable frame rate of 27.76
FPS with a power consumption of 5.03W in such scenarios.
The above experimental results demonstrate that the accelerator
architecture and configuration scheduling strategy designed in this

frontiersin.org

https://doi.org/10.3389/fnins.2025.1662886
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Wu et al.

TABLE 7 Performance and power consumption compared with CPU
platform.

Parameters CPU (Baseline) This work
Platform Intel E5-2620 v4 Xilinx VCU118
Clock Frequency 2.1 GHz 150 MHz
Bit width of weight Float32 Fix8

Bit width of neuron states Float32 Fix4
mAP@0.5 0.762 0.756
Power / W 30 5.03
Average runtime / ms 93.31 36.02
Average Framerate / FPS 10.71 27.76

TABLE 8 FPGA resource consumptions of accelerator on ResNet
structure.

Resource Consumption quantity = Consumption rate

LUT 71,443 6.04%
Register 53,777 2.27%
BRAM 669 30.97%
Dsp 17 0.25%
Average / 9.88%

paper successfully achieve efficient hardware acceleration of a large
residual topology SCNN model under limited hardware resources.

6 Conclusion

In this work, a multi-structure compatible and high-efficiency
SCNN hardware accelerator architecture is proposed. This
architecture completes SCNN operations by computing the
convolution of input spikes at each timestep and updating
neuron states. And it accelerates the computation by using an
output channel parallelism and timestep pipeline architecture. The
architecture supports both traditional convolutional topologies
and residual convolutional topologies. Based on this accelerator
architecture, we also propose configuration and scheduling
methods such as grouped reuse computation and line-by-line
multi-timestep computation, expanding the applicability of the
accelerator to deep networks with large numbers of channels and
large feature map size. The FPGA was used as the implementation
platform for the accelerator and two scales of networks were
configured to test and evaluate the accelerator, namely a small-scale
LeNet and a deep residual SCNN for object detection. Experiments
showed that the proposed architecture achieved a maximum
MNIST recognition rate of 99.26% under the LeNet network, while
achieving a speed of up to 1, 605 FPS and an energy consumption of
only 0.65 mJ per image with reasonable resource usage; For residual
modules in the deep residual SCNN, our architecture achieves a
processing speed 2.59 times that of the CPU, while consuming only
16.77% of the CPU’s power. Our work provides an efficient and
flexible solution for the acceleration and deployment of SCNNs,

Frontiersin Neuroscience

10.3389/fnins.2025.1662886

offering broader prospects for the application and promotion of
SCNNG in the future.

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Author contributions

JW: Software, Investigation, Writing - review & editing,
Methodology, Data curation, Formal analysis, Conceptualization,
Writing - original draft. LL: Conceptualization, Writing — review
& editing, Writing - original draft. YW: Supervision, Formal
analysis, Writing — original draft, Writing - review & editing,
Data curation, Conceptualization, Methodology. ZL: Data curation,
Conceptualization, Writing — original draft. CC: Writing - original
draft, Conceptualization, Validation, Software. QL: Supervision,
Writing - review & editing, Project administration. KC: Writing
- review & editing, Methodology, Visualization.

Funding

The author(s) declare that financial support was received for
the research and/or publication of this article. This work is partly
supported by the National Natural Science Foundation of China
(Nos. U23A20322, 62304254, and 62404253).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative Al statement

The author(s) declare that no Gen AI was used in the creation
of this manuscript.

Any alternative text (alt text) provided alongside figures in
this article has been generated by Frontiers with the support of
artificial intelligence and reasonable efforts have been made to
ensure accuracy, including review by the authors wherever possible.
If you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

frontiersin.org

https://doi.org/10.3389/fnins.2025.1662886
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Wu et al.

References

Auge, D., Hille, J., Mueller, E., and Knoll, A. (2021). A survey of encoding techniques
for signal processing in spiking neural networks. Neural Process. Lett. 53, 4693-4710.
doi: 10.1007/s11063-021-10562-2

Basu, A., Deng, L., Frenkel, C., and Zhang, X. (2022). “Spiking neural network
integrated circuits: a review of trends and future directions,” in Proceedings of the
Custom Integrated Circuits Conference (IEEE: Newport Beach, CA, United States), 1-8.
doi: 10.1109/CICC53496.2022.9772783

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., et al. (2018).
Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro. 38,
82-99. doi: 10.1109/MM.2018.112130359

Deng, J., Dong, W., Socher, R, Li, L.-J., Li, K., and Fei-Fei, L. (2009). “Imagenet:
a large-scale hierarchical image database,” in 2009 IEEE Conference on Computer
Vision and Pattern Recognition CVPR (IEEE: Miami, FL, United States), 248-255.
doi: 10.1109/CVPR.2009.5206848

Deng, L., Wu, Y., Hu, X,, Liang, L, Ding, Y., Li, G., et al. (2020). Rethinking
the performance comparison between SNNS and ANNS. Neural Netw. 121, 294-307.
doi: 10.1016/j.neunet.2019.09.005

Fang, H., Mei, Z., Shrestha, A., Zhao, Z., Li, Y., and Qiu, Q. (2020). “Encoding,
model, and architecture: systematic optimization for spiking neural network in
FPGAS;” in IEEE/ACM International Conference on Computer-Aided Design ICCAD
(San Diego, CA: IEEE), 1-9. doi: 10.1145/3400302.3415608

Fang, W., Chen, Y., Ding, J., Yu, Z., Masquelier, T., Chen, D., et al. (2023).
Spikingjelly: an open-source machine learning infrastructure platform for spike-based
intelligence. Sci. Adv. 9:eadi1480. doi: 10.1126/sciadv.adi1480

Gerstner, W., and Kistler, W. M. (2002). Spiking Neuron Models: Single
Neurons, Populations, Plasticity. Cambridge: Cambridge University Press.
doi: 10.1017/CB0O9780511815706

Gerstner, W., Kistler, W. M., Naud, R., and Paninski, L. (2014). Neuronal Dynamics:
From Single Neurons to Networks and Models of Cognition. Cambridge: Cambridge
University Press. doi: 10.1017/CB09781107447615

Guo, Y., Huang, X, and Ma, Z. (2023). Direct learning-based deep spiking
neural networks: a review. Front. Neurosci. 17:1209795. doi: 10.3389/fnins.2023.12
09795

Javanshir, A., Nguyen, T. T., Mahmud, M. A. P,, and Kouzani, A. Z. (2022).
Advancements in algorithms and neuromorphic hardware for spiking neural networks.
Neural Comput. 34, 1289-1328. doi: 10.1162/neco_a_01499

Ju, X, Fang, B., Yan, R., Xu, X, and Tang, H. (2020). An FPGA implementation of
deep spiking neural networks for low-power and fast classification. Neural Comput. 32,
182-204. doi: 10.1162/neco_a_01245

Kang, Z., Wang, L., Guo, S., Gong, R., Deng, Y., and Dou, Q. (2019). “ASIE:
an asynchronous snn inference engine for aer events processing,” in Proceedings of
the International Symposium on Asynchronous Circuits and Systems (IEEE: Hirosaki,
Japan), 48-57. doi: 10.1109/ASYNC.2019.00015

Kim, Y., Park, H., Moitra, A., Bhattacharjee, A., Venkatesha, Y., and Panda, P.
(2022). Rate coding or direct coding: which one is better for accurate, robust, and
energy-efficient spiking neural networks? in ICASSBE, IEEE International Conference
on Acoustics, Speech, and Signal Processing, Proceedings (Singapore: IEEE), 71-75.
doi: 10.1109/ICASSP43922.2022.9747906

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning
applied to document recognition. Proc. IEEE 86, 2278-2324. doi: 10.1109/5.726791

Li, S., Zhang, Z., Mao, R,, Xiao, J., Chang, L., and Zhou, J. (2021). A fast
and energy-efficient snn processor with adaptive clock/event-driven computation
scheme and online learning. IEEE Trans. Circuits Syst. I-Regul. Pap. 68, 1543-1552.
doi: 10.1109/TCSI.2021.3052885

Liu, F., Wang, Z., Zhao, W., Yang, N., Chen, Y., Huang, S., et al. (2024).
Exploiting temporal-unrolled parallelism for energy-efficient snn acceleration. IEEE
Trans. Parallel Distrib. Syst. 35, 1749-1764. doi: 10.1109/TPDS.2024.3415712

Ma, D., Shen, J., Gu, Z., Zhang, M., Zhu, X,, Xu, X, et al. (2017). Darwin:
a neuromorphic hardware co-processor based on spiking neural networks. J. Syst.
Architect. 77, 43-51. doi: 10.1016/j.sysarc.2017.01.003

Mao, R., Tang, L., Yuan, X, Liu, Y., and Zhou, J. (2024). “Stellar: energy-
efficient and low-latency snn algorithm and hardware co-design with spatiotemporal
computation,” in 2024 IEEE International Symposium on High-Performance Computer
Architecture (HPCA) (Edinburgh: IEEE), 172-185. doi: 10.1109/HPCA57654.2024.
00023

Merolla, P. A, Arthur, J. V., Alvarez-Icaza, R, Cassidy, A. S. Sawada,
J., Akopyan, F., et al. (2014). A million spiking-neuron integrated circuit
with a scalable communication network and interface. Science 345, 668-673.
doi: 10.1126/science.1254642

Frontiersin Neuroscience

10.3389/fnins.2025.1662886

Naveros, F., Garrido, J. A., Carrillo, R. R,, Ros, E., and Luque, N. R. (2017). Event-
and time-driven techniques using parallel CPU-GPU co-processing for spiking neural
networks. Front. Neuroinformatics 11:7. doi: 10.3389/fninf.2017.00007

Neftci, E. O., Mostafa, H., and Zenke, F. (2019). Surrogate gradient learning in
spiking neural networks: Bringing the power of gradient-based optimization to spiking
neural networks. IEEE Signal Process. Mag. 36, 51-63. doi: 10.1109/MSP.2019.2931595

Nguyen, D.-A., Tran, X.-T., and Iacopi, F. (2021). A review of algorithms and
hardware implementations for spiking neural networks. J. Low Power Electron. Appl.
11:23. doi: 10.3390/jlpeal1020023

Nunes, J. D., Carvalho, M., Carneiro, D., and Cardoso, J. S. (2022). Spiking neural
networks: a survey. IEEE Access 10, 60738-60764. doi: 10.1109/ACCESS.2022.3179968

Pehle, C., Billaudelle, S., Cramer, B., Kaiser, J., Schreiber, K., Stradmann, Y., et al.
(2022). The brainscales-2 accelerated neuromorphic system with hybrid plasticity.
Front. Neurosci. 16:795876. doi: 10.3389/fnins.2022.795876

Qu, P, Yang, L., Zheng, W., and Zhang, Y. (2022). A review of basic
software for brain-inspired computing. CCF Trans. High Perform. Comput. 4, 1-9.
doi: 10.1007/s42514-022-00092-1

Sengupta, A., Ye, Y., Wang, R, Liu, C., and Roy, K. (2019). Going deeper in
spiking neural networks: VGG and residual architectures. Front. Neurosci. 13:95.
doi: 10.3389/fnins.2019.00095

Su, Q, Chou, Y., Hu, Y, Li,], Mei, S., Zhang, Z., et al. (2023). “Deep
directly-trained spiking neural networks for object detection,” in Proceedings of
the IEEE International Conference on Computer Vision (Paris: IEEE), 6532-6542.
doi: 10.1109/ICCV51070.2023.00603

Taherkhani, A., Belatreche, A, Li, Y., Cosma, G., Maguire, L. P., and McGinnity, T.
(2020). A review of learning in biologically plausible spiking neural networks. Neural
Netw. 122, 253-272. doi: 10.1016/j.neunet.2019.09.036

Varga, L. A, Kiefer, B., Messmer, M., and Zell, A. (2022). “Seadronessee: a maritime
benchmark for detecting humans in open water,” in Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision (WACV) (Waikoloa, HI: IEEE),
3686-3696. doi: 10.1109/WACV51458.2022.00374

Wang, Z.,, Liu, F,, Yang, N., Huang, S., Li, H., and Jiang, L. (2024). “Compass: SRAM-
based computing-in-memory SNN accelerator with adaptive spike speculation,” in
2024 57th IEEE/ACM International Symposium on Microarchitecture (MICRO) (IEEE:
Austin, TX, USA), 1090-1106. doi: 10.1109/MICRO61859.2024.00083

Wu, J., Wang, Y., Li, Z, Lu, L, and Li, Q. (2024). A review of computing
with spiking neural networks. CMC-Comput. Mat. Contin. 78, 2909-2939.
doi: 10.32604/cmc.2024.047240

Wu, J., Wang, Y., Lu, L, Chen, C, and Li, Z. (2023). “A high-speed and
low-power FPGA implementation of spiking convolutional neural network using
logarithmic quantization,” in ICNC-FSKD—International Conference on Natural
Computation, Fuzzy Systems and Knowledge Discovery (IEEE: Harbin, China), 1-8.
doi: 10.1109/ICNC-FSKD59587.2023.10280835

Wu, Y., Deng, L., Li, G., Zhu, J., and Shi, L. (2018). Spatio-temporal backpropagation
for training high-performance spiking neural networks. Front. Neurosci. 12:331.
doi: 10.3389/fnins.2018.00331

Wu, Y, Deng, L., Li, G, Zhu, J., Xie, Y., and Shi, L. (2019). Direct training for
spiking neural networks: faster, larger, better. AAAI Conf. Artif. Intell. 33, 1311-1318.
doi: 10.1609/aaai.v33i01.33011311

Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-MNIST: a novel image dataset
for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747.
doi: 10.48550/arXiv.1708.07747

Xu, B., Boone, R, and Li, P. (2025). Spikex: exploring accelerator architecture and
network-hardware co-optimization for sparse spiking neural networks. arXiv preprint
arXiv:2505.12292. Available online at: https://arxiv.org/abs/2505.12292 (Accessed
September 15, 2025).

Yamazaki, K., Vo-Ho, V.-K,, Bulsara, D., and Le, N. (2022). Spiking neural networks
and their applications: a review. Brain Sci. 12:863. doi: 10.3390/brainscil2070863

Ye, W., Chen, Y., and Liu, Y. (2023). The implementation and optimization
of neuromorphic hardware for supporting spiking neural networks with mlp and
cnn topologies. IEEE Trans. Comput-Aided Des. Integr. Circuits Syst. 42, 448-461.
doi: 10.1109/TCAD.2022.3179246

Zhang, L., Yang, J., Shi, C,, Lin, Y., He, W., Zhou, X,, et al. (2021). A cost-efficient
high-speed vlsi architecture for spiking convolutional neural network inference using
time-step binary spike maps. Sensors 21:6006. doi: 10.3390/521186006

Zheng, H., Wu, Y., Deng, L., Yifan, H., and Li, G. (2021). Going deeper with directly-
trained larger spiking neural networks. AAAI Conf. Artif. Intell. 35, 11062-11070.
doi: 10.1609/aaai.v35i12.17320

frontiersin.org

https://doi.org/10.3389/fnins.2025.1662886
https://doi.org/10.1007/s11063-021-10562-2
https://doi.org/10.1109/CICC53496.2022.9772783
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1016/j.neunet.2019.09.005
https://doi.org/10.1145/3400302.3415608
https://doi.org/10.1126/sciadv.adi1480
https://doi.org/10.1017/CBO9780511815706
https://doi.org/10.1017/CBO9781107447615
https://doi.org/10.3389/fnins.2023.1209795
https://doi.org/10.1162/neco_a_01499
https://doi.org/10.1162/neco_a_01245
https://doi.org/10.1109/ASYNC.2019.00015
https://doi.org/10.1109/ICASSP43922.2022.9747906
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/TCSI.2021.3052885
https://doi.org/10.1109/TPDS.2024.3415712
https://doi.org/10.1016/j.sysarc.2017.01.003
https://doi.org/10.1109/HPCA57654.2024.00023
https://doi.org/10.1126/science.1254642
https://doi.org/10.3389/fninf.2017.00007
https://doi.org/10.1109/MSP.2019.2931595
https://doi.org/10.3390/jlpea11020023
https://doi.org/10.1109/ACCESS.2022.3179968
https://doi.org/10.3389/fnins.2022.795876
https://doi.org/10.1007/s42514-022-00092-1
https://doi.org/10.3389/fnins.2019.00095
https://doi.org/10.1109/ICCV51070.2023.00603
https://doi.org/10.1016/j.neunet.2019.09.036
https://doi.org/10.1109/WACV51458.2022.00374
https://doi.org/10.1109/MICRO61859.2024.00083
https://doi.org/10.32604/cmc.2024.047240
https://doi.org/10.1109/ICNC-FSKD59587.2023.10280835
https://doi.org/10.3389/fnins.2018.00331
https://doi.org/10.1609/aaai.v33i01.33011311
https://doi.org/10.48550/arXiv.1708.07747
https://arxiv.org/abs/2505.12292
https://doi.org/10.3390/brainsci12070863
https://doi.org/10.1109/TCAD.2022.3179246
https://doi.org/10.3390/s21186006
https://doi.org/10.1609/aaai.v35i12.17320
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

	Efficient spiking convolutional neural networks accelerator with multi-structure compatibility
	1 Introduction
	2 Backgrounds of SNNs
	2.1 Spiking neural networks
	2.1.1 Information coding
	2.1.2 Neuron model

	2.2 Spiking convolutional neural networks

	3 Hardware architecture
	3.1 Architecture overview
	3.2 Input buffer module and output FIFO module
	3.3 Clock-driven spiking convolution module
	3.4 Max pooling and fully connected modules

	4 Configuration and scheduling methods of accelerator
	4.1 Timestep pipeline computation for small-scale SCNNs
	4.2 Layer-by-layer reconfigurable computation for deep SCNNs
	4.3 Grouped reuse computation for wide SCNNs
	4.4 Line-by-line multi-timestep computation for large-size feature maps

	5 Experiment and evaluation
	5.1 Testing and validation for small traditional convolutional networks
	5.1.1 Experimental setup
	5.1.2 Evaluation of experimental results

	5.2 Testing and validation for large residual networks
	5.2.1 Experimental setup
	5.2.2 Evaluation of experimental results

	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	References

