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The deployment of Spiking Neural Networks (SNNs) on resource-constrained edge 
devices is hindered by a critical algorithm-hardware mismatch: a fundamental 
trade-off between the accuracy degradation caused by aggressive quantization 
and the resource redundancy stemming from traditional decoupled hardware 
designs. To bridge this gap, we present a novel algorithm-hardware co-design 
framework centered on a Ternary-8-bit Hybrid Weight Quantization (T8HWQ) 
scheme. Our approach recasts SNN computation into a unified “8-bit × 2-bit” 
paradigm by quantizing first-layer weights to 2 bits and subsequent layers to 8 
bits. This standardization directly enables the design of a unified PE architecture, 
eliminating the resource redundancy inherent in decoupled designs. To mitigate 
the accuracy degradation caused by aggressive first-layer quantization, we first 
propose a channel-wise dual compensation strategy. This method synergizes 
channel-wise quantization optimization with adaptive threshold neurons, leveraging 
reparameterization techniques to restore model accuracy without incurring additional 
inference overhead. Building upon T8HWQ, we propose a novel unified computing 
architecture that overcomes the inefficiencies of traditional decoupled designs 
by efficiently multiplexing processing arrays. Experimental results support our 
approach: On CIFAR-100, our method achieves near-lossless accuracy (<0.7% 
degradation vs. full precision) with a single time step, matching state-of-the-art 
low-bit SNNs. At the hardware level, implementation results on the Xilinx Virtex 7 
platform demonstrate that our unified computing unit conserves 20.2% of lookup 
table (LUT) resources compared to traditional decoupled architectures. This work 
delivers a 6 × throughput improvement over state-of-the-art SNN accelerators—with 
comparable resource utilization and lower power consumption. Our integrated 
solution thus advances the practical implementation of high-performance, low-
latency SNNs on resource-constrained edge devices.
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1 Introduction

A fundamental tension exists between the escalating 
computational demands of sophisticated artificial neural networks 
(ANNs) and the stringent computing, storage, and power constraints 
inherent to edge devices (Hinton et al., 2015; Li et al., 2017; Wei et al., 
2024). Although ANNs demonstrate exceptional performance across 
diverse computational tasks, their reliance on extensive model sizes 
and dense multiply-accumulate (MAC) operations inherently leads to 
prohibitively high energy consumption and significant computational 
latency. As a promising solution, brain-inspired Spiking Neural 
Networks (SNNs) encode and transmit information through sparse 
spiking signals (Maass, 1997), enabling hardware-level computational 
sparsity (Plagwitz et al., 2023). When implemented on reconfigurable 
platforms such as field-programmable gate arrays (FPGAs), this 
sparsity inherently bypasses redundant operations, drastically 
reducing dynamic power consumption and enabling high-
performance edge AI systems (Karamimanesh et al., 2025).

The practical deployment of SNNs is fundamentally at odds with 
critical performance and hardware limitations. A primary impediment 
is the persistent accuracy gap. SNN training algorithms, while 
advancing, have yet to consistently match the performance of 
structurally equivalent ANNs (Luo et  al., 2025; Su et  al., 2023). 
Furthermore, unlocking the profound energy efficiency of SNNs is 
contingent upon a transition from inefficient von Neumann-based 
simulations to specialized hardware, such as FPGAs and neuromorphic 
chips (Karamimanesh et al., 2025). In this context, model quantization 
represents a pivotal strategy (Jacob et al., 2018; Courbariaux et al., 
2015). By reducing the bit width of model weights, quantization can 
drastically curtails storage requirements and computational 
complexity, a crucial step for adapting SNNs to these resource-
constrained hardware platforms.

Current research in SNN quantization is bifurcated into two 
distinct trajectories, yet both converge on a significant, unresolved 
hardware implementation challenge. The first path involves moderate 

quantization to 8-bit or 4-bit precision, a strategy that achieves 
effective model compression while maintaining performance, but 
offers limited optimization for ultra-resource-constrained 
environments (Zou et al., 2024; Putra and Shafique, 2021; Chowdhury 
et al., 2021). The second, more aggressive approach utilizes low-bit 
quantization, such as binary (1-bit) (Cao et al., 2025; Eshraghian and 
Lu, 2022) or ternary (~2-bit) schemes (Hasssan et al., 2024). This 
method dramatically reduces hardware complexity by converting 
multiplications into efficient bitwise operations or additions, though 
it frequently incurs severe accuracy degradation (Zou et al., 2024).

A critical flaw emerges at the hardware level, where deployment of 
these multi-precision networks is often architecturally “decoupled”. As 
illustrated in Figure 1, this paradigm necessitates designing separated 
processing elements (PEs) for different data bit widths (e.g., 8-bit and 
2-bit). Such a decoupled PE design is fundamentally inefficient, failing 
to achieve full utilization of valuable on-chip computational resources.

A significant algorithm-hardware gap currently impedes the 
advancement of SNN deployment, presenting distinct yet interrelated 
challenges. At the hardware level, contemporary FPGA architectures 
lack unified PEs capable of supporting mixed-precision computation, 
thereby failing to maximize resource efficiency and computational 
throughput. Concurrently, at the algorithmic level, a critical need 
exists for hardware-aware, low-bit quantization methods that preserve 
model accuracy without introducing computational complexity.

This paper directly confronts this algorithm-hardware divide by 
proposing a novel algorithm-hardware co-design for optimizing 
FPGA-based computing units. Our central insight stems from 
identifying two distinct operational modes during SNN inference on 
FPGAs: (1) initial-layer computations involving weight and input pixel 
data, and (2) subsequent-layer computations involving weight and 
spike features. To reconcile these modes into a single and efficient 
architecture, we  introduce the T8HWQ scheme. This strategy 
implements ternary (~2-bit) quantization for the first-layer weights and 
8-bit quantization for subsequent layers. Consequently, first-layer 
operations are standardized as 2-bit weight × 8-bit input multiplications, 

FIGURE 1

Comparison of unified PEs with traditional methods based on SNNs.
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while subsequent-layer operations become 8-bit weight × 2-bit spike 
interactions. This innovative approach unifies all network computations 
into a consistent 8-bit × 2-bit paradigm, enabling the design of a highly 
resource-efficient, unified computing architecture.

However, the aggressive first-layer quantization inevitably degrades 
model performance. To address this, we propose a channel-wise dual 
compensation strategy that recovers accuracy without increasing 
inference-stage computation costs. Simultaneously, building on the 
T8HWQ scheme, we design a unified FPGA computing architecture 
that supports all target operations while maximizing hardware resource 
reuse. In summary, the contribution of this article is as follows:

	 1.	 We propose the first algorithm-hardware co-designed T8HWQ 
scheme to address the heterogeneous computational patterns 
in SNNs. Our approach reconciles first-layer “weight × 8-bit 
image pixel” operations and subsequent-layer “weight × 2-bit 
spike” operations into a uniform 8-bit × 2-bit computation. 
This innovative strategy preserves model accuracy and provides 
a robust algorithmic basis for designing efficient, unified FPGA 
computing architectures.

	 2.	 To overcome the performance deficit from aggressive 
quantization, we introduce a novel compensation strategy 
with zero computational overhead at inference. This is 
achieved through two synergistic mechanisms: channel-wise 
quantization to account for feature variations and a channel-
wise adaptive threshold neuron to dynamically regulate 
spike activation. Both are seamlessly integrated into the 
network weights via reparameterization, enabling our model 
to achieve accuracy on par with full-precision counterparts.

	 3.	 In this paper, a unified computing architecture based on the 
T8HWQ scheme is designed and implemented on the 
FPGA. By multiplexing the PE computing array, this unified 
approach eliminates the resource redundancy inherent in 
traditional decoupled PEs, achieving optimal hardware 
utilization without compromising computational throughput.

	 4.	 We evaluate our proposed method through both algorithm and 
hardware experiments. Algorithmically, on the CIFAR-10 and 
CIFAR-100 datasets, our approach attain near-lossless accuracy 
(<0.7% degradation) relative to the full-precision model in a 
single time step, performing competitively with other state-of-
the-art (SOTA) low-bit SNNs. On the hardware front, 
implementation on a Xilinx XC7VX690T platform confirm 
that the unified computing architecture reduces lookup table 
(LUT) resource utilization by 20.2% compared to the 
traditional architecture. Compared with other advanced SNN 
hardware accelerators, our design delivers 6 × greater 
throughput than advanced SNN hardware accelerators at a 
comparable resource and power budget.

2 Related works

To deploy lightweight SNNs, quantization serves as a critical 
approach for compressing these networks. Unlike traditional ANNs, 
which utilize real-valued activations, SNNs communicate through 
spikes, effectively reducing the storage requirements for feature maps.

To further reduce storage space, research on quantization has 
focused on minimizing the bit-width of weights. All parameters are 

quantized to integers, including membrane potential and firing 
threshold (Zou et al., 2024). Furthermore, the Q-SpiNN framework is 
proposed for quantizing SNNs by addressing different parameters, 
precision levels, and rounding schemes (Putra and Shafique, 2021), 
reducing the bit-width to 5 bits. Additionally, spatial and temporal 
pruning of SNNs are implemented, decreasing the bit-width to 5 bits 
(Chowdhury et  al., 2021). Moreover, quantization-aware training 
(QAT) with stacked gradient surrogation is proposed for integer-only 
SNNs, reducing the bit-width to 4 bits (Hasssan et al., 2024).

In recent years, to further reduce the latency of SNNs and achieve 
more lightweight models, researchers have further decreased the 
bit-width from 2 bits to 1 bit while maintaining a high latency 
(exceeding 5). SQUAT is proposed to enhance performance by 
achieving 2-bit weigh while using 25 time steps (Venkatesh et al., 
2024). MINT quantizes both weights and membrane potentials to 
extremely low precisions in 2 bits with 8 time steps (Yin et al., 2024). 
Furthermore, researchers compress the weights to 1 bit (Cao et al., 
2025; Eshraghian and Lu, 2022). Deng et al. (2023) propose connection 
pruning and weight quantization methods using ADMM optimization 
and activity regularization, successfully reducing the bit-width to 1, 
while the time steps are limited to 10 (Deng et al., 2023). Shymyrbay 
et al. (2023) present a framework for quantizing SNN models using a 
differentiable quantization function based on a linear combination of 
sigmoid functions achieving 1-bit weight while using 10 time steps.

Despite the significant reduction in storage space achieved by 
decreasing the bit width to 1-bit, performance suffers greatly. 
Furthermore, existing quantization studies primarily focus on 
minimizing bit width from the perspective of individual algorithms, 
overlooking the hardware costs associated with network image 
encoding. Given that images are typically represented in 8 bits, 
inconsistencies may arise between the computations of the first layer 
and those of subsequent layers, resulting in low resource reuse 
efficiency in FPGAs, as illustrated in Figure 1.

In summary, the current quantization techniques for SNNs exhibit 
three main characteristics: First, the use of a uniform bit width for 
weight quantization across all layers leads to low FPGA resource reuse 
efficiency, resulting in wasted computational resources. Second, as the 
weight bit width decreases to lower values (e.g., 2 bits), network 
performance declines severely, failing to achieve an optimal balance 
between accuracy and compression. Finally, existing quantization 
methods primarily focus on multiple time steps, resulting in high 
latency for SNNs. Consequently, these methods are unsuitable for 
resource-constrained and real-time applications.

To save FPGA computational resources, enhance resource 
efficiency, and maintain high performance under low-latency SNN 
conditions, we  employ a ternary spike neuron with stronger 
information representation capabilities for SNNs. This research 
focuses on SNN quantization from the perspective of hardware-
software co-design for FPGA implementations.

3 Methodology

3.1 The overall co-design of the 
quantization algorithm and hardware

This paper adopts the algorithm-hardware co-design paradigm, 
and at the algorithm level, the core lies in designing a quantitative 
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strategy that is tailored to the features of the hardware. At the 
algorithm level, the T8HWQ quantization method is proposed to 
balance resource usage, processing time, and model performance. 
At the hardware level, FPGA design emphasizes the efficient 
utilization of hardware resources. Through the close collaboration 
of these two aspects, the aim is to build a resource-saving SNN 
system with both high-performance computing capabilities and 
low latency.

The algorithm-hardware co-design paradigm presented in this 
study includes quantization strategies at the algorithmic level, as well 
as design and analysis related to FPGA design, as illustrated in the 
Figure 2.

3.1.1 Ternary-8bit hybrid weight quantization
At the algorithmic level, we  have developed a hybrid bit-width 

quantization method T8HWQ. This method quantizes the weights of the 
first layer of the network into a ternary set {−1, 0, 1}. This design offers 
dual advantages: first, the ternary weights align with the discrete nature of 
neuron spike events in SNNs, allowing traditional multiplication 
operations to be  converted into more efficient addition operations; 
second, ternary quantization compresses the weight storage to 2 bits, 
thereby reducing storage requirements. For the other layers, the data is 
quantized to 8 bits. Compared to traditional quantization methods, this 
hybrid bit-width design couples the computations across layers and 
simplifies the hardware design.

3.1.2 The channel-wise dual compensation 
strategy based on QAT framework

Since the first layer serves as encoding, quantizing its weights 
to 2 bits inevitably leads to a certain degree of performance 
degradation. To address this issue, we have designed a channel-
wise dual compensation strategy. This strategy effectively reduces 
the coding loss caused by the low bit-width quantization of the 
first layer by sequentially applying channel-wise quantization 
compensation (Krishnamoorthi, 2018) and channel-wise adaptive 
threshold ternary neurons compensation. Furthermore, we have 
constructed a quantization framework based on QAT that 
continuously adjusts the model to its optimal compensated state 

during the training phase, thereby enhancing the overall 
performance of the network.

3.1.3 Design and implementation of a unified PE 
based on FPGA

From the perspective of FPGA design, the aforementioned hybrid 
bit-width quantization strategy offers significant advantages. In 
traditional hardware designs, processing data of different bit-widths 
typically requires distinct computational modules. However, in our 
design, the quantization strategy allows the FPGA to primarily handle 
2-bit and 8-bit data. Based on this characteristic, we have developed a 
unified PE for ternary spiking neurons using FPGA. This unified PE 
efficiently processes both bit-widths, greatly simplifying the hardware 
architecture and thus saving FPGA hardware resources.

3.2 The channel-wise dual compensation 
strategy based on QAT framework

In this section, we propose a channel-wise dual compensation 
strategy based on QAT. We innovatively introduce adaptive threshold 
ternary spike neurons to channel-wise quantization, and the 
combination of these two compensation methods is termed the dual 
compensation strategy.

3.2.1 Channel-wise adaptive threshold ternary 
spike neuron

LIF (Leaky Integrate-and-Fire) neurons are widely used as 
mathematical models of neuronal activity, including spike firing and the 
update of membrane potential. This paper adopts the ternary spike 
neuron (Guo et al., 2024). Compared to binary spikes, ternary spikes 
convey richer information. By making the positive and negative threshold 
parameters learnable, neurons can adaptively adjust their activation based 
on data and tasks, thereby enhancing overall network performance. The 
proposed neuron model can be represented by Equations (1) and (2):

	 ( ) ( ) ( )τ −= − + 11l l l l
c c c cU t U t W O t

	 (1)

FIGURE 2

Algorithm-hardware co-design framework based on SNNs.
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( )
( )

( )
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−
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0 otherwise
1 if
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l
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l
c c
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O t
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(2)

where τ is a constant that describes membrane potential decaying. 
Uc

l(t) represents the membrane potential at time step t in the c-th channel 
of the l-th layer. I is the presynaptic input and Wc

lOc
l-1(t) is the 

accumulation of spikes from the neurons of layer l-1. W is the weight of 
the neuron. O is the spiking output of the neuron from the previous layer. 
Vc

+ > 0 is the positive threshold of the c-th channel, Vc
− < 0 is the negative 

threshold of the c-th channel. These two learnable thresholds enable 
neurons to find appropriate activation thresholds for different channels. 
We employ a soft reset mechanism represented by Equation (3):

	

( )
( )
( )

( )

( )
( )
( )

+

−

 − = +
= =


− = −
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, 0

, 1

l l
c c c

l l l
c c c

l l
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U t V if O t

U t U t if O t

U t V if O t
	

(3)

SNNs output spike sequences instead of continuous numerical 
values, presenting challenges for direct application of traditional 
backpropagation algorithms. To address this, researchers have utilized 
surrogate gradients (Neftci et  al., 2019) to train SNNs using 
backpropagation methods. During forward propagation, a 
non-differentiable spiking function is employed, while 
backpropagation utilizes a continuously differentiable surrogate 
function for gradient computation. The surrogate gradient of 
membrane potential is defined by Equation (4):

	

− ≤ ≤∂ = 
∂ 

1 if 1 1
0 otherwise

UO
U 	

(4)

The surrogate gradient of the threshold is defined by Equation (5):

	
( ) ( )γ= ⋅ − −, max 0,1H U V U V

	 (5)

The gradient of the weights is defined by Equations (6–8):

	

∂ ∂ ∂ ∂
= ⋅ ⋅

∂ ∂ ∂ ∂

l l

l l l l
L L O U

W O U W 	
(6)

	
( ) ( )γ∂

= = ⋅ −
∂

,0 max 0,1
l
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O H U U
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(7)

	
−

 =∂ =  >∂ 
1

if 1
if 1

l

ll

X lU
lOW 	

(8)

The gradient of the positive threshold is defined by Equation (9):

	
( )( )+

+ +
∂ ∂ ∂ ∂

= ⋅ = ⋅ −
∂ ∂∂ ∂

,L L O L H U V
O OV V 	

(9)

The gradient of the negative threshold is defined by Equation (10):

	
( )−− −

∂ ∂ ∂ ∂
= ⋅ = ⋅
∂ ∂∂ ∂

,L L O L H U V
O OV V 	

(10)

3.2.2 Quantization scheme and 
reparameterization technique

3.2.2.1 First layer quantization scheme
In this paper, we employ 2-bit channel-wise quantization for the 

first layer weights and 8-bit layer-wise quantization for the remaining 
layers. Compared to full-precision networks, ternary weight 
quantization reduces the precision to three discrete values, which is 
defined by Equation (11):

	

( )
θ

θ θ
θ

+ ≥
= < <
− ≤

1

2 1

2

1, if
0, if
1, if

W
Q W W

W 	

(11)

where θ1 and θ2 are the quantization thresholds, with θ θ>1 2. 
We adopt a symmetric form of the quantization thresholds, that is, 
θ1 = 0.5 and θ2 = −0.5. Then the channel-wise quantization function 
can be simplified in Equation (12):

	

( ) ( ) θ
≥= 




,
,

,, ,
if

0 otherwise

l c
l c

l cl c l c

W
sign W

fQ W
∣ ∣

	

(12)

where l indicates the index of the network layer, and c represents 
the index of the output channel of the layer. f is the channel scaling 
factor, which is related to the number of channels in the convolutional 
kernel. For the convolutional kernel weights × × ×∈ , ,, l out l inC C K K

l cW  , 
where ,l outC  is the number of output channels, ,l inC  is the number of 
input channels, K is the kernel size. If N is the number of layers in the 
network, then { } { }∈ … ∈ … ,1,2, , , 1,2, , l outl N c C .

The channel weight matrix can be defined as ( ) × ×∈ inc C K KW  . To 
exclude the influence of outliers, we define the first-layer channel 
scaling factor f, as given in Equations (13–15):

	
( ) ( )( ){ }= ∈ ≤ ≥max inf | 0.99c cq w P W w

	
(13)

	
( ) ( )( ){ }= ∈ ≥ ≥min sup | 0.01c cq w P W w

	
(14)

	
( ) ( ) = ∀ ∈     

1, max ,minmax , 1,cc
c l outf q q c C

	
(15)

where inf represents the infimum and sup represents the 
supremum. ( )

max
cq  is a threshold indicating that 99% of the channel 

weight values are less than or equal to this value, while ( )
min
cq  is a 

threshold indicating that 1% of the channel weight values are greater 
than or equal to this value. Due to the non-differentiability of the 
round and clip, we employ the Straight-Through Estimator (STE) for 
backpropagation to update the weights (Bengio et al., 2013), as shown 
in Equation 16.
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1 if

0 otherwise

c
c

c
c

W S
SQ

f
W

	

(16)

3.2.2.2 The other layers quantization scheme
All subsequent layers employ 8-bit layer-wise weight quantization, 

with the quantization function defined by Equations (17) and (18):

	
( )−

−
 

= ⋅ − ⋅ − ∀ ∈    
−  

1
1 2 1 ( , 1,1) 2,

2 1
bl l

l b l

f WQ round clip l N
f 	

(17)

	

 <∂ = 
∂ 

1 if
0 otherwise

l ll

l

W fQ
W 	

(18)

where Wl represents the 32-bit floating-point weights and b is the 
integer bit width set to 8, and thus S is 127. Our proposed quantization 
framework is illustrated in Algorithm 1.

3.2.2.3 Reparameterization technique
Channel-wise quantization is introduced at the first layer, increasing 

the training overhead. Nonetheless, we  use a reparameterization 
technique that eliminates additional computation during the inference 
phase. The quantized weights pass through the convolutional layer and 
BN (Batch Normalization) layer, and the results are:

	

( )
 ( )

γ
σ
γ µβ
σ

⋅
= ⋅ ∗ +

− = ⋅ ∗ +

1,
1, 1,

1,

float

floa ˆt

c c
c c

c
c c

c c c c
c

f
G X QW

a X QW b
	

(19)

where σ is the variance, μ is the mean, and γ and β are two 
learnable parameters. X represents the input image of the first layer, 
QW1,c denotes the quantized ternary weights of the first layer. The 
term “float” indicates the conversion from fixed-point to floating-
point representation. The data width of X is 8-bit, while QW1,c is 
quantized into 2-bit, with all other parameters being 32-bit floating-
point. The convolutional bias is omitted in this implementation and 
thus excluded from the Equation 19.

As shown in Equation 19, ca and cb  correspond to the output 
channel of the first layer, and the BN calculation can be converted to 
a single floating-point multiplication and a single floating-point 
addition. The computational operations of our dual compensation 
strategy match those of both layer-wise and channel-wise quantization, 
as summarized in Table 1. However, channel-wise dual compensation 
requires additional 4 × (Cout − 1) × 32-bit storage to maintain the 
floating-point multiply-add results and positive/negative thresholds. 
In short, the dual compensation boosts performance without extra 
computation, needing only more storage.

3.3 Design of the unified PE based on FPGA

3.3.1 Parallelism of unified PEs
Convolutional layers serve as fundamental feature extraction 

modules in modern deep learning models. A standard convolutional 

layer computes an output feature map Y (Cout × H′ × W′) by convolving 
an input feature map X (Cin × H × W) with a filters W 
(Cout × Cin × K × K), formally expressed as given in Equation (20):

	
( ) ( ) ( )

− − −

= = =
= + × + +∑ ∑ ∑

1 1 1

0 0 0
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(20)

where i and j index the output and input channels respectively, 
(m,n) represent the spatial coordinates in the output feature map, K is 
the kernel size, and b_i represents the bias term. The above operation 
can be broken down into a cyclic structure as shown in the Figure 3. 
The diagram shows the calculation process of the standard 
convolutional layer and its parallelism. One parallelism represents the 
sliding the 2D weight kernel across the 2D input feature map. The key 
parameters and parallelism dimensions are defined as follows:

Input Channels (Cin): This parameter defines the input feature 
map depth, representing the number of stacked 2D feature maps. As 
shown in the Figure 3, the “Input or Feature” cube’s depth dimension 
corresponds to Cin; in the pseudocode, Cin determines the layer 2 loop 
boundary, requiring full traversal of all input channels during each 
output channel computation.

Output Channels (Cout): This parameter represents the number of 
filters in the convolutional layer and determines the depth dimension 
of the output feature map.

Input Channel Parallelism (Pin): This parameter defines the 
parallel processing capacity across input channels when computing a 
single output feature map. When Pin = Cin, as shown in Figure 3, the 
convolutional filter simultaneously processes all Cin channels and 

ALGORITHM 1

Proposed quantization framework.
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completes accumulation in one computational step. From a hardware 
implementation perspective, this requires sufficient compute units to 
process data from all input channels in parallel, thereby speeding up 
the computation of a single output channel. In our work, the value of 
the Pin is 512.

Output Channel Parallelism (Pout): As another parallel computing 
dimension, it refers to the number of output channels that can 
be computed at the same time. Since each output channel’s computation 

is independent (e.g., the i-th output channel does not depend on the 
results of the i + 1 channel), distinct filters can be applied in parallel. 
As shown in the Figure 3, when a Pout filter is applied to the input 
feature map in parallel, the Pout output channels can be computed 
simultaneously. In our implementation, Pout is set to 1.

Since the hidden layer’s feature map uses 2-bit ternary values {−1, 
0, 1}, convolution multiplications simplify to additions. The first-layer 
weights are reduced to 2 bits via ternary quantization. This approach 
retains the input image at 8-bit precision but enables computing unit 
reuse through configurable operations.

3.3.2 Design of the unified PE architecture based 
on FPGA

Based on the above analysis, we implement the unified computing 
architecture on the FPGA, as shown in Figure 4. Our SNN acceleration 
system comprises three key components: data storage, control path 
and computing core.

3.3.2.1 Data storage
External Interface: The system interfaces with the host 

computer via a Peripheral Component Interconnect Express (PCIe) 
bus, which serves as the primary channel for raw image data 

TABLE 1  Comparison of floating-point operations and memory overhead 
between dual-compensation strategy and traditional quantization 
methods (Cout denotes output channels).

Methods Floating-point 
multiplication

Floating-
point 

addition

Floating-
point 

storage 
(32bit)

Layer-wise 

quantization

Cout Cout 4

Channel-wise 

quantization

Cout Cout 2Cout + 2

Proposed Cout Cout 4Cout

FIGURE 3

Parallel computing architecture and pseudocode implementation of multi-channel convolution.

FIGURE 4

FPGA-based hardware accelerator architecture and overall system for SNNs.
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transmission. Double Data Rate SDRAM (DDR) provides high-
capacity storage for network weights and intermediate feature maps. 
The yellow arrows (data input) and red arrows (Data Output) in the 
diagram indicate the data flow between the DDR and 
external interfaces.

Internal Memory: The architecture incorporates on-chip BRAM 
serving as a data cache. This memory temporarily stores layer-specific 
weights and feature maps (blue feature input arrows) fetched from 
DDR, while buffering output feature maps (feature output arrows) 
processed by PEs.

Storage Control: This is a scheduling module that manages the 
transfer of data between the DDR, BRAM, and SNN processing cores. 
Through Direct Memory Access (DMA) operations, it ensures timely 
data delivery to the PE array according to execution requirements.

3.3.2.2 Control path
Soft core controller: The system employs a MicroBlaze processor 

to orchestrate the inference pipeline, managing network weight 
loading, PE configuration timing, and coordination with both the 
storage controller and instruction queue for flexible hardware control.

Instruction queue and decoding: The controller dispatches 
predefined instructions to the instruction queue. A dedicated 
decoding module sequentially decodes these instructions into precise 
control signals for both the SNN processing core and storage 
controller. This architecture ensures programmability while 
supporting diverse SNN architectures.

3.3.2.3 Computing core
The unified computing architecture comprises three key 

components: PE array, dual data paths, configuration and state control, 
as shown in Figure 4.

PE array: It implements convolution calculations of inputs and 
weights. It here supports 512 parallelism.

Dual data paths: These two data paths support 8-bit image input 
and 2-bit feature input, respectively. In the respective data pathways, 
the data is fed into the PE array by the necessary pad filling or directly 
reading (Fetch Data and Padding).

Configuration and state control: It consists of command 
registers (Cmd Reg) and status registers (Status Reg). The Cmd Reg 
receives configuration instructions from the instruction decoder. The 
Configure signal determines which data path (8-bit BRAM path or 
2-bit BRAM path) to enable based on whether the first or subsequent 
layer is currently being calculated, and directs the corresponding data 
to the PE array. The Status Reg collects status signals (Status 1/2) from 
the data path, such as data readiness, computation completion. These 
statuses are fed back to the soft core controller. This configuration 
logic is summarized in Table 2 and the overall workflow utilizing these 
configurations is detailed in Table 3.

After the PE array completes the convolution, the results undergo 
post-processing including BN and LIF modules to enable neuronal 
dynamics of the SNN and activate spikes.

BN module: The convolutional outputs are normalized before 
entering the neuron model. In hardware implementations, the 
parameters of the BN, γ and β, are typically fused with convolutional 
weights. Reparameterization factor ca and cb  simplifying the BN 
operation to one multiplication and one addition.

LIF module: This module receives the value after BN and updates 
the internal membrane potential according to LIF neural dynamics. 
The updated membrane potential is compared to a configurable 
threshold: if the membrane potential exceeds the positive threshold, 
the neuron emits a spike (+1); if the membrane potential exceeds the 
negative threshold, the neuron will emits a spike (−1); Otherwise, the 
spike is not activated (0). In this work the time step is set to 1, the 
membrane potential is not further updated.

Pooling module: The maximum pooling operation is 
performed on the spike feature map, reducing spatial dimensions, 
expanding the receptive field, and improving the model’s 
translation invariance.

Final output: The results of pooling (the new spike feature map 
∈ {−1, 0, 1}) will be written back to the internal memory as input to 
the next layer, thus completing a full computation cycle.

TABLE 2  Configuration logic for dual data path selection.

Computation stage Configure signal Enabled data 
path

Status signal Input type Weight bitwidth

First layer Select Path 1 8-bit BRAM Path 1 8-bit Image 2-bit

Subsequent layers Select Path 2 2-bit BRAM Path 2 2-bit Feature 8-bit

TABLE 3  Workflow and state transition mechanism of unified PE.

Step Stage 1: first-layer 
computation

Stage 2: 
subsequent-layer 
computation

1. Configuration Trigger condition: To 

process the first layer of 

the network.

Operation: Cmd Reg 

issues instructions to 

switch to Path 1.

Trigger condition: To 

process the second and 

subsequent layers of the 

network.

Operation: Cmd Reg 

issues instructions to 

switch to Path 2.

2. Data Flow Data source: Original 

image.

Storage: 8-bit image data 

loaded into 8-bit BRAM.

Transmission: Data passes 

through the Padding 

module and enters PE.

Data source: Spike feature 

maps.

Storage: 2-bit feature data 

loaded into 2-bit BRAM.

Transmission: Data passes 

through the Padding 

module and enters PE.

3. Weight Flow Weight source: First-layer 

weights (W1).

Transmission: 2-bit 

weights pass through the 

Fetch Data module and 

enters PE.

Weight source: 

Subsequent-layer weights 

(W2).

Transmission: 8-bit 

weights pass through the 

Fetch Data module and 

enters PE.

4. Core Computation The PE array performs 

convolution: 8-bit images 

× 2-bit weights.

The PE array performs 

convolution: 2-bit features 

× 8-bit weights.
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In summary, through the innovative configurable dual data path 
design, the unified PE array can support computing of the first layer 
(8-bit input) and the subsequent layer (2-bit input) on the same 
computing arrays. This innovation ensures full reuse of computational 
resources across all network layers, significantly enhancing 
hardware utilization.

4 Experiments and discussion

4.1 Datasets and evaluation metrics

4.1.1 Dataset
In this study, we utilize CIFAR10 andCIFAR100 datasets. The 

CIFAR10 dataset (Krizhevsky and Hinton, 2009) comprises 60,000 
color images measuring 32 × 32 pixels, distributed across 10 distinct 
classes. It consists of 50,000 samples for training and an additional 
10,000 samples for validation. CIFAR-100 is more challenging. It has 
100 classes containing 600 images each.

4.1.2 Evaluation metrics
For performance evaluation, we utilize overall accuracy to assess 

classification performance. Furthermore, the signal-to-noise ratio 
(SNR) is used to evaluate the robustness of the quantized model.

4.2 Implementation details

4.2.1 Data preprocessing and networks
For CIFAR10 and CIFAR100 dataset, during training, we apply 

standard data augmentation techniques, which include adding a 
4-pixel padding on each side, performing random 32 × 32 cropping, 
and applying random horizontal flipping. However, during 
validation, the original images are utilized without these techniques. 
All the images are normalized to achieve a zero mean and unit 
variance. We employ VGG16, VGG11 (Simonyan and Zisserman, 
2015) and ResNet19 (He et  al., 2016) for validation on 
CIFAR10/100datasets.

4.2.2 Hyperparameters setting
During training, we employ a cross-entropy loss function with 

stochastic gradient descent optimization which incorporates weight 
decay (0.0005) and momentum (0.9) parameters. The full precision 
SNNs are trained for 300 epochs on the all datasets. The learning rate 
is 0.1 for VGG architectures and 0.01 for ResNet network, with a batch 
size of 256. We adopt a cosine learning rate decay schedule during 
training. During quantization stage, the AdamW optimizer is used 
with a weight decay of 0.01. The leaky factor 𝜏 is fixed at 1 and the 
firing threshold 𝜃 for ternary spike neurons is initialized at 0.5. The 
time step is set to 1 for all experiments. We utilize Python 3.10 and 
PyTorch 1.12 software and two NVIDIA A6000 Graphical Processing 
Units (GPUs). The operating system is Ubuntu 18.04.

4.2.3 Implementation details of hardware
For the FPGA implementation, we use Verilog and Vivado 2020.2 

to design the architecture. The power consumption data comes from 
the power report provided by the software. The unified PE is deployed 
on the Xilinx Virtex-7 XC7V690T FPGA operating at 100 MHz clock 

frequency. We adopt the row-stationary strategy used in works like 
Eyeriss (Chen et al., 2016), where kernel-sized rows of the feature map 
are stored in on-chip cache at the dataflow level. For example, a 3 × 3 
convolution requires caching 3 rows of input data. For each new row 
processed, the cache updates to present a continuous convolution 
dataflow to the PEs. This maximizes data reuse and 
computational efficiency.

4.3 Algorithm performance evaluation

4.3.1 Performance comparison with advanced 
methods

To evaluate the effectiveness of our method, we  conduct 
comparative experiments with existing quantized SNN approaches on 
the CIFAR-10 dataset. The results are summarized in Table  4, 
organized into four cases based on quantization bit-widths for the first 
layer weights (W1) and subsequent layers weights (W2): 32/32, 8/8, 2/8, 
and 2/2. The notation “a/b” indicates a-bit quantization for W1 and 
b-bit quantization for W2.

The proposed quantization method achieves low latency and high 
performance in SNNs. As shown in Table 4, method (Yoo and Jeong, 
2023) require 32 time steps to reach 91.66% accuracy, whereas our 
approach attains 91.55% accuracy in single time step, reducing latency 
by 32 × . By optimizing the quantization strategy, our method 
minimizes quantization loss while maintaining competitive network 
performance. Experiments on VGG16 and ResNet19 architectures 
demonstrate accuracies of 91.55% and 91.79%, respectively, 
outperforming prior results reported by Yin et al. (2024) at 90.72% 
and 91.36%.

To systematically evaluate the effectiveness of our method, 
we conduct comparative experiments with other SOTA approaches on 
the CIFAR-100 dataset, as summarized in Table 5.

Our method demonstrates clear advantages in inference efficiency, 
which is especially important in SNNs where the number of time steps 
(T) directly affects system latency and computational overhead. 
Experimental results show that the proposed method achieves single-
time step inference across multiple architectures, such as ResNet19 
and VGG11. In contrast, methods from Zou et al. (2024) (T = 2), 
Hasssan et al. (2024) (T = 2) and Gao et al. (2023) (T = 8) all require 
multiple time steps to complete inference. This single-time-step 
capability makes our approach particularly suitable for latency-
sensitive edge computing applications, such as autonomous driving 
and industrial inspection, where rapid inference is crucial.

In addition, our method maintains high model performance 
within a single time step. For instance, when quantizing ResNet19 
from 32-bit full precision to 2/8-bit, the accuracy only decreases 
slightly from 72.88 to 72.23%, with a loss of 0.65%. Similarly, On 
VGG11 declines marginally from 67.84 to 67.38%, with a loss of 
0.46%. Compared with the full-precision VGG16 (64.89%) reported 
by Wang et  al. (2025), our approach achieves an improvement of 
2.49%. Additionally, compared with the 2-bit quantified VGG11 
(54.27%) reported by Zou et al. (2024), our method’s performance 
increases by 13.11%. While the 4-bit quantization scheme (Hasssan 
et al., 2024) achieves 71.87% accuracy in two time steps, our method 
achieves a comparable performance in one time step. These results 
demonstrate that our quantization strategy enables high-performance 
model compression without increasing the number of time steps, 
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TABLE 5  Comparison of the performance of VGG11 and ResNet19 with other SOTA methods on CIFAR100.

Dataset Method Model Precision (W1/W2) Time step Accuracy (%)

CIFAR100

Zou et al. (2024) VGG11 32/32 – 67.40

Zou et al. (2024) VGG11 2/2 4 54.27

Wang et al. (2025) VGG16 32/32 - 77.22

Wang et al. (2025) VGG16 32/32 2 64.89

Gao et al. (2023) VGG16 8/8 8 66.32

Hasssan et al. (2024) ResNet19 32/32 2 72.78

Hasssan et al. (2024) ResNet19 4/4 2 71.87

This work ResNet19 32/32 1 72.88

This work ResNet19 2/8 1 72.23

This work VGG11 32/32 1 67.84

This work VGG11 2/8 1 67.38

providing efficient algorithmic support for hardware-accelerated 
unified computing architectures.

4.3.2 Hardware-oriented performance trade-off 
analysis: SNN vs. ANN

To thoroughly assess the proposed method’s effectiveness, this 
section compares our T8HWQ SNN with the W2A8 ANN, a ternary 
weight network (TWN) (Liu et  al., 2023) with 8-bit activation 
quantization. The comparison focuses on accuracy and storage 
overhead, as shown in Table 6.

While the W2A8 ANN can employ the same unified computing 
architecture as ours, experimental results demonstrate that our 
method offers accuracy benefits. On CIFAR-100, with a single time 
step, our SNN achieves 67.38 and 72.23% accuracy on VGG11 and 
ResNet19, respectively, surpassing TWN’s 66.90 and 71.45%. This 
indicates that, under ultra-low latency inference constraints, our SNN 
can still outperform the W2A8 ANN using identical hardware, 
revealing its higher performance potential.

To improve accuracy, our model balances weight storage 
against feature map storage. As shown in Table  6, ResNet19’s 
weight storage is 11.91 MB with our method, compared to 2.98 MB 
for TWN. Nevertheless, our approach reduces feature map storage 

and processing overhead. Since our activation values are only 2 
bits, feature map storage decreases by approximately 75%, for 
example, from 9.06 KB to 2.26 KB in ResNet19. In edge computing 
chip design, the main performance constraint lies not only in 
computation but also in data movement. Weight parameters are 
read once during inference and stored in off-chip 
DRAM. Conversely, feature maps require frequent read/write 
operations and must reside in on-chip SRAM to enable 
low-latency, high-bandwidth data transfer and lower power  
consumption.

This challenge is particularly prominent in ResNet networks using 
residual connections: the shallow network’s output feature map must 
be retained on-chip before being added to the deeper feature map after 
multiple convolutional layers. When on-chip SRAM capacity is 
insufficient, these feature maps are offloaded to external DRAM and 
reloaded, incurring substantial latency and power consumption (Bhati 
et al., 2016). Therefore, drastically reducing feature map storage via 
quantizing activation values to very low bit-widths is a vital strategy 
to mitigate this challenge and enable efficient hardware acceleration.

This advantage becomes even more pronounced with high-
resolution inputs. As shown in the table, the feature map size roughly 
scales with the square of the input dimension (N2). When the input 

TABLE 4  Comparison of the performance of VGG16 and ResNet19 with other SOTA methods on CIFAR10.

Dataset Method Model Precision (W1/W2) Time step Accuracy (%)

CIFAR10

Yin et al. (2024) Vgg16 8/8 8 90.72

Yin et al. (2024) Vgg16 32/32 8 91.15

Yin et al. (2024) ResNet19 32/32 8 91.29

Yin et al. (2024) ResNet19 8/8 8 91.36

Zhou et al. (2021) VGG16 2/2 - 90.93

Yoo and Jeong (2023) VGG16 2/2 32 91.66

Xu et al. (2023) VGG16 32/32 4 91.05

This work ResNet19 32/32 1 91.95

This work ResNet19 2/8 1 91.79

This work VGG16 32/32 1 91.93

This work VGG16 2/8 1 91.55

Bold values indicate superior performance.
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size increases to 640 × 640, the ANN’s feature map storage rises 
sharply to 3,625 KB, whereas our method requires only 906 KB, 
achieving a fourfold reduction. This scalability demonstrates our 
approach’s strong potential for large-scale data processing, such as 
high-resolution remote sensing image analysis (Maggiori et al., 2017).

In summary, our single-step SNN model outperforms the W2A8 
ANN in accuracy with the same computing architecture. Although it 
reduces weight storage, this trade-off enables improvements in feature 
map memory, data movement efficiency, and power consumption. 
This hardware-software co-design offers a promising approach for 
processing large-scale data on edge devices.

4.3.3 Feature analysis
To systematically explore the information retention ability of the 

first layer in the quantized model, we  employ singular value 
decomposition (SVD) on the channel characteristic map of this layer. 
This analysis involves examining the singular values and their 
cumulative energy distribution, as shown in Figures 5, 6.

The results shown in Figures 5A, 6A indicate that the proposed 
quantization scheme successfully retains the key information of the 
original full-precision model while realizing model compression. 
Among them, the blue curve representing the full-precision model 
and the red curve representing the quantization model nearly overlap, 
demonstrating that their singular value distributions are highly 

similar. Specifically, as shown in Figure 5 the quantized SNN model 
closely matches the full-precision model’s singular values within the 
first 25 maximum singular values. Similarly, in Figure 6, the quantized 
model exhibits near-identical characteristics for the singular values up 
to the 95th index. These observations confirm that the quantized 
model successfully maintains the core information and essential 
functions of the original full-precision network.

The results displayed in Figures  5B, 6B demonstrate that the 
energy distribution of the quantized model closely aligns with that of 
the full-precision model. Specifically, in Figure 5B, the top 10 singular 
values already capture more than 90% of the total energy contribution, 
with the energy difference within these singular values fluctuating by 
no more than 0.05. Beyond the 10th singular value, the energy 
difference diminishes further, remaining below 0.01. Similarly, 
Figure  6B shows that the first 20 singular values account for 
approximately 95% of the energy, and for singular values with indices 
greater than 20, the energy difference between the quantized and full-
precision models is less than 0.005. These findings indicate that the 
overall energy difference between the full-precision and quantized 
models is minimal, suggesting that the quantization process effectively 
preserves the energy distribution of the original model.

Additionally, Figure 5B illustrates the impact of quantization noise 
on the model’s performance. Specifically, when the singular value 
index exceeds 25, the red curve representing the quantized model 

TABLE 6  Comparison of the proposed SNN and ANN on performance and storage overhead.

Dataset Method Model W
1/W2/WA

Weight 
(MB)

Feature map (KB) Accuracy (%)

32 × 32 640 × 640

CIAFR100

TWN VGG11(ANN) 32/32/32 35.88 10.66 4262.50 69.52

TWN VGG11(ANN) 2/2/8 2.24 2.66 1065.62 66.90

This work VGG11(SNN) 32/32/2 35.88 0.67 266.41 67.84

This work VGG11(SNN) 2/8/2 8.97 0.67 266.41 67.38

TWN Resnet19(ANN) 32/32/32 47.64 36.25 14,500 74.21

TWN Resnet19(ANN) 2/2/8 2.98 9.06 3625.00 71.45

This work Resnet19(SNN) 32/32/2 47.64 2.26 906.25 72.88

This work Resnet19(SNN) 2/8/2 11.91 2.26 906.25 72.23

Bold values indicate superior performance.

FIGURE 5

Feature analysis of VGG16 on CIFAR10 dataset (a) singular value distribution comparison between full-precision (w32w32) and quantized (w2w8) 
models (b) cumulative energy ratio and energy difference.

https://doi.org/10.3389/fnins.2025.1665778
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Li et al.� 10.3389/fnins.2025.1665778

Frontiers in Neuroscience 12 frontiersin.org

FIGURE 7

Impact of noise on image quality under different signal-to-noise ratio (SNR) conditions.

remains above the blue curve of the full-precision model. For these 
higher-index singular values, which are inherently small, the energy 
introduced by quantization noise becomes significantly larger than 
that of the original signal. As a result, the singular values at these 
locations no longer accurately reflect the fine details of the original 
model. In particular, at the 26th index, the singular value of the 
quantized model is markedly larger than that of the full-precision 
model, indicating that the delicate information contained in the full-
precision model has been overwhelmed by noise. This phenomenon 
suggests that excessive quantization noise at these higher indices can 
potentially degrade the overall model accuracy by obscuring subtle 
but important features.

In summary, the quantization approach proposed in this study 
exhibits both negative and positive effects. On the negative side, 
quantizing the first layer of the model to 2 bits inherently introduces 
quantization noise, which can lead to a decline in the overall network 
performance. Conversely, the analysis based on singular values and 
energy distributions demonstrates that the proposed method 
effectively preserves the core functions and essential information of 
the original model. By accurately maintaining key singular values and 
the associated energy distributions, the approach ensures that the 

fundamental capabilities of the network are largely retained. 
Consequently, this compression strategy successfully reduces model 
size and complexity while preserving the critical information of the 
full-precision model, achieving a balance between efficiency 
and performance.

4.4 Robustness evaluation

To illustrate the effects of network architecture and quantization 
on accuracy under different SNR levels (as outlined in Figure 7), the 
corresponding results are presented in Figure 8. Specifically, at high 
SNR levels, the accuracy of the w2w8 model closely approaches that 
of the full-precision model. However, as the SNR decreases, the 
accuracy of the full-precision model shows a downward trend. For 
example, at an SNR of 15, the ResNet19 full-precision model achieves 
approximately 70% accuracy, whereas the w2w8 quantized model 
maintains a higher accuracy of about 74%. Similarly, for the VGG16 
network at the same SNR, the full-precision model’s accuracy drops 
to around 55%, while the w2w8 model retains approximately 62%. 
These results show that, as the SNR diminishes, the proposed 

FIGURE 6

Feature analysis of ResNet19 on CIFAR10 dataset (a) singular value distribution comparison between full-precision (w32w32) and quantized (w2w8) 
models (b) cumulative energy ratio and energy difference.
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quantization method not only preserves the robustness of the model 
but exceeds that of the full-precision counterpart, showcasing 
improved robustness under noisy conditions.

4.5 Ablation studies

To investigate the compensatory effect of the proposed neurons 
on model accuracy, ablation experiments are conducted using the 
CIFAR-100 dataset with VGG11 and ResNet19 network architectures.

The experimental variables include the proposed neurons and 
traditional neurons (Guo et  al., 2024). For the first layer, channel 
quantization is applied in both the experimental and control groups. 
In the subsequent layers, layer quantization (He and Cheng, 2018), 
(Wang et al., 2019) and traditional neurons (Guo et al., 2024) are used. 
The results are presented in Table  7, while accuracy trends over 
training epochs are illustrated in Figure 9 for VGG11 and Figure 10 
for ResNet19.

The results in Table 7 show that the proposed neurons enhance 
model performance. For the VGG11 model, classification accuracy 
increases from 66.68% with traditional neurons in the first layer 
to 67.20% with the proposed neurons, reflecting an improvement 
of 0.52%. In the ResNet19 model, accuracy in the first layer rises 
from 71.80% with traditional neurons to 72.20% with the 
proposed neurons, yielding a 0.40% improvement. These findings 
confirm that the proposed neurons effectively mitigate the 
performance loss associated with quantizing the first layer 
to 2 bits.

Figures 9, 10 illustrate that the proposed neurons outperform 
traditional neurons during training. Initially, the performance of 
the proposed neurons is approximately 1% lower than that of 
traditional neurons. However, their performance progressively 
exceeds that of traditional neurons. In the VGG11 model 

(Figure 9), the proposed neurons demonstrate greater stability than 
traditional neurons starting around the 25th epoch. Similarly, in 
the ResNet19 model (Figure 10), the proposed neurons consistently 
surpass traditional neurons beginning at approximately the 
30th epoch.

Overall, the experimental results demonstrate the effectiveness of the 
neurons introduced in this paper. The proposed neuron successfully 
compensates for the performance loss associated with 2-bit quantization 
in the first layer, thereby enhancing the overall performance of the 
network. This improvement contributes to the development of a high-
performance quantization model and offers valuable technical support for 
hardware unified computing architectures.

4.6 Hardware efficiency evaluation

In this section, we analyze the varying levels of parallelism in PE1. 
We use the decoupled PE architecture as the benchmark system, and its 
resource utilization will serve as the baseline for evaluating performance. 
This comparison will allow us to assess the effectiveness of different 
degrees of parallelism and their impact on resource utilization.

As shown in Table 8, the unified computing architecture exhibits 
low resource utilization. By integrating PE1 and PE2, critical logic 

FIGURE 8

Robustness comparison of mixed-precision (w2w8) vs. full-precision 
(w32w32) on ResNet19 and VGG16 over CIFAR10 under varying SNR 
conditions.

TABLE 7  Ablation study comparing proposed versus traditional neurons 
in VGG11 and ResNet19 on CIFAR100 dataset.

Network VGG11 ResNet19

Traditional neuron ✓ × ✓ ×

Proposed neuron × ✓ × ✓

Accuracy 66.68 67.20 71.80 72.20

FIGURE 9

Training accuracy comparison between proposed and traditional 
neurons in VGG11 on CIFAR100.

FIGURE 10

Training accuracy comparison between proposed and traditional 
neurons in ResNet19 on CIFAR100.
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resources are saved. Specifically, when the output parallelism of PE1 
is low (1), the unified PE can save 1.22% of LUTs, 0.49% of flip flops 
(FFs), and 50% of digital signal processors (DSPs) compared to 
traditional decoupled PEs. When the output parallelism of PE1 is 
increased to 16, the unified PE achieves even greater resource savings, 
with reductions of 20.20% in LUTs, 10.59% in FFs, and 6.90% in DSPs.

In addition, the resource-saving benefits of the unified computing 
architecture are amplified as the degree of parallelism increases. When 
the parallelism increased from 1 to 16, the savings jumped from 1.22 
to 20.20% for LUTs and from 0.49 to 10.59% for FFs. This shows that, 
compared with the traditional architecture, the unified computing 
approach can effectively manage the growth of hardware resources in 
high-parallel real-time tasks.

It’s worth noting that the unified computing architecture aligns 
with the frames per second (FPS) of traditional architectures without 
compromising processing efficiency. This indicates that the unified 
computing architecture can achieve substantial resource savings while 
maintaining the same throughput levels.

In summary, the unified PE represents a more efficient hardware 
solution than the traditional discrete design. It not only reduces the 
logic resource utilization of FPGAs but also exhibits a significant 
scaling effect in high-parallel application scenarios.

In order to fully evaluate the effectiveness of the proposed SNN 
accelerator design, we  conduct a detailed comparison with three 
advanced similar works on the CIFAR100 dataset. As shown in 
Table  9, our design exhibits excellent overall performance across 
several key metrics.

Firstly, regarding classification accuracy, the proposed method 
achieves 67.38%, surpassing all comparison works. This outcome 
indicates that the T8HWQ scheme and the network architecture can 
be effectively deployed while maintaining high accuracy. Importantly, 
this level of performance is achieved at a single time step, without 
introducing any additional latency. Therefore, our method offers the 
dual benefits of low latency and high performance.

Secondly, the efficiency of this design is reflected in two key 
aspects: power consumption and resource utilization. On the Virtex-
7690 T platform, the power consumption of the proposed accelerator 
is 0.982 W, representing a significant improvement over the 1.562 W 
reported in Chen et al. (2024). This advantage stems not only from the 
low-latency design achieved within a single time step but also from 
the implementation of first-layer ternary quantization technology. 
This technology reduces the first-layer multiplication operation to an 
equivalent addition operation, drastically decreasing dependence on 

DSPs. Specifically, our design requires only 6 DSPs, in contrast to 256 
and 2,881 DSPs required by the schemes in Li et al. (2024) and Aung 
et al. (2023), respectively. These results demonstrate the applicability 
of our architecture in resource-constrained edge computing scenarios.

Regarding throughput, while the methods presented in Li et al. 
(2024) and Aung et al. (2023) achieve lower latency with higher clock 
frequencies (600 MHz and 500 MHz), these performance gains come 
at the cost of substantial power consumption and DSP resource 
utilization. In comparison, our design achieves an image processing 
delay of 3.12 ms and a throughput rate of 320 FPS at a clock frequency 
of only 100 MHz. The processing latency of our proposed method is 
approximately six times lower than that of Chen et al. (2024), despite 
the latter’s implementation being deployed for four time steps, which 
is four times that of our design. This indicates that our method 
possesses a highly competitive high-throughput characteristic.

In summary, this study demonstrates that through the software-
hardware co-design strategy, the T8HWQ quantization method 

TABLE 9  Comparison between FPGA-based SNN accelerator and other 
SOTA designs.

Parameters Chen et al. 
(2024)

Li et al. 
(2024)

Aung 
et al. 
(2023)

This work

Platform Virtex-72000 T Xczu3eg VCU118 Virtex-7690 T

Neuron LIF LIF LIF LIF

Dataset CIFAR100 CIFAR100 CIFAR100 CIFAR100

Clock Frequency 200 600 500 100

Model VGG11 VGG11 VGG11 VGG11

Weight Bitwidth 8bit 8bit 8bit 2bit/8bit

Time Step 4 4 1 1

Accuracy 66.97% 64.3% 65.9% 67.38%

LUT 142,446 23 K 183 K 147,818

FF 124,619 – – 141,516

Bram 355.0 103 289 326.5

DSP 1 256 2,881 6

Latency/Image 

(ms)

19 1.75 0.082 3.12

FPS 52 571 11.6 K 320

Power 

Consumption

1.562 6.2 29.8 0.982

TABLE 8  Resource comparison between decoupled PE and unified PE for first convolutional layer under different output parallelism.

Pout (1st 
layer)

Method PE (Pin × Pout) LUT FF DSP FPS

1

Decoupled PE PE1(3 × 1) & PE2(512 × 1)
149,642

(−0.00%)

142,212

(−0.00%)

12

(−0.00%)
320

Unified PE This work (512 × 1)
147,818

(−1.22%)

141,516

(−0.49%)

6

(−50%)

16

Decoupled PE
PE1(3 × 16) & 

PE2(512 × 1)

199,586

(−0.00%)

174,634

(−0.00%)

87

(−0.00%)
424

Unified PE
This work (32 × 16 & 

512 × 1)

159,263

(−20.20%)

156,137

(−10.59%)

81

(−6.90%)

Bold values indicate superior performance.
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effectively facilitates the efficient reuse of computing resources. It 
achieves high accuracy at a single time step while maintaining low 
levels of power consumption and DSP resource utilization, making it 
well-suited for resource-constrained, low-latency edge computing  
scenarios.

4.7 Discussion on scalability for 
multi-timestep processing

Although the proposed design targets single-timestep scenarios 
for ultra-low latency processing, it can also scale to multi-timestep 
applications. Since our architecture does not rely on membrane 
potential states dependent on specific time steps, the simplest scaling 
approach involves adopting a temporal parallelism strategy (Yin et al., 
2024), (Chen et al., 2024). In this approach, independent computing 
resources are allocated for each time step, thereby preserving 
extremely low latency.

This parallelism strategy highlights a fundamental trade-off in 
SNN accelerator design: the performance advantage of “temporal 
parallelism” versus the resource efficiency of “temporal serialism” 
(Narayanan et  al., 2020). A more flexible and desirable approach 
involves a hybrid, configurable data flow (Lee et  al., 2022) that 
dynamically balances latency and resource utilization based on 
specific application requirements. For example, for a task with six time 
steps (T = 6), the system can operate in a mode that processes time 
steps in parallel within a group and executes groups sequentially. This 
can be realized as three stages, each processing two time steps (T = 2) 
in parallel. Alternatively, it can run in two sequential stages, each 
processing three time steps (T = 3) in parallel.

The T8HWQ unified computing architecture proposed in this 
paper provides a robust foundation for achieving this goal. It 
minimizes hardware overhead while maintaining high performance 
through co-design of software and hardware, which makes it feasible 
to implement configurable data flows on resource-constrained 
platforms. In the future, we  plan to develop and validate the 
implementation of this configurable data flow.

5 Conclusion

This paper addresses the critical issue of resource redundancy in 
SNN accelerators, a problem stemming from the inherent decoupling 
of quantization algorithms and FPGA computing units, by proposing 
a holistic software-hardware co-design methodology. Specifically, 
we propose a T8HWQ method and a channel-wise dual compensation 
strategy, which innovatively introduces channel-wise adaptive 
thresholds to compensate for quantization loss, and adopts a 
reparameterization method to reduce the quantization performance 
loss without increasing computation amount. In addition, this 
proposed method effectively reduces the hardware implementation 
overhead by supporting a unified computing architecture based on 
FPGA. Experimental results show that the quantization algorithm 
and the hardware design not only maintain the high performance of 
the network quantization, but also realize the resource reuse of 
computing units in one time step. This algorithm-hardware 
collaborative optimization scheme provides effective technical 
support for high-performance and low-latency processing in 

resource-constrained scenarios. On this basis, we will further explore 
the algorithm design and hardware architecture development of SNNs 
in more complex tasks such as object detection in the future (Chen 
et al., 2024).
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