TYPE Original Research

:' frontiers Frontiers in Neuroscience PUBLISHED 15 October 2025

@ Check for updates

OPEN ACCESS

EDITED BY
Lan Du,
Monash University, Australia

REVIEWED BY

Dhruva Ghai,

Oriental University, India
Ruokai Yin,

Yale University, United States

*CORRESPONDENCE

He Chen
chenhe@bit.edu.cn

Yizhuang Xie
xyz551_bit@bit.edu.cn

RECEIVED 14 July 2025
ACCEPTED 22 September 2025
PUBLISHED 15 October 2025

CITATION

LiJ, Xu M, Dong H, Lan B, Liu Y, Chen H,
Zhuang Y, Xie Y and Chen L (2025) Balancing
accuracy and efficiency: co-design of hybrid
quantization and unified computing
architecture for spiking neural networks.
Front. Neurosci. 19:1665778.

doi: 10.3389/fnins.2025.1665778

COPYRIGHT

© 2025 Li, Xu, Dong, Lan, Liu, Chen, Zhuang,

Xie and Chen. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Neuroscience

pol 10.3389/fnins.2025.1665778

Balancing accuracy and
efficiency: co-design of hybrid
quantization and unified
computing architecture for
spiking neural networks

Jiahao Li!, Ming Xu!, Heng Dong?, Bin Lan?, Yuxin Liu?,
He Chen'*, Yin Zhuang?, Yizhuang Xie!* and Liang Chen!

!National Key Laboratory of Space-Born Intelligent Information Processing, Beijing Institute of
Technology, Beijing, China, 2Sichuan Tianfu New Area, Beijing Institute of Technology Innovation
Equipment Research Institute, Chengdu, China, *Beijing Institute of Technology Chongqging
Innovation Center, Chongqing, China

The deployment of Spiking Neural Networks (SNNs) on resource-constrained edge
devices is hindered by a critical algorithm-hardware mismatch: a fundamental
trade-off between the accuracy degradation caused by aggressive quantization
and the resource redundancy stemming from traditional decoupled hardware
designs. To bridge this gap, we present a novel algorithm-hardware co-design
framework centered on a Ternary-8-bit Hybrid Weight Quantization (TSHWQ)
scheme. Our approach recasts SNN computation into a unified "8-bit X 2-bit"
paradigm by quantizing first-layer weights to 2 bits and subsequent layers to 8
bits. This standardization directly enables the design of a unified PE architecture,
eliminating the resource redundancy inherent in decoupled designs. To mitigate
the accuracy degradation caused by aggressive first-layer quantization, we first
propose a channel-wise dual compensation strategy. This method synergizes
channel-wise quantization optimization with adaptive threshold neurons, leveraging
reparameterization techniques to restore model accuracy without incurring additional
inference overhead. Building upon TBHWQ, we propose a novel unified computing
architecture that overcomes the inefficiencies of traditional decoupled designs
by efficiently multiplexing processing arrays. Experimental results support our
approach: On CIFAR-100, our method achieves near-lossless accuracy (<0.7%
degradation vs. full precision) with a single time step, matching state-of-the-art
low-bit SNNs. At the hardware level, implementation results on the Xilinx Virtex 7
platform demonstrate that our unified computing unit conserves 20.2% of lookup
table (LUT) resources compared to traditional decoupled architectures. This work
delivers a 6 X throughput improvement over state-of-the-art SNN accelerators—with
comparable resource utilization and lower power consumption. Our integrated
solution thus advances the practical implementation of high-performance, low-
latency SNNs on resource-constrained edge devices.

KEYWORDS

spiking neural networks, quantization, field-programmable gate array, algorithm-
hardware co-design, unified processing elements, resource-constrained devices

01 frontiersin.org

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2025.1665778&domain=pdf&date_stamp=2025-10-15
https://www.frontiersin.org/articles/10.3389/fnins.2025.1665778/full
https://www.frontiersin.org/articles/10.3389/fnins.2025.1665778/full
https://www.frontiersin.org/articles/10.3389/fnins.2025.1665778/full
https://www.frontiersin.org/articles/10.3389/fnins.2025.1665778/full
https://www.frontiersin.org/articles/10.3389/fnins.2025.1665778/full
mailto:chenhe@bit.edu.cn
mailto:xyz551_bit@bit.edu.cn
https://doi.org/10.3389/fnins.2025.1665778
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2025.1665778

Lietal.

1 Introduction

A fundamental tension exists between the escalating
computational demands of sophisticated artificial neural networks
(ANNGs) and the stringent computing, storage, and power constraints
inherent to edge devices (Hinton et al., 2015; Li et al., 2017; Wei et al.,
2024). Although ANNs demonstrate exceptional performance across
diverse computational tasks, their reliance on extensive model sizes
and dense multiply-accumulate (MAC) operations inherently leads to
prohibitively high energy consumption and significant computational
latency. As a promising solution, brain-inspired Spiking Neural
Networks (SNNs) encode and transmit information through sparse
spiking signals (Maass, 1997), enabling hardware-level computational
sparsity (Plagwitz et al., 2023). When implemented on reconfigurable
platforms such as field-programmable gate arrays (FPGAs), this
sparsity inherently bypasses redundant operations, drastically
reducing dynamic power consumption and enabling high-
performance edge Al systems (Karamimanesh et al., 2025).

The practical deployment of SNNs is fundamentally at odds with
critical performance and hardware limitations. A primary impediment
is the persistent accuracy gap. SNN training algorithms, while
advancing, have yet to consistently match the performance of
structurally equivalent ANNs (Luo et al., 2025; Su et al., 2023).
Furthermore, unlocking the profound energy efficiency of SNNG is
contingent upon a transition from inefficient von Neumann-based
simulations to specialized hardware, such as FPGAs and neuromorphic
chips (Karamimanesh et al., 2025). In this context, model quantization
represents a pivotal strategy (Jacob et al., 2018; Courbariaux et al.,
2015). By reducing the bit width of model weights, quantization can
drastically curtails storage requirements and computational
complexity, a crucial step for adapting SNNs to these resource-
constrained hardware platforms.

Current research in SNN quantization is bifurcated into two
distinct trajectories, yet both converge on a significant, unresolved
hardware implementation challenge. The first path involves moderate

10.3389/fnins.2025.1665778

quantization to 8-bit or 4-bit precision, a strategy that achieves
effective model compression while maintaining performance, but
offers limited optimization for ultra-resource-constrained
environments (Zou et al., 2024; Putra and Shafique, 2021; Chowdhury
et al,, 2021). The second, more aggressive approach utilizes low-bit
quantization, such as binary (1-bit) (Cao et al., 2025; Eshraghian and
Lu, 2022) or ternary (~2-bit) schemes (Hasssan et al., 2024). This
method dramatically reduces hardware complexity by converting
multiplications into efficient bitwise operations or additions, though
it frequently incurs severe accuracy degradation (Zou et al., 2024).

A critical flaw emerges at the hardware level, where deployment of
these multi-precision networks is often architecturally “decoupled”. As
illustrated in Figure 1, this paradigm necessitates designing separated
processing elements (PEs) for different data bit widths (e.g., 8-bit and
2-bit). Such a decoupled PE design is fundamentally inefficient, failing
to achieve full utilization of valuable on-chip computational resources.

A significant algorithm-hardware gap currently impedes the
advancement of SNN deployment, presenting distinct yet interrelated
challenges. At the hardware level, contemporary FPGA architectures
lack unified PEs capable of supporting mixed-precision computation,
thereby failing to maximize resource efficiency and computational
throughput. Concurrently, at the algorithmic level, a critical need
exists for hardware-aware, low-bit quantization methods that preserve
model accuracy without introducing computational complexity.

This paper directly confronts this algorithm-hardware divide by
proposing a novel algorithm-hardware co-design for optimizing
FPGA-based computing units. Our central insight stems from
identifying two distinct operational modes during SNN inference on
FPGAEs: (1) initial-layer computations involving weight and input pixel
data, and (2) subsequent-layer computations involving weight and
spike features. To reconcile these modes into a single and efficient
architecture, we introduce the TSHWQ scheme. This strategy
implements ternary (~2-bit) quantization for the first-layer weights and
8-bit quantization for subsequent layers. Consequently, first-layer
operations are standardized as 2-bit weight x 8-bit input multiplications,

: 1’ Layer i Other Layers :
F——— e — = —— = = H + =
I I 8bit 2bit it I
i — PEl1 |—>i: 2 pE !
I Traditional : /7! -1,0,1 :: N
! Method i : I
I : i : PE2,
I : i 8bit Weights = 1
S S — B - - — — — o=
e el e i Sl
1 2bit i 2bit 1
| —_— > i > —> 1
I Proposed : 101 i 0L I
I Method : : I
[: i : I
1 s : |
L e e e e e e e e e R e e e e e o S
FIGURE 1
Comparison of unified PEs with traditional methods based on SNNs.
Frontiers in Neuroscience 02 frontiersin.org

https://doi.org/10.3389/fnins.2025.1665778
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Lietal.

while subsequent-layer operations become 8-bit weight x 2-bit spike
interactions. This innovative approach unifies all network computations
into a consistent 8-bit x 2-bit paradigm, enabling the design of a highly
resource-efficient, unified computing architecture.

However, the aggressive first-layer quantization inevitably degrades
model performance. To address this, we propose a channel-wise dual
compensation strategy that recovers accuracy without increasing
inference-stage computation costs. Simultaneously, building on the
T8HWQ scheme, we design a unified FPGA computing architecture
that supports all target operations while maximizing hardware resource
reuse. In summary, the contribution of this article is as follows:

1. We propose the first algorithm-hardware co-designed TSHWQ
scheme to address the heterogeneous computational patterns
in SNNs. Our approach reconciles first-layer “weight x 8-bit
image pixel” operations and subsequent-layer “weight x 2-bit
spike” operations into a uniform 8-bit x 2-bit computation.
This innovative strategy preserves model accuracy and provides
a robust algorithmic basis for designing efficient, unified FPGA
computing architectures.

2. To overcome the performance deficit from aggressive
quantization, we introduce a novel compensation strategy
with zero computational overhead at inference. This is
achieved through two synergistic mechanisms: channel-wise
quantization to account for feature variations and a channel-
wise adaptive threshold neuron to dynamically regulate
spike activation. Both are seamlessly integrated into the
network weights via reparameterization, enabling our model
to achieve accuracy on par with full-precision counterparts.

3. In this paper, a unified computing architecture based on the
T8HWQ scheme is designed and implemented on the
FPGA. By multiplexing the PE computing array, this unified
approach eliminates the resource redundancy inherent in
traditional decoupled PEs, achieving optimal hardware
utilization without compromising computational throughput.

4. We evaluate our proposed method through both algorithm and
hardware experiments. Algorithmically, on the CIFAR-10 and
CIFAR-100 datasets, our approach attain near-lossless accuracy
(<0.7% degradation) relative to the full-precision model in a
single time step, performing competitively with other state-of-
the-art (SOTA) low-bit SNNs. On the hardware front,
implementation on a Xilinx XC7VX690T platform confirm
that the unified computing architecture reduces lookup table
(LUT) resource utilization by 20.2% compared to the
traditional architecture. Compared with other advanced SNN
hardware accelerators, our design delivers 6 x greater
throughput than advanced SNN hardware accelerators at a
comparable resource and power budget.

2 Related works

To deploy lightweight SNNs, quantization serves as a critical
approach for compressing these networks. Unlike traditional ANN,
which utilize real-valued activations, SNNs communicate through
spikes, effectively reducing the storage requirements for feature maps.

To further reduce storage space, research on quantization has
focused on minimizing the bit-width of weights. All parameters are

Frontiers in Neuroscience

10.3389/fnins.2025.1665778

quantized to integers, including membrane potential and firing
threshold (Zou et al., 2024). Furthermore, the Q-SpiNN framework is
proposed for quantizing SNNs by addressing different parameters,
precision levels, and rounding schemes (Putra and Shafique, 2021),
reducing the bit-width to 5 bits. Additionally, spatial and temporal
pruning of SNNs are implemented, decreasing the bit-width to 5 bits
(Chowdhury et al., 2021). Moreover, quantization-aware training
(QAT) with stacked gradient surrogation is proposed for integer-only
SNNs, reducing the bit-width to 4 bits (Hasssan et al., 2024).

In recent years, to further reduce the latency of SNNs and achieve
more lightweight models, researchers have further decreased the
bit-width from 2 bits to 1 bit while maintaining a high latency
(exceeding 5). SQUAT is proposed to enhance performance by
achieving 2-bit weigh while using 25 time steps (Venkatesh et al.,
2024). MINT quantizes both weights and membrane potentials to
extremely low precisions in 2 bits with 8 time steps (Yin et al., 2024).
Furthermore, researchers compress the weights to 1 bit (Cao et al,,
2025; Eshraghian and Lu, 2022). Deng et al. (2023) propose connection
pruning and weight quantization methods using ADMM optimization
and activity regularization, successfully reducing the bit-width to 1,
while the time steps are limited to 10 (Deng et al., 2023). Shymyrbay
etal. (2023) present a framework for quantizing SNN models using a
differentiable quantization function based on a linear combination of
sigmoid functions achieving 1-bit weight while using 10 time steps.

Despite the significant reduction in storage space achieved by
decreasing the bit width to 1-bit, performance suffers greatly.
Furthermore, existing quantization studies primarily focus on
minimizing bit width from the perspective of individual algorithms,
overlooking the hardware costs associated with network image
encoding. Given that images are typically represented in 8 bits,
inconsistencies may arise between the computations of the first layer
and those of subsequent layers, resulting in low resource reuse
efficiency in FPGAs, as illustrated in Figure 1.

In summary, the current quantization techniques for SNNs exhibit
three main characteristics: First, the use of a uniform bit width for
weight quantization across all layers leads to low FPGA resource reuse
efficiency, resulting in wasted computational resources. Second, as the
weight bit width decreases to lower values (e.g., 2 bits), network
performance declines severely, failing to achieve an optimal balance
between accuracy and compression. Finally, existing quantization
methods primarily focus on multiple time steps, resulting in high
latency for SNNs. Consequently, these methods are unsuitable for
resource-constrained and real-time applications.

To save FPGA computational resources, enhance resource
efficiency, and maintain high performance under low-latency SNN
conditions, we employ a ternary spike neuron with stronger
information representation capabilities for SNNs. This research
focuses on SNN quantization from the perspective of hardware-
software co-design for FPGA implementations.

3 Methodology

3.1 The overall co-design of the
quantization algorithm and hardware

This paper adopts the algorithm-hardware co-design paradigm,
and at the algorithm level, the core lies in designing a quantitative

frontiersin.org

https://doi.org/10.3389/fnins.2025.1665778
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Lietal.

strategy that is tailored to the features of the hardware. At the
algorithm level, the TSHWQ quantization method is proposed to
balance resource usage, processing time, and model performance.
At the hardware level, FPGA design emphasizes the efficient
utilization of hardware resources. Through the close collaboration
of these two aspects, the aim is to build a resource-saving SNN
system with both high-performance computing capabilities and
low latency.

The algorithm-hardware co-design paradigm presented in this
study includes quantization strategies at the algorithmic level, as well
as design and analysis related to FPGA design, as illustrated in the
Figure 2.

3.1.1 Ternary-8bit hybrid weight quantization

At the algorithmic level, we have developed a hybrid bit-width
quantization method TSHWQ. This method quantizes the weights of the
first layer of the network into a ternary set {—1, 0, 1}. This design offers
dual advantages: first, the ternary weights align with the discrete nature of
neuron spike events in SNNs, allowing traditional multiplication
operations to be converted into more efficient addition operations;
second, ternary quantization compresses the weight storage to 2 bits,
thereby reducing storage requirements. For the other layers, the data is
quantized to 8 bits. Compared to traditional quantization methods, this
hybrid bit-width design couples the computations across layers and
simplifies the hardware design.

3.1.2 The channel-wise dual compensation
strategy based on QAT framework

Since the first layer serves as encoding, quantizing its weights
to 2 bits inevitably leads to a certain degree of performance
degradation. To address this issue, we have designed a channel-
wise dual compensation strategy. This strategy effectively reduces
the coding loss caused by the low bit-width quantization of the
first layer by sequentially applying channel-wise quantization
compensation (Krishnamoorthi, 2018) and channel-wise adaptive
threshold ternary neurons compensation. Furthermore, we have
constructed a quantization framework based on QAT that
continuously adjusts the model to its optimal compensated state

10.3389/fnins.2025.1665778

during the training phase, thereby enhancing the overall
performance of the network.

3.1.3 Design and implementation of a unified PE
based on FPGA

From the perspective of FPGA design, the aforementioned hybrid
bit-width quantization strategy offers significant advantages. In
traditional hardware designs, processing data of different bit-widths
typically requires distinct computational modules. However, in our
design, the quantization strategy allows the FPGA to primarily handle
2-bit and 8-bit data. Based on this characteristic, we have developed a
unified PE for ternary spiking neurons using FPGA. This unified PE
efficiently processes both bit-widths, greatly simplifying the hardware
architecture and thus saving FPGA hardware resources.

3.2 The channel-wise dual compensation
strategy based on QAT framework

In this section, we propose a channel-wise dual compensation
strategy based on QAT. We innovatively introduce adaptive threshold
ternary spike neurons to channel-wise quantization, and the
combination of these two compensation methods is termed the dual
compensation strategy.

3.2.1 Channel-wise adaptive threshold ternary
spike neuron

LIF (Leaky Integrate-and-Fire) neurons are widely used as
mathematical models of neuronal activity, including spike firing and the
update of membrane potential. This paper adopts the ternary spike
neuron (Guo et al., 2024). Compared to binary spikes, ternary spikes
convey richer information. By making the positive and negative threshold
parameters learnable, neurons can adaptively adjust their activation based
on data and tasks, thereby enhancing overall network performance. The
proposed neuron model can be represented by Equations (1) and (2):

UL(t)=UL(t-1)+ Wl (1) 1)

"

O1.()

| Clignnel-wi

A
ISTE

> fie i S I
Channel-wise

Algorithm and Hardware Co-Design Framework Based on Ternary Spike Neuron

Co-Design

Hdaptive ¢
Threshold Neuron,
<— KL A&
..............................) A
T \ Re-parameterization

®—©

0 Tradionel =
— i 2bit i
Layer-wise Decoupled Decoupled 11“:—*
as L - PE1 PE2 eatures

—n :

Ternary i

Spike ICIY Proposed reuse
Neuron Unified PE «

config

‘ ; Gl,c , a

T

—» Training: Forward — —»Training:Backward — Inference -

FIGURE 2
Algorithm-hardware co-design framework based on SNNs.

\ Re-pnmmett:rizM S#T

,Gl : Weights/F eaturesI

05 [

Frontiers in Neuroscience

04

frontiersin.org

https://doi.org/10.3389/fnins.2025.1665778
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Lietal.

1 ifUl(t)2 Ve
otherwise 2)

-1 iful(n)<ve

where 7 is a constant that describes membrane potential decaying.
UX(?) represents the membrane potential at time step # in the c-th channel
of the I-th layer. I is the presynaptic input and W/O!'(¢) is the
accumulation of spikes from the neurons of layer I-1. W is the weight of
the neuron. O is the spiking output of the neuron from the previous layer.
V"> 0 is the positive threshold of the c-th channel, V- < 0 is the negative
threshold of the c-th channel. These two learnable thresholds enable
neurons to find appropriate activation thresholds for different channels.
We employ a soft reset mechanism represented by Equation (3):

UL(t)-Ve, if OL(t)=+1
Ul(t), ifol(t)=0 3)
UL(t)-ve, if OL(t)=-1

UL(t)=

SNNs output spike sequences instead of continuous numerical
values, presenting challenges for direct application of traditional
backpropagation algorithms. To address this, researchers have utilized
surrogate gradients (Neftci et al., 2019) to train SNNs using
backpropagation methods. During forward propagation, a

non-differentiable ~ spiking function is employed, while
backpropagation utilizes a continuously differentiable surrogate
function for gradient computation. The surrogate gradient of

membrane potential is defined by Equation (4):

o0 [1 if-1cU<1
{ (4)

oU |0 otherwise

The surrogate gradient of the threshold is defined by Equation (5):

H(U,V)=y-max(0,1-|U-V))

The gradient of the weights is defined by Equations (6-8):

oL oL 80" U’

T 20 a0 Al ©
ow! a0l au' ow

o0

7 = H(U0)=y-max(01-u]) @)
ou! X ifl=1
l:{ -1 ®)
oW ol ifi>1

The gradient of the positive threshold is defined by Equation (9):

oL :ai. 00 =6—L-(—H(U,V+)) 9)
ovt 00 pyt 00

Frontiers in Neuroscience

10.3389/fnins.2025.1665778

The gradient of the negative threshold is defined by Equation (10):

aL :671'. ao :aiH(U’V_)
ov~- 00 gy~ 00

(10)
3.2.2 Quantization scheme and
reparameterization technique

3.2.2.1 First layer quantization scheme

In this paper, we employ 2-bit channel-wise quantization for the
first layer weights and 8-bit layer-wise quantization for the remaining
layers. Compared to full-precision networks, ternary weight
quantization reduces the precision to three discrete values, which is
defined by Equation (11):

+1, W=
Q(W)=<0, if6<W<6 (11)
-1, fW<6,

where) and 6, are the quantization thresholds, with 6 > 6,.
We adopt a symmetric form of the quantization thresholds, that is,
0, = 0.5 and 6, = —0.5. Then the channel-wise quantization function
can be simplified in Equation (12):

sign(Wl,c) ifMZB
Ql,c("vl,c): fl,c (12)
0 otherwise

where [indicates the index of the network layer, and ¢ represents
the index of the output channel of the layer. fis the channel scaling
factor, which is related to the number of channels in the convolutional
kernel. For the convolutional kernel weights W; . € IR Gl Crn KK
where Cj 5, is the number of output channels, Cj ;;, is the number of
input channels, K is the kernel size. If N is the number of layers in the
network, then /e {1,2, .. .,N} ,CE {1,2, e sClout }

The channel weight matrix can be defined as W(C) e RO 14
exclude the influence of outliers, we define the first-layer channel

scaling factor f; as given in Equations (13-15):

qﬁggx :inf{w e R|P(W(‘) < w)z 0.99} (13)
aoh =sup{w € RIP(W(C) > w) > 0.01} (14)
omma(d) veehmn) 09

where inf represents the infimum and sup represents the
supremum. q&ﬁ)lx is a threshold indicating that 99% of the channel
weight values are less than or equal to this value, while qniin isa
threshold indicating that 1% of the channel weight values are greater
than or equal to this value. Due to the non-differentiability of the
round and clip, we employ the Straight-Through Estimator (STE) for
backpropagation to update the weights (Bengio et al., 2013), as shown
in Equation 16.

frontiersin.org

https://doi.org/10.3389/fnins.2025.1665778
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Lietal.

W .
0Q, |1 if }758 <S (16)
MW e
’ 0 otherwise

3.2.2.2 The other layers quantization scheme
All subsequent layers employ 8-bit layer-wise weight quantization,
with the quantization function defined by Equations (17) and (18):

_ Wi _
Q =2bfll_1'round((2b 1—1)~clip(ﬁl,—1,1)] Vle[Z,Nﬁ (17)

an:{l if [Wi| < fi as)

ow; |0 otherwise

where W, represents the 32-bit floating-point weights and b is the
integer bit width set to 8, and thus S is 127. Our proposed quantization
framework is illustrated in Algorithm 1.

3.2.2.3 Reparameterization technique

Channel-wise quantization is introduced at the first layer, increasing
the training overhead. Nonetheless, we use a reparameterization
technique that eliminates additional computation during the inference
phase. The quantized weights pass through the convolutional layer and
BN (Batch Normalization) layer, and the results are:

Gle =%- float (X *QWj .)+
c

ﬂc‘%:ac'ﬂoat(x*Qm,c)+éc (19)
3

where o is the variance, u is the mean, and y and f are two
learnable parameters. X represents the input image of the first layer,
QW, denotes the quantized ternary weights of the first layer. The
term “float” indicates the conversion from fixed-point to floating-
point representation. The data width of X is 8-bit, while QW is
quantized into 2-bit, with all other parameters being 32-bit floating-
point. The convolutional bias is omitted in this implementation and
thus excluded from the Equation 19.

As shown in Equation 19, a;and l;; correspond to the output
channel of the first layer, and the BN calculation can be converted to
a single floating-point multiplication and a single floating-point
addition. The computational operations of our dual compensation
strategy match those of both layer-wise and channel-wise quantization,
as summarized in Table 1. However, channel-wise dual compensation
requires additional 4 x (C,, — 1) x 32-bit storage to maintain the
floating-point multiply-add results and positive/negative thresholds.
In short, the dual compensation boosts performance without extra
computation, needing only more storage.

3.3 Design of the unified PE based on FPGA
3.3.1 Parallelism of unified PEs

Convolutional layers serve as fundamental feature extraction
modules in modern deep learning models. A standard convolutional

Frontiers in Neuroscience

10.3389/fnins.2025.1665778

Input: The floating-point SNN model(M) with weights(W) and Learn-
able threshold(V," .V .)
Output: The SNN model with quantized weights (W)
for epoch < 1 to num_epochs do
for / = 1to N dodo
if { == 1 and l.module == CONV then
W) < Lmodule.weight.channel
for ¢ = 1 to Cyy do
Gmax < quantile(W; ,0.99) // Formula (13)
Gmin < quantile(W; .,0.01) // Formula (14)
fre < max(|gmax|, |gmin|) # Formula (15)
end for
S+1
Qi QWi e, f1.6,S) // Formula (11)(12)
else if / # 1 and /.module == CONV then
W! « Lmodule.weight
S22 —1(h=8)
£ max(|W)
Qi+ QW f1,.8)) // Formula (17)
end if
Ypredicr < M(X ,W,) //Forward Propagation based on tenary SNN
L =Loss(Ypredicr,Y)

if / == 1 then //Backward Propagation
Wi ¢ Wi e =152k 521 // Formula (6)(7)(8)(16)
Vi «Vi—n 9?)—'; % // Formula (9)
’ ’ o€ lLe
L _90;

ViesVie—n 30- 37,‘ // Formula (10)
o€ le
else if / # 1 then
_ 9L 90
Wy «W -1 30, DW,L// Formula (18)
end if
end for
end for

ALGORITHM 1
Proposed quantization framework.

layer computes an output feature map Y (C,,, x H” x W’) by convolving
an input feature map X (C,xHx W) with a filters W
(Cout X Gy x K x K), formally expressed as given in Equation (20):

C,—1K-1K-1

Y(imn)=b_i+ Y > Y W(ijxy)xX(jm+xn+y) (20)
j=0 x=0y=0

where i and j index the output and input channels respectively,
(m,n) represent the spatial coordinates in the output feature map, K is
the kernel size, and b_i represents the bias term. The above operation
can be broken down into a cyclic structure as shown in the Figure 3.
The diagram shows the calculation process of the standard
convolutional layer and its parallelism. One parallelism represents the
sliding the 2D weight kernel across the 2D input feature map. The key
parameters and parallelism dimensions are defined as follows:

Input Channels (C,,): This parameter defines the input feature
map depth, representing the number of stacked 2D feature maps. As
shown in the Figure 3, the “Input or Feature” cube’s depth dimension
corresponds to C,; in the pseudocode, C,, determines the layer 2 loop
boundary, requiring full traversal of all input channels during each
output channel computation.

Output Channels (C,,,): This parameter represents the number of
filters in the convolutional layer and determines the depth dimension
of the output feature map.

Input Channel Parallelism (P,): This parameter defines the
parallel processing capacity across input channels when computing a
single output feature map. When P,, = C,,, as shown in Figure 3, the
convolutional filter simultaneously processes all C,, channels and

frontiersin.org

https://doi.org/10.3389/fnins.2025.1665778
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Lietal.

completes accumulation in one computational step. From a hardware
implementation perspective, this requires sufficient compute units to
process data from all input channels in parallel, thereby speeding up
the computation of a single output channel. In our work, the value of
the P, is 512.

Output Channel Parallelism (P,,,): As another parallel computing
dimension, it refers to the number of output channels that can
be computed at the same time. Since each output channel’s computation

TABLE 1 Comparison of floating-point operations and memory overhead
between dual-compensation strategy and traditional quantization
methods (C,,. denotes output channels).

Methods Floating-point Floating- Floating-
multiplication point point
addition storage
(32bit)
Layer-wise Cou Cou 4
quantization
Channel-wise Cour Cout 2Cou+2
quantization
Proposed Cou Cou 4Cout

10.3389/fnins.2025.1665778

is independent (e.g., the i-th output channel does not depend on the
results of the i + 1 channel), distinct filters can be applied in parallel.
As shown in the Figure 3, when a P, filter is applied to the input
feature map in parallel, the Pout output channels can be computed
simultaneously. In our implementation, P, is set to 1.

Since the hidden layer’s feature map uses 2-bit ternary values {—1,
0, 1}, convolution multiplications simplify to additions. The first-layer
weights are reduced to 2 bits via ternary quantization. This approach
retains the input image at 8-bit precision but enables computing unit
reuse through configurable operations.

3.3.2 Design of the unified PE architecture based
on FPGA

Based on the above analysis, we implement the unified computing
architecture on the FPGA, as shown in Figure 4. Our SNN acceleration
system comprises three key components: data storage, control path
and computing core.

3.3.2.1 Data storage

External Interface: The system interfaces with the host
computer via a Peripheral Component Interconnect Express (PCle)
bus, which serves as the primary channel for raw image data

C out
—_— .
QII

for i=0 to out_channel do
for j=0 to in_channel do
for m=0 to data size H do

for n=0 to data_size_ W do Parallelism

Weights (K*)

Input or Feature

for x=0 to kernel_size K, do

for y=0 to kernel_size K, do

output[i][m][n]=output[i][j][m][n]+
kemnel[i][j][x][y] X input[j][m-+x][n+y]

s lel

end

end

end

end

end

end

FIGURE 3

Parallel computing architecture and pseudocode implementation of multi-channel convolution.

Processing Elements
Instruction Decoding

FIGURE 4

|
N e Status 1 |
_ catire P ~=-el
DDR » Feature Input /1) Cmd 4_\3 BRAM (Sbit |
Status Pl— (8bit)
, N — o Data Output — % Feature Output /1 Reg Reg _ T ﬁ,}dm (u':)l
, > I v // (\0’\,& T 1’ l ¢ ¢ @iy |
N c
// AN N // | /,Slalusl // oo™ |
/ S~ i
ye Soft Core | ~~ _ ~—__ | Internal / : i ’/ — > PE PE PE PE :
&~ Controller S~ Memory | | [Fetch
I T Lo 1 [Y PE PE PE PE |
| / LS
[| W\ |
1 <«—>» PCle <—>» I SO\
'mage e < Storage Control >/ // | th’k\ Pathl bE bE PE PE |
7 s il >
e / | |
Vs Pid | BRAM (2bit) |
Instruction Queue | —> PE PE PE PE |
Spiking Neural Networks | |
| |
| |
| |

FPGA-based hardware accelerator architecture and overall system for SNNs.

{-1,0,1} <« a
Features <« b

One Parallelism of Feature (2bit) Re-parameterization
N LD OnePuatelimof Weights hig - Threshold. | Facer

Spikes {-1,0,1}

A
Weights (W)T l

<«— Pooling «— LIF < BN

Frontiers in Neuroscience

frontiersin.org

https://doi.org/10.3389/fnins.2025.1665778
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Lietal.

TABLE 2 Configuration logic for dual data path selection.

Computation stage

Configure signal
path

Enabled data

Status signal

Input type

10.3389/fnins.2025.1665778

Weight bitwidth

First layer Select Path 1 8-bit BRAM Path

8-bit Image

2-bit

Select Path 2 2-bit BRAM Path

Subsequent layers

2-Dbit Feature

8-bit

transmission. Double Data Rate SDRAM (DDR) provides high-
capacity storage for network weights and intermediate feature maps.
The yellow arrows (data input) and red arrows (Data Output) in the
diagram indicate the data flow between the DDR and
external interfaces.

Internal Memory: The architecture incorporates on-chip BRAM
serving as a data cache. This memory temporarily stores layer-specific
weights and feature maps (blue feature input arrows) fetched from
DDR, while buffering output feature maps (feature output arrows)
processed by PEs.

Storage Control: This is a scheduling module that manages the
transfer of data between the DDR, BRAM, and SNN processing cores.
Through Direct Memory Access (DMA) operations, it ensures timely
data delivery to the PE array according to execution requirements.

3.3.2.2 Control path

Soft core controller: The system employs a MicroBlaze processor
to orchestrate the inference pipeline, managing network weight
loading, PE configuration timing, and coordination with both the
storage controller and instruction queue for flexible hardware control.

Instruction queue and decoding: The controller dispatches
predefined instructions to the instruction queue. A dedicated
decoding module sequentially decodes these instructions into precise
control signals for both the SNN processing core and storage
controller. This architecture ensures programmability while
supporting diverse SNN architectures.

3.3.2.3 Computing core

The unified computing architecture comprises three key
components: PE array, dual data paths, configuration and state control,
as shown in Figure 4.

PE array: It implements convolution calculations of inputs and
weights. It here supports 512 parallelism.

Dual data paths: These two data paths support 8-bit image input
and 2-bit feature input, respectively. In the respective data pathways,
the data is fed into the PE array by the necessary pad filling or directly
reading (Fetch Data and Padding).

Configuration and state control: It consists of command
registers (Cmd Reg) and status registers (Status Reg). The Cmd Reg
receives configuration instructions from the instruction decoder. The
Configure signal determines which data path (8-bit BRAM path or
2-bit BRAM path) to enable based on whether the first or subsequent
layer is currently being calculated, and directs the corresponding data
to the PE array. The Status Reg collects status signals (Status 1/2) from
the data path, such as data readiness, computation completion. These
statuses are fed back to the soft core controller. This configuration
logic is summarized in Table 2 and the overall workflow utilizing these
configurations is detailed in Table 3.

After the PE array completes the convolution, the results undergo
post-processing including BN and LIF modules to enable neuronal
dynamics of the SNN and activate spikes.

Frontiers in Neuroscience 08

TABLE 3 Workflow and state transition mechanism of unified PE.

Stage 1: first-layer

computation

Stage 2:
subsequent-layer
computation

1. Configuration

Trigger condition: To
process the first layer of
the network.
Operation: Cmd Reg
issues instructions to

switch to Path 1.

Trigger condition: To
process the second and
subsequent layers of the
network.

Operation: Cmd Reg
issues instructions to

switch to Path 2.

2. Data Flow

Data source: Original
image.

Storage: 8-bit image data
loaded into 8-bit BRAM.
Transmission: Data passes
through the Padding

module and enters PE.

Data source: Spike feature
maps.

Storage: 2-bit feature data
loaded into 2-bit BRAM.
Transmission: Data passes
through the Padding

module and enters PE.

3. Weight Flow

Weight source: First-layer
weights (W)).
Transmission: 2-bit
weights pass through the
Fetch Data module and

Weight source:
Subsequent-layer weights
(Wo).

Transmission: 8-bit

weights pass through the

enters PE. Fetch Data module and
enters PE.
4. Core Computation | The PE array performs The PE array performs

convolution: 8-bit images

x 2-bit weights.

convolution: 2-bit features

x 8-bit weights.

BN module: The convolutional outputs are normalized before

entering the neuron model. In hardware implementations, the
parameters of the BN, y and f, are typically fused with convolutional
weights. Reparameterization factor L;; and l;; simplifying the BN
operation to one multiplication and one addition.

LIF module: This module receives the value after BN and updates
the internal membrane potential according to LIF neural dynamics.
The updated membrane potential is compared to a configurable
threshold: if the membrane potential exceeds the positive threshold,
the neuron emits a spike (+1); if the membrane potential exceeds the
negative threshold, the neuron will emits a spike (—1); Otherwise, the
spike is not activated (0). In this work the time step is set to 1, the
membrane potential is not further updated.

Pooling module: The maximum pooling operation is
performed on the spike feature map, reducing spatial dimensions,
expanding the receptive field, and improving the model’s
translation invariance.

Final output: The results of pooling (the new spike feature map
€ {-1, 0, 1}) will be written back to the internal memory as input to
the next layer, thus completing a full computation cycle.

frontiersin.org

https://doi.org/10.3389/fnins.2025.1665778
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Lietal.

In summary, through the innovative configurable dual data path
design, the unified PE array can support computing of the first layer
(8-bit input) and the subsequent layer (2-bit input) on the same
computing arrays. This innovation ensures full reuse of computational
resources across all network layers, significantly enhancing
hardware utilization.

4 Experiments and discussion
4.1 Datasets and evaluation metrics

4.1.1 Dataset

In this study, we utilize CIFAR10 andCIFARI00 datasets. The
CIFARI10 dataset (Krizhevsky and Hinton, 2009) comprises 60,000
color images measuring 32 x 32 pixels, distributed across 10 distinct
classes. It consists of 50,000 samples for training and an additional
10,000 samples for validation. CIFAR-100 is more challenging. It has
100 classes containing 600 images each.

4.1.2 Evaluation metrics

For performance evaluation, we utilize overall accuracy to assess
classification performance. Furthermore, the signal-to-noise ratio
(SNR) is used to evaluate the robustness of the quantized model.

4.2 Implementation details

4.2.1 Data preprocessing and networks

For CIFAR10 and CIFAR100 dataset, during training, we apply
standard data augmentation techniques, which include adding a
4-pixel padding on each side, performing random 32 x 32 cropping,
and applying random horizontal flipping. However, during
validation, the original images are utilized without these techniques.
All the images are normalized to achieve a zero mean and unit
variance. We employ VGG16, VGG11 (Simonyan and Zisserman,
2015) and ResNetl9 (He et al., 2016) for validation on
CIFAR10/100datasets.

4.2.2 Hyperparameters setting

During training, we employ a cross-entropy loss function with
stochastic gradient descent optimization which incorporates weight
decay (0.0005) and momentum (0.9) parameters. The full precision
SNN's are trained for 300 epochs on the all datasets. The learning rate
is 0.1 for VGG architectures and 0.01 for ResNet network, with a batch
size of 256. We adopt a cosine learning rate decay schedule during
training. During quantization stage, the AdamW optimizer is used
with a weight decay of 0.01. The leaky factor 7 is fixed at 1 and the
firing threshold 6 for ternary spike neurons is initialized at 0.5. The
time step is set to 1 for all experiments. We utilize Python 3.10 and
PyTorch 1.12 software and two NVIDIA A6000 Graphical Processing
Units (GPUs). The operating system is Ubuntu 18.04.

4.2.3 Implementation details of hardware

For the FPGA implementation, we use Verilog and Vivado 2020.2
to design the architecture. The power consumption data comes from
the power report provided by the software. The unified PE is deployed
on the Xilinx Virtex-7 XC7V690T FPGA operating at 100 MHz clock

Frontiers in Neuroscience

10.3389/fnins.2025.1665778

frequency. We adopt the row-stationary strategy used in works like
Eyeriss (Chen et al., 2016), where kernel-sized rows of the feature map
are stored in on-chip cache at the dataflow level. For example, a 3 x 3
convolution requires caching 3 rows of input data. For each new row
processed, the cache updates to present a continuous convolution
dataflow to the PEs. This data
computational efficiency.

maximizes reuse and

4.3 Algorithm performance evaluation

4.3.1 Performance comparison with advanced
methods

To evaluate the effectiveness of our method, we conduct
comparative experiments with existing quantized SNN approaches on
the CIFAR-10 dataset. The results are summarized in Table 4,
organized into four cases based on quantization bit-widths for the first
layer weights (W,) and subsequent layers weights (W,): 32/32, 8/8, 2/8,
and 2/2. The notation “a/b” indicates a-bit quantization for W, and
b-bit quantization for W,.

The proposed quantization method achieves low latency and high
performance in SNNs. As shown in Table 4, method (Yoo and Jeong,
2023) require 32 time steps to reach 91.66% accuracy, whereas our
approach attains 91.55% accuracy in single time step, reducing latency
by 32 x. By optimizing the quantization strategy, our method
minimizes quantization loss while maintaining competitive network
performance. Experiments on VGG16 and ResNet19 architectures
demonstrate accuracies of 91.55% and 91.79%, respectively,
outperforming prior results reported by Yin et al. (2024) at 90.72%
and 91.36%.

To systematically evaluate the effectiveness of our method,
we conduct comparative experiments with other SOTA approaches on
the CIFAR-100 dataset, as summarized in Table 5.

Our method demonstrates clear advantages in inference efficiency,
which is especially important in SNNs where the number of time steps
(T) directly affects system latency and computational overhead.
Experimental results show that the proposed method achieves single-
time step inference across multiple architectures, such as ResNet19
and VGGI11. In contrast, methods from Zou et al. (2024) (T =2),
Hasssan et al. (2024) (T = 2) and Gao et al. (2023) (T = 8) all require
multiple time steps to complete inference. This single-time-step
capability makes our approach particularly suitable for latency-
sensitive edge computing applications, such as autonomous driving
and industrial inspection, where rapid inference is crucial.

In addition, our method maintains high model performance
within a single time step. For instance, when quantizing ResNet19
from 32-bit full precision to 2/8-bit, the accuracy only decreases
slightly from 72.88 to 72.23%, with a loss of 0.65%. Similarly, On
VGGL11 declines marginally from 67.84 to 67.38%, with a loss of
0.46%. Compared with the full-precision VGG16 (64.89%) reported
by Wang et al. (2025), our approach achieves an improvement of
2.49%. Additionally, compared with the 2-bit quantified VGGI1
(54.27%) reported by Zou et al. (2024), our method’s performance
increases by 13.11%. While the 4-bit quantization scheme (Hasssan
et al,, 2024) achieves 71.87% accuracy in two time steps, our method
achieves a comparable performance in one time step. These results
demonstrate that our quantization strategy enables high-performance
model compression without increasing the number of time steps,

frontiersin.org

https://doi.org/10.3389/fnins.2025.1665778
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Lietal.

10.3389/fnins.2025.1665778

TABLE 4 Comparison of the performance of VGG16 and ResNet19 with other SOTA methods on CIFAR10.

Dataset Method Model Precision (W,/W,) Time step Accuracy (%)
Yin et al. (2024) Vggl6 8/8 8 90.72
Yin et al. (2024) Vggl6 32/32 8 91.15
Yin et al. (2024) ResNet19 32/32 8 91.29
Yin et al. (2024) ResNet19 8/8 8 91.36
Zhou et al. (2021) VGGl16 2/2 - 90.93

CIFAR10 Yoo and Jeong (2023) VGGl16 2/2 32 91.66
Xu et al. (2023) VGGl16 32/32 4 91.05
This work ResNet19 32/32 1 91.95
This work ResNet19 2/8 1 91.79
This work VGGl16 32/32 1 91.93
This work VGGI16 2/8 1 91.55

Bold values indicate superior performance.
TABLE 5 Comparison of the performance of VGG11 and ResNet19 with other SOTA methods on CIFAR100.

Dataset Method Model Precision (W,/W,) Time step Accuracy (%)
Zou et al. (2024) VGGI11 32/32 - 67.40
Zou et al. (2024) VGG11 2/2 4 54.27
Wang et al. (2025) VGG16 32/32 - 77.22
Wang et al. (2025) VGGI16 32/32 2 64.89
Gao etal. (2023) VGG16 8/8 8 66.32

CIFAR100 Hasssan et al. (2024) ResNet19 32/32 2 72.78
Hasssan et al. (2024) ResNet19 4/4 2 71.87
This work ResNet19 32/32 1 72.88
This work ResNet19 2/8 1 72.23
This work VGGI11 32/32 1 67.84
This work VGG11 2/8 1 67.38

providing efficient algorithmic support for hardware-accelerated
unified computing architectures.

4.3.2 Hardware-oriented performance trade-off
analysis: SNN vs. ANN

To thoroughly assess the proposed method’s effectiveness, this
section compares our TSHWQ SNN with the W2A8 ANN, a ternary
weight network (TWN) (Liu et al, 2023) with 8-bit activation
quantization. The comparison focuses on accuracy and storage
overhead, as shown in Table 6.

While the W2A8 ANN can employ the same unified computing
architecture as ours, experimental results demonstrate that our
method offers accuracy benefits. On CIFAR-100, with a single time
step, our SNN achieves 67.38 and 72.23% accuracy on VGG11 and
ResNet19, respectively, surpassing TWN’s 66.90 and 71.45%. This
indicates that, under ultra-low latency inference constraints, our SNN
can still outperform the W2A8 ANN using identical hardware,
revealing its higher performance potential.

To improve accuracy, our model balances weight storage
against feature map storage. As shown in Table 6, ResNet19’s
weight storage is 11.91 MB with our method, compared to 2.98 MB
for TWN. Nevertheless, our approach reduces feature map storage

Frontiers in Neuroscience

and processing overhead. Since our activation values are only 2
bits, feature map storage decreases by approximately 75%, for
example, from 9.06 KB to 2.26 KB in ResNet19. In edge computing
chip design, the main performance constraint lies not only in
computation but also in data movement. Weight parameters are
off-chip
DRAM. Conversely, feature maps require frequent read/write

read once during inference and stored in
operations and must reside in on-chip SRAM to enable
low-latency, high-bandwidth data transfer and lower power
consumption.

This challenge is particularly prominent in ResNet networks using
residual connections: the shallow network’s output feature map must
be retained on-chip before being added to the deeper feature map after
multiple convolutional layers. When on-chip SRAM capacity is
insufficient, these feature maps are offloaded to external DRAM and
reloaded, incurring substantial latency and power consumption (Bhati
et al., 2016). Therefore, drastically reducing feature map storage via
quantizing activation values to very low bit-widths is a vital strategy
to mitigate this challenge and enable efficient hardware acceleration.

This advantage becomes even more pronounced with high-
resolution inputs. As shown in the table, the feature map size roughly

scales with the square of the input dimension (N?). When the input

frontiersin.org

https://doi.org/10.3389/fnins.2025.1665778
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Lietal. 10.3389/fnins.2025.1665778

TABLE 6 Comparison of the proposed SNN and ANN on performance and storage overhead.

Dataset Method Model Feature map (KB) Accuracy (%)
32x32 640 x 640
TWN VGG11(ANN) 32/32/32 35.88 10.66 4262.50 69.52
TWN VGG11(ANN) 2/2/8 2.24 2.66 1065.62 66.90
"This work VGG11(SNN) 32/32/2 35.88 0.67 266.41 67.84
This work VGG11(SNN) 2/8/2 8.97 0.67 266.41 67.38
CIAFR100
TWN Resnet19(ANN) 32/32/32 47.64 36.25 14,500 74.21
TWN Resnet19(ANN) 2/2/8 2.98 9.06 3625.00 71.45
"This work Resnet19(SNN) 32/32/2 47.64 226 906.25 72.88
This work Resnet19(SNN) 2/8/2 11.91 2.26 906.25 72.23

Bold values indicate superior performance.

Singular Value Distribution of SNN Models Cumulative Energy and Energy Difference of SNN Models
2
—e— Full Precision Model w32w32 100 000
—*— Quantized Model w2w8 o 095
° ° 33 -0.01
2 & 0.90 o4
= o £
e 20 0.02 &
5 § 0.85 —e— Full Precision Model-w32w32)
- =
E,, 2 = —— Quantized Model-w2w8 a
@ —
A 2 0480 —=— Energy Difference 0.03 &
S o
% » =2 ors 2
5 g -0.04 =
= 5 0.70
- 0.65 -0.05
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Singular Value Index Singular Value Index
(@) (b)
FIGURE 5

Feature analysis of VGG16 on CIFAR10 dataset (a) singular value distribution comparison between full-precision (w32w32) and quantized (w2w8)
models (b) cumulative energy ratio and energy difference.

size increases to 640 x 640, the ANN’s feature map storage rises similar. Specifically, as shown in Figure 5 the quantized SNN model
sharply to 3,625 KB, whereas our method requires only 906 KB, closely matches the full-precision model’s singular values within the
achieving a fourfold reduction. This scalability demonstrates our first 25 maximum singular values. Similarly, in Figure 6, the quantized
approach’s strong potential for large-scale data processing, such as model exhibits near-identical characteristics for the singular values up
high-resolution remote sensing image analysis (Maggiori et al, 2017). to the 95th index. These observations confirm that the quantized
In summary, our single-step SNN model outperforms the W2A8 model successfully maintains the core information and essential
ANN in accuracy with the same computing architecture. Although it functions of the original full-precision network.
reduces weight storage, this trade-off enables improvements in feature The results displayed in Figures 5B, 6B demonstrate that the
map memory, data movement efficiency, and power consumption. energy distribution of the quantized model closely aligns with that of
This hardware-software co-design offers a promising approach for the full-precision model. Specifically, in Figure 5B, the top 10 singular
processing large-scale data on edge devices. values already capture more than 90% of the total energy contribution,
with the energy difference within these singular values fluctuating by
4.3.3 Feature analysis no more than 0.05. Beyond the 10th singular value, the energy
To systematically explore the information retention ability of the difference diminishes further, remaining below 0.01. Similarly,
first layer in the quantized model, we employ singular value Figure 6B shows that the first 20 singular values account for
decomposition (SVD) on the channel characteristic map of this layer. approximately 95% of the energy, and for singular values with indices
This analysis involves examining the singular values and their greater than 20, the energy difference between the quantized and full-
cumulative energy distribution, as shown in Figures 5, 6. precision models is less than 0.005. These findings indicate that the
The results shown in Figures 5A, 6A indicate that the proposed overall energy difference between the full-precision and quantized
quantization scheme successfully retains the key information of the ~ models is minimal, suggesting that the quantization process effectively
original full-precision model while realizing model compression. preserves the energy distribution of the original model.
Among them, the blue curve representing the full-precision model Additionally, Figure 5B illustrates the impact of quantization noise
and the red curve representing the quantization model nearly overlap, ~ on the model’s performance. Specifically, when the singular value
demonstrating that their singular value distributions are highly index exceeds 25, the red curve representing the quantized model

Frontiers in Neuroscience 11 frontiersin.org

https://doi.org/10.3389/fnins.2025.1665778
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Lietal. 10.3389/fnins.2025.1665778
Singular Value Distribution of SNN Models Cumulative Energy and Energy Difference of SNN Models
2 —e— Full Precision Model w32w32 e — - 0000
—»— Quantized Model w2w8 °

5! = -0.005
E] & 095 3
S > =
7] -0.010 9
5 L E —e— Full Precision Model-w32w32 k)
- =
5 &= 090 —%— Quantized Model-w2w8 a

£) -0.015
A2 & —=— Energy Difference =}
s 3
én -3 g 0.85 ~0.020 3

» o]
-0.025
s 0.80
0 20 40 60 80 100 120 0 20 40 60 80 100 120
Singular Value Index Singular Value Index
(@) (b)
FIGURE 6

models (b) cumulative energy ratio and energy difference.

Feature analysis of ResNet19 on CIFAR10 dataset (a) singular value distribution comparison between full-precision (w32w32) and quantized (w2w8)

SNR=40dB

SNR=35dB

frog

airplane

FIGURE 7

SNR=30dB

Impact of noise on image quality under different signal-to-noise ratio (SNR) conditions.

SNR=25dB SNR=20dB SNR=15dB SNR=10dB

remains above the blue curve of the full-precision model. For these
higher-index singular values, which are inherently small, the energy
introduced by quantization noise becomes significantly larger than
that of the original signal. As a result, the singular values at these
locations no longer accurately reflect the fine details of the original
model. In particular, at the 26th index, the singular value of the
quantized model is markedly larger than that of the full-precision
model, indicating that the delicate information contained in the full-
precision model has been overwhelmed by noise. This phenomenon
suggests that excessive quantization noise at these higher indices can
potentially degrade the overall model accuracy by obscuring subtle
but important features.

In summary, the quantization approach proposed in this study
exhibits both negative and positive effects. On the negative side,
quantizing the first layer of the model to 2 bits inherently introduces
quantization noise, which can lead to a decline in the overall network
performance. Conversely, the analysis based on singular values and
energy distributions demonstrates that the proposed method
effectively preserves the core functions and essential information of
the original model. By accurately maintaining key singular values and
the associated energy distributions, the approach ensures that the

Frontiers in Neuroscience

fundamental capabilities of the network are largely retained.
Consequently, this compression strategy successfully reduces model
size and complexity while preserving the critical information of the
full-precision model, achieving a balance between efficiency
and performance.

4.4 Robustness evaluation

To illustrate the effects of network architecture and quantization
on accuracy under different SNR levels (as outlined in Figure 7), the
corresponding results are presented in Figure 8. Specifically, at high
SNR levels, the accuracy of the w2w8 model closely approaches that
of the full-precision model. However, as the SNR decreases, the
accuracy of the full-precision model shows a downward trend. For
example, at an SNR of 15, the ResNet19 full-precision model achieves
approximately 70% accuracy, whereas the w2w8 quantized model
maintains a higher accuracy of about 74%. Similarly, for the VGG16
network at the same SNR, the full-precision model’s accuracy drops
to around 55%, while the w2w8 model retains approximately 62%.
These results show that, as the SNR diminishes, the proposed

frontiersin.org

https://doi.org/10.3389/fnins.2025.1665778
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Lietal.

10.3389/fnins.2025.1665778

94

84

74

S
< 64
£
§ 54 --#--ResNet19_W32
<
44 —— ResNet19_ W2W8
--#--VGG16_W32
34
—&— VGG16_W2W8
24
40 35 30 25 20 15 10
SNR(dB)
FIGURE 8

Robustness comparison of mixed-precision (w2w8) vs. full-precision
(Ww32w32) on ResNetl9 and VGG16 over CIFAR10 under varying SNR
conditions.

TABLE 7 Ablation study comparing proposed versus traditional neurons
in VGG11 and ResNet19 on CIFAR100 dataset.

Network VGG11 ResNet19
Traditional neuron v X v X
Proposed neuron X v X v
Accuracy 66.68 67.20 71.80 72.20

quantization method not only preserves the robustness of the model
but exceeds that of the full-precision counterpart, showcasing
improved robustness under noisy conditions.

4.5 Ablation studies

To investigate the compensatory effect of the proposed neurons
on model accuracy, ablation experiments are conducted using the
CIFAR-100 dataset with VGG11 and ResNet19 network architectures.

The experimental variables include the proposed neurons and
traditional neurons (Guo et al., 2024). For the first layer, channel
quantization is applied in both the experimental and control groups.
In the subsequent layers, layer quantization (He and Cheng, 2018),
(Wang et al., 2019) and traditional neurons (Guo et al., 2024) are used.
The results are presented in Table 7, while accuracy trends over
training epochs are illustrated in Figure 9 for VGG11 and Figure 10
for ResNet19.

The results in Table 7 show that the proposed neurons enhance
model performance. For the VGG11 model, classification accuracy
increases from 66.68% with traditional neurons in the first layer
to 67.20% with the proposed neurons, reflecting an improvement
0f 0.52%. In the ResNet19 model, accuracy in the first layer rises
from 71.80% with traditional neurons to 72.20% with the
proposed neurons, yielding a 0.40% improvement. These findings
confirm that the proposed neurons effectively mitigate the
performance loss associated with quantizing the first layer
to 2 bits.

Figures 9, 10 illustrate that the proposed neurons outperform
traditional neurons during training. Initially, the performance of
the proposed neurons is approximately 1% lower than that of
traditional neurons. However, their performance progressively

exceeds that of traditional neurons. In the VGGI11 model

Frontiers in Neuroscience

Accuracy

—— Proposed_Neuron
--#- Traditional_Neuron
55

5 10 15 20 25 30 35 40 45 5
Epoch

FIGURE 9

Training accuracy comparison between proposed and traditional

neurons in VGG11 on CIFAR100.

70

Accuracy
o
B

601/

—— Proposed_Neuron
--#- Traditional_Neuron

55

5 10 15 20 25 30 35 40 45 5
Epoch

FIGURE 10

Training accuracy comparison between proposed and traditional

neurons in ResNet19 on CIFAR100.

(Figure 9), the proposed neurons demonstrate greater stability than
traditional neurons starting around the 25th epoch. Similarly, in
the ResNet19 model (Figure 10), the proposed neurons consistently
surpass traditional neurons beginning at approximately the
30th epoch.

Overall, the experimental results demonstrate the effectiveness of the
neurons introduced in this paper. The proposed neuron successfully
compensates for the performance loss associated with 2-bit quantization
in the first layer, thereby enhancing the overall performance of the
network. This improvement contributes to the development of a high-
performance quantization model and offers valuable technical support for
hardware unified computing architectures.

4.6 Hardware efficiency evaluation

In this section, we analyze the varying levels of parallelism in PE1.
We use the decoupled PE architecture as the benchmark system, and its
resource utilization will serve as the baseline for evaluating performance.
This comparison will allow us to assess the effectiveness of different
degrees of parallelism and their impact on resource utilization.

As shown in Table 8, the unified computing architecture exhibits
low resource utilization. By integrating PE1 and PE2, critical logic

frontiersin.org

https://doi.org/10.3389/fnins.2025.1665778
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Lietal.

10.3389/fnins.2025.1665778

TABLE 8 Resource comparison between decoupled PE and unified PE for first convolutional layer under different output parallelism.

Pout (1st Method PE (P;, X Poy) LUT FF DSP FPS
layer)
149,642 142,212 12
Decoupled PE PE1(3 x 1) & PE2(512 x 1)
(—0.00%) (—0.00%) (—0.00%)
1 320
147,818 141,516 6
Unified PE This work (512 x 1)
(=1.22%) (—0.49%) (=50%)
PE1(3 x 16) & 199,586 174,634 87
Decoupled PE
PE2(512 x 1) (—0.00%) (—0.00%) (—0.00%)
16 424
This work (32 x 16 & 159,263 156,137 81
Unified PE
512x1) (—20.20%) (—10.59%) (—6.90%)

Bold values indicate superior performance.

resources are saved. Specifically, when the output parallelism of PE1
is low (1), the unified PE can save 1.22% of LUTS, 0.49% of flip flops
(FFs), and 50% of digital signal processors (DSPs) compared to
traditional decoupled PEs. When the output parallelism of PEI is
increased to 16, the unified PE achieves even greater resource savings,
with reductions of 20.20% in LUTs, 10.59% in FFs, and 6.90% in DSPs.

In addition, the resource-saving benefits of the unified computing
architecture are amplified as the degree of parallelism increases. When
the parallelism increased from 1 to 16, the savings jumped from 1.22
t0 20.20% for LUTs and from 0.49 to 10.59% for FFs. This shows that,
compared with the traditional architecture, the unified computing
approach can effectively manage the growth of hardware resources in
high-parallel real-time tasks.

It's worth noting that the unified computing architecture aligns
with the frames per second (FPS) of traditional architectures without
compromising processing efficiency. This indicates that the unified
computing architecture can achieve substantial resource savings while
maintaining the same throughput levels.

In summary, the unified PE represents a more efficient hardware
solution than the traditional discrete design. It not only reduces the
logic resource utilization of FPGAs but also exhibits a significant
scaling effect in high-parallel application scenarios.

In order to fully evaluate the effectiveness of the proposed SNN
accelerator design, we conduct a detailed comparison with three
advanced similar works on the CIFAR100 dataset. As shown in
Table 9, our design exhibits excellent overall performance across
several key metrics.

Firstly, regarding classification accuracy, the proposed method
achieves 67.38%, surpassing all comparison works. This outcome
indicates that the TSHWQ scheme and the network architecture can
be effectively deployed while maintaining high accuracy. Importantly,
this level of performance is achieved at a single time step, without
introducing any additional latency. Therefore, our method offers the
dual benefits of low latency and high performance.

Secondly, the efficiency of this design is reflected in two key
aspects: power consumption and resource utilization. On the Virtex-
7690 T platform, the power consumption of the proposed accelerator
is 0.982 W, representing a significant improvement over the 1.562 W
reported in Chen et al. (2024). This advantage stems not only from the
low-latency design achieved within a single time step but also from
the implementation of first-layer ternary quantization technology.
This technology reduces the first-layer multiplication operation to an
equivalent addition operation, drastically decreasing dependence on

Frontiers in Neuroscience

TABLE 9 Comparison between FPGA-based SNN accelerator and other

SOTA designs.

Parameters Chenetal. Lietal This work
(2024) (2024)

Platform Virtex-72000 T = Xczu3eg VCU118 Virtex-7690 T
Neuron LIF LIF LIF LIF
Dataset CIFAR100 CIFAR100 = CIFAR100 = CIFAR100
Clock Frequency | 200 600 500 100
Model VGGI11 VGG11 VGG11 VGG11
Weight Bitwidth | 8bit 8bit 8bit 2bit/8bit
Time Step 4 4 1 1
Accuracy 66.97% 64.3% 65.9% 67.38%
LUT 142,446 23K 183 K 147,818
FF 124,619 - - 141,516
Bram 355.0 103 289 326.5
DSP 1 256 2,881 6
Latency/Image 19 1.75 0.082 3.12
(ms)
FPS 52 571 11.6 K 320
Power 1.562 6.2 29.8 0.982
Consumption

DSPs. Specifically, our design requires only 6 DSPs, in contrast to 256
and 2,881 DSPs required by the schemes in Li et al. (2024) and Aung
et al. (2023), respectively. These results demonstrate the applicability
of our architecture in resource-constrained edge computing scenarios.

Regarding throughput, while the methods presented in Li et al.
(2024) and Aung et al. (2023) achieve lower latency with higher clock
frequencies (600 MHz and 500 MHz), these performance gains come
at the cost of substantial power consumption and DSP resource
utilization. In comparison, our design achieves an image processing
delay of 3.12 ms and a throughput rate of 320 FPS at a clock frequency
of only 100 MHz. The processing latency of our proposed method is
approximately six times lower than that of Chen et al. (2024), despite
the latter’s implementation being deployed for four time steps, which
is four times that of our design. This indicates that our method
possesses a highly competitive high-throughput characteristic.

In summary, this study demonstrates that through the software-
hardware co-design strategy, the TSHWQ quantization method

14 frontiersin.org

https://doi.org/10.3389/fnins.2025.1665778
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Lietal.

effectively facilitates the efficient reuse of computing resources. It
achieves high accuracy at a single time step while maintaining low
levels of power consumption and DSP resource utilization, making it
well-suited for resource-constrained, low-latency edge computing
scenarios.

4.7 Discussion on scalability for
multi-timestep processing

Although the proposed design targets single-timestep scenarios
for ultra-low latency processing, it can also scale to multi-timestep
applications. Since our architecture does not rely on membrane
potential states dependent on specific time steps, the simplest scaling
approach involves adopting a temporal parallelism strategy (Yin et al.,
2024), (Chen et al., 2024). In this approach, independent computing
resources are allocated for each time step, thereby preserving
extremely low latency.

This parallelism strategy highlights a fundamental trade-off in
SNN accelerator design: the performance advantage of “temporal
parallelism” versus the resource efficiency of “temporal serialism”
(Narayanan et al., 2020). A more flexible and desirable approach
involves a hybrid, configurable data flow (Lee et al., 2022) that
dynamically balances latency and resource utilization based on
specific application requirements. For example, for a task with six time
steps (T = 6), the system can operate in a mode that processes time
steps in parallel within a group and executes groups sequentially. This
can be realized as three stages, each processing two time steps (T = 2)
in parallel. Alternatively, it can run in two sequential stages, each
processing three time steps (T = 3) in parallel.

The TSHWQ unified computing architecture proposed in this
paper provides a robust foundation for achieving this goal. It
minimizes hardware overhead while maintaining high performance
through co-design of software and hardware, which makes it feasible
to implement configurable data flows on resource-constrained
platforms. In the future, we plan to develop and validate the
implementation of this configurable data flow.

5 Conclusion

This paper addresses the critical issue of resource redundancy in
SNN accelerators, a problem stemming from the inherent decoupling
of quantization algorithms and FPGA computing units, by proposing
a holistic software-hardware co-design methodology. Specifically,
we propose a TSHWQ method and a channel-wise dual compensation
strategy, which innovatively introduces channel-wise adaptive
thresholds to compensate for quantization loss, and adopts a
reparameterization method to reduce the quantization performance
loss without increasing computation amount. In addition, this
proposed method effectively reduces the hardware implementation
overhead by supporting a unified computing architecture based on
FPGA. Experimental results show that the quantization algorithm
and the hardware design not only maintain the high performance of
the network quantization, but also realize the resource reuse of
computing units in one time step. This algorithm-hardware
collaborative optimization scheme provides effective technical
support for high-performance and low-latency processing in

Frontiers in Neuroscience

15

10.3389/fnins.2025.1665778

resource-constrained scenarios. On this basis, we will further explore
the algorithm design and hardware architecture development of SNNs
in more complex tasks such as object detection in the future (Chen
etal., 2024).

Data availability statement

The original contributions presented in the study are included in
the article/supplementary material, further inquiries can be directed
to the corresponding author/s.

Author contributions

JL: Software, Validation, Writing - original draft, Writing - review
& editing, Conceptualization, Formal analysis, Methodology. MX:
Formal analysis, Validation, Writing - review & editing, Methodology.
HD: Software, Validation, Writing - review & editing. BL: Software,
Validation, Writing - review & editing. YL: Writing - review &
editing, Investigation. HC: Funding acquisition, Resources, Writing —
review & editing, Supervision. YZ: Writing - review & editing,
Supervision. YX: Writing - review & editing. LC: Funding acquisition,
Writing - review & editing, Supervision.

Funding

The author(s) declare that financial support was received for the
research and/or publication of this article. This work was supported
by the Foundation under Grant JCKY2021602B037.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Generative Al statement

The authors declare that no Gen Al was used in the creation of
this manuscript.

Any alternative text (alt text) provided alongside figures in this
article has been generated by Frontiers with the support of artificial
intelligence and reasonable efforts have been made to ensure accuracy,
including review by the authors wherever possible. If you identify any
issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the authors and
do not necessarily represent those of their affiliated organizations, or those
of the publisher, the editors and the reviewers. Any product that may
be evaluated in this article, or claim that may be made by its manufacturer,
is not guaranteed or endorsed by the publisher.

frontiersin.org

https://doi.org/10.3389/fnins.2025.1665778
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Lietal.

References

Aung, M. T. L, Gerlinghoff, D., Qu, C,, Yang, L., Huang, T., Goh, R. S. M, et al. (2023).
Deepfire2: a convolutional spiking neural network accelerator on FPGAs. IEEE Trans.
Comput. 72, 2847-2857. doi: 10.1109/TC.2023.3272284

Bengio, Y., Léonard, N., and Courville, A. (2013). Estimating or propagating gradients
through stochastic neurons for conditional computation. arxiv 2013:3432. doi:
10.48550/arXiv.1308.3432

Bhati, I, Chang, M.-T., Chishti, Z., Lu, S.-L., and Jacob, B. (2016). DRAM refresh
mechanisms, penalties, and trade-offs. IEEE Trans. Comput. 65, 108-121. doi:
10.1109/TC.2015.2417540

Cao, H., Zhou, Z., Wei, W,, Belatreche, A, Liang, Y., Zhang, D,, et al. (2025). Binary
event-driven spiking transformer. arxiv 2025:5904. doi: 10.48550/arXiv.2501.05904

Chen, Y. H., Emer, J., and Sze, V. (2016). Eyeriss: a spatial architecture for energy-
efficient dataflow for convolutional neural networks. in 2016 ACM/IEEE 43rd annual
international symposium on computer architecture (ISCA), (Seoul, South Korea: IEEE),
pp. 367-379.

Chen, Y,, Ye, W, Liu, Y., and Zhou, H. (2024). Sibrain: a sparse spatio-temporal parallel
neuromorphic architecture for accelerating spiking convolution neural networks with low
latency. IEEE Trans. Circ. Syst. 71, 6482-6494. doi: 10.1109/TCSI.2024.3393233

Chowdhury, S. S., Garg, I, and Roy, K. (2021). Spatio-temporal pruning and
quantization for low-latency spiking neural networks. In 2021 international joint
conference on neural networks (IJCNN), pp. 1-9.

Courbariaux, M., Bengio, Y., and David, J. P. (2015). BinaryConnect:
training deep neural networks with binary weights during propagations. in Advances in
neural information processing systems. Available online at: https://proceedings.
neurips.cc/paper_files/paper/2015/file/3e15cc11f979ed25912dff5b0669f2cd-
Paper.pdf.

Deng, L., Wu, Y, Hu, Y, Liang, L., Li, G., Hu, X,, et al. (2023). Comprehensive SNN
compression using ADMM optimization and activity regularization. IEEE Trans. Neural
Netw. Learn. Syst. 34, 2791-2805. doi: 10.1109/TNNLS.2021.3109064

Eshraghian, J. K., and Lu, W. D. (2022). The fine line between dead neurons and sparsity in
binarized spiking neural networks. arXiv 2022:11915. doi: 10.48550/arXiv.2201.11915

Gao, H,, He, J., Wang, H., Wang, T., Zhong, Z., Yu,], et al. (2023). High-accuracy deep
ANN-to-SNN conversion using quantization-aware training framework and calcium-
gated bipolar leaky integrate and fire neuron. Front. Neurosci. 17:1701. doi:
10.3389/fnins.2023.1141701

Guo, Y., Chen, Y,, Liu, X., Peng, W, Zhang, Y., Huang, X, et al. (2024). Ternary spike:
learning ternary spikes for spiking neural networks. Proc. AAAI Confe. Artif. Intell. 38,
12244-12252. doi: 10.1609/aaai.v38i11.29114

Hasssan, A., Meng, J., Anupreetham, A., and Seo, J. (2024). SpQuant-SNN: ultra-low
precision membrane potential with sparse activations unlock the potential of on-device
spiking neural networks applications. Front. Neurosci. 18:144. doi: 10.3389/
fnins.2024.1440000

He, X., and Cheng, J. (2018). “Learning compression from limited unlabeled data” in
Computer vision - ECCV 2018. eds. V. Ferrari, M. Hebert, C. Sminchisescu and Y. Weiss
(Cham: Springer International Publishing), 778-795.

He, K., Zhang, X,, Ren, S., and Sun, J. (2016). Deep residual learning for image
recognition. in 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 770-778.

Hinton, G., Vinyals, O., and Dean, J. (2015). Distilling the knowledge in a neural
network. arXiv 2015:2531. doi: 10.48550/arXiv.1503.02531

Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard, A., et al. (2018).
Quantization and training of neural networks for efficient integer-arithmetic-only
inference. in 2018 IEEE/CVF conference on computer vision and pattern recognition,
pp. 2704-2713.

Karamimanesh, M., Abiri, E., Shahsavari, M., Hassanli, K., van Schaik, A., and Eshraghian, J.
(2025). Spiking neural networks on FPGA: a survey of methodologies and recent
advancements. Neural Netw. 186:107256. doi: 10.1016/j.neunet.2025.107256

Krishnamoorthi, R. (2018). Quantizing deep convolutional networks for efficient
inference: a whitepaper. arXiv 2018:8342. doi: 10.48550/arXiv.1806.08342

Krizhevsky, A., and Hinton, G. (2009). Learning multiple layers of features from tiny
images. Toronto, Ontario: University of Toronto.

Lee, J. J., Zhang, W,, and Li, P. (2022). Parallel time batching: systolic-Array acceleration
of sparse spiking neural computation. in 2022 IEEE international symposium on high-
performance computer architecture (HPCA), pp. 317-330.

Li, H., Kadav, A., Durdanovic, L., Samet, H., and Graf, H. P. (2017). Pruning filters for
efficient ConvNets. arXiv 2017:710. doi: 10.48550/arXiv.1608.08710

Li, J., Shen, G., Zhao, D., Zhang, Q., and Zeng, Y. (2024). Firefly v2: advancing
hardware support for high-performance spiking neural network with a spatiotemporal

Frontiers in Neuroscience

16

10.3389/fnins.2025.1665778

FPGA accelerator. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 43, 2647-2660.
doi: 10.1109/TCAD.2024.3380550

Liu, B,, Li, F, Wang, X., Zhang, B., and Yan, J. (2023). Ternary weight networks. in
ICASSP 2023-2023 IEEE international conference on acoustics, speech and signal
processing (ICASSP), pp. 1-5.

Luo, X,, Yao, M., Chou, Y., Xu, B,, and Li, G. (2025). “Integer-valued training and
spike-driven inference spiking neural network for high-performance and energy-
efficient object detection” in Computer vision — ECCV 2024. eds. A. Leonardis, E.
Ricci, S. Roth, O. Russakovsky, T. Sattler and G. Varol (Cham: Springer Nature
Switzerland), 253-272.

Maass, W. (1997). Networks of spiking neurons: the third generation of neural
network models. Neural Netw. 10, 1659-1671. doi: 10.1016/S0893-6080(97)00011-7

Maggiori, E., Tarabalka, Y., Charpiat, G., and Alliez, P. (2017). Convolutional neural
networks for large-scale remote-sensing image classification. IEEE Trans. Geosci. Remote
Sens. 55, 645-657. doi: 10.1109/TGRS.2016.2612821

Narayanan, S., Taht, K., Balasubramonian, R., Giacomin, E., and Gaillardon, P. E.
(2020). SpinalFlow: An Architecture and Dataflow Tailored for Spiking Neural Networks.
in 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture
(ISCA), (Valencia, Spain: IEEE), pp. 349-362.

Neftci, E. O., Mostafa, H., and Zenke, F. (2019). Surrogate gradient learning in
spiking neural networks: bringing the power of gradient-based optimization to
spiking neural networks. IEEE Signal Process. Mag. 36, 51-63. doi:
10.1109/MSP.2019.2931595

Plagwitz, P, Hannig, E, Teich, J., and Keszocze, O. (2023). To spike or not to spike? A
quantitative comparison of SNN and CNN FPGA implementations. arXiv 2023:12742.
doi: 10.48550/arXiv.2306.12742

Putra, R. V. W, and Shafique, M. (2021). Q-SpiNN: a framework for quantizing spiking
neural networks. in 2021 international joint conference on neural networks (IJCNN),
pp. 1-8.

Shymyrbay, A., Fouda, M. E., and Eltawil, A. (2023). Low precision quantization-aware
training in spiking neural networks with differentiable quantization function. in 2023
international joint conference on neural networks (IJCNN), pp. 1-8.

Simonyan, K., and Zisserman, A. (2015). Very deep convolutional networks for large-
scale image recognition. arXiv 2015:1556. doi: 10.48550/arXiv.1409.1556

Su, Q,, Chou, Y., Hu, Y, Li, J., Mei, S., Zhang, Z., et al. (2023). Deep directly-trained
spiking neural networks for object detection. in 2023 IEEE/CVF international conference
on computer vision (ICCV), pp. 6532-6542.

Venkatesh, S., Marinescu, R., and Eshraghian, J. K. (2024). SQUAT: Stateful
quantization-aware training in recurrent spiking neural networks. in 2024 neuro inspired
computational elements conference (NICE), pp. 1-10.

Wang, K., Liu, Z., Lin, Y., Lin, J., and Han, S. (2019). HAQ: hardware-aware automated
quantization with mixed precision. in 2019 IEEE/CVF conference on computer vision
and pattern recognition (CVPR), pp. 8604-8612.

Wang, Z., Zhang, Y., Lian, S., Cui, X., Yan, R., and Tang, H. (2025). Toward high-
accuracy and low-latency spiking neural networks with two-stage optimization.
IEEE Trans. Neural Netw. Learn. Syst. 36, 3189-3203. doi:
10.1109/TNNLS.2023.3337176

Wei, L, Ma, Z., Yang, C., and Yao, Q. (2024). Advances in the neural
network quantization: a comprehensive review. Appl. Sci. 14:7445. doi:
10.3390/app14177445

Xu, Q, Li, Y., Shen,], Liu, J. K., Tang, H., and Pan, G. (2023). Constructing deep spiking
neural networks from artificial neural networks with knowledge distillation. in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
Pp. 7886-7895.

Yin, R, Kim, Y., Wu, D, and Panda, P. (2024). LoAS: fully temporal-parallel dataflow
for dual-sparse spiking neural networks. in 2024 57th IEEE/ACM international
symposium on microarchitecture (MICRO), pp. 1107-1121.

Yin, R, Li, Y,, Moitra, A, and Panda, P. (2024). MINT: Multiplier-less INTeger quantization
for energy efficient spiking neural networks. in 2024 29th Asia and South Pacific design
automation conference (ASP-DAC), (Incheon, Korea, republic of: IEEE), pp. 830-835.

Yoo, D, and Jeong, D. S. (2023). CBP-QSNN: spiking neural networks quantized using
constrained backpropagation. IEEE J. Emerg. Sel. Topics Circuits Syst. 13, 1137-1146. doi:
10.1109/JETCAS.2023.3328911

Zhou, S., Li, X., Chen, Y., Chandrasekaran, S. T., and Sanyal, A. (2021). Temporal-

coded deep spiking neural network with easy training and robust performance. AAAT
35,11143-11151. doi: 10.1609/aaai.v35i12.17329

Zou, C., Cui, X, Feng, S., Chen, G., Zhong, Y., Dai, Z,, et al. (2024). An all integer-
based spiking neural network with dynamic threshold adaptation. Front. Neurosci. 18:20.
doi: 10.3389/fnins.2024.1449020

frontiersin.org

https://doi.org/10.3389/fnins.2025.1665778
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://doi.org/10.1109/TC.2023.3272284
https://doi.org/10.48550/arXiv.1308.3432
https://doi.org/10.1109/TC.2015.2417540
https://doi.org/10.48550/arXiv.2501.05904
https://doi.org/10.1109/TCSI.2024.3393233
https://proceedings.neurips.cc/paper_files/paper/2015/file/3e15cc11f979ed25912dff5b0669f2cd-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/3e15cc11f979ed25912dff5b0669f2cd-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/3e15cc11f979ed25912dff5b0669f2cd-Paper.pdf
https://doi.org/10.1109/TNNLS.2021.3109064
https://doi.org/10.48550/arXiv.2201.11915
https://doi.org/10.3389/fnins.2023.1141701
https://doi.org/10.1609/aaai.v38i11.29114
https://doi.org/10.3389/fnins.2024.1440000
https://doi.org/10.3389/fnins.2024.1440000
https://doi.org/10.48550/arXiv.1503.02531
https://doi.org/10.1016/j.neunet.2025.107256
https://doi.org/10.48550/arXiv.1806.08342
https://doi.org/10.48550/arXiv.1608.08710
https://doi.org/10.1109/TCAD.2024.3380550
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1109/TGRS.2016.2612821
https://doi.org/10.1109/MSP.2019.2931595
https://doi.org/10.48550/arXiv.2306.12742
https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.1109/TNNLS.2023.3337176
https://doi.org/10.3390/app14177445
https://doi.org/10.1109/JETCAS.2023.3328911
https://doi.org/10.1609/aaai.v35i12.17329
https://doi.org/10.3389/fnins.2024.1449020

	Balancing accuracy and efficiency: co-design of hybrid quantization and unified computing architecture for spiking neural networks
	1 Introduction
	2 Related works
	3 Methodology
	3.1 The overall co-design of the quantization algorithm and hardware
	3.1.1 Ternary-8bit hybrid weight quantization
	3.1.2 The channel-wise dual compensation strategy based on QAT framework
	3.1.3 Design and implementation of a unified PE based on FPGA
	3.2 The channel-wise dual compensation strategy based on QAT framework
	3.2.1 Channel-wise adaptive threshold ternary spike neuron
	3.2.2 Quantization scheme and reparameterization technique
	3.2.2.1 First layer quantization scheme
	3.2.2.2 The other layers quantization scheme
	3.2.2.3 Reparameterization technique
	3.3 Design of the unified PE based on FPGA
	3.3.1 Parallelism of unified PEs
	3.3.2 Design of the unified PE architecture based on FPGA
	3.3.2.1 Data storage
	3.3.2.2 Control path
	3.3.2.3 Computing core

	4 Experiments and discussion
	4.1 Datasets and evaluation metrics
	4.1.1 Dataset
	4.1.2 Evaluation metrics
	4.2 Implementation details
	4.2.1 Data preprocessing and networks
	4.2.2 Hyperparameters setting
	4.2.3 Implementation details of hardware
	4.3 Algorithm performance evaluation
	4.3.1 Performance comparison with advanced methods
	4.3.2 Hardware-oriented performance trade-off analysis: SNN vs. ANN
	4.3.3 Feature analysis
	4.4 Robustness evaluation
	4.5 Ablation studies
	4.6 Hardware efficiency evaluation
	4.7 Discussion on scalability for multi-timestep processing

	5 Conclusion

	References

